xref: /netbsd/sys/kern/uipc_socket2.c (revision bf9ec67e)
1 /*	$NetBSD: uipc_socket2.c,v 1.42 2001/11/12 15:25:33 lukem Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.42 2001/11/12 15:25:33 lukem Exp $");
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/file.h>
45 #include <sys/buf.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/signalvar.h>
52 
53 /*
54  * Primitive routines for operating on sockets and socket buffers
55  */
56 
57 /* strings for sleep message: */
58 const char	netcon[] = "netcon";
59 const char	netcls[] = "netcls";
60 const char	netio[] = "netio";
61 const char	netlck[] = "netlck";
62 
63 /*
64  * Procedures to manipulate state flags of socket
65  * and do appropriate wakeups.  Normal sequence from the
66  * active (originating) side is that soisconnecting() is
67  * called during processing of connect() call,
68  * resulting in an eventual call to soisconnected() if/when the
69  * connection is established.  When the connection is torn down
70  * soisdisconnecting() is called during processing of disconnect() call,
71  * and soisdisconnected() is called when the connection to the peer
72  * is totally severed.  The semantics of these routines are such that
73  * connectionless protocols can call soisconnected() and soisdisconnected()
74  * only, bypassing the in-progress calls when setting up a ``connection''
75  * takes no time.
76  *
77  * From the passive side, a socket is created with
78  * two queues of sockets: so_q0 for connections in progress
79  * and so_q for connections already made and awaiting user acceptance.
80  * As a protocol is preparing incoming connections, it creates a socket
81  * structure queued on so_q0 by calling sonewconn().  When the connection
82  * is established, soisconnected() is called, and transfers the
83  * socket structure to so_q, making it available to accept().
84  *
85  * If a socket is closed with sockets on either
86  * so_q0 or so_q, these sockets are dropped.
87  *
88  * If higher level protocols are implemented in
89  * the kernel, the wakeups done here will sometimes
90  * cause software-interrupt process scheduling.
91  */
92 
93 void
94 soisconnecting(struct socket *so)
95 {
96 
97 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
98 	so->so_state |= SS_ISCONNECTING;
99 }
100 
101 void
102 soisconnected(struct socket *so)
103 {
104 	struct socket	*head;
105 
106 	head = so->so_head;
107 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
108 	so->so_state |= SS_ISCONNECTED;
109 	if (head && soqremque(so, 0)) {
110 		soqinsque(head, so, 1);
111 		sorwakeup(head);
112 		wakeup((caddr_t)&head->so_timeo);
113 	} else {
114 		wakeup((caddr_t)&so->so_timeo);
115 		sorwakeup(so);
116 		sowwakeup(so);
117 	}
118 }
119 
120 void
121 soisdisconnecting(struct socket *so)
122 {
123 
124 	so->so_state &= ~SS_ISCONNECTING;
125 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
126 	wakeup((caddr_t)&so->so_timeo);
127 	sowwakeup(so);
128 	sorwakeup(so);
129 }
130 
131 void
132 soisdisconnected(struct socket *so)
133 {
134 
135 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
136 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
137 	wakeup((caddr_t)&so->so_timeo);
138 	sowwakeup(so);
139 	sorwakeup(so);
140 }
141 
142 /*
143  * When an attempt at a new connection is noted on a socket
144  * which accepts connections, sonewconn is called.  If the
145  * connection is possible (subject to space constraints, etc.)
146  * then we allocate a new structure, propoerly linked into the
147  * data structure of the original socket, and return this.
148  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
149  *
150  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
151  * to catch calls that are missing the (new) second parameter.
152  */
153 struct socket *
154 sonewconn1(struct socket *head, int connstatus)
155 {
156 	struct socket	*so;
157 	int		soqueue;
158 
159 	soqueue = connstatus ? 1 : 0;
160 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
161 		return ((struct socket *)0);
162 	so = pool_get(&socket_pool, PR_NOWAIT);
163 	if (so == NULL)
164 		return (NULL);
165 	memset((caddr_t)so, 0, sizeof(*so));
166 	so->so_type = head->so_type;
167 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
168 	so->so_linger = head->so_linger;
169 	so->so_state = head->so_state | SS_NOFDREF;
170 	so->so_proto = head->so_proto;
171 	so->so_timeo = head->so_timeo;
172 	so->so_pgid = head->so_pgid;
173 	so->so_send = head->so_send;
174 	so->so_receive = head->so_receive;
175 	so->so_uid = head->so_uid;
176 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
177 	soqinsque(head, so, soqueue);
178 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
179 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
180 	    (struct proc *)0)) {
181 		(void) soqremque(so, soqueue);
182 		pool_put(&socket_pool, so);
183 		return (NULL);
184 	}
185 	if (connstatus) {
186 		sorwakeup(head);
187 		wakeup((caddr_t)&head->so_timeo);
188 		so->so_state |= connstatus;
189 	}
190 	return (so);
191 }
192 
193 void
194 soqinsque(struct socket *head, struct socket *so, int q)
195 {
196 
197 #ifdef DIAGNOSTIC
198 	if (so->so_onq != NULL)
199 		panic("soqinsque");
200 #endif
201 
202 	so->so_head = head;
203 	if (q == 0) {
204 		head->so_q0len++;
205 		so->so_onq = &head->so_q0;
206 	} else {
207 		head->so_qlen++;
208 		so->so_onq = &head->so_q;
209 	}
210 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
211 }
212 
213 int
214 soqremque(struct socket *so, int q)
215 {
216 	struct socket	*head;
217 
218 	head = so->so_head;
219 	if (q == 0) {
220 		if (so->so_onq != &head->so_q0)
221 			return (0);
222 		head->so_q0len--;
223 	} else {
224 		if (so->so_onq != &head->so_q)
225 			return (0);
226 		head->so_qlen--;
227 	}
228 	TAILQ_REMOVE(so->so_onq, so, so_qe);
229 	so->so_onq = NULL;
230 	so->so_head = NULL;
231 	return (1);
232 }
233 
234 /*
235  * Socantsendmore indicates that no more data will be sent on the
236  * socket; it would normally be applied to a socket when the user
237  * informs the system that no more data is to be sent, by the protocol
238  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
239  * will be received, and will normally be applied to the socket by a
240  * protocol when it detects that the peer will send no more data.
241  * Data queued for reading in the socket may yet be read.
242  */
243 
244 void
245 socantsendmore(struct socket *so)
246 {
247 
248 	so->so_state |= SS_CANTSENDMORE;
249 	sowwakeup(so);
250 }
251 
252 void
253 socantrcvmore(struct socket *so)
254 {
255 
256 	so->so_state |= SS_CANTRCVMORE;
257 	sorwakeup(so);
258 }
259 
260 /*
261  * Wait for data to arrive at/drain from a socket buffer.
262  */
263 int
264 sbwait(struct sockbuf *sb)
265 {
266 
267 	sb->sb_flags |= SB_WAIT;
268 	return (tsleep((caddr_t)&sb->sb_cc,
269 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
270 	    sb->sb_timeo));
271 }
272 
273 /*
274  * Lock a sockbuf already known to be locked;
275  * return any error returned from sleep (EINTR).
276  */
277 int
278 sb_lock(struct sockbuf *sb)
279 {
280 	int	error;
281 
282 	while (sb->sb_flags & SB_LOCK) {
283 		sb->sb_flags |= SB_WANT;
284 		error = tsleep((caddr_t)&sb->sb_flags,
285 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
286 		    netlck, 0);
287 		if (error)
288 			return (error);
289 	}
290 	sb->sb_flags |= SB_LOCK;
291 	return (0);
292 }
293 
294 /*
295  * Wakeup processes waiting on a socket buffer.
296  * Do asynchronous notification via SIGIO
297  * if the socket buffer has the SB_ASYNC flag set.
298  */
299 void
300 sowakeup(struct socket *so, struct sockbuf *sb)
301 {
302 	struct proc	*p;
303 
304 	selwakeup(&sb->sb_sel);
305 	sb->sb_flags &= ~SB_SEL;
306 	if (sb->sb_flags & SB_WAIT) {
307 		sb->sb_flags &= ~SB_WAIT;
308 		wakeup((caddr_t)&sb->sb_cc);
309 	}
310 	if (sb->sb_flags & SB_ASYNC) {
311 		if (so->so_pgid < 0)
312 			gsignal(-so->so_pgid, SIGIO);
313 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
314 			psignal(p, SIGIO);
315 	}
316 	if (sb->sb_flags & SB_UPCALL)
317 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
318 }
319 
320 /*
321  * Socket buffer (struct sockbuf) utility routines.
322  *
323  * Each socket contains two socket buffers: one for sending data and
324  * one for receiving data.  Each buffer contains a queue of mbufs,
325  * information about the number of mbufs and amount of data in the
326  * queue, and other fields allowing poll() statements and notification
327  * on data availability to be implemented.
328  *
329  * Data stored in a socket buffer is maintained as a list of records.
330  * Each record is a list of mbufs chained together with the m_next
331  * field.  Records are chained together with the m_nextpkt field. The upper
332  * level routine soreceive() expects the following conventions to be
333  * observed when placing information in the receive buffer:
334  *
335  * 1. If the protocol requires each message be preceded by the sender's
336  *    name, then a record containing that name must be present before
337  *    any associated data (mbuf's must be of type MT_SONAME).
338  * 2. If the protocol supports the exchange of ``access rights'' (really
339  *    just additional data associated with the message), and there are
340  *    ``rights'' to be received, then a record containing this data
341  *    should be present (mbuf's must be of type MT_CONTROL).
342  * 3. If a name or rights record exists, then it must be followed by
343  *    a data record, perhaps of zero length.
344  *
345  * Before using a new socket structure it is first necessary to reserve
346  * buffer space to the socket, by calling sbreserve().  This should commit
347  * some of the available buffer space in the system buffer pool for the
348  * socket (currently, it does nothing but enforce limits).  The space
349  * should be released by calling sbrelease() when the socket is destroyed.
350  */
351 
352 int
353 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
354 {
355 
356 	if (sbreserve(&so->so_snd, sndcc) == 0)
357 		goto bad;
358 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
359 		goto bad2;
360 	if (so->so_rcv.sb_lowat == 0)
361 		so->so_rcv.sb_lowat = 1;
362 	if (so->so_snd.sb_lowat == 0)
363 		so->so_snd.sb_lowat = MCLBYTES;
364 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
365 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
366 	return (0);
367  bad2:
368 	sbrelease(&so->so_snd);
369  bad:
370 	return (ENOBUFS);
371 }
372 
373 /*
374  * Allot mbufs to a sockbuf.
375  * Attempt to scale mbmax so that mbcnt doesn't become limiting
376  * if buffering efficiency is near the normal case.
377  */
378 int
379 sbreserve(struct sockbuf *sb, u_long cc)
380 {
381 
382 	if (cc == 0 ||
383 	    (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
384 		return (0);
385 	sb->sb_hiwat = cc;
386 	sb->sb_mbmax = min(cc * 2, sb_max);
387 	if (sb->sb_lowat > sb->sb_hiwat)
388 		sb->sb_lowat = sb->sb_hiwat;
389 	return (1);
390 }
391 
392 /*
393  * Free mbufs held by a socket, and reserved mbuf space.
394  */
395 void
396 sbrelease(struct sockbuf *sb)
397 {
398 
399 	sbflush(sb);
400 	sb->sb_hiwat = sb->sb_mbmax = 0;
401 }
402 
403 /*
404  * Routines to add and remove
405  * data from an mbuf queue.
406  *
407  * The routines sbappend() or sbappendrecord() are normally called to
408  * append new mbufs to a socket buffer, after checking that adequate
409  * space is available, comparing the function sbspace() with the amount
410  * of data to be added.  sbappendrecord() differs from sbappend() in
411  * that data supplied is treated as the beginning of a new record.
412  * To place a sender's address, optional access rights, and data in a
413  * socket receive buffer, sbappendaddr() should be used.  To place
414  * access rights and data in a socket receive buffer, sbappendrights()
415  * should be used.  In either case, the new data begins a new record.
416  * Note that unlike sbappend() and sbappendrecord(), these routines check
417  * for the caller that there will be enough space to store the data.
418  * Each fails if there is not enough space, or if it cannot find mbufs
419  * to store additional information in.
420  *
421  * Reliable protocols may use the socket send buffer to hold data
422  * awaiting acknowledgement.  Data is normally copied from a socket
423  * send buffer in a protocol with m_copy for output to a peer,
424  * and then removing the data from the socket buffer with sbdrop()
425  * or sbdroprecord() when the data is acknowledged by the peer.
426  */
427 
428 /*
429  * Append mbuf chain m to the last record in the
430  * socket buffer sb.  The additional space associated
431  * the mbuf chain is recorded in sb.  Empty mbufs are
432  * discarded and mbufs are compacted where possible.
433  */
434 void
435 sbappend(struct sockbuf *sb, struct mbuf *m)
436 {
437 	struct mbuf	*n;
438 
439 	if (m == 0)
440 		return;
441 	if ((n = sb->sb_mb) != NULL) {
442 		while (n->m_nextpkt)
443 			n = n->m_nextpkt;
444 		do {
445 			if (n->m_flags & M_EOR) {
446 				sbappendrecord(sb, m); /* XXXXXX!!!! */
447 				return;
448 			}
449 		} while (n->m_next && (n = n->m_next));
450 	}
451 	sbcompress(sb, m, n);
452 }
453 
454 #ifdef SOCKBUF_DEBUG
455 void
456 sbcheck(struct sockbuf *sb)
457 {
458 	struct mbuf	*m;
459 	int		len, mbcnt;
460 
461 	len = 0;
462 	mbcnt = 0;
463 	for (m = sb->sb_mb; m; m = m->m_next) {
464 		len += m->m_len;
465 		mbcnt += MSIZE;
466 		if (m->m_flags & M_EXT)
467 			mbcnt += m->m_ext.ext_size;
468 		if (m->m_nextpkt)
469 			panic("sbcheck nextpkt");
470 	}
471 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
472 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
473 		    mbcnt, sb->sb_mbcnt);
474 		panic("sbcheck");
475 	}
476 }
477 #endif
478 
479 /*
480  * As above, except the mbuf chain
481  * begins a new record.
482  */
483 void
484 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
485 {
486 	struct mbuf	*m;
487 
488 	if (m0 == 0)
489 		return;
490 	if ((m = sb->sb_mb) != NULL)
491 		while (m->m_nextpkt)
492 			m = m->m_nextpkt;
493 	/*
494 	 * Put the first mbuf on the queue.
495 	 * Note this permits zero length records.
496 	 */
497 	sballoc(sb, m0);
498 	if (m)
499 		m->m_nextpkt = m0;
500 	else
501 		sb->sb_mb = m0;
502 	m = m0->m_next;
503 	m0->m_next = 0;
504 	if (m && (m0->m_flags & M_EOR)) {
505 		m0->m_flags &= ~M_EOR;
506 		m->m_flags |= M_EOR;
507 	}
508 	sbcompress(sb, m, m0);
509 }
510 
511 /*
512  * As above except that OOB data
513  * is inserted at the beginning of the sockbuf,
514  * but after any other OOB data.
515  */
516 void
517 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
518 {
519 	struct mbuf	*m, **mp;
520 
521 	if (m0 == 0)
522 		return;
523 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
524 	    again:
525 		switch (m->m_type) {
526 
527 		case MT_OOBDATA:
528 			continue;		/* WANT next train */
529 
530 		case MT_CONTROL:
531 			if ((m = m->m_next) != NULL)
532 				goto again;	/* inspect THIS train further */
533 		}
534 		break;
535 	}
536 	/*
537 	 * Put the first mbuf on the queue.
538 	 * Note this permits zero length records.
539 	 */
540 	sballoc(sb, m0);
541 	m0->m_nextpkt = *mp;
542 	*mp = m0;
543 	m = m0->m_next;
544 	m0->m_next = 0;
545 	if (m && (m0->m_flags & M_EOR)) {
546 		m0->m_flags &= ~M_EOR;
547 		m->m_flags |= M_EOR;
548 	}
549 	sbcompress(sb, m, m0);
550 }
551 
552 /*
553  * Append address and data, and optionally, control (ancillary) data
554  * to the receive queue of a socket.  If present,
555  * m0 must include a packet header with total length.
556  * Returns 0 if no space in sockbuf or insufficient mbufs.
557  */
558 int
559 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
560 	struct mbuf *control)
561 {
562 	struct mbuf	*m, *n;
563 	int		space;
564 
565 	space = asa->sa_len;
566 
567 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
568 		panic("sbappendaddr");
569 	if (m0)
570 		space += m0->m_pkthdr.len;
571 	for (n = control; n; n = n->m_next) {
572 		space += n->m_len;
573 		if (n->m_next == 0)	/* keep pointer to last control buf */
574 			break;
575 	}
576 	if (space > sbspace(sb))
577 		return (0);
578 	MGET(m, M_DONTWAIT, MT_SONAME);
579 	if (m == 0)
580 		return (0);
581 	if (asa->sa_len > MLEN) {
582 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
583 		if ((m->m_flags & M_EXT) == 0) {
584 			m_free(m);
585 			return (0);
586 		}
587 	}
588 	m->m_len = asa->sa_len;
589 	memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
590 	if (n)
591 		n->m_next = m0;		/* concatenate data to control */
592 	else
593 		control = m0;
594 	m->m_next = control;
595 	for (n = m; n; n = n->m_next)
596 		sballoc(sb, n);
597 	if ((n = sb->sb_mb) != NULL) {
598 		while (n->m_nextpkt)
599 			n = n->m_nextpkt;
600 		n->m_nextpkt = m;
601 	} else
602 		sb->sb_mb = m;
603 	return (1);
604 }
605 
606 int
607 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
608 {
609 	struct mbuf	*m, *n;
610 	int		space;
611 
612 	space = 0;
613 	if (control == 0)
614 		panic("sbappendcontrol");
615 	for (m = control; ; m = m->m_next) {
616 		space += m->m_len;
617 		if (m->m_next == 0)
618 			break;
619 	}
620 	n = m;			/* save pointer to last control buffer */
621 	for (m = m0; m; m = m->m_next)
622 		space += m->m_len;
623 	if (space > sbspace(sb))
624 		return (0);
625 	n->m_next = m0;			/* concatenate data to control */
626 	for (m = control; m; m = m->m_next)
627 		sballoc(sb, m);
628 	if ((n = sb->sb_mb) != NULL) {
629 		while (n->m_nextpkt)
630 			n = n->m_nextpkt;
631 		n->m_nextpkt = control;
632 	} else
633 		sb->sb_mb = control;
634 	return (1);
635 }
636 
637 /*
638  * Compress mbuf chain m into the socket
639  * buffer sb following mbuf n.  If n
640  * is null, the buffer is presumed empty.
641  */
642 void
643 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
644 {
645 	int		eor;
646 	struct mbuf	*o;
647 
648 	eor = 0;
649 	while (m) {
650 		eor |= m->m_flags & M_EOR;
651 		if (m->m_len == 0 &&
652 		    (eor == 0 ||
653 		     (((o = m->m_next) || (o = n)) &&
654 		      o->m_type == m->m_type))) {
655 			m = m_free(m);
656 			continue;
657 		}
658 		if (n && (n->m_flags & M_EOR) == 0 &&
659 		    /* M_TRAILINGSPACE() checks buffer writeability */
660 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
661 		    m->m_len <= M_TRAILINGSPACE(n) &&
662 		    n->m_type == m->m_type) {
663 			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
664 			    (unsigned)m->m_len);
665 			n->m_len += m->m_len;
666 			sb->sb_cc += m->m_len;
667 			m = m_free(m);
668 			continue;
669 		}
670 		if (n)
671 			n->m_next = m;
672 		else
673 			sb->sb_mb = m;
674 		sballoc(sb, m);
675 		n = m;
676 		m->m_flags &= ~M_EOR;
677 		m = m->m_next;
678 		n->m_next = 0;
679 	}
680 	if (eor) {
681 		if (n)
682 			n->m_flags |= eor;
683 		else
684 			printf("semi-panic: sbcompress\n");
685 	}
686 }
687 
688 /*
689  * Free all mbufs in a sockbuf.
690  * Check that all resources are reclaimed.
691  */
692 void
693 sbflush(struct sockbuf *sb)
694 {
695 
696 	if (sb->sb_flags & SB_LOCK)
697 		panic("sbflush");
698 	while (sb->sb_mbcnt)
699 		sbdrop(sb, (int)sb->sb_cc);
700 	if (sb->sb_cc || sb->sb_mb)
701 		panic("sbflush 2");
702 }
703 
704 /*
705  * Drop data from (the front of) a sockbuf.
706  */
707 void
708 sbdrop(struct sockbuf *sb, int len)
709 {
710 	struct mbuf	*m, *mn, *next;
711 
712 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
713 	while (len > 0) {
714 		if (m == 0) {
715 			if (next == 0)
716 				panic("sbdrop");
717 			m = next;
718 			next = m->m_nextpkt;
719 			continue;
720 		}
721 		if (m->m_len > len) {
722 			m->m_len -= len;
723 			m->m_data += len;
724 			sb->sb_cc -= len;
725 			break;
726 		}
727 		len -= m->m_len;
728 		sbfree(sb, m);
729 		MFREE(m, mn);
730 		m = mn;
731 	}
732 	while (m && m->m_len == 0) {
733 		sbfree(sb, m);
734 		MFREE(m, mn);
735 		m = mn;
736 	}
737 	if (m) {
738 		sb->sb_mb = m;
739 		m->m_nextpkt = next;
740 	} else
741 		sb->sb_mb = next;
742 }
743 
744 /*
745  * Drop a record off the front of a sockbuf
746  * and move the next record to the front.
747  */
748 void
749 sbdroprecord(struct sockbuf *sb)
750 {
751 	struct mbuf	*m, *mn;
752 
753 	m = sb->sb_mb;
754 	if (m) {
755 		sb->sb_mb = m->m_nextpkt;
756 		do {
757 			sbfree(sb, m);
758 			MFREE(m, mn);
759 		} while ((m = mn) != NULL);
760 	}
761 }
762 
763 /*
764  * Create a "control" mbuf containing the specified data
765  * with the specified type for presentation on a socket buffer.
766  */
767 struct mbuf *
768 sbcreatecontrol(caddr_t p, int size, int type, int level)
769 {
770 	struct cmsghdr	*cp;
771 	struct mbuf	*m;
772 
773 	if (CMSG_SPACE(size) > MCLBYTES) {
774 		printf("sbcreatecontrol: message too large %d\n", size);
775 		return NULL;
776 	}
777 
778 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
779 		return ((struct mbuf *) NULL);
780 	if (CMSG_SPACE(size) > MLEN) {
781 		MCLGET(m, M_DONTWAIT);
782 		if ((m->m_flags & M_EXT) == 0) {
783 			m_free(m);
784 			return NULL;
785 		}
786 	}
787 	cp = mtod(m, struct cmsghdr *);
788 	memcpy(CMSG_DATA(cp), p, size);
789 	m->m_len = CMSG_SPACE(size);
790 	cp->cmsg_len = CMSG_LEN(size);
791 	cp->cmsg_level = level;
792 	cp->cmsg_type = type;
793 	return (m);
794 }
795