xref: /netbsd/sys/kern/uipc_socket.c (revision 6550d01e)
1 /*	$NetBSD: uipc_socket.c,v 1.203 2011/02/01 01:39:20 matt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 2004 The FreeBSD Foundation
34  * Copyright (c) 2004 Robert Watson
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
63  */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.203 2011/02/01 01:39:20 matt Exp $");
67 
68 #include "opt_compat_netbsd.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h"	/* XXX */
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kmem.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/uidinfo.h>
90 #include <sys/event.h>
91 #include <sys/poll.h>
92 #include <sys/kauth.h>
93 #include <sys/mutex.h>
94 #include <sys/condvar.h>
95 
96 #ifdef COMPAT_50
97 #include <compat/sys/time.h>
98 #include <compat/sys/socket.h>
99 #endif
100 
101 #include <uvm/uvm_extern.h>
102 #include <uvm/uvm_loan.h>
103 #include <uvm/uvm_page.h>
104 
105 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
106 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
107 
108 extern const struct fileops socketops;
109 
110 extern int	somaxconn;			/* patchable (XXX sysctl) */
111 int		somaxconn = SOMAXCONN;
112 kmutex_t	*softnet_lock;
113 
114 #ifdef SOSEND_COUNTERS
115 #include <sys/device.h>
116 
117 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118     NULL, "sosend", "loan big");
119 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120     NULL, "sosend", "copy big");
121 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122     NULL, "sosend", "copy small");
123 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
124     NULL, "sosend", "kva limit");
125 
126 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
127 
128 EVCNT_ATTACH_STATIC(sosend_loan_big);
129 EVCNT_ATTACH_STATIC(sosend_copy_big);
130 EVCNT_ATTACH_STATIC(sosend_copy_small);
131 EVCNT_ATTACH_STATIC(sosend_kvalimit);
132 #else
133 
134 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
135 
136 #endif /* SOSEND_COUNTERS */
137 
138 static struct callback_entry sokva_reclaimerentry;
139 
140 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
141 int sock_loan_thresh = -1;
142 #else
143 int sock_loan_thresh = 4096;
144 #endif
145 
146 static kmutex_t so_pendfree_lock;
147 static struct mbuf *so_pendfree;
148 
149 #ifndef SOMAXKVA
150 #define	SOMAXKVA (16 * 1024 * 1024)
151 #endif
152 int somaxkva = SOMAXKVA;
153 static int socurkva;
154 static kcondvar_t socurkva_cv;
155 
156 static kauth_listener_t socket_listener;
157 
158 #define	SOCK_LOAN_CHUNK		65536
159 
160 static size_t sodopendfree(void);
161 static size_t sodopendfreel(void);
162 
163 static void sysctl_kern_somaxkva_setup(void);
164 static struct sysctllog *socket_sysctllog;
165 
166 static vsize_t
167 sokvareserve(struct socket *so, vsize_t len)
168 {
169 	int error;
170 
171 	mutex_enter(&so_pendfree_lock);
172 	while (socurkva + len > somaxkva) {
173 		size_t freed;
174 
175 		/*
176 		 * try to do pendfree.
177 		 */
178 
179 		freed = sodopendfreel();
180 
181 		/*
182 		 * if some kva was freed, try again.
183 		 */
184 
185 		if (freed)
186 			continue;
187 
188 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
189 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
190 		if (error) {
191 			len = 0;
192 			break;
193 		}
194 	}
195 	socurkva += len;
196 	mutex_exit(&so_pendfree_lock);
197 	return len;
198 }
199 
200 static void
201 sokvaunreserve(vsize_t len)
202 {
203 
204 	mutex_enter(&so_pendfree_lock);
205 	socurkva -= len;
206 	cv_broadcast(&socurkva_cv);
207 	mutex_exit(&so_pendfree_lock);
208 }
209 
210 /*
211  * sokvaalloc: allocate kva for loan.
212  */
213 
214 vaddr_t
215 sokvaalloc(vsize_t len, struct socket *so)
216 {
217 	vaddr_t lva;
218 
219 	/*
220 	 * reserve kva.
221 	 */
222 
223 	if (sokvareserve(so, len) == 0)
224 		return 0;
225 
226 	/*
227 	 * allocate kva.
228 	 */
229 
230 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
231 	if (lva == 0) {
232 		sokvaunreserve(len);
233 		return (0);
234 	}
235 
236 	return lva;
237 }
238 
239 /*
240  * sokvafree: free kva for loan.
241  */
242 
243 void
244 sokvafree(vaddr_t sva, vsize_t len)
245 {
246 
247 	/*
248 	 * free kva.
249 	 */
250 
251 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
252 
253 	/*
254 	 * unreserve kva.
255 	 */
256 
257 	sokvaunreserve(len);
258 }
259 
260 static void
261 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
262 {
263 	vaddr_t sva, eva;
264 	vsize_t len;
265 	int npgs;
266 
267 	KASSERT(pgs != NULL);
268 
269 	eva = round_page((vaddr_t) buf + size);
270 	sva = trunc_page((vaddr_t) buf);
271 	len = eva - sva;
272 	npgs = len >> PAGE_SHIFT;
273 
274 	pmap_kremove(sva, len);
275 	pmap_update(pmap_kernel());
276 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
277 	sokvafree(sva, len);
278 }
279 
280 static size_t
281 sodopendfree(void)
282 {
283 	size_t rv;
284 
285 	if (__predict_true(so_pendfree == NULL))
286 		return 0;
287 
288 	mutex_enter(&so_pendfree_lock);
289 	rv = sodopendfreel();
290 	mutex_exit(&so_pendfree_lock);
291 
292 	return rv;
293 }
294 
295 /*
296  * sodopendfreel: free mbufs on "pendfree" list.
297  * unlock and relock so_pendfree_lock when freeing mbufs.
298  *
299  * => called with so_pendfree_lock held.
300  */
301 
302 static size_t
303 sodopendfreel(void)
304 {
305 	struct mbuf *m, *next;
306 	size_t rv = 0;
307 
308 	KASSERT(mutex_owned(&so_pendfree_lock));
309 
310 	while (so_pendfree != NULL) {
311 		m = so_pendfree;
312 		so_pendfree = NULL;
313 		mutex_exit(&so_pendfree_lock);
314 
315 		for (; m != NULL; m = next) {
316 			next = m->m_next;
317 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
318 			KASSERT(m->m_ext.ext_refcnt == 0);
319 
320 			rv += m->m_ext.ext_size;
321 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
322 			    m->m_ext.ext_size);
323 			pool_cache_put(mb_cache, m);
324 		}
325 
326 		mutex_enter(&so_pendfree_lock);
327 	}
328 
329 	return (rv);
330 }
331 
332 void
333 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
334 {
335 
336 	KASSERT(m != NULL);
337 
338 	/*
339 	 * postpone freeing mbuf.
340 	 *
341 	 * we can't do it in interrupt context
342 	 * because we need to put kva back to kernel_map.
343 	 */
344 
345 	mutex_enter(&so_pendfree_lock);
346 	m->m_next = so_pendfree;
347 	so_pendfree = m;
348 	cv_broadcast(&socurkva_cv);
349 	mutex_exit(&so_pendfree_lock);
350 }
351 
352 static long
353 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
354 {
355 	struct iovec *iov = uio->uio_iov;
356 	vaddr_t sva, eva;
357 	vsize_t len;
358 	vaddr_t lva;
359 	int npgs, error;
360 	vaddr_t va;
361 	int i;
362 
363 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
364 		return (0);
365 
366 	if (iov->iov_len < (size_t) space)
367 		space = iov->iov_len;
368 	if (space > SOCK_LOAN_CHUNK)
369 		space = SOCK_LOAN_CHUNK;
370 
371 	eva = round_page((vaddr_t) iov->iov_base + space);
372 	sva = trunc_page((vaddr_t) iov->iov_base);
373 	len = eva - sva;
374 	npgs = len >> PAGE_SHIFT;
375 
376 	KASSERT(npgs <= M_EXT_MAXPAGES);
377 
378 	lva = sokvaalloc(len, so);
379 	if (lva == 0)
380 		return 0;
381 
382 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
383 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
384 	if (error) {
385 		sokvafree(lva, len);
386 		return (0);
387 	}
388 
389 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
390 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
391 		    VM_PROT_READ, 0);
392 	pmap_update(pmap_kernel());
393 
394 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
395 
396 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
397 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
398 
399 	uio->uio_resid -= space;
400 	/* uio_offset not updated, not set/used for write(2) */
401 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
402 	uio->uio_iov->iov_len -= space;
403 	if (uio->uio_iov->iov_len == 0) {
404 		uio->uio_iov++;
405 		uio->uio_iovcnt--;
406 	}
407 
408 	return (space);
409 }
410 
411 static int
412 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
413 {
414 
415 	KASSERT(ce == &sokva_reclaimerentry);
416 	KASSERT(obj == NULL);
417 
418 	sodopendfree();
419 	if (!vm_map_starved_p(kernel_map)) {
420 		return CALLBACK_CHAIN_ABORT;
421 	}
422 	return CALLBACK_CHAIN_CONTINUE;
423 }
424 
425 struct mbuf *
426 getsombuf(struct socket *so, int type)
427 {
428 	struct mbuf *m;
429 
430 	m = m_get(M_WAIT, type);
431 	MCLAIM(m, so->so_mowner);
432 	return m;
433 }
434 
435 static int
436 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
437     void *arg0, void *arg1, void *arg2, void *arg3)
438 {
439 	int result;
440 	enum kauth_network_req req;
441 
442 	result = KAUTH_RESULT_DEFER;
443 	req = (enum kauth_network_req)arg0;
444 
445 	if ((action != KAUTH_NETWORK_SOCKET) &&
446 	    (action != KAUTH_NETWORK_BIND))
447 		return result;
448 
449 	switch (req) {
450 	case KAUTH_REQ_NETWORK_BIND_PORT:
451 		result = KAUTH_RESULT_ALLOW;
452 		break;
453 
454 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
455 		/* Normal users can only drop their own connections. */
456 		struct socket *so = (struct socket *)arg1;
457 
458 		if (proc_uidmatch(cred, so->so_cred))
459 			result = KAUTH_RESULT_ALLOW;
460 
461 		break;
462 		}
463 
464 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
465 		/* We allow "raw" routing/bluetooth sockets to anyone. */
466 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
467 		    || (u_long)arg1 == PF_BLUETOOTH) {
468 			result = KAUTH_RESULT_ALLOW;
469 		} else {
470 			/* Privileged, let secmodel handle this. */
471 			if ((u_long)arg2 == SOCK_RAW)
472 				break;
473 		}
474 
475 		result = KAUTH_RESULT_ALLOW;
476 
477 		break;
478 
479 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
480 		result = KAUTH_RESULT_ALLOW;
481 
482 		break;
483 
484 	default:
485 		break;
486 	}
487 
488 	return result;
489 }
490 
491 void
492 soinit(void)
493 {
494 
495 	sysctl_kern_somaxkva_setup();
496 
497 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
498 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
499 	cv_init(&socurkva_cv, "sokva");
500 	soinit2();
501 
502 	/* Set the initial adjusted socket buffer size. */
503 	if (sb_max_set(sb_max))
504 		panic("bad initial sb_max value: %lu", sb_max);
505 
506 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
507 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
508 
509 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
510 	    socket_listener_cb, NULL);
511 }
512 
513 /*
514  * Socket operation routines.
515  * These routines are called by the routines in
516  * sys_socket.c or from a system process, and
517  * implement the semantics of socket operations by
518  * switching out to the protocol specific routines.
519  */
520 /*ARGSUSED*/
521 int
522 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
523 	 struct socket *lockso)
524 {
525 	const struct protosw	*prp;
526 	struct socket	*so;
527 	uid_t		uid;
528 	int		error;
529 	kmutex_t	*lock;
530 
531 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
532 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
533 	    KAUTH_ARG(proto));
534 	if (error != 0)
535 		return error;
536 
537 	if (proto)
538 		prp = pffindproto(dom, proto, type);
539 	else
540 		prp = pffindtype(dom, type);
541 	if (prp == NULL) {
542 		/* no support for domain */
543 		if (pffinddomain(dom) == 0)
544 			return EAFNOSUPPORT;
545 		/* no support for socket type */
546 		if (proto == 0 && type != 0)
547 			return EPROTOTYPE;
548 		return EPROTONOSUPPORT;
549 	}
550 	if (prp->pr_usrreq == NULL)
551 		return EPROTONOSUPPORT;
552 	if (prp->pr_type != type)
553 		return EPROTOTYPE;
554 
555 	so = soget(true);
556 	so->so_type = type;
557 	so->so_proto = prp;
558 	so->so_send = sosend;
559 	so->so_receive = soreceive;
560 #ifdef MBUFTRACE
561 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
562 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
563 	so->so_mowner = &prp->pr_domain->dom_mowner;
564 #endif
565 	uid = kauth_cred_geteuid(l->l_cred);
566 	so->so_uidinfo = uid_find(uid);
567 	so->so_cpid = l->l_proc->p_pid;
568 	if (lockso != NULL) {
569 		/* Caller wants us to share a lock. */
570 		lock = lockso->so_lock;
571 		so->so_lock = lock;
572 		mutex_obj_hold(lock);
573 		mutex_enter(lock);
574 	} else {
575 		/* Lock assigned and taken during PRU_ATTACH. */
576 	}
577 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
578 	    (struct mbuf *)(long)proto, NULL, l);
579 	KASSERT(solocked(so));
580 	if (error != 0) {
581 		so->so_state |= SS_NOFDREF;
582 		sofree(so);
583 		return error;
584 	}
585 	so->so_cred = kauth_cred_dup(l->l_cred);
586 	sounlock(so);
587 	*aso = so;
588 	return 0;
589 }
590 
591 /* On success, write file descriptor to fdout and return zero.  On
592  * failure, return non-zero; *fdout will be undefined.
593  */
594 int
595 fsocreate(int domain, struct socket **sop, int type, int protocol,
596     struct lwp *l, int *fdout)
597 {
598 	struct socket	*so;
599 	struct file	*fp;
600 	int		fd, error;
601 
602 	if ((error = fd_allocfile(&fp, &fd)) != 0)
603 		return (error);
604 	fp->f_flag = FREAD|FWRITE;
605 	fp->f_type = DTYPE_SOCKET;
606 	fp->f_ops = &socketops;
607 	error = socreate(domain, &so, type, protocol, l, NULL);
608 	if (error != 0) {
609 		fd_abort(curproc, fp, fd);
610 	} else {
611 		if (sop != NULL)
612 			*sop = so;
613 		fp->f_data = so;
614 		fd_affix(curproc, fp, fd);
615 		*fdout = fd;
616 	}
617 	return error;
618 }
619 
620 int
621 sofamily(const struct socket *so)
622 {
623 	const struct protosw *pr;
624 	const struct domain *dom;
625 
626 	if ((pr = so->so_proto) == NULL)
627 		return AF_UNSPEC;
628 	if ((dom = pr->pr_domain) == NULL)
629 		return AF_UNSPEC;
630 	return dom->dom_family;
631 }
632 
633 int
634 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
635 {
636 	int	error;
637 
638 	solock(so);
639 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
640 	sounlock(so);
641 	return error;
642 }
643 
644 int
645 solisten(struct socket *so, int backlog, struct lwp *l)
646 {
647 	int	error;
648 
649 	solock(so);
650 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
651 	    SS_ISDISCONNECTING)) != 0) {
652 	    	sounlock(so);
653 		return (EOPNOTSUPP);
654 	}
655 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
656 	    NULL, NULL, l);
657 	if (error != 0) {
658 		sounlock(so);
659 		return error;
660 	}
661 	if (TAILQ_EMPTY(&so->so_q))
662 		so->so_options |= SO_ACCEPTCONN;
663 	if (backlog < 0)
664 		backlog = 0;
665 	so->so_qlimit = min(backlog, somaxconn);
666 	sounlock(so);
667 	return 0;
668 }
669 
670 void
671 sofree(struct socket *so)
672 {
673 	u_int refs;
674 
675 	KASSERT(solocked(so));
676 
677 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
678 		sounlock(so);
679 		return;
680 	}
681 	if (so->so_head) {
682 		/*
683 		 * We must not decommission a socket that's on the accept(2)
684 		 * queue.  If we do, then accept(2) may hang after select(2)
685 		 * indicated that the listening socket was ready.
686 		 */
687 		if (!soqremque(so, 0)) {
688 			sounlock(so);
689 			return;
690 		}
691 	}
692 	if (so->so_rcv.sb_hiwat)
693 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
694 		    RLIM_INFINITY);
695 	if (so->so_snd.sb_hiwat)
696 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
697 		    RLIM_INFINITY);
698 	sbrelease(&so->so_snd, so);
699 	KASSERT(!cv_has_waiters(&so->so_cv));
700 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
701 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
702 	sorflush(so);
703 	refs = so->so_aborting;	/* XXX */
704 	/* Remove acccept filter if one is present. */
705 	if (so->so_accf != NULL)
706 		(void)accept_filt_clear(so);
707 	sounlock(so);
708 	if (refs == 0)		/* XXX */
709 		soput(so);
710 }
711 
712 /*
713  * Close a socket on last file table reference removal.
714  * Initiate disconnect if connected.
715  * Free socket when disconnect complete.
716  */
717 int
718 soclose(struct socket *so)
719 {
720 	struct socket	*so2;
721 	int		error;
722 	int		error2;
723 
724 	error = 0;
725 	solock(so);
726 	if (so->so_options & SO_ACCEPTCONN) {
727 		for (;;) {
728 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
729 				KASSERT(solocked2(so, so2));
730 				(void) soqremque(so2, 0);
731 				/* soabort drops the lock. */
732 				(void) soabort(so2);
733 				solock(so);
734 				continue;
735 			}
736 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
737 				KASSERT(solocked2(so, so2));
738 				(void) soqremque(so2, 1);
739 				/* soabort drops the lock. */
740 				(void) soabort(so2);
741 				solock(so);
742 				continue;
743 			}
744 			break;
745 		}
746 	}
747 	if (so->so_pcb == 0)
748 		goto discard;
749 	if (so->so_state & SS_ISCONNECTED) {
750 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
751 			error = sodisconnect(so);
752 			if (error)
753 				goto drop;
754 		}
755 		if (so->so_options & SO_LINGER) {
756 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
757 				goto drop;
758 			while (so->so_state & SS_ISCONNECTED) {
759 				error = sowait(so, true, so->so_linger * hz);
760 				if (error)
761 					break;
762 			}
763 		}
764 	}
765  drop:
766 	if (so->so_pcb) {
767 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
768 		    NULL, NULL, NULL, NULL);
769 		if (error == 0)
770 			error = error2;
771 	}
772  discard:
773 	if (so->so_state & SS_NOFDREF)
774 		panic("soclose: NOFDREF");
775 	kauth_cred_free(so->so_cred);
776 	so->so_state |= SS_NOFDREF;
777 	sofree(so);
778 	return (error);
779 }
780 
781 /*
782  * Must be called with the socket locked..  Will return with it unlocked.
783  */
784 int
785 soabort(struct socket *so)
786 {
787 	u_int refs;
788 	int error;
789 
790 	KASSERT(solocked(so));
791 	KASSERT(so->so_head == NULL);
792 
793 	so->so_aborting++;		/* XXX */
794 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
795 	    NULL, NULL, NULL);
796 	refs = --so->so_aborting;	/* XXX */
797 	if (error || (refs == 0)) {
798 		sofree(so);
799 	} else {
800 		sounlock(so);
801 	}
802 	return error;
803 }
804 
805 int
806 soaccept(struct socket *so, struct mbuf *nam)
807 {
808 	int	error;
809 
810 	KASSERT(solocked(so));
811 
812 	error = 0;
813 	if ((so->so_state & SS_NOFDREF) == 0)
814 		panic("soaccept: !NOFDREF");
815 	so->so_state &= ~SS_NOFDREF;
816 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
817 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
818 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
819 		    NULL, nam, NULL, NULL);
820 	else
821 		error = ECONNABORTED;
822 
823 	return (error);
824 }
825 
826 int
827 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
828 {
829 	int		error;
830 
831 	KASSERT(solocked(so));
832 
833 	if (so->so_options & SO_ACCEPTCONN)
834 		return (EOPNOTSUPP);
835 	/*
836 	 * If protocol is connection-based, can only connect once.
837 	 * Otherwise, if connected, try to disconnect first.
838 	 * This allows user to disconnect by connecting to, e.g.,
839 	 * a null address.
840 	 */
841 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
842 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
843 	    (error = sodisconnect(so))))
844 		error = EISCONN;
845 	else
846 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
847 		    NULL, nam, NULL, l);
848 	return (error);
849 }
850 
851 int
852 soconnect2(struct socket *so1, struct socket *so2)
853 {
854 	int	error;
855 
856 	KASSERT(solocked2(so1, so2));
857 
858 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
859 	    NULL, (struct mbuf *)so2, NULL, NULL);
860 	return (error);
861 }
862 
863 int
864 sodisconnect(struct socket *so)
865 {
866 	int	error;
867 
868 	KASSERT(solocked(so));
869 
870 	if ((so->so_state & SS_ISCONNECTED) == 0) {
871 		error = ENOTCONN;
872 	} else if (so->so_state & SS_ISDISCONNECTING) {
873 		error = EALREADY;
874 	} else {
875 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
876 		    NULL, NULL, NULL, NULL);
877 	}
878 	sodopendfree();
879 	return (error);
880 }
881 
882 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
883 /*
884  * Send on a socket.
885  * If send must go all at once and message is larger than
886  * send buffering, then hard error.
887  * Lock against other senders.
888  * If must go all at once and not enough room now, then
889  * inform user that this would block and do nothing.
890  * Otherwise, if nonblocking, send as much as possible.
891  * The data to be sent is described by "uio" if nonzero,
892  * otherwise by the mbuf chain "top" (which must be null
893  * if uio is not).  Data provided in mbuf chain must be small
894  * enough to send all at once.
895  *
896  * Returns nonzero on error, timeout or signal; callers
897  * must check for short counts if EINTR/ERESTART are returned.
898  * Data and control buffers are freed on return.
899  */
900 int
901 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
902 	struct mbuf *control, int flags, struct lwp *l)
903 {
904 	struct mbuf	**mp, *m;
905 	struct proc	*p;
906 	long		space, len, resid, clen, mlen;
907 	int		error, s, dontroute, atomic;
908 	short		wakeup_state = 0;
909 
910 	p = l->l_proc;
911 	sodopendfree();
912 	clen = 0;
913 
914 	/*
915 	 * solock() provides atomicity of access.  splsoftnet() prevents
916 	 * protocol processing soft interrupts from interrupting us and
917 	 * blocking (expensive).
918 	 */
919 	s = splsoftnet();
920 	solock(so);
921 	atomic = sosendallatonce(so) || top;
922 	if (uio)
923 		resid = uio->uio_resid;
924 	else
925 		resid = top->m_pkthdr.len;
926 	/*
927 	 * In theory resid should be unsigned.
928 	 * However, space must be signed, as it might be less than 0
929 	 * if we over-committed, and we must use a signed comparison
930 	 * of space and resid.  On the other hand, a negative resid
931 	 * causes us to loop sending 0-length segments to the protocol.
932 	 */
933 	if (resid < 0) {
934 		error = EINVAL;
935 		goto out;
936 	}
937 	dontroute =
938 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
939 	    (so->so_proto->pr_flags & PR_ATOMIC);
940 	l->l_ru.ru_msgsnd++;
941 	if (control)
942 		clen = control->m_len;
943  restart:
944 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
945 		goto out;
946 	do {
947 		if (so->so_state & SS_CANTSENDMORE) {
948 			error = EPIPE;
949 			goto release;
950 		}
951 		if (so->so_error) {
952 			error = so->so_error;
953 			so->so_error = 0;
954 			goto release;
955 		}
956 		if ((so->so_state & SS_ISCONNECTED) == 0) {
957 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
958 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
959 				    !(resid == 0 && clen != 0)) {
960 					error = ENOTCONN;
961 					goto release;
962 				}
963 			} else if (addr == 0) {
964 				error = EDESTADDRREQ;
965 				goto release;
966 			}
967 		}
968 		space = sbspace(&so->so_snd);
969 		if (flags & MSG_OOB)
970 			space += 1024;
971 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
972 		    clen > so->so_snd.sb_hiwat) {
973 			error = EMSGSIZE;
974 			goto release;
975 		}
976 		if (space < resid + clen &&
977 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
978 			if (so->so_nbio) {
979 				error = EWOULDBLOCK;
980 				goto release;
981 			}
982 			sbunlock(&so->so_snd);
983 			if (wakeup_state & SS_RESTARTSYS) {
984 				error = ERESTART;
985 				goto out;
986 			}
987 			error = sbwait(&so->so_snd);
988 			if (error)
989 				goto out;
990 			wakeup_state = so->so_state;
991 			goto restart;
992 		}
993 		wakeup_state = 0;
994 		mp = &top;
995 		space -= clen;
996 		do {
997 			if (uio == NULL) {
998 				/*
999 				 * Data is prepackaged in "top".
1000 				 */
1001 				resid = 0;
1002 				if (flags & MSG_EOR)
1003 					top->m_flags |= M_EOR;
1004 			} else do {
1005 				sounlock(so);
1006 				splx(s);
1007 				if (top == NULL) {
1008 					m = m_gethdr(M_WAIT, MT_DATA);
1009 					mlen = MHLEN;
1010 					m->m_pkthdr.len = 0;
1011 					m->m_pkthdr.rcvif = NULL;
1012 				} else {
1013 					m = m_get(M_WAIT, MT_DATA);
1014 					mlen = MLEN;
1015 				}
1016 				MCLAIM(m, so->so_snd.sb_mowner);
1017 				if (sock_loan_thresh >= 0 &&
1018 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
1019 				    space >= sock_loan_thresh &&
1020 				    (len = sosend_loan(so, uio, m,
1021 						       space)) != 0) {
1022 					SOSEND_COUNTER_INCR(&sosend_loan_big);
1023 					space -= len;
1024 					goto have_data;
1025 				}
1026 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
1027 					SOSEND_COUNTER_INCR(&sosend_copy_big);
1028 					m_clget(m, M_DONTWAIT);
1029 					if ((m->m_flags & M_EXT) == 0)
1030 						goto nopages;
1031 					mlen = MCLBYTES;
1032 					if (atomic && top == 0) {
1033 						len = lmin(MCLBYTES - max_hdr,
1034 						    resid);
1035 						m->m_data += max_hdr;
1036 					} else
1037 						len = lmin(MCLBYTES, resid);
1038 					space -= len;
1039 				} else {
1040  nopages:
1041 					SOSEND_COUNTER_INCR(&sosend_copy_small);
1042 					len = lmin(lmin(mlen, resid), space);
1043 					space -= len;
1044 					/*
1045 					 * For datagram protocols, leave room
1046 					 * for protocol headers in first mbuf.
1047 					 */
1048 					if (atomic && top == 0 && len < mlen)
1049 						MH_ALIGN(m, len);
1050 				}
1051 				error = uiomove(mtod(m, void *), (int)len, uio);
1052  have_data:
1053 				resid = uio->uio_resid;
1054 				m->m_len = len;
1055 				*mp = m;
1056 				top->m_pkthdr.len += len;
1057 				s = splsoftnet();
1058 				solock(so);
1059 				if (error != 0)
1060 					goto release;
1061 				mp = &m->m_next;
1062 				if (resid <= 0) {
1063 					if (flags & MSG_EOR)
1064 						top->m_flags |= M_EOR;
1065 					break;
1066 				}
1067 			} while (space > 0 && atomic);
1068 
1069 			if (so->so_state & SS_CANTSENDMORE) {
1070 				error = EPIPE;
1071 				goto release;
1072 			}
1073 			if (dontroute)
1074 				so->so_options |= SO_DONTROUTE;
1075 			if (resid > 0)
1076 				so->so_state |= SS_MORETOCOME;
1077 			error = (*so->so_proto->pr_usrreq)(so,
1078 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1079 			    top, addr, control, curlwp);
1080 			if (dontroute)
1081 				so->so_options &= ~SO_DONTROUTE;
1082 			if (resid > 0)
1083 				so->so_state &= ~SS_MORETOCOME;
1084 			clen = 0;
1085 			control = NULL;
1086 			top = NULL;
1087 			mp = &top;
1088 			if (error != 0)
1089 				goto release;
1090 		} while (resid && space > 0);
1091 	} while (resid);
1092 
1093  release:
1094 	sbunlock(&so->so_snd);
1095  out:
1096 	sounlock(so);
1097 	splx(s);
1098 	if (top)
1099 		m_freem(top);
1100 	if (control)
1101 		m_freem(control);
1102 	return (error);
1103 }
1104 
1105 /*
1106  * Following replacement or removal of the first mbuf on the first
1107  * mbuf chain of a socket buffer, push necessary state changes back
1108  * into the socket buffer so that other consumers see the values
1109  * consistently.  'nextrecord' is the callers locally stored value of
1110  * the original value of sb->sb_mb->m_nextpkt which must be restored
1111  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
1112  */
1113 static void
1114 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1115 {
1116 
1117 	KASSERT(solocked(sb->sb_so));
1118 
1119 	/*
1120 	 * First, update for the new value of nextrecord.  If necessary,
1121 	 * make it the first record.
1122 	 */
1123 	if (sb->sb_mb != NULL)
1124 		sb->sb_mb->m_nextpkt = nextrecord;
1125 	else
1126 		sb->sb_mb = nextrecord;
1127 
1128         /*
1129          * Now update any dependent socket buffer fields to reflect
1130          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
1131          * the addition of a second clause that takes care of the
1132          * case where sb_mb has been updated, but remains the last
1133          * record.
1134          */
1135         if (sb->sb_mb == NULL) {
1136                 sb->sb_mbtail = NULL;
1137                 sb->sb_lastrecord = NULL;
1138         } else if (sb->sb_mb->m_nextpkt == NULL)
1139                 sb->sb_lastrecord = sb->sb_mb;
1140 }
1141 
1142 /*
1143  * Implement receive operations on a socket.
1144  * We depend on the way that records are added to the sockbuf
1145  * by sbappend*.  In particular, each record (mbufs linked through m_next)
1146  * must begin with an address if the protocol so specifies,
1147  * followed by an optional mbuf or mbufs containing ancillary data,
1148  * and then zero or more mbufs of data.
1149  * In order to avoid blocking network interrupts for the entire time here,
1150  * we splx() while doing the actual copy to user space.
1151  * Although the sockbuf is locked, new data may still be appended,
1152  * and thus we must maintain consistency of the sockbuf during that time.
1153  *
1154  * The caller may receive the data as a single mbuf chain by supplying
1155  * an mbuf **mp0 for use in returning the chain.  The uio is then used
1156  * only for the count in uio_resid.
1157  */
1158 int
1159 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1160 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1161 {
1162 	struct lwp *l = curlwp;
1163 	struct mbuf	*m, **mp, *mt;
1164 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1165 	const struct protosw	*pr;
1166 	struct mbuf	*nextrecord;
1167 	int		mbuf_removed = 0;
1168 	const struct domain *dom;
1169 	short		wakeup_state = 0;
1170 
1171 	pr = so->so_proto;
1172 	atomic = pr->pr_flags & PR_ATOMIC;
1173 	dom = pr->pr_domain;
1174 	mp = mp0;
1175 	type = 0;
1176 	orig_resid = uio->uio_resid;
1177 
1178 	if (paddr != NULL)
1179 		*paddr = NULL;
1180 	if (controlp != NULL)
1181 		*controlp = NULL;
1182 	if (flagsp != NULL)
1183 		flags = *flagsp &~ MSG_EOR;
1184 	else
1185 		flags = 0;
1186 
1187 	if ((flags & MSG_DONTWAIT) == 0)
1188 		sodopendfree();
1189 
1190 	if (flags & MSG_OOB) {
1191 		m = m_get(M_WAIT, MT_DATA);
1192 		solock(so);
1193 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1194 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1195 		sounlock(so);
1196 		if (error)
1197 			goto bad;
1198 		do {
1199 			error = uiomove(mtod(m, void *),
1200 			    (int) min(uio->uio_resid, m->m_len), uio);
1201 			m = m_free(m);
1202 		} while (uio->uio_resid > 0 && error == 0 && m);
1203  bad:
1204 		if (m != NULL)
1205 			m_freem(m);
1206 		return error;
1207 	}
1208 	if (mp != NULL)
1209 		*mp = NULL;
1210 
1211 	/*
1212 	 * solock() provides atomicity of access.  splsoftnet() prevents
1213 	 * protocol processing soft interrupts from interrupting us and
1214 	 * blocking (expensive).
1215 	 */
1216 	s = splsoftnet();
1217 	solock(so);
1218 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1219 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1220 
1221  restart:
1222 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1223 		sounlock(so);
1224 		splx(s);
1225 		return error;
1226 	}
1227 
1228 	m = so->so_rcv.sb_mb;
1229 	/*
1230 	 * If we have less data than requested, block awaiting more
1231 	 * (subject to any timeout) if:
1232 	 *   1. the current count is less than the low water mark,
1233 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1234 	 *	receive operation at once if we block (resid <= hiwat), or
1235 	 *   3. MSG_DONTWAIT is not set.
1236 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1237 	 * we have to do the receive in sections, and thus risk returning
1238 	 * a short count if a timeout or signal occurs after we start.
1239 	 */
1240 	if (m == NULL ||
1241 	    ((flags & MSG_DONTWAIT) == 0 &&
1242 	     so->so_rcv.sb_cc < uio->uio_resid &&
1243 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1244 	      ((flags & MSG_WAITALL) &&
1245 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1246 	     m->m_nextpkt == NULL && !atomic)) {
1247 #ifdef DIAGNOSTIC
1248 		if (m == NULL && so->so_rcv.sb_cc)
1249 			panic("receive 1");
1250 #endif
1251 		if (so->so_error) {
1252 			if (m != NULL)
1253 				goto dontblock;
1254 			error = so->so_error;
1255 			if ((flags & MSG_PEEK) == 0)
1256 				so->so_error = 0;
1257 			goto release;
1258 		}
1259 		if (so->so_state & SS_CANTRCVMORE) {
1260 			if (m != NULL)
1261 				goto dontblock;
1262 			else
1263 				goto release;
1264 		}
1265 		for (; m != NULL; m = m->m_next)
1266 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1267 				m = so->so_rcv.sb_mb;
1268 				goto dontblock;
1269 			}
1270 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1271 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1272 			error = ENOTCONN;
1273 			goto release;
1274 		}
1275 		if (uio->uio_resid == 0)
1276 			goto release;
1277 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1278 			error = EWOULDBLOCK;
1279 			goto release;
1280 		}
1281 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1282 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1283 		sbunlock(&so->so_rcv);
1284 		if (wakeup_state & SS_RESTARTSYS)
1285 			error = ERESTART;
1286 		else
1287 			error = sbwait(&so->so_rcv);
1288 		if (error != 0) {
1289 			sounlock(so);
1290 			splx(s);
1291 			return error;
1292 		}
1293 		wakeup_state = so->so_state;
1294 		goto restart;
1295 	}
1296  dontblock:
1297 	/*
1298 	 * On entry here, m points to the first record of the socket buffer.
1299 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1300 	 * pointer to the next record in the socket buffer.  We must keep the
1301 	 * various socket buffer pointers and local stack versions of the
1302 	 * pointers in sync, pushing out modifications before dropping the
1303 	 * socket lock, and re-reading them when picking it up.
1304 	 *
1305 	 * Otherwise, we will race with the network stack appending new data
1306 	 * or records onto the socket buffer by using inconsistent/stale
1307 	 * versions of the field, possibly resulting in socket buffer
1308 	 * corruption.
1309 	 *
1310 	 * By holding the high-level sblock(), we prevent simultaneous
1311 	 * readers from pulling off the front of the socket buffer.
1312 	 */
1313 	if (l != NULL)
1314 		l->l_ru.ru_msgrcv++;
1315 	KASSERT(m == so->so_rcv.sb_mb);
1316 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1317 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1318 	nextrecord = m->m_nextpkt;
1319 	if (pr->pr_flags & PR_ADDR) {
1320 #ifdef DIAGNOSTIC
1321 		if (m->m_type != MT_SONAME)
1322 			panic("receive 1a");
1323 #endif
1324 		orig_resid = 0;
1325 		if (flags & MSG_PEEK) {
1326 			if (paddr)
1327 				*paddr = m_copy(m, 0, m->m_len);
1328 			m = m->m_next;
1329 		} else {
1330 			sbfree(&so->so_rcv, m);
1331 			mbuf_removed = 1;
1332 			if (paddr != NULL) {
1333 				*paddr = m;
1334 				so->so_rcv.sb_mb = m->m_next;
1335 				m->m_next = NULL;
1336 				m = so->so_rcv.sb_mb;
1337 			} else {
1338 				MFREE(m, so->so_rcv.sb_mb);
1339 				m = so->so_rcv.sb_mb;
1340 			}
1341 			sbsync(&so->so_rcv, nextrecord);
1342 		}
1343 	}
1344 
1345 	/*
1346 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1347 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1348 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1349 	 * perform externalization (or freeing if controlp == NULL).
1350 	 */
1351 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1352 		struct mbuf *cm = NULL, *cmn;
1353 		struct mbuf **cme = &cm;
1354 
1355 		do {
1356 			if (flags & MSG_PEEK) {
1357 				if (controlp != NULL) {
1358 					*controlp = m_copy(m, 0, m->m_len);
1359 					controlp = &(*controlp)->m_next;
1360 				}
1361 				m = m->m_next;
1362 			} else {
1363 				sbfree(&so->so_rcv, m);
1364 				so->so_rcv.sb_mb = m->m_next;
1365 				m->m_next = NULL;
1366 				*cme = m;
1367 				cme = &(*cme)->m_next;
1368 				m = so->so_rcv.sb_mb;
1369 			}
1370 		} while (m != NULL && m->m_type == MT_CONTROL);
1371 		if ((flags & MSG_PEEK) == 0)
1372 			sbsync(&so->so_rcv, nextrecord);
1373 		for (; cm != NULL; cm = cmn) {
1374 			cmn = cm->m_next;
1375 			cm->m_next = NULL;
1376 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
1377 			if (controlp != NULL) {
1378 				if (dom->dom_externalize != NULL &&
1379 				    type == SCM_RIGHTS) {
1380 					sounlock(so);
1381 					splx(s);
1382 					error = (*dom->dom_externalize)(cm, l);
1383 					s = splsoftnet();
1384 					solock(so);
1385 				}
1386 				*controlp = cm;
1387 				while (*controlp != NULL)
1388 					controlp = &(*controlp)->m_next;
1389 			} else {
1390 				/*
1391 				 * Dispose of any SCM_RIGHTS message that went
1392 				 * through the read path rather than recv.
1393 				 */
1394 				if (dom->dom_dispose != NULL &&
1395 				    type == SCM_RIGHTS) {
1396 				    	sounlock(so);
1397 					(*dom->dom_dispose)(cm);
1398 					solock(so);
1399 				}
1400 				m_freem(cm);
1401 			}
1402 		}
1403 		if (m != NULL)
1404 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1405 		else
1406 			nextrecord = so->so_rcv.sb_mb;
1407 		orig_resid = 0;
1408 	}
1409 
1410 	/* If m is non-NULL, we have some data to read. */
1411 	if (__predict_true(m != NULL)) {
1412 		type = m->m_type;
1413 		if (type == MT_OOBDATA)
1414 			flags |= MSG_OOB;
1415 	}
1416 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1417 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1418 
1419 	moff = 0;
1420 	offset = 0;
1421 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1422 		if (m->m_type == MT_OOBDATA) {
1423 			if (type != MT_OOBDATA)
1424 				break;
1425 		} else if (type == MT_OOBDATA)
1426 			break;
1427 #ifdef DIAGNOSTIC
1428 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1429 			panic("receive 3");
1430 #endif
1431 		so->so_state &= ~SS_RCVATMARK;
1432 		wakeup_state = 0;
1433 		len = uio->uio_resid;
1434 		if (so->so_oobmark && len > so->so_oobmark - offset)
1435 			len = so->so_oobmark - offset;
1436 		if (len > m->m_len - moff)
1437 			len = m->m_len - moff;
1438 		/*
1439 		 * If mp is set, just pass back the mbufs.
1440 		 * Otherwise copy them out via the uio, then free.
1441 		 * Sockbuf must be consistent here (points to current mbuf,
1442 		 * it points to next record) when we drop priority;
1443 		 * we must note any additions to the sockbuf when we
1444 		 * block interrupts again.
1445 		 */
1446 		if (mp == NULL) {
1447 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1448 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1449 			sounlock(so);
1450 			splx(s);
1451 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1452 			s = splsoftnet();
1453 			solock(so);
1454 			if (error != 0) {
1455 				/*
1456 				 * If any part of the record has been removed
1457 				 * (such as the MT_SONAME mbuf, which will
1458 				 * happen when PR_ADDR, and thus also
1459 				 * PR_ATOMIC, is set), then drop the entire
1460 				 * record to maintain the atomicity of the
1461 				 * receive operation.
1462 				 *
1463 				 * This avoids a later panic("receive 1a")
1464 				 * when compiled with DIAGNOSTIC.
1465 				 */
1466 				if (m && mbuf_removed && atomic)
1467 					(void) sbdroprecord(&so->so_rcv);
1468 
1469 				goto release;
1470 			}
1471 		} else
1472 			uio->uio_resid -= len;
1473 		if (len == m->m_len - moff) {
1474 			if (m->m_flags & M_EOR)
1475 				flags |= MSG_EOR;
1476 			if (flags & MSG_PEEK) {
1477 				m = m->m_next;
1478 				moff = 0;
1479 			} else {
1480 				nextrecord = m->m_nextpkt;
1481 				sbfree(&so->so_rcv, m);
1482 				if (mp) {
1483 					*mp = m;
1484 					mp = &m->m_next;
1485 					so->so_rcv.sb_mb = m = m->m_next;
1486 					*mp = NULL;
1487 				} else {
1488 					MFREE(m, so->so_rcv.sb_mb);
1489 					m = so->so_rcv.sb_mb;
1490 				}
1491 				/*
1492 				 * If m != NULL, we also know that
1493 				 * so->so_rcv.sb_mb != NULL.
1494 				 */
1495 				KASSERT(so->so_rcv.sb_mb == m);
1496 				if (m) {
1497 					m->m_nextpkt = nextrecord;
1498 					if (nextrecord == NULL)
1499 						so->so_rcv.sb_lastrecord = m;
1500 				} else {
1501 					so->so_rcv.sb_mb = nextrecord;
1502 					SB_EMPTY_FIXUP(&so->so_rcv);
1503 				}
1504 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1505 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1506 			}
1507 		} else if (flags & MSG_PEEK)
1508 			moff += len;
1509 		else {
1510 			if (mp != NULL) {
1511 				mt = m_copym(m, 0, len, M_NOWAIT);
1512 				if (__predict_false(mt == NULL)) {
1513 					sounlock(so);
1514 					mt = m_copym(m, 0, len, M_WAIT);
1515 					solock(so);
1516 				}
1517 				*mp = mt;
1518 			}
1519 			m->m_data += len;
1520 			m->m_len -= len;
1521 			so->so_rcv.sb_cc -= len;
1522 		}
1523 		if (so->so_oobmark) {
1524 			if ((flags & MSG_PEEK) == 0) {
1525 				so->so_oobmark -= len;
1526 				if (so->so_oobmark == 0) {
1527 					so->so_state |= SS_RCVATMARK;
1528 					break;
1529 				}
1530 			} else {
1531 				offset += len;
1532 				if (offset == so->so_oobmark)
1533 					break;
1534 			}
1535 		}
1536 		if (flags & MSG_EOR)
1537 			break;
1538 		/*
1539 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1540 		 * we must not quit until "uio->uio_resid == 0" or an error
1541 		 * termination.  If a signal/timeout occurs, return
1542 		 * with a short count but without error.
1543 		 * Keep sockbuf locked against other readers.
1544 		 */
1545 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1546 		    !sosendallatonce(so) && !nextrecord) {
1547 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
1548 				break;
1549 			/*
1550 			 * If we are peeking and the socket receive buffer is
1551 			 * full, stop since we can't get more data to peek at.
1552 			 */
1553 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1554 				break;
1555 			/*
1556 			 * If we've drained the socket buffer, tell the
1557 			 * protocol in case it needs to do something to
1558 			 * get it filled again.
1559 			 */
1560 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1561 				(*pr->pr_usrreq)(so, PRU_RCVD,
1562 				    NULL, (struct mbuf *)(long)flags, NULL, l);
1563 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1564 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1565 			if (wakeup_state & SS_RESTARTSYS)
1566 				error = ERESTART;
1567 			else
1568 				error = sbwait(&so->so_rcv);
1569 			if (error != 0) {
1570 				sbunlock(&so->so_rcv);
1571 				sounlock(so);
1572 				splx(s);
1573 				return 0;
1574 			}
1575 			if ((m = so->so_rcv.sb_mb) != NULL)
1576 				nextrecord = m->m_nextpkt;
1577 			wakeup_state = so->so_state;
1578 		}
1579 	}
1580 
1581 	if (m && atomic) {
1582 		flags |= MSG_TRUNC;
1583 		if ((flags & MSG_PEEK) == 0)
1584 			(void) sbdroprecord(&so->so_rcv);
1585 	}
1586 	if ((flags & MSG_PEEK) == 0) {
1587 		if (m == NULL) {
1588 			/*
1589 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1590 			 * part makes sure sb_lastrecord is up-to-date if
1591 			 * there is still data in the socket buffer.
1592 			 */
1593 			so->so_rcv.sb_mb = nextrecord;
1594 			if (so->so_rcv.sb_mb == NULL) {
1595 				so->so_rcv.sb_mbtail = NULL;
1596 				so->so_rcv.sb_lastrecord = NULL;
1597 			} else if (nextrecord->m_nextpkt == NULL)
1598 				so->so_rcv.sb_lastrecord = nextrecord;
1599 		}
1600 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1601 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1602 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1603 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1604 			    (struct mbuf *)(long)flags, NULL, l);
1605 	}
1606 	if (orig_resid == uio->uio_resid && orig_resid &&
1607 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1608 		sbunlock(&so->so_rcv);
1609 		goto restart;
1610 	}
1611 
1612 	if (flagsp != NULL)
1613 		*flagsp |= flags;
1614  release:
1615 	sbunlock(&so->so_rcv);
1616 	sounlock(so);
1617 	splx(s);
1618 	return error;
1619 }
1620 
1621 int
1622 soshutdown(struct socket *so, int how)
1623 {
1624 	const struct protosw	*pr;
1625 	int	error;
1626 
1627 	KASSERT(solocked(so));
1628 
1629 	pr = so->so_proto;
1630 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1631 		return (EINVAL);
1632 
1633 	if (how == SHUT_RD || how == SHUT_RDWR) {
1634 		sorflush(so);
1635 		error = 0;
1636 	}
1637 	if (how == SHUT_WR || how == SHUT_RDWR)
1638 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1639 		    NULL, NULL, NULL);
1640 
1641 	return error;
1642 }
1643 
1644 void
1645 sorestart(struct socket *so)
1646 {
1647 	/*
1648 	 * An application has called close() on an fd on which another
1649 	 * of its threads has called a socket system call.
1650 	 * Mark this and wake everyone up, and code that would block again
1651 	 * instead returns ERESTART.
1652 	 * On system call re-entry the fd is validated and EBADF returned.
1653 	 * Any other fd will block again on the 2nd syscall.
1654 	 */
1655 	solock(so);
1656 	so->so_state |= SS_RESTARTSYS;
1657 	cv_broadcast(&so->so_cv);
1658 	cv_broadcast(&so->so_snd.sb_cv);
1659 	cv_broadcast(&so->so_rcv.sb_cv);
1660 	sounlock(so);
1661 }
1662 
1663 void
1664 sorflush(struct socket *so)
1665 {
1666 	struct sockbuf	*sb, asb;
1667 	const struct protosw	*pr;
1668 
1669 	KASSERT(solocked(so));
1670 
1671 	sb = &so->so_rcv;
1672 	pr = so->so_proto;
1673 	socantrcvmore(so);
1674 	sb->sb_flags |= SB_NOINTR;
1675 	(void )sblock(sb, M_WAITOK);
1676 	sbunlock(sb);
1677 	asb = *sb;
1678 	/*
1679 	 * Clear most of the sockbuf structure, but leave some of the
1680 	 * fields valid.
1681 	 */
1682 	memset(&sb->sb_startzero, 0,
1683 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1684 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1685 		sounlock(so);
1686 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
1687 		solock(so);
1688 	}
1689 	sbrelease(&asb, so);
1690 }
1691 
1692 /*
1693  * internal set SOL_SOCKET options
1694  */
1695 static int
1696 sosetopt1(struct socket *so, const struct sockopt *sopt)
1697 {
1698 	int error = EINVAL, optval, opt;
1699 	struct linger l;
1700 	struct timeval tv;
1701 
1702 	switch ((opt = sopt->sopt_name)) {
1703 
1704 	case SO_ACCEPTFILTER:
1705 		error = accept_filt_setopt(so, sopt);
1706 		KASSERT(solocked(so));
1707 		break;
1708 
1709   	case SO_LINGER:
1710  		error = sockopt_get(sopt, &l, sizeof(l));
1711 		solock(so);
1712  		if (error)
1713  			break;
1714  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1715  		    l.l_linger > (INT_MAX / hz)) {
1716 			error = EDOM;
1717 			break;
1718 		}
1719  		so->so_linger = l.l_linger;
1720  		if (l.l_onoff)
1721  			so->so_options |= SO_LINGER;
1722  		else
1723  			so->so_options &= ~SO_LINGER;
1724    		break;
1725 
1726 	case SO_DEBUG:
1727 	case SO_KEEPALIVE:
1728 	case SO_DONTROUTE:
1729 	case SO_USELOOPBACK:
1730 	case SO_BROADCAST:
1731 	case SO_REUSEADDR:
1732 	case SO_REUSEPORT:
1733 	case SO_OOBINLINE:
1734 	case SO_TIMESTAMP:
1735 #ifdef SO_OTIMESTAMP
1736 	case SO_OTIMESTAMP:
1737 #endif
1738 		error = sockopt_getint(sopt, &optval);
1739 		solock(so);
1740 		if (error)
1741 			break;
1742 		if (optval)
1743 			so->so_options |= opt;
1744 		else
1745 			so->so_options &= ~opt;
1746 		break;
1747 
1748 	case SO_SNDBUF:
1749 	case SO_RCVBUF:
1750 	case SO_SNDLOWAT:
1751 	case SO_RCVLOWAT:
1752 		error = sockopt_getint(sopt, &optval);
1753 		solock(so);
1754 		if (error)
1755 			break;
1756 
1757 		/*
1758 		 * Values < 1 make no sense for any of these
1759 		 * options, so disallow them.
1760 		 */
1761 		if (optval < 1) {
1762 			error = EINVAL;
1763 			break;
1764 		}
1765 
1766 		switch (opt) {
1767 		case SO_SNDBUF:
1768 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1769 				error = ENOBUFS;
1770 				break;
1771 			}
1772 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1773 			break;
1774 
1775 		case SO_RCVBUF:
1776 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1777 				error = ENOBUFS;
1778 				break;
1779 			}
1780 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1781 			break;
1782 
1783 		/*
1784 		 * Make sure the low-water is never greater than
1785 		 * the high-water.
1786 		 */
1787 		case SO_SNDLOWAT:
1788 			if (optval > so->so_snd.sb_hiwat)
1789 				optval = so->so_snd.sb_hiwat;
1790 
1791 			so->so_snd.sb_lowat = optval;
1792 			break;
1793 
1794 		case SO_RCVLOWAT:
1795 			if (optval > so->so_rcv.sb_hiwat)
1796 				optval = so->so_rcv.sb_hiwat;
1797 
1798 			so->so_rcv.sb_lowat = optval;
1799 			break;
1800 		}
1801 		break;
1802 
1803 #ifdef COMPAT_50
1804 	case SO_OSNDTIMEO:
1805 	case SO_ORCVTIMEO: {
1806 		struct timeval50 otv;
1807 		error = sockopt_get(sopt, &otv, sizeof(otv));
1808 		if (error) {
1809 			solock(so);
1810 			break;
1811 		}
1812 		timeval50_to_timeval(&otv, &tv);
1813 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1814 		error = 0;
1815 		/*FALLTHROUGH*/
1816 	}
1817 #endif /* COMPAT_50 */
1818 
1819 	case SO_SNDTIMEO:
1820 	case SO_RCVTIMEO:
1821 		if (error)
1822 			error = sockopt_get(sopt, &tv, sizeof(tv));
1823 		solock(so);
1824 		if (error)
1825 			break;
1826 
1827 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1828 			error = EDOM;
1829 			break;
1830 		}
1831 
1832 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
1833 		if (optval == 0 && tv.tv_usec != 0)
1834 			optval = 1;
1835 
1836 		switch (opt) {
1837 		case SO_SNDTIMEO:
1838 			so->so_snd.sb_timeo = optval;
1839 			break;
1840 		case SO_RCVTIMEO:
1841 			so->so_rcv.sb_timeo = optval;
1842 			break;
1843 		}
1844 		break;
1845 
1846 	default:
1847 		solock(so);
1848 		error = ENOPROTOOPT;
1849 		break;
1850 	}
1851 	KASSERT(solocked(so));
1852 	return error;
1853 }
1854 
1855 int
1856 sosetopt(struct socket *so, struct sockopt *sopt)
1857 {
1858 	int error, prerr;
1859 
1860 	if (sopt->sopt_level == SOL_SOCKET) {
1861 		error = sosetopt1(so, sopt);
1862 		KASSERT(solocked(so));
1863 	} else {
1864 		error = ENOPROTOOPT;
1865 		solock(so);
1866 	}
1867 
1868 	if ((error == 0 || error == ENOPROTOOPT) &&
1869 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1870 		/* give the protocol stack a shot */
1871 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1872 		if (prerr == 0)
1873 			error = 0;
1874 		else if (prerr != ENOPROTOOPT)
1875 			error = prerr;
1876 	}
1877 	sounlock(so);
1878 	return error;
1879 }
1880 
1881 /*
1882  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1883  */
1884 int
1885 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1886     const void *val, size_t valsize)
1887 {
1888 	struct sockopt sopt;
1889 	int error;
1890 
1891 	KASSERT(valsize == 0 || val != NULL);
1892 
1893 	sockopt_init(&sopt, level, name, valsize);
1894 	sockopt_set(&sopt, val, valsize);
1895 
1896 	error = sosetopt(so, &sopt);
1897 
1898 	sockopt_destroy(&sopt);
1899 
1900 	return error;
1901 }
1902 
1903 /*
1904  * internal get SOL_SOCKET options
1905  */
1906 static int
1907 sogetopt1(struct socket *so, struct sockopt *sopt)
1908 {
1909 	int error, optval, opt;
1910 	struct linger l;
1911 	struct timeval tv;
1912 
1913 	switch ((opt = sopt->sopt_name)) {
1914 
1915 	case SO_ACCEPTFILTER:
1916 		error = accept_filt_getopt(so, sopt);
1917 		break;
1918 
1919 	case SO_LINGER:
1920 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1921 		l.l_linger = so->so_linger;
1922 
1923 		error = sockopt_set(sopt, &l, sizeof(l));
1924 		break;
1925 
1926 	case SO_USELOOPBACK:
1927 	case SO_DONTROUTE:
1928 	case SO_DEBUG:
1929 	case SO_KEEPALIVE:
1930 	case SO_REUSEADDR:
1931 	case SO_REUSEPORT:
1932 	case SO_BROADCAST:
1933 	case SO_OOBINLINE:
1934 	case SO_TIMESTAMP:
1935 #ifdef SO_OTIMESTAMP
1936 	case SO_OTIMESTAMP:
1937 #endif
1938 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1939 		break;
1940 
1941 	case SO_TYPE:
1942 		error = sockopt_setint(sopt, so->so_type);
1943 		break;
1944 
1945 	case SO_ERROR:
1946 		error = sockopt_setint(sopt, so->so_error);
1947 		so->so_error = 0;
1948 		break;
1949 
1950 	case SO_SNDBUF:
1951 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1952 		break;
1953 
1954 	case SO_RCVBUF:
1955 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1956 		break;
1957 
1958 	case SO_SNDLOWAT:
1959 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1960 		break;
1961 
1962 	case SO_RCVLOWAT:
1963 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1964 		break;
1965 
1966 #ifdef COMPAT_50
1967 	case SO_OSNDTIMEO:
1968 	case SO_ORCVTIMEO: {
1969 		struct timeval50 otv;
1970 
1971 		optval = (opt == SO_OSNDTIMEO ?
1972 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1973 
1974 		otv.tv_sec = optval / hz;
1975 		otv.tv_usec = (optval % hz) * tick;
1976 
1977 		error = sockopt_set(sopt, &otv, sizeof(otv));
1978 		break;
1979 	}
1980 #endif /* COMPAT_50 */
1981 
1982 	case SO_SNDTIMEO:
1983 	case SO_RCVTIMEO:
1984 		optval = (opt == SO_SNDTIMEO ?
1985 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1986 
1987 		tv.tv_sec = optval / hz;
1988 		tv.tv_usec = (optval % hz) * tick;
1989 
1990 		error = sockopt_set(sopt, &tv, sizeof(tv));
1991 		break;
1992 
1993 	case SO_OVERFLOWED:
1994 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1995 		break;
1996 
1997 	default:
1998 		error = ENOPROTOOPT;
1999 		break;
2000 	}
2001 
2002 	return (error);
2003 }
2004 
2005 int
2006 sogetopt(struct socket *so, struct sockopt *sopt)
2007 {
2008 	int		error;
2009 
2010 	solock(so);
2011 	if (sopt->sopt_level != SOL_SOCKET) {
2012 		if (so->so_proto && so->so_proto->pr_ctloutput) {
2013 			error = ((*so->so_proto->pr_ctloutput)
2014 			    (PRCO_GETOPT, so, sopt));
2015 		} else
2016 			error = (ENOPROTOOPT);
2017 	} else {
2018 		error = sogetopt1(so, sopt);
2019 	}
2020 	sounlock(so);
2021 	return (error);
2022 }
2023 
2024 /*
2025  * alloc sockopt data buffer buffer
2026  *	- will be released at destroy
2027  */
2028 static int
2029 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2030 {
2031 
2032 	KASSERT(sopt->sopt_size == 0);
2033 
2034 	if (len > sizeof(sopt->sopt_buf)) {
2035 		sopt->sopt_data = kmem_zalloc(len, kmflag);
2036 		if (sopt->sopt_data == NULL)
2037 			return ENOMEM;
2038 	} else
2039 		sopt->sopt_data = sopt->sopt_buf;
2040 
2041 	sopt->sopt_size = len;
2042 	return 0;
2043 }
2044 
2045 /*
2046  * initialise sockopt storage
2047  *	- MAY sleep during allocation
2048  */
2049 void
2050 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2051 {
2052 
2053 	memset(sopt, 0, sizeof(*sopt));
2054 
2055 	sopt->sopt_level = level;
2056 	sopt->sopt_name = name;
2057 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
2058 }
2059 
2060 /*
2061  * destroy sockopt storage
2062  *	- will release any held memory references
2063  */
2064 void
2065 sockopt_destroy(struct sockopt *sopt)
2066 {
2067 
2068 	if (sopt->sopt_data != sopt->sopt_buf)
2069 		kmem_free(sopt->sopt_data, sopt->sopt_size);
2070 
2071 	memset(sopt, 0, sizeof(*sopt));
2072 }
2073 
2074 /*
2075  * set sockopt value
2076  *	- value is copied into sockopt
2077  * 	- memory is allocated when necessary, will not sleep
2078  */
2079 int
2080 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2081 {
2082 	int error;
2083 
2084 	if (sopt->sopt_size == 0) {
2085 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2086 		if (error)
2087 			return error;
2088 	}
2089 
2090 	KASSERT(sopt->sopt_size == len);
2091 	memcpy(sopt->sopt_data, buf, len);
2092 	return 0;
2093 }
2094 
2095 /*
2096  * common case of set sockopt integer value
2097  */
2098 int
2099 sockopt_setint(struct sockopt *sopt, int val)
2100 {
2101 
2102 	return sockopt_set(sopt, &val, sizeof(int));
2103 }
2104 
2105 /*
2106  * get sockopt value
2107  *	- correct size must be given
2108  */
2109 int
2110 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2111 {
2112 
2113 	if (sopt->sopt_size != len)
2114 		return EINVAL;
2115 
2116 	memcpy(buf, sopt->sopt_data, len);
2117 	return 0;
2118 }
2119 
2120 /*
2121  * common case of get sockopt integer value
2122  */
2123 int
2124 sockopt_getint(const struct sockopt *sopt, int *valp)
2125 {
2126 
2127 	return sockopt_get(sopt, valp, sizeof(int));
2128 }
2129 
2130 /*
2131  * set sockopt value from mbuf
2132  *	- ONLY for legacy code
2133  *	- mbuf is released by sockopt
2134  *	- will not sleep
2135  */
2136 int
2137 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2138 {
2139 	size_t len;
2140 	int error;
2141 
2142 	len = m_length(m);
2143 
2144 	if (sopt->sopt_size == 0) {
2145 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2146 		if (error)
2147 			return error;
2148 	}
2149 
2150 	KASSERT(sopt->sopt_size == len);
2151 	m_copydata(m, 0, len, sopt->sopt_data);
2152 	m_freem(m);
2153 
2154 	return 0;
2155 }
2156 
2157 /*
2158  * get sockopt value into mbuf
2159  *	- ONLY for legacy code
2160  *	- mbuf to be released by the caller
2161  *	- will not sleep
2162  */
2163 struct mbuf *
2164 sockopt_getmbuf(const struct sockopt *sopt)
2165 {
2166 	struct mbuf *m;
2167 
2168 	if (sopt->sopt_size > MCLBYTES)
2169 		return NULL;
2170 
2171 	m = m_get(M_DONTWAIT, MT_SOOPTS);
2172 	if (m == NULL)
2173 		return NULL;
2174 
2175 	if (sopt->sopt_size > MLEN) {
2176 		MCLGET(m, M_DONTWAIT);
2177 		if ((m->m_flags & M_EXT) == 0) {
2178 			m_free(m);
2179 			return NULL;
2180 		}
2181 	}
2182 
2183 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2184 	m->m_len = sopt->sopt_size;
2185 
2186 	return m;
2187 }
2188 
2189 void
2190 sohasoutofband(struct socket *so)
2191 {
2192 
2193 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2194 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2195 }
2196 
2197 static void
2198 filt_sordetach(struct knote *kn)
2199 {
2200 	struct socket	*so;
2201 
2202 	so = ((file_t *)kn->kn_obj)->f_data;
2203 	solock(so);
2204 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2205 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2206 		so->so_rcv.sb_flags &= ~SB_KNOTE;
2207 	sounlock(so);
2208 }
2209 
2210 /*ARGSUSED*/
2211 static int
2212 filt_soread(struct knote *kn, long hint)
2213 {
2214 	struct socket	*so;
2215 	int rv;
2216 
2217 	so = ((file_t *)kn->kn_obj)->f_data;
2218 	if (hint != NOTE_SUBMIT)
2219 		solock(so);
2220 	kn->kn_data = so->so_rcv.sb_cc;
2221 	if (so->so_state & SS_CANTRCVMORE) {
2222 		kn->kn_flags |= EV_EOF;
2223 		kn->kn_fflags = so->so_error;
2224 		rv = 1;
2225 	} else if (so->so_error)	/* temporary udp error */
2226 		rv = 1;
2227 	else if (kn->kn_sfflags & NOTE_LOWAT)
2228 		rv = (kn->kn_data >= kn->kn_sdata);
2229 	else
2230 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2231 	if (hint != NOTE_SUBMIT)
2232 		sounlock(so);
2233 	return rv;
2234 }
2235 
2236 static void
2237 filt_sowdetach(struct knote *kn)
2238 {
2239 	struct socket	*so;
2240 
2241 	so = ((file_t *)kn->kn_obj)->f_data;
2242 	solock(so);
2243 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2244 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2245 		so->so_snd.sb_flags &= ~SB_KNOTE;
2246 	sounlock(so);
2247 }
2248 
2249 /*ARGSUSED*/
2250 static int
2251 filt_sowrite(struct knote *kn, long hint)
2252 {
2253 	struct socket	*so;
2254 	int rv;
2255 
2256 	so = ((file_t *)kn->kn_obj)->f_data;
2257 	if (hint != NOTE_SUBMIT)
2258 		solock(so);
2259 	kn->kn_data = sbspace(&so->so_snd);
2260 	if (so->so_state & SS_CANTSENDMORE) {
2261 		kn->kn_flags |= EV_EOF;
2262 		kn->kn_fflags = so->so_error;
2263 		rv = 1;
2264 	} else if (so->so_error)	/* temporary udp error */
2265 		rv = 1;
2266 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2267 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2268 		rv = 0;
2269 	else if (kn->kn_sfflags & NOTE_LOWAT)
2270 		rv = (kn->kn_data >= kn->kn_sdata);
2271 	else
2272 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
2273 	if (hint != NOTE_SUBMIT)
2274 		sounlock(so);
2275 	return rv;
2276 }
2277 
2278 /*ARGSUSED*/
2279 static int
2280 filt_solisten(struct knote *kn, long hint)
2281 {
2282 	struct socket	*so;
2283 	int rv;
2284 
2285 	so = ((file_t *)kn->kn_obj)->f_data;
2286 
2287 	/*
2288 	 * Set kn_data to number of incoming connections, not
2289 	 * counting partial (incomplete) connections.
2290 	 */
2291 	if (hint != NOTE_SUBMIT)
2292 		solock(so);
2293 	kn->kn_data = so->so_qlen;
2294 	rv = (kn->kn_data > 0);
2295 	if (hint != NOTE_SUBMIT)
2296 		sounlock(so);
2297 	return rv;
2298 }
2299 
2300 static const struct filterops solisten_filtops =
2301 	{ 1, NULL, filt_sordetach, filt_solisten };
2302 static const struct filterops soread_filtops =
2303 	{ 1, NULL, filt_sordetach, filt_soread };
2304 static const struct filterops sowrite_filtops =
2305 	{ 1, NULL, filt_sowdetach, filt_sowrite };
2306 
2307 int
2308 soo_kqfilter(struct file *fp, struct knote *kn)
2309 {
2310 	struct socket	*so;
2311 	struct sockbuf	*sb;
2312 
2313 	so = ((file_t *)kn->kn_obj)->f_data;
2314 	solock(so);
2315 	switch (kn->kn_filter) {
2316 	case EVFILT_READ:
2317 		if (so->so_options & SO_ACCEPTCONN)
2318 			kn->kn_fop = &solisten_filtops;
2319 		else
2320 			kn->kn_fop = &soread_filtops;
2321 		sb = &so->so_rcv;
2322 		break;
2323 	case EVFILT_WRITE:
2324 		kn->kn_fop = &sowrite_filtops;
2325 		sb = &so->so_snd;
2326 		break;
2327 	default:
2328 		sounlock(so);
2329 		return (EINVAL);
2330 	}
2331 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2332 	sb->sb_flags |= SB_KNOTE;
2333 	sounlock(so);
2334 	return (0);
2335 }
2336 
2337 static int
2338 sodopoll(struct socket *so, int events)
2339 {
2340 	int revents;
2341 
2342 	revents = 0;
2343 
2344 	if (events & (POLLIN | POLLRDNORM))
2345 		if (soreadable(so))
2346 			revents |= events & (POLLIN | POLLRDNORM);
2347 
2348 	if (events & (POLLOUT | POLLWRNORM))
2349 		if (sowritable(so))
2350 			revents |= events & (POLLOUT | POLLWRNORM);
2351 
2352 	if (events & (POLLPRI | POLLRDBAND))
2353 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2354 			revents |= events & (POLLPRI | POLLRDBAND);
2355 
2356 	return revents;
2357 }
2358 
2359 int
2360 sopoll(struct socket *so, int events)
2361 {
2362 	int revents = 0;
2363 
2364 #ifndef DIAGNOSTIC
2365 	/*
2366 	 * Do a quick, unlocked check in expectation that the socket
2367 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
2368 	 * as the solocked() assertions will fail.
2369 	 */
2370 	if ((revents = sodopoll(so, events)) != 0)
2371 		return revents;
2372 #endif
2373 
2374 	solock(so);
2375 	if ((revents = sodopoll(so, events)) == 0) {
2376 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2377 			selrecord(curlwp, &so->so_rcv.sb_sel);
2378 			so->so_rcv.sb_flags |= SB_NOTIFY;
2379 		}
2380 
2381 		if (events & (POLLOUT | POLLWRNORM)) {
2382 			selrecord(curlwp, &so->so_snd.sb_sel);
2383 			so->so_snd.sb_flags |= SB_NOTIFY;
2384 		}
2385 	}
2386 	sounlock(so);
2387 
2388 	return revents;
2389 }
2390 
2391 
2392 #include <sys/sysctl.h>
2393 
2394 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2395 
2396 /*
2397  * sysctl helper routine for kern.somaxkva.  ensures that the given
2398  * value is not too small.
2399  * (XXX should we maybe make sure it's not too large as well?)
2400  */
2401 static int
2402 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2403 {
2404 	int error, new_somaxkva;
2405 	struct sysctlnode node;
2406 
2407 	new_somaxkva = somaxkva;
2408 	node = *rnode;
2409 	node.sysctl_data = &new_somaxkva;
2410 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2411 	if (error || newp == NULL)
2412 		return (error);
2413 
2414 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2415 		return (EINVAL);
2416 
2417 	mutex_enter(&so_pendfree_lock);
2418 	somaxkva = new_somaxkva;
2419 	cv_broadcast(&socurkva_cv);
2420 	mutex_exit(&so_pendfree_lock);
2421 
2422 	return (error);
2423 }
2424 
2425 static void
2426 sysctl_kern_somaxkva_setup(void)
2427 {
2428 
2429 	KASSERT(socket_sysctllog == NULL);
2430 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2431 		       CTLFLAG_PERMANENT,
2432 		       CTLTYPE_NODE, "kern", NULL,
2433 		       NULL, 0, NULL, 0,
2434 		       CTL_KERN, CTL_EOL);
2435 
2436 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2437 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2438 		       CTLTYPE_INT, "somaxkva",
2439 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
2440 				    "used for socket buffers"),
2441 		       sysctl_kern_somaxkva, 0, NULL, 0,
2442 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2443 }
2444