xref: /netbsd/sys/kern/subr_pool.c (revision bf9ec67e)
1 /*	$NetBSD: subr_pool.c,v 1.76 2002/03/13 10:57:18 simonb Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9  * Simulation Facility, NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.76 2002/03/13 10:57:18 simonb Exp $");
42 
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56 
57 #include <uvm/uvm.h>
58 
59 /*
60  * Pool resource management utility.
61  *
62  * Memory is allocated in pages which are split into pieces according
63  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
64  * in the pool structure and the individual pool items are on a linked list
65  * headed by `ph_itemlist' in each page header. The memory for building
66  * the page list is either taken from the allocated pages themselves (for
67  * small pool items) or taken from an internal pool of page headers (`phpool').
68  */
69 
70 /* List of all pools */
71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
72 
73 /* Private pool for page header structures */
74 static struct pool phpool;
75 
76 #ifdef POOL_SUBPAGE
77 /* Pool of subpages for use by normal pools. */
78 static struct pool psppool;
79 #endif
80 
81 /* # of seconds to retain page after last use */
82 int pool_inactive_time = 10;
83 
84 /* Next candidate for drainage (see pool_drain()) */
85 static struct pool	*drainpp;
86 
87 /* This spin lock protects both pool_head and drainpp. */
88 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
89 
90 struct pool_item_header {
91 	/* Page headers */
92 	TAILQ_ENTRY(pool_item_header)
93 				ph_pagelist;	/* pool page list */
94 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
95 	LIST_ENTRY(pool_item_header)
96 				ph_hashlist;	/* Off-page page headers */
97 	int			ph_nmissing;	/* # of chunks in use */
98 	caddr_t			ph_page;	/* this page's address */
99 	struct timeval		ph_time;	/* last referenced */
100 };
101 TAILQ_HEAD(pool_pagelist,pool_item_header);
102 
103 struct pool_item {
104 #ifdef DIAGNOSTIC
105 	int pi_magic;
106 #endif
107 #define	PI_MAGIC 0xdeadbeef
108 	/* Other entries use only this list entry */
109 	TAILQ_ENTRY(pool_item)	pi_list;
110 };
111 
112 #define	PR_HASH_INDEX(pp,addr) \
113 	(((u_long)(addr) >> (pp)->pr_alloc->pa_pageshift) & \
114 	 (PR_HASHTABSIZE - 1))
115 
116 #define	POOL_NEEDS_CATCHUP(pp)						\
117 	((pp)->pr_nitems < (pp)->pr_minitems)
118 
119 /*
120  * Pool cache management.
121  *
122  * Pool caches provide a way for constructed objects to be cached by the
123  * pool subsystem.  This can lead to performance improvements by avoiding
124  * needless object construction/destruction; it is deferred until absolutely
125  * necessary.
126  *
127  * Caches are grouped into cache groups.  Each cache group references
128  * up to 16 constructed objects.  When a cache allocates an object
129  * from the pool, it calls the object's constructor and places it into
130  * a cache group.  When a cache group frees an object back to the pool,
131  * it first calls the object's destructor.  This allows the object to
132  * persist in constructed form while freed to the cache.
133  *
134  * Multiple caches may exist for each pool.  This allows a single
135  * object type to have multiple constructed forms.  The pool references
136  * each cache, so that when a pool is drained by the pagedaemon, it can
137  * drain each individual cache as well.  Each time a cache is drained,
138  * the most idle cache group is freed to the pool in its entirety.
139  *
140  * Pool caches are layed on top of pools.  By layering them, we can avoid
141  * the complexity of cache management for pools which would not benefit
142  * from it.
143  */
144 
145 /* The cache group pool. */
146 static struct pool pcgpool;
147 
148 static void	pool_cache_reclaim(struct pool_cache *);
149 
150 static int	pool_catchup(struct pool *);
151 static void	pool_prime_page(struct pool *, caddr_t,
152 		    struct pool_item_header *);
153 
154 void		*pool_allocator_alloc(struct pool *, int);
155 void		pool_allocator_free(struct pool *, void *);
156 
157 static void pool_print1(struct pool *, const char *,
158 	void (*)(const char *, ...));
159 
160 /*
161  * Pool log entry. An array of these is allocated in pool_init().
162  */
163 struct pool_log {
164 	const char	*pl_file;
165 	long		pl_line;
166 	int		pl_action;
167 #define	PRLOG_GET	1
168 #define	PRLOG_PUT	2
169 	void		*pl_addr;
170 };
171 
172 /* Number of entries in pool log buffers */
173 #ifndef POOL_LOGSIZE
174 #define	POOL_LOGSIZE	10
175 #endif
176 
177 int pool_logsize = POOL_LOGSIZE;
178 
179 #ifdef POOL_DIAGNOSTIC
180 static __inline void
181 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
182 {
183 	int n = pp->pr_curlogentry;
184 	struct pool_log *pl;
185 
186 	if ((pp->pr_roflags & PR_LOGGING) == 0)
187 		return;
188 
189 	/*
190 	 * Fill in the current entry. Wrap around and overwrite
191 	 * the oldest entry if necessary.
192 	 */
193 	pl = &pp->pr_log[n];
194 	pl->pl_file = file;
195 	pl->pl_line = line;
196 	pl->pl_action = action;
197 	pl->pl_addr = v;
198 	if (++n >= pp->pr_logsize)
199 		n = 0;
200 	pp->pr_curlogentry = n;
201 }
202 
203 static void
204 pr_printlog(struct pool *pp, struct pool_item *pi,
205     void (*pr)(const char *, ...))
206 {
207 	int i = pp->pr_logsize;
208 	int n = pp->pr_curlogentry;
209 
210 	if ((pp->pr_roflags & PR_LOGGING) == 0)
211 		return;
212 
213 	/*
214 	 * Print all entries in this pool's log.
215 	 */
216 	while (i-- > 0) {
217 		struct pool_log *pl = &pp->pr_log[n];
218 		if (pl->pl_action != 0) {
219 			if (pi == NULL || pi == pl->pl_addr) {
220 				(*pr)("\tlog entry %d:\n", i);
221 				(*pr)("\t\taction = %s, addr = %p\n",
222 				    pl->pl_action == PRLOG_GET ? "get" : "put",
223 				    pl->pl_addr);
224 				(*pr)("\t\tfile: %s at line %lu\n",
225 				    pl->pl_file, pl->pl_line);
226 			}
227 		}
228 		if (++n >= pp->pr_logsize)
229 			n = 0;
230 	}
231 }
232 
233 static __inline void
234 pr_enter(struct pool *pp, const char *file, long line)
235 {
236 
237 	if (__predict_false(pp->pr_entered_file != NULL)) {
238 		printf("pool %s: reentrancy at file %s line %ld\n",
239 		    pp->pr_wchan, file, line);
240 		printf("         previous entry at file %s line %ld\n",
241 		    pp->pr_entered_file, pp->pr_entered_line);
242 		panic("pr_enter");
243 	}
244 
245 	pp->pr_entered_file = file;
246 	pp->pr_entered_line = line;
247 }
248 
249 static __inline void
250 pr_leave(struct pool *pp)
251 {
252 
253 	if (__predict_false(pp->pr_entered_file == NULL)) {
254 		printf("pool %s not entered?\n", pp->pr_wchan);
255 		panic("pr_leave");
256 	}
257 
258 	pp->pr_entered_file = NULL;
259 	pp->pr_entered_line = 0;
260 }
261 
262 static __inline void
263 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
264 {
265 
266 	if (pp->pr_entered_file != NULL)
267 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
268 		    pp->pr_entered_file, pp->pr_entered_line);
269 }
270 #else
271 #define	pr_log(pp, v, action, file, line)
272 #define	pr_printlog(pp, pi, pr)
273 #define	pr_enter(pp, file, line)
274 #define	pr_leave(pp)
275 #define	pr_enter_check(pp, pr)
276 #endif /* POOL_DIAGNOSTIC */
277 
278 /*
279  * Return the pool page header based on page address.
280  */
281 static __inline struct pool_item_header *
282 pr_find_pagehead(struct pool *pp, caddr_t page)
283 {
284 	struct pool_item_header *ph;
285 
286 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
287 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
288 
289 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
290 	     ph != NULL;
291 	     ph = LIST_NEXT(ph, ph_hashlist)) {
292 		if (ph->ph_page == page)
293 			return (ph);
294 	}
295 	return (NULL);
296 }
297 
298 /*
299  * Remove a page from the pool.
300  */
301 static __inline void
302 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
303      struct pool_pagelist *pq)
304 {
305 	int s;
306 
307 	/*
308 	 * If the page was idle, decrement the idle page count.
309 	 */
310 	if (ph->ph_nmissing == 0) {
311 #ifdef DIAGNOSTIC
312 		if (pp->pr_nidle == 0)
313 			panic("pr_rmpage: nidle inconsistent");
314 		if (pp->pr_nitems < pp->pr_itemsperpage)
315 			panic("pr_rmpage: nitems inconsistent");
316 #endif
317 		pp->pr_nidle--;
318 	}
319 
320 	pp->pr_nitems -= pp->pr_itemsperpage;
321 
322 	/*
323 	 * Unlink a page from the pool and release it (or queue it for release).
324 	 */
325 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
326 	if (pq) {
327 		TAILQ_INSERT_HEAD(pq, ph, ph_pagelist);
328 	} else {
329 		pool_allocator_free(pp, ph->ph_page);
330 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
331 			LIST_REMOVE(ph, ph_hashlist);
332 			s = splhigh();
333 			pool_put(&phpool, ph);
334 			splx(s);
335 		}
336 	}
337 	pp->pr_npages--;
338 	pp->pr_npagefree++;
339 
340 	if (pp->pr_curpage == ph) {
341 		/*
342 		 * Find a new non-empty page header, if any.
343 		 * Start search from the page head, to increase the
344 		 * chance for "high water" pages to be freed.
345 		 */
346 		TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
347 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
348 				break;
349 
350 		pp->pr_curpage = ph;
351 	}
352 }
353 
354 /*
355  * Initialize the given pool resource structure.
356  *
357  * We export this routine to allow other kernel parts to declare
358  * static pools that must be initialized before malloc() is available.
359  */
360 void
361 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
362     const char *wchan, struct pool_allocator *palloc)
363 {
364 	int off, slack, i;
365 
366 #ifdef POOL_DIAGNOSTIC
367 	/*
368 	 * Always log if POOL_DIAGNOSTIC is defined.
369 	 */
370 	if (pool_logsize != 0)
371 		flags |= PR_LOGGING;
372 #endif
373 
374 #ifdef POOL_SUBPAGE
375 	/*
376 	 * XXX We don't provide a real `nointr' back-end
377 	 * yet; all sub-pages come from a kmem back-end.
378 	 * maybe some day...
379 	 */
380 	if (palloc == NULL) {
381 		extern struct pool_allocator pool_allocator_kmem_subpage;
382 		palloc = &pool_allocator_kmem_subpage;
383 	}
384 	/*
385 	 * We'll assume any user-specified back-end allocator
386 	 * will deal with sub-pages, or simply don't care.
387 	 */
388 #else
389 	if (palloc == NULL)
390 		palloc = &pool_allocator_kmem;
391 #endif /* POOL_SUBPAGE */
392 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
393 		if (palloc->pa_pagesz == 0) {
394 #ifdef POOL_SUBPAGE
395 			if (palloc == &pool_allocator_kmem)
396 				palloc->pa_pagesz = PAGE_SIZE;
397 			else
398 				palloc->pa_pagesz = POOL_SUBPAGE;
399 #else
400 			palloc->pa_pagesz = PAGE_SIZE;
401 #endif /* POOL_SUBPAGE */
402 		}
403 
404 		TAILQ_INIT(&palloc->pa_list);
405 
406 		simple_lock_init(&palloc->pa_slock);
407 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
408 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
409 		palloc->pa_flags |= PA_INITIALIZED;
410 	}
411 
412 	if (align == 0)
413 		align = ALIGN(1);
414 
415 	if (size < sizeof(struct pool_item))
416 		size = sizeof(struct pool_item);
417 
418 	size = ALIGN(size);
419 #ifdef DIAGNOSTIC
420 	if (size > palloc->pa_pagesz)
421 		panic("pool_init: pool item size (%lu) too large",
422 		      (u_long)size);
423 #endif
424 
425 	/*
426 	 * Initialize the pool structure.
427 	 */
428 	TAILQ_INIT(&pp->pr_pagelist);
429 	TAILQ_INIT(&pp->pr_cachelist);
430 	pp->pr_curpage = NULL;
431 	pp->pr_npages = 0;
432 	pp->pr_minitems = 0;
433 	pp->pr_minpages = 0;
434 	pp->pr_maxpages = UINT_MAX;
435 	pp->pr_roflags = flags;
436 	pp->pr_flags = 0;
437 	pp->pr_size = size;
438 	pp->pr_align = align;
439 	pp->pr_wchan = wchan;
440 	pp->pr_alloc = palloc;
441 	pp->pr_nitems = 0;
442 	pp->pr_nout = 0;
443 	pp->pr_hardlimit = UINT_MAX;
444 	pp->pr_hardlimit_warning = NULL;
445 	pp->pr_hardlimit_ratecap.tv_sec = 0;
446 	pp->pr_hardlimit_ratecap.tv_usec = 0;
447 	pp->pr_hardlimit_warning_last.tv_sec = 0;
448 	pp->pr_hardlimit_warning_last.tv_usec = 0;
449 	pp->pr_drain_hook = NULL;
450 	pp->pr_drain_hook_arg = NULL;
451 
452 	/*
453 	 * Decide whether to put the page header off page to avoid
454 	 * wasting too large a part of the page. Off-page page headers
455 	 * go on a hash table, so we can match a returned item
456 	 * with its header based on the page address.
457 	 * We use 1/16 of the page size as the threshold (XXX: tune)
458 	 */
459 	if (pp->pr_size < palloc->pa_pagesz/16) {
460 		/* Use the end of the page for the page header */
461 		pp->pr_roflags |= PR_PHINPAGE;
462 		pp->pr_phoffset = off = palloc->pa_pagesz -
463 		    ALIGN(sizeof(struct pool_item_header));
464 	} else {
465 		/* The page header will be taken from our page header pool */
466 		pp->pr_phoffset = 0;
467 		off = palloc->pa_pagesz;
468 		for (i = 0; i < PR_HASHTABSIZE; i++) {
469 			LIST_INIT(&pp->pr_hashtab[i]);
470 		}
471 	}
472 
473 	/*
474 	 * Alignment is to take place at `ioff' within the item. This means
475 	 * we must reserve up to `align - 1' bytes on the page to allow
476 	 * appropriate positioning of each item.
477 	 *
478 	 * Silently enforce `0 <= ioff < align'.
479 	 */
480 	pp->pr_itemoffset = ioff = ioff % align;
481 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
482 	KASSERT(pp->pr_itemsperpage != 0);
483 
484 	/*
485 	 * Use the slack between the chunks and the page header
486 	 * for "cache coloring".
487 	 */
488 	slack = off - pp->pr_itemsperpage * pp->pr_size;
489 	pp->pr_maxcolor = (slack / align) * align;
490 	pp->pr_curcolor = 0;
491 
492 	pp->pr_nget = 0;
493 	pp->pr_nfail = 0;
494 	pp->pr_nput = 0;
495 	pp->pr_npagealloc = 0;
496 	pp->pr_npagefree = 0;
497 	pp->pr_hiwat = 0;
498 	pp->pr_nidle = 0;
499 
500 #ifdef POOL_DIAGNOSTIC
501 	if (flags & PR_LOGGING) {
502 		if (kmem_map == NULL ||
503 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
504 		     M_TEMP, M_NOWAIT)) == NULL)
505 			pp->pr_roflags &= ~PR_LOGGING;
506 		pp->pr_curlogentry = 0;
507 		pp->pr_logsize = pool_logsize;
508 	}
509 #endif
510 
511 	pp->pr_entered_file = NULL;
512 	pp->pr_entered_line = 0;
513 
514 	simple_lock_init(&pp->pr_slock);
515 
516 	/*
517 	 * Initialize private page header pool and cache magazine pool if we
518 	 * haven't done so yet.
519 	 * XXX LOCKING.
520 	 */
521 	if (phpool.pr_size == 0) {
522 #ifdef POOL_SUBPAGE
523 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
524 		    "phpool", &pool_allocator_kmem);
525 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
526 		    PR_RECURSIVE, "psppool", &pool_allocator_kmem);
527 #else
528 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
529 		    0, "phpool", NULL);
530 #endif
531 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
532 		    0, "pcgpool", NULL);
533 	}
534 
535 	/* Insert into the list of all pools. */
536 	simple_lock(&pool_head_slock);
537 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
538 	simple_unlock(&pool_head_slock);
539 
540 	/* Insert this into the list of pools using this allocator. */
541 	simple_lock(&palloc->pa_slock);
542 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
543 	simple_unlock(&palloc->pa_slock);
544 }
545 
546 /*
547  * De-commision a pool resource.
548  */
549 void
550 pool_destroy(struct pool *pp)
551 {
552 	struct pool_item_header *ph;
553 	struct pool_cache *pc;
554 
555 	/* Locking order: pool_allocator -> pool */
556 	simple_lock(&pp->pr_alloc->pa_slock);
557 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
558 	simple_unlock(&pp->pr_alloc->pa_slock);
559 
560 	/* Destroy all caches for this pool. */
561 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
562 		pool_cache_destroy(pc);
563 
564 #ifdef DIAGNOSTIC
565 	if (pp->pr_nout != 0) {
566 		pr_printlog(pp, NULL, printf);
567 		panic("pool_destroy: pool busy: still out: %u\n",
568 		    pp->pr_nout);
569 	}
570 #endif
571 
572 	/* Remove all pages */
573 	while ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
574 		pr_rmpage(pp, ph, NULL);
575 
576 	/* Remove from global pool list */
577 	simple_lock(&pool_head_slock);
578 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
579 	if (drainpp == pp) {
580 		drainpp = NULL;
581 	}
582 	simple_unlock(&pool_head_slock);
583 
584 #ifdef POOL_DIAGNOSTIC
585 	if ((pp->pr_roflags & PR_LOGGING) != 0)
586 		free(pp->pr_log, M_TEMP);
587 #endif
588 }
589 
590 void
591 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
592 {
593 
594 	/* XXX no locking -- must be used just after pool_init() */
595 #ifdef DIAGNOSTIC
596 	if (pp->pr_drain_hook != NULL)
597 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
598 #endif
599 	pp->pr_drain_hook = fn;
600 	pp->pr_drain_hook_arg = arg;
601 }
602 
603 static __inline struct pool_item_header *
604 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
605 {
606 	struct pool_item_header *ph;
607 	int s;
608 
609 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
610 
611 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
612 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
613 	else {
614 		s = splhigh();
615 		ph = pool_get(&phpool, flags);
616 		splx(s);
617 	}
618 
619 	return (ph);
620 }
621 
622 /*
623  * Grab an item from the pool; must be called at appropriate spl level
624  */
625 void *
626 #ifdef POOL_DIAGNOSTIC
627 _pool_get(struct pool *pp, int flags, const char *file, long line)
628 #else
629 pool_get(struct pool *pp, int flags)
630 #endif
631 {
632 	struct pool_item *pi;
633 	struct pool_item_header *ph;
634 	void *v;
635 
636 #ifdef DIAGNOSTIC
637 	if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
638 			    (flags & PR_WAITOK) != 0))
639 		panic("pool_get: must have NOWAIT");
640 
641 #ifdef LOCKDEBUG
642 	if (flags & PR_WAITOK)
643 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
644 #endif
645 #endif /* DIAGNOSTIC */
646 
647 	simple_lock(&pp->pr_slock);
648 	pr_enter(pp, file, line);
649 
650  startover:
651 	/*
652 	 * Check to see if we've reached the hard limit.  If we have,
653 	 * and we can wait, then wait until an item has been returned to
654 	 * the pool.
655 	 */
656 #ifdef DIAGNOSTIC
657 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
658 		pr_leave(pp);
659 		simple_unlock(&pp->pr_slock);
660 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
661 	}
662 #endif
663 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
664 		if (pp->pr_drain_hook != NULL) {
665 			/*
666 			 * Since the drain hook is going to free things
667 			 * back to the pool, unlock, call the hook, re-lock,
668 			 * and check the hardlimit condition again.
669 			 */
670 			pr_leave(pp);
671 			simple_unlock(&pp->pr_slock);
672 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
673 			simple_lock(&pp->pr_slock);
674 			pr_enter(pp, file, line);
675 			if (pp->pr_nout < pp->pr_hardlimit)
676 				goto startover;
677 		}
678 
679 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
680 			/*
681 			 * XXX: A warning isn't logged in this case.  Should
682 			 * it be?
683 			 */
684 			pp->pr_flags |= PR_WANTED;
685 			pr_leave(pp);
686 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
687 			pr_enter(pp, file, line);
688 			goto startover;
689 		}
690 
691 		/*
692 		 * Log a message that the hard limit has been hit.
693 		 */
694 		if (pp->pr_hardlimit_warning != NULL &&
695 		    ratecheck(&pp->pr_hardlimit_warning_last,
696 			      &pp->pr_hardlimit_ratecap))
697 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
698 
699 		pp->pr_nfail++;
700 
701 		pr_leave(pp);
702 		simple_unlock(&pp->pr_slock);
703 		return (NULL);
704 	}
705 
706 	/*
707 	 * The convention we use is that if `curpage' is not NULL, then
708 	 * it points at a non-empty bucket. In particular, `curpage'
709 	 * never points at a page header which has PR_PHINPAGE set and
710 	 * has no items in its bucket.
711 	 */
712 	if ((ph = pp->pr_curpage) == NULL) {
713 #ifdef DIAGNOSTIC
714 		if (pp->pr_nitems != 0) {
715 			simple_unlock(&pp->pr_slock);
716 			printf("pool_get: %s: curpage NULL, nitems %u\n",
717 			    pp->pr_wchan, pp->pr_nitems);
718 			panic("pool_get: nitems inconsistent\n");
719 		}
720 #endif
721 
722 		/*
723 		 * Call the back-end page allocator for more memory.
724 		 * Release the pool lock, as the back-end page allocator
725 		 * may block.
726 		 */
727 		pr_leave(pp);
728 		simple_unlock(&pp->pr_slock);
729 		v = pool_allocator_alloc(pp, flags);
730 		if (__predict_true(v != NULL))
731 			ph = pool_alloc_item_header(pp, v, flags);
732 		simple_lock(&pp->pr_slock);
733 		pr_enter(pp, file, line);
734 
735 		if (__predict_false(v == NULL || ph == NULL)) {
736 			if (v != NULL)
737 				pool_allocator_free(pp, v);
738 
739 			/*
740 			 * We were unable to allocate a page or item
741 			 * header, but we released the lock during
742 			 * allocation, so perhaps items were freed
743 			 * back to the pool.  Check for this case.
744 			 */
745 			if (pp->pr_curpage != NULL)
746 				goto startover;
747 
748 			if ((flags & PR_WAITOK) == 0) {
749 				pp->pr_nfail++;
750 				pr_leave(pp);
751 				simple_unlock(&pp->pr_slock);
752 				return (NULL);
753 			}
754 
755 			/*
756 			 * Wait for items to be returned to this pool.
757 			 *
758 			 * XXX: maybe we should wake up once a second and
759 			 * try again?
760 			 */
761 			pp->pr_flags |= PR_WANTED;
762 			/* PA_WANTED is already set on the allocator. */
763 			pr_leave(pp);
764 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
765 			pr_enter(pp, file, line);
766 			goto startover;
767 		}
768 
769 		/* We have more memory; add it to the pool */
770 		pool_prime_page(pp, v, ph);
771 		pp->pr_npagealloc++;
772 
773 		/* Start the allocation process over. */
774 		goto startover;
775 	}
776 
777 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
778 		pr_leave(pp);
779 		simple_unlock(&pp->pr_slock);
780 		panic("pool_get: %s: page empty", pp->pr_wchan);
781 	}
782 #ifdef DIAGNOSTIC
783 	if (__predict_false(pp->pr_nitems == 0)) {
784 		pr_leave(pp);
785 		simple_unlock(&pp->pr_slock);
786 		printf("pool_get: %s: items on itemlist, nitems %u\n",
787 		    pp->pr_wchan, pp->pr_nitems);
788 		panic("pool_get: nitems inconsistent\n");
789 	}
790 #endif
791 
792 #ifdef POOL_DIAGNOSTIC
793 	pr_log(pp, v, PRLOG_GET, file, line);
794 #endif
795 
796 #ifdef DIAGNOSTIC
797 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
798 		pr_printlog(pp, pi, printf);
799 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
800 		       " item addr %p\n",
801 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
802 	}
803 #endif
804 
805 	/*
806 	 * Remove from item list.
807 	 */
808 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
809 	pp->pr_nitems--;
810 	pp->pr_nout++;
811 	if (ph->ph_nmissing == 0) {
812 #ifdef DIAGNOSTIC
813 		if (__predict_false(pp->pr_nidle == 0))
814 			panic("pool_get: nidle inconsistent");
815 #endif
816 		pp->pr_nidle--;
817 	}
818 	ph->ph_nmissing++;
819 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
820 #ifdef DIAGNOSTIC
821 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
822 			pr_leave(pp);
823 			simple_unlock(&pp->pr_slock);
824 			panic("pool_get: %s: nmissing inconsistent",
825 			    pp->pr_wchan);
826 		}
827 #endif
828 		/*
829 		 * Find a new non-empty page header, if any.
830 		 * Start search from the page head, to increase
831 		 * the chance for "high water" pages to be freed.
832 		 *
833 		 * Migrate empty pages to the end of the list.  This
834 		 * will speed the update of curpage as pages become
835 		 * idle.  Empty pages intermingled with idle pages
836 		 * is no big deal.  As soon as a page becomes un-empty,
837 		 * it will move back to the head of the list.
838 		 */
839 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
840 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
841 		TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
842 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
843 				break;
844 
845 		pp->pr_curpage = ph;
846 	}
847 
848 	pp->pr_nget++;
849 
850 	/*
851 	 * If we have a low water mark and we are now below that low
852 	 * water mark, add more items to the pool.
853 	 */
854 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
855 		/*
856 		 * XXX: Should we log a warning?  Should we set up a timeout
857 		 * to try again in a second or so?  The latter could break
858 		 * a caller's assumptions about interrupt protection, etc.
859 		 */
860 	}
861 
862 	pr_leave(pp);
863 	simple_unlock(&pp->pr_slock);
864 	return (v);
865 }
866 
867 /*
868  * Internal version of pool_put().  Pool is already locked/entered.
869  */
870 static void
871 pool_do_put(struct pool *pp, void *v)
872 {
873 	struct pool_item *pi = v;
874 	struct pool_item_header *ph;
875 	caddr_t page;
876 	int s;
877 
878 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
879 
880 	page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
881 
882 #ifdef DIAGNOSTIC
883 	if (__predict_false(pp->pr_nout == 0)) {
884 		printf("pool %s: putting with none out\n",
885 		    pp->pr_wchan);
886 		panic("pool_put");
887 	}
888 #endif
889 
890 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
891 		pr_printlog(pp, NULL, printf);
892 		panic("pool_put: %s: page header missing", pp->pr_wchan);
893 	}
894 
895 #ifdef LOCKDEBUG
896 	/*
897 	 * Check if we're freeing a locked simple lock.
898 	 */
899 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
900 #endif
901 
902 	/*
903 	 * Return to item list.
904 	 */
905 #ifdef DIAGNOSTIC
906 	pi->pi_magic = PI_MAGIC;
907 #endif
908 #ifdef DEBUG
909 	{
910 		int i, *ip = v;
911 
912 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
913 			*ip++ = PI_MAGIC;
914 		}
915 	}
916 #endif
917 
918 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
919 	ph->ph_nmissing--;
920 	pp->pr_nput++;
921 	pp->pr_nitems++;
922 	pp->pr_nout--;
923 
924 	/* Cancel "pool empty" condition if it exists */
925 	if (pp->pr_curpage == NULL)
926 		pp->pr_curpage = ph;
927 
928 	if (pp->pr_flags & PR_WANTED) {
929 		pp->pr_flags &= ~PR_WANTED;
930 		if (ph->ph_nmissing == 0)
931 			pp->pr_nidle++;
932 		wakeup((caddr_t)pp);
933 		return;
934 	}
935 
936 	/*
937 	 * If this page is now complete, do one of two things:
938 	 *
939 	 *	(1) If we have more pages than the page high water
940 	 *	    mark, free the page back to the system.
941 	 *
942 	 *	(2) Move it to the end of the page list, so that
943 	 *	    we minimize our chances of fragmenting the
944 	 *	    pool.  Idle pages migrate to the end (along with
945 	 *	    completely empty pages, so that we find un-empty
946 	 *	    pages more quickly when we update curpage) of the
947 	 *	    list so they can be more easily swept up by
948 	 *	    the pagedaemon when pages are scarce.
949 	 */
950 	if (ph->ph_nmissing == 0) {
951 		pp->pr_nidle++;
952 		if (pp->pr_npages > pp->pr_maxpages ||
953 		    (pp->pr_alloc->pa_flags & PA_WANT) != 0) {
954 			pr_rmpage(pp, ph, NULL);
955 		} else {
956 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
957 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
958 
959 			/*
960 			 * Update the timestamp on the page.  A page must
961 			 * be idle for some period of time before it can
962 			 * be reclaimed by the pagedaemon.  This minimizes
963 			 * ping-pong'ing for memory.
964 			 */
965 			s = splclock();
966 			ph->ph_time = mono_time;
967 			splx(s);
968 
969 			/*
970 			 * Update the current page pointer.  Just look for
971 			 * the first page with any free items.
972 			 *
973 			 * XXX: Maybe we want an option to look for the
974 			 * page with the fewest available items, to minimize
975 			 * fragmentation?
976 			 */
977 			TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
978 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
979 					break;
980 
981 			pp->pr_curpage = ph;
982 		}
983 	}
984 	/*
985 	 * If the page has just become un-empty, move it to the head of
986 	 * the list, and make it the current page.  The next allocation
987 	 * will get the item from this page, instead of further fragmenting
988 	 * the pool.
989 	 */
990 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
991 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
992 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
993 		pp->pr_curpage = ph;
994 	}
995 }
996 
997 /*
998  * Return resource to the pool; must be called at appropriate spl level
999  */
1000 #ifdef POOL_DIAGNOSTIC
1001 void
1002 _pool_put(struct pool *pp, void *v, const char *file, long line)
1003 {
1004 
1005 	simple_lock(&pp->pr_slock);
1006 	pr_enter(pp, file, line);
1007 
1008 	pr_log(pp, v, PRLOG_PUT, file, line);
1009 
1010 	pool_do_put(pp, v);
1011 
1012 	pr_leave(pp);
1013 	simple_unlock(&pp->pr_slock);
1014 }
1015 #undef pool_put
1016 #endif /* POOL_DIAGNOSTIC */
1017 
1018 void
1019 pool_put(struct pool *pp, void *v)
1020 {
1021 
1022 	simple_lock(&pp->pr_slock);
1023 
1024 	pool_do_put(pp, v);
1025 
1026 	simple_unlock(&pp->pr_slock);
1027 }
1028 
1029 #ifdef POOL_DIAGNOSTIC
1030 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1031 #endif
1032 
1033 /*
1034  * Add N items to the pool.
1035  */
1036 int
1037 pool_prime(struct pool *pp, int n)
1038 {
1039 	struct pool_item_header *ph;
1040 	caddr_t cp;
1041 	int newpages;
1042 
1043 	simple_lock(&pp->pr_slock);
1044 
1045 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1046 
1047 	while (newpages-- > 0) {
1048 		simple_unlock(&pp->pr_slock);
1049 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
1050 		if (__predict_true(cp != NULL))
1051 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1052 		simple_lock(&pp->pr_slock);
1053 
1054 		if (__predict_false(cp == NULL || ph == NULL)) {
1055 			if (cp != NULL)
1056 				pool_allocator_free(pp, cp);
1057 			break;
1058 		}
1059 
1060 		pool_prime_page(pp, cp, ph);
1061 		pp->pr_npagealloc++;
1062 		pp->pr_minpages++;
1063 	}
1064 
1065 	if (pp->pr_minpages >= pp->pr_maxpages)
1066 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1067 
1068 	simple_unlock(&pp->pr_slock);
1069 	return (0);
1070 }
1071 
1072 /*
1073  * Add a page worth of items to the pool.
1074  *
1075  * Note, we must be called with the pool descriptor LOCKED.
1076  */
1077 static void
1078 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1079 {
1080 	struct pool_item *pi;
1081 	caddr_t cp = storage;
1082 	unsigned int align = pp->pr_align;
1083 	unsigned int ioff = pp->pr_itemoffset;
1084 	int n;
1085 
1086 #ifdef DIAGNOSTIC
1087 	if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1088 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1089 #endif
1090 
1091 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1092 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1093 		    ph, ph_hashlist);
1094 
1095 	/*
1096 	 * Insert page header.
1097 	 */
1098 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1099 	TAILQ_INIT(&ph->ph_itemlist);
1100 	ph->ph_page = storage;
1101 	ph->ph_nmissing = 0;
1102 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1103 
1104 	pp->pr_nidle++;
1105 
1106 	/*
1107 	 * Color this page.
1108 	 */
1109 	cp = (caddr_t)(cp + pp->pr_curcolor);
1110 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1111 		pp->pr_curcolor = 0;
1112 
1113 	/*
1114 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1115 	 */
1116 	if (ioff != 0)
1117 		cp = (caddr_t)(cp + (align - ioff));
1118 
1119 	/*
1120 	 * Insert remaining chunks on the bucket list.
1121 	 */
1122 	n = pp->pr_itemsperpage;
1123 	pp->pr_nitems += n;
1124 
1125 	while (n--) {
1126 		pi = (struct pool_item *)cp;
1127 
1128 		/* Insert on page list */
1129 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1130 #ifdef DIAGNOSTIC
1131 		pi->pi_magic = PI_MAGIC;
1132 #endif
1133 		cp = (caddr_t)(cp + pp->pr_size);
1134 	}
1135 
1136 	/*
1137 	 * If the pool was depleted, point at the new page.
1138 	 */
1139 	if (pp->pr_curpage == NULL)
1140 		pp->pr_curpage = ph;
1141 
1142 	if (++pp->pr_npages > pp->pr_hiwat)
1143 		pp->pr_hiwat = pp->pr_npages;
1144 }
1145 
1146 /*
1147  * Used by pool_get() when nitems drops below the low water mark.  This
1148  * is used to catch up nitmes with the low water mark.
1149  *
1150  * Note 1, we never wait for memory here, we let the caller decide what to do.
1151  *
1152  * Note 2, we must be called with the pool already locked, and we return
1153  * with it locked.
1154  */
1155 static int
1156 pool_catchup(struct pool *pp)
1157 {
1158 	struct pool_item_header *ph;
1159 	caddr_t cp;
1160 	int error = 0;
1161 
1162 	while (POOL_NEEDS_CATCHUP(pp)) {
1163 		/*
1164 		 * Call the page back-end allocator for more memory.
1165 		 *
1166 		 * XXX: We never wait, so should we bother unlocking
1167 		 * the pool descriptor?
1168 		 */
1169 		simple_unlock(&pp->pr_slock);
1170 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
1171 		if (__predict_true(cp != NULL))
1172 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1173 		simple_lock(&pp->pr_slock);
1174 		if (__predict_false(cp == NULL || ph == NULL)) {
1175 			if (cp != NULL)
1176 				pool_allocator_free(pp, cp);
1177 			error = ENOMEM;
1178 			break;
1179 		}
1180 		pool_prime_page(pp, cp, ph);
1181 		pp->pr_npagealloc++;
1182 	}
1183 
1184 	return (error);
1185 }
1186 
1187 void
1188 pool_setlowat(struct pool *pp, int n)
1189 {
1190 
1191 	simple_lock(&pp->pr_slock);
1192 
1193 	pp->pr_minitems = n;
1194 	pp->pr_minpages = (n == 0)
1195 		? 0
1196 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1197 
1198 	/* Make sure we're caught up with the newly-set low water mark. */
1199 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1200 		/*
1201 		 * XXX: Should we log a warning?  Should we set up a timeout
1202 		 * to try again in a second or so?  The latter could break
1203 		 * a caller's assumptions about interrupt protection, etc.
1204 		 */
1205 	}
1206 
1207 	simple_unlock(&pp->pr_slock);
1208 }
1209 
1210 void
1211 pool_sethiwat(struct pool *pp, int n)
1212 {
1213 
1214 	simple_lock(&pp->pr_slock);
1215 
1216 	pp->pr_maxpages = (n == 0)
1217 		? 0
1218 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1219 
1220 	simple_unlock(&pp->pr_slock);
1221 }
1222 
1223 void
1224 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1225 {
1226 
1227 	simple_lock(&pp->pr_slock);
1228 
1229 	pp->pr_hardlimit = n;
1230 	pp->pr_hardlimit_warning = warnmess;
1231 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1232 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1233 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1234 
1235 	/*
1236 	 * In-line version of pool_sethiwat(), because we don't want to
1237 	 * release the lock.
1238 	 */
1239 	pp->pr_maxpages = (n == 0)
1240 		? 0
1241 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1242 
1243 	simple_unlock(&pp->pr_slock);
1244 }
1245 
1246 /*
1247  * Release all complete pages that have not been used recently.
1248  */
1249 int
1250 #ifdef POOL_DIAGNOSTIC
1251 _pool_reclaim(struct pool *pp, const char *file, long line)
1252 #else
1253 pool_reclaim(struct pool *pp)
1254 #endif
1255 {
1256 	struct pool_item_header *ph, *phnext;
1257 	struct pool_cache *pc;
1258 	struct timeval curtime;
1259 	struct pool_pagelist pq;
1260 	int s;
1261 
1262 	if (pp->pr_drain_hook != NULL) {
1263 		/*
1264 		 * The drain hook must be called with the pool unlocked.
1265 		 */
1266 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1267 	}
1268 
1269 	if (simple_lock_try(&pp->pr_slock) == 0)
1270 		return (0);
1271 	pr_enter(pp, file, line);
1272 
1273 	TAILQ_INIT(&pq);
1274 
1275 	/*
1276 	 * Reclaim items from the pool's caches.
1277 	 */
1278 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1279 		pool_cache_reclaim(pc);
1280 
1281 	s = splclock();
1282 	curtime = mono_time;
1283 	splx(s);
1284 
1285 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1286 		phnext = TAILQ_NEXT(ph, ph_pagelist);
1287 
1288 		/* Check our minimum page claim */
1289 		if (pp->pr_npages <= pp->pr_minpages)
1290 			break;
1291 
1292 		if (ph->ph_nmissing == 0) {
1293 			struct timeval diff;
1294 			timersub(&curtime, &ph->ph_time, &diff);
1295 			if (diff.tv_sec < pool_inactive_time)
1296 				continue;
1297 
1298 			/*
1299 			 * If freeing this page would put us below
1300 			 * the low water mark, stop now.
1301 			 */
1302 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
1303 			    pp->pr_minitems)
1304 				break;
1305 
1306 			pr_rmpage(pp, ph, &pq);
1307 		}
1308 	}
1309 
1310 	pr_leave(pp);
1311 	simple_unlock(&pp->pr_slock);
1312 	if (TAILQ_EMPTY(&pq))
1313 		return (0);
1314 
1315 	while ((ph = TAILQ_FIRST(&pq)) != NULL) {
1316 		TAILQ_REMOVE(&pq, ph, ph_pagelist);
1317 		pool_allocator_free(pp, ph->ph_page);
1318 		if (pp->pr_roflags & PR_PHINPAGE) {
1319 			continue;
1320 		}
1321 		LIST_REMOVE(ph, ph_hashlist);
1322 		s = splhigh();
1323 		pool_put(&phpool, ph);
1324 		splx(s);
1325 	}
1326 
1327 	return (1);
1328 }
1329 
1330 /*
1331  * Drain pools, one at a time.
1332  *
1333  * Note, we must never be called from an interrupt context.
1334  */
1335 void
1336 pool_drain(void *arg)
1337 {
1338 	struct pool *pp;
1339 	int s;
1340 
1341 	pp = NULL;
1342 	s = splvm();
1343 	simple_lock(&pool_head_slock);
1344 	if (drainpp == NULL) {
1345 		drainpp = TAILQ_FIRST(&pool_head);
1346 	}
1347 	if (drainpp) {
1348 		pp = drainpp;
1349 		drainpp = TAILQ_NEXT(pp, pr_poollist);
1350 	}
1351 	simple_unlock(&pool_head_slock);
1352 	pool_reclaim(pp);
1353 	splx(s);
1354 }
1355 
1356 /*
1357  * Diagnostic helpers.
1358  */
1359 void
1360 pool_print(struct pool *pp, const char *modif)
1361 {
1362 	int s;
1363 
1364 	s = splvm();
1365 	if (simple_lock_try(&pp->pr_slock) == 0) {
1366 		printf("pool %s is locked; try again later\n",
1367 		    pp->pr_wchan);
1368 		splx(s);
1369 		return;
1370 	}
1371 	pool_print1(pp, modif, printf);
1372 	simple_unlock(&pp->pr_slock);
1373 	splx(s);
1374 }
1375 
1376 void
1377 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1378 {
1379 	int didlock = 0;
1380 
1381 	if (pp == NULL) {
1382 		(*pr)("Must specify a pool to print.\n");
1383 		return;
1384 	}
1385 
1386 	/*
1387 	 * Called from DDB; interrupts should be blocked, and all
1388 	 * other processors should be paused.  We can skip locking
1389 	 * the pool in this case.
1390 	 *
1391 	 * We do a simple_lock_try() just to print the lock
1392 	 * status, however.
1393 	 */
1394 
1395 	if (simple_lock_try(&pp->pr_slock) == 0)
1396 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1397 	else
1398 		didlock = 1;
1399 
1400 	pool_print1(pp, modif, pr);
1401 
1402 	if (didlock)
1403 		simple_unlock(&pp->pr_slock);
1404 }
1405 
1406 static void
1407 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1408 {
1409 	struct pool_item_header *ph;
1410 	struct pool_cache *pc;
1411 	struct pool_cache_group *pcg;
1412 #ifdef DIAGNOSTIC
1413 	struct pool_item *pi;
1414 #endif
1415 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1416 	char c;
1417 
1418 	while ((c = *modif++) != '\0') {
1419 		if (c == 'l')
1420 			print_log = 1;
1421 		if (c == 'p')
1422 			print_pagelist = 1;
1423 		if (c == 'c')
1424 			print_cache = 1;
1425 		modif++;
1426 	}
1427 
1428 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1429 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1430 	    pp->pr_roflags);
1431 	(*pr)("\talloc %p\n", pp->pr_alloc);
1432 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1433 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1434 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1435 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1436 
1437 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1438 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1439 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1440 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1441 
1442 	if (print_pagelist == 0)
1443 		goto skip_pagelist;
1444 
1445 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1446 		(*pr)("\n\tpage list:\n");
1447 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1448 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1449 		    ph->ph_page, ph->ph_nmissing,
1450 		    (u_long)ph->ph_time.tv_sec,
1451 		    (u_long)ph->ph_time.tv_usec);
1452 #ifdef DIAGNOSTIC
1453 		TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1454 			if (pi->pi_magic != PI_MAGIC) {
1455 				(*pr)("\t\t\titem %p, magic 0x%x\n",
1456 				    pi, pi->pi_magic);
1457 			}
1458 		}
1459 #endif
1460 	}
1461 	if (pp->pr_curpage == NULL)
1462 		(*pr)("\tno current page\n");
1463 	else
1464 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1465 
1466  skip_pagelist:
1467 
1468 	if (print_log == 0)
1469 		goto skip_log;
1470 
1471 	(*pr)("\n");
1472 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1473 		(*pr)("\tno log\n");
1474 	else
1475 		pr_printlog(pp, NULL, pr);
1476 
1477  skip_log:
1478 
1479 	if (print_cache == 0)
1480 		goto skip_cache;
1481 
1482 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1483 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1484 		    pc->pc_allocfrom, pc->pc_freeto);
1485 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
1486 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1487 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1488 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1489 			for (i = 0; i < PCG_NOBJECTS; i++)
1490 				(*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
1491 		}
1492 	}
1493 
1494  skip_cache:
1495 
1496 	pr_enter_check(pp, pr);
1497 }
1498 
1499 int
1500 pool_chk(struct pool *pp, const char *label)
1501 {
1502 	struct pool_item_header *ph;
1503 	int r = 0;
1504 
1505 	simple_lock(&pp->pr_slock);
1506 
1507 	TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) {
1508 		struct pool_item *pi;
1509 		int n;
1510 		caddr_t page;
1511 
1512 		page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1513 		if (page != ph->ph_page &&
1514 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1515 			if (label != NULL)
1516 				printf("%s: ", label);
1517 			printf("pool(%p:%s): page inconsistency: page %p;"
1518 			       " at page head addr %p (p %p)\n", pp,
1519 				pp->pr_wchan, ph->ph_page,
1520 				ph, page);
1521 			r++;
1522 			goto out;
1523 		}
1524 
1525 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1526 		     pi != NULL;
1527 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
1528 
1529 #ifdef DIAGNOSTIC
1530 			if (pi->pi_magic != PI_MAGIC) {
1531 				if (label != NULL)
1532 					printf("%s: ", label);
1533 				printf("pool(%s): free list modified: magic=%x;"
1534 				       " page %p; item ordinal %d;"
1535 				       " addr %p (p %p)\n",
1536 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
1537 					n, pi, page);
1538 				panic("pool");
1539 			}
1540 #endif
1541 			page =
1542 			    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1543 			if (page == ph->ph_page)
1544 				continue;
1545 
1546 			if (label != NULL)
1547 				printf("%s: ", label);
1548 			printf("pool(%p:%s): page inconsistency: page %p;"
1549 			       " item ordinal %d; addr %p (p %p)\n", pp,
1550 				pp->pr_wchan, ph->ph_page,
1551 				n, pi, page);
1552 			r++;
1553 			goto out;
1554 		}
1555 	}
1556 out:
1557 	simple_unlock(&pp->pr_slock);
1558 	return (r);
1559 }
1560 
1561 /*
1562  * pool_cache_init:
1563  *
1564  *	Initialize a pool cache.
1565  *
1566  *	NOTE: If the pool must be protected from interrupts, we expect
1567  *	to be called at the appropriate interrupt priority level.
1568  */
1569 void
1570 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1571     int (*ctor)(void *, void *, int),
1572     void (*dtor)(void *, void *),
1573     void *arg)
1574 {
1575 
1576 	TAILQ_INIT(&pc->pc_grouplist);
1577 	simple_lock_init(&pc->pc_slock);
1578 
1579 	pc->pc_allocfrom = NULL;
1580 	pc->pc_freeto = NULL;
1581 	pc->pc_pool = pp;
1582 
1583 	pc->pc_ctor = ctor;
1584 	pc->pc_dtor = dtor;
1585 	pc->pc_arg  = arg;
1586 
1587 	pc->pc_hits   = 0;
1588 	pc->pc_misses = 0;
1589 
1590 	pc->pc_ngroups = 0;
1591 
1592 	pc->pc_nitems = 0;
1593 
1594 	simple_lock(&pp->pr_slock);
1595 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1596 	simple_unlock(&pp->pr_slock);
1597 }
1598 
1599 /*
1600  * pool_cache_destroy:
1601  *
1602  *	Destroy a pool cache.
1603  */
1604 void
1605 pool_cache_destroy(struct pool_cache *pc)
1606 {
1607 	struct pool *pp = pc->pc_pool;
1608 
1609 	/* First, invalidate the entire cache. */
1610 	pool_cache_invalidate(pc);
1611 
1612 	/* ...and remove it from the pool's cache list. */
1613 	simple_lock(&pp->pr_slock);
1614 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1615 	simple_unlock(&pp->pr_slock);
1616 }
1617 
1618 static __inline void *
1619 pcg_get(struct pool_cache_group *pcg)
1620 {
1621 	void *object;
1622 	u_int idx;
1623 
1624 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1625 	KASSERT(pcg->pcg_avail != 0);
1626 	idx = --pcg->pcg_avail;
1627 
1628 	KASSERT(pcg->pcg_objects[idx] != NULL);
1629 	object = pcg->pcg_objects[idx];
1630 	pcg->pcg_objects[idx] = NULL;
1631 
1632 	return (object);
1633 }
1634 
1635 static __inline void
1636 pcg_put(struct pool_cache_group *pcg, void *object)
1637 {
1638 	u_int idx;
1639 
1640 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1641 	idx = pcg->pcg_avail++;
1642 
1643 	KASSERT(pcg->pcg_objects[idx] == NULL);
1644 	pcg->pcg_objects[idx] = object;
1645 }
1646 
1647 /*
1648  * pool_cache_get:
1649  *
1650  *	Get an object from a pool cache.
1651  */
1652 void *
1653 pool_cache_get(struct pool_cache *pc, int flags)
1654 {
1655 	struct pool_cache_group *pcg;
1656 	void *object;
1657 
1658 #ifdef LOCKDEBUG
1659 	if (flags & PR_WAITOK)
1660 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1661 #endif
1662 
1663 	simple_lock(&pc->pc_slock);
1664 
1665 	if ((pcg = pc->pc_allocfrom) == NULL) {
1666 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1667 			if (pcg->pcg_avail != 0) {
1668 				pc->pc_allocfrom = pcg;
1669 				goto have_group;
1670 			}
1671 		}
1672 
1673 		/*
1674 		 * No groups with any available objects.  Allocate
1675 		 * a new object, construct it, and return it to
1676 		 * the caller.  We will allocate a group, if necessary,
1677 		 * when the object is freed back to the cache.
1678 		 */
1679 		pc->pc_misses++;
1680 		simple_unlock(&pc->pc_slock);
1681 		object = pool_get(pc->pc_pool, flags);
1682 		if (object != NULL && pc->pc_ctor != NULL) {
1683 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1684 				pool_put(pc->pc_pool, object);
1685 				return (NULL);
1686 			}
1687 		}
1688 		return (object);
1689 	}
1690 
1691  have_group:
1692 	pc->pc_hits++;
1693 	pc->pc_nitems--;
1694 	object = pcg_get(pcg);
1695 
1696 	if (pcg->pcg_avail == 0)
1697 		pc->pc_allocfrom = NULL;
1698 
1699 	simple_unlock(&pc->pc_slock);
1700 
1701 	return (object);
1702 }
1703 
1704 /*
1705  * pool_cache_put:
1706  *
1707  *	Put an object back to the pool cache.
1708  */
1709 void
1710 pool_cache_put(struct pool_cache *pc, void *object)
1711 {
1712 	struct pool_cache_group *pcg;
1713 	int s;
1714 
1715 	simple_lock(&pc->pc_slock);
1716 
1717 	if ((pcg = pc->pc_freeto) == NULL) {
1718 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1719 			if (pcg->pcg_avail != PCG_NOBJECTS) {
1720 				pc->pc_freeto = pcg;
1721 				goto have_group;
1722 			}
1723 		}
1724 
1725 		/*
1726 		 * No empty groups to free the object to.  Attempt to
1727 		 * allocate one.
1728 		 */
1729 		simple_unlock(&pc->pc_slock);
1730 		s = splvm();
1731 		pcg = pool_get(&pcgpool, PR_NOWAIT);
1732 		splx(s);
1733 		if (pcg != NULL) {
1734 			memset(pcg, 0, sizeof(*pcg));
1735 			simple_lock(&pc->pc_slock);
1736 			pc->pc_ngroups++;
1737 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1738 			if (pc->pc_freeto == NULL)
1739 				pc->pc_freeto = pcg;
1740 			goto have_group;
1741 		}
1742 
1743 		/*
1744 		 * Unable to allocate a cache group; destruct the object
1745 		 * and free it back to the pool.
1746 		 */
1747 		pool_cache_destruct_object(pc, object);
1748 		return;
1749 	}
1750 
1751  have_group:
1752 	pc->pc_nitems++;
1753 	pcg_put(pcg, object);
1754 
1755 	if (pcg->pcg_avail == PCG_NOBJECTS)
1756 		pc->pc_freeto = NULL;
1757 
1758 	simple_unlock(&pc->pc_slock);
1759 }
1760 
1761 /*
1762  * pool_cache_destruct_object:
1763  *
1764  *	Force destruction of an object and its release back into
1765  *	the pool.
1766  */
1767 void
1768 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1769 {
1770 
1771 	if (pc->pc_dtor != NULL)
1772 		(*pc->pc_dtor)(pc->pc_arg, object);
1773 	pool_put(pc->pc_pool, object);
1774 }
1775 
1776 /*
1777  * pool_cache_do_invalidate:
1778  *
1779  *	This internal function implements pool_cache_invalidate() and
1780  *	pool_cache_reclaim().
1781  */
1782 static void
1783 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1784     void (*putit)(struct pool *, void *))
1785 {
1786 	struct pool_cache_group *pcg, *npcg;
1787 	void *object;
1788 	int s;
1789 
1790 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1791 	     pcg = npcg) {
1792 		npcg = TAILQ_NEXT(pcg, pcg_list);
1793 		while (pcg->pcg_avail != 0) {
1794 			pc->pc_nitems--;
1795 			object = pcg_get(pcg);
1796 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1797 				pc->pc_allocfrom = NULL;
1798 			if (pc->pc_dtor != NULL)
1799 				(*pc->pc_dtor)(pc->pc_arg, object);
1800 			(*putit)(pc->pc_pool, object);
1801 		}
1802 		if (free_groups) {
1803 			pc->pc_ngroups--;
1804 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1805 			if (pc->pc_freeto == pcg)
1806 				pc->pc_freeto = NULL;
1807 			s = splvm();
1808 			pool_put(&pcgpool, pcg);
1809 			splx(s);
1810 		}
1811 	}
1812 }
1813 
1814 /*
1815  * pool_cache_invalidate:
1816  *
1817  *	Invalidate a pool cache (destruct and release all of the
1818  *	cached objects).
1819  */
1820 void
1821 pool_cache_invalidate(struct pool_cache *pc)
1822 {
1823 
1824 	simple_lock(&pc->pc_slock);
1825 	pool_cache_do_invalidate(pc, 0, pool_put);
1826 	simple_unlock(&pc->pc_slock);
1827 }
1828 
1829 /*
1830  * pool_cache_reclaim:
1831  *
1832  *	Reclaim a pool cache for pool_reclaim().
1833  */
1834 static void
1835 pool_cache_reclaim(struct pool_cache *pc)
1836 {
1837 
1838 	simple_lock(&pc->pc_slock);
1839 	pool_cache_do_invalidate(pc, 1, pool_do_put);
1840 	simple_unlock(&pc->pc_slock);
1841 }
1842 
1843 /*
1844  * Pool backend allocators.
1845  *
1846  * Each pool has a backend allocator that handles allocation, deallocation,
1847  * and any additional draining that might be needed.
1848  *
1849  * We provide two standard allocators:
1850  *
1851  *	pool_allocator_kmem - the default when no allocator is specified
1852  *
1853  *	pool_allocator_nointr - used for pools that will not be accessed
1854  *	in interrupt context.
1855  */
1856 void	*pool_page_alloc(struct pool *, int);
1857 void	pool_page_free(struct pool *, void *);
1858 
1859 struct pool_allocator pool_allocator_kmem = {
1860 	pool_page_alloc, pool_page_free, 0,
1861 };
1862 
1863 void	*pool_page_alloc_nointr(struct pool *, int);
1864 void	pool_page_free_nointr(struct pool *, void *);
1865 
1866 struct pool_allocator pool_allocator_nointr = {
1867 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
1868 };
1869 
1870 #ifdef POOL_SUBPAGE
1871 void	*pool_subpage_alloc(struct pool *, int);
1872 void	pool_subpage_free(struct pool *, void *);
1873 
1874 struct pool_allocator pool_allocator_kmem_subpage = {
1875 	pool_subpage_alloc, pool_subpage_free, 0,
1876 };
1877 #endif /* POOL_SUBPAGE */
1878 
1879 /*
1880  * We have at least three different resources for the same allocation and
1881  * each resource can be depleted.  First, we have the ready elements in the
1882  * pool.  Then we have the resource (typically a vm_map) for this allocator.
1883  * Finally, we have physical memory.  Waiting for any of these can be
1884  * unnecessary when any other is freed, but the kernel doesn't support
1885  * sleeping on multiple wait channels, so we have to employ another strategy.
1886  *
1887  * The caller sleeps on the pool (so that it can be awakened when an item
1888  * is returned to the pool), but we set PA_WANT on the allocator.  When a
1889  * page is returned to the allocator and PA_WANT is set, pool_allocator_free
1890  * will wake up all sleeping pools belonging to this allocator.
1891  *
1892  * XXX Thundering herd.
1893  */
1894 void *
1895 pool_allocator_alloc(struct pool *org, int flags)
1896 {
1897 	struct pool_allocator *pa = org->pr_alloc;
1898 	struct pool *pp, *start;
1899 	int s, freed;
1900 	void *res;
1901 
1902 	do {
1903 		if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1904 			return (res);
1905 		if ((flags & PR_WAITOK) == 0) {
1906 			/*
1907 			 * We only run the drain hookhere if PR_NOWAIT.
1908 			 * In other cases, the hook will be run in
1909 			 * pool_reclaim().
1910 			 */
1911 			if (org->pr_drain_hook != NULL) {
1912 				(*org->pr_drain_hook)(org->pr_drain_hook_arg,
1913 				    flags);
1914 				if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1915 					return (res);
1916 			}
1917 			break;
1918 		}
1919 
1920 		/*
1921 		 * Drain all pools, except "org", that use this
1922 		 * allocator.  We do this to reclaim VA space.
1923 		 * pa_alloc is responsible for waiting for
1924 		 * physical memory.
1925 		 *
1926 		 * XXX We risk looping forever if start if someone
1927 		 * calls pool_destroy on "start".  But there is no
1928 		 * other way to have potentially sleeping pool_reclaim,
1929 		 * non-sleeping locks on pool_allocator, and some
1930 		 * stirring of drained pools in the allocator.
1931 		 *
1932 		 * XXX Maybe we should use pool_head_slock for locking
1933 		 * the allocators?
1934 		 */
1935 		freed = 0;
1936 
1937 		s = splvm();
1938 		simple_lock(&pa->pa_slock);
1939 		pp = start = TAILQ_FIRST(&pa->pa_list);
1940 		do {
1941 			TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
1942 			TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
1943 			if (pp == org)
1944 				continue;
1945 			simple_unlock(&pa->pa_slock);
1946 			freed = pool_reclaim(pp);
1947 			simple_lock(&pa->pa_slock);
1948 		} while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
1949 			 freed == 0);
1950 
1951 		if (freed == 0) {
1952 			/*
1953 			 * We set PA_WANT here, the caller will most likely
1954 			 * sleep waiting for pages (if not, this won't hurt
1955 			 * that much), and there is no way to set this in
1956 			 * the caller without violating locking order.
1957 			 */
1958 			pa->pa_flags |= PA_WANT;
1959 		}
1960 		simple_unlock(&pa->pa_slock);
1961 		splx(s);
1962 	} while (freed);
1963 	return (NULL);
1964 }
1965 
1966 void
1967 pool_allocator_free(struct pool *pp, void *v)
1968 {
1969 	struct pool_allocator *pa = pp->pr_alloc;
1970 	int s;
1971 
1972 	(*pa->pa_free)(pp, v);
1973 
1974 	s = splvm();
1975 	simple_lock(&pa->pa_slock);
1976 	if ((pa->pa_flags & PA_WANT) == 0) {
1977 		simple_unlock(&pa->pa_slock);
1978 		splx(s);
1979 		return;
1980 	}
1981 
1982 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
1983 		simple_lock(&pp->pr_slock);
1984 		if ((pp->pr_flags & PR_WANTED) != 0) {
1985 			pp->pr_flags &= ~PR_WANTED;
1986 			wakeup(pp);
1987 		}
1988 		simple_unlock(&pp->pr_slock);
1989 	}
1990 	pa->pa_flags &= ~PA_WANT;
1991 	simple_unlock(&pa->pa_slock);
1992 	splx(s);
1993 }
1994 
1995 void *
1996 pool_page_alloc(struct pool *pp, int flags)
1997 {
1998 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1999 
2000 	return ((void *) uvm_km_alloc_poolpage(waitok));
2001 }
2002 
2003 void
2004 pool_page_free(struct pool *pp, void *v)
2005 {
2006 
2007 	uvm_km_free_poolpage((vaddr_t) v);
2008 }
2009 
2010 #ifdef POOL_SUBPAGE
2011 /* Sub-page allocator, for machines with large hardware pages. */
2012 void *
2013 pool_subpage_alloc(struct pool *pp, int flags)
2014 {
2015 
2016 	return (pool_get(&psppool, flags));
2017 }
2018 
2019 void
2020 pool_subpage_free(struct pool *pp, void *v)
2021 {
2022 
2023 	pool_put(&psppool, v);
2024 }
2025 
2026 /* We don't provide a real nointr allocator.  Maybe later. */
2027 void *
2028 pool_page_alloc_nointr(struct pool *pp, int flags)
2029 {
2030 
2031 	return (pool_subpage_alloc(pp, flags));
2032 }
2033 
2034 void
2035 pool_page_free_nointr(struct pool *pp, void *v)
2036 {
2037 
2038 	pool_subpage_free(pp, v);
2039 }
2040 #else
2041 void *
2042 pool_page_alloc_nointr(struct pool *pp, int flags)
2043 {
2044 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2045 
2046 	return ((void *) uvm_km_alloc_poolpage1(kernel_map,
2047 	    uvm.kernel_object, waitok));
2048 }
2049 
2050 void
2051 pool_page_free_nointr(struct pool *pp, void *v)
2052 {
2053 
2054 	uvm_km_free_poolpage1(kernel_map, (vaddr_t) v);
2055 }
2056 #endif /* POOL_SUBPAGE */
2057