xref: /netbsd/sys/lib/libkern/arch/alpha/divrem.m4 (revision bf9ec67e)
1/*	$NetBSD: divrem.m4,v 1.6 2002/01/24 00:45:22 ross Exp $	*/
2
3/*
4 * Copyright (c) 1994, 1995 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
22 *  School of Computer Science
23 *  Carnegie Mellon University
24 *  Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30/*
31 * Division and remainder.
32 *
33 * The use of m4 is modeled after the sparc code, but the algorithm is
34 * simple binary long division.
35 *
36 * Note that the loops could probably benefit from unrolling.
37 */
38
39/*
40 * M4 Parameters
41 * NAME		name of function to generate
42 * OP		OP=div: t10 / t11 -> t12; OP=rem: t10 % t11 -> t12
43 * S		S=true: signed; S=false: unsigned
44 * WORDSIZE	total number of bits
45 */
46
47define(A, `t10')
48define(B, `t11')
49define(RESULT, `t12')
50
51define(BIT, `t0')
52define(I, `t1')
53define(CC, `t2')
54define(T_0, `t3')
55ifelse(S, `true', `define(NEG, `t4')')
56
57#include <machine/asm.h>
58
59LEAF(NAME, 0)					/* XXX */
60	lda	sp, -64(sp)
61	stq	BIT, 0(sp)
62	stq	I, 8(sp)
63	stq	CC, 16(sp)
64	stq	T_0, 24(sp)
65ifelse(S, `true',
66`	stq	NEG, 32(sp)')
67	stq	A, 40(sp)
68	stq	B, 48(sp)
69	mov	zero, RESULT			/* Initialize result to zero */
70
71ifelse(S, `true',
72`
73	/* Compute sign of result.  If either is negative, this is easy.  */
74	or	A, B, NEG			/* not the sign, but... */
75	srl	NEG, WORDSIZE - 1, NEG		/* rather, or of high bits */
76	blbc	NEG, Ldoit			/* neither negative? do it! */
77
78ifelse(OP, `div',
79`	xor	A, B, NEG			/* THIS is the sign! */
80', `	mov	A, NEG				/* sign follows A. */
81')
82	srl	NEG, WORDSIZE - 1, NEG		/* make negation the low bit. */
83
84	srl	A, WORDSIZE - 1, I		/* is A negative? */
85	blbc	I, LnegB			/* no. */
86	/* A is negative; flip it. */
87ifelse(WORDSIZE, `32', `
88	/* top 32 bits may be random junk */
89	zap	A, 0xf0, A
90')
91	subq	zero, A, A
92	srl	B, WORDSIZE - 1, I		/* is B negative? */
93	blbc	I, Ldoit			/* no. */
94LnegB:
95	/* B is definitely negative, no matter how we got here. */
96ifelse(WORDSIZE, `32', `
97	/* top 32 bits may be random junk */
98	zap	B, 0xf0, B
99')
100	subq	zero, B, B
101Ldoit:
102')
103ifelse(WORDSIZE, `32', `
104	/*
105	 * Clear the top 32 bits of each operand, as they may
106	 * sign extension (if negated above), or random junk.
107	 */
108	zap	A, 0xf0, A
109	zap	B, 0xf0, B
110')
111
112	/* kill the special cases. */
113	beq	B, Ldotrap			/* division by zero! */
114
115	cmpult	A, B, CC			/* A < B? */
116	/* RESULT is already zero, from above.  A is untouched. */
117	bne	CC, Lret_result
118
119	cmpeq	A, B, CC			/* A == B? */
120	cmovne	CC, 1, RESULT
121	cmovne	CC, zero, A
122	bne	CC, Lret_result
123
124	/*
125	 * Find out how many bits of zeros are at the beginning of the divisor.
126	 */
127LBbits:
128	ldiq	T_0, 1				/* I = 0; BIT = 1<<WORDSIZE-1 */
129	mov	zero, I
130	sll	T_0, WORDSIZE-1, BIT
131LBloop:
132	and	B, BIT, CC			/* if bit in B is set, done. */
133	bne	CC, LAbits
134	addq	I, 1, I				/* increment I, shift bit */
135	srl	BIT, 1, BIT
136	cmplt	I, WORDSIZE-1, CC		/* if I leaves one bit, done. */
137	bne	CC, LBloop
138
139LAbits:
140	beq	I, Ldodiv			/* If I = 0, divide now.  */
141	ldiq	T_0, 1				/* BIT = 1<<WORDSIZE-1 */
142	sll	T_0, WORDSIZE-1, BIT
143
144LAloop:
145	and	A, BIT, CC			/* if bit in A is set, done. */
146	bne	CC, Ldodiv
147	subq	I, 1, I				/* decrement I, shift bit */
148	srl     BIT, 1, BIT
149	bne	I, LAloop			/* If I != 0, loop again */
150
151Ldodiv:
152	sll	B, I, B				/* B <<= i */
153	ldiq	T_0, 1
154	sll	T_0, I, BIT
155
156Ldivloop:
157	cmpult	A, B, CC
158	or	RESULT, BIT, T_0
159	cmoveq	CC, T_0, RESULT
160	subq	A, B, T_0
161	cmoveq	CC, T_0, A
162	srl	BIT, 1, BIT
163	srl	B, 1, B
164	beq	A, Lret_result
165	bne	BIT, Ldivloop
166
167Lret_result:
168ifelse(OP, `div',
169`', `	mov	A, RESULT
170')
171ifelse(S, `true',
172`
173	/* Check to see if we should negate it. */
174	subq	zero, RESULT, T_0
175	cmovlbs	NEG, T_0, RESULT
176')
177
178	ldq	BIT, 0(sp)
179	ldq	I, 8(sp)
180	ldq	CC, 16(sp)
181	ldq	T_0, 24(sp)
182ifelse(S, `true',
183`	ldq	NEG, 32(sp)')
184	ldq	A, 40(sp)
185	ldq	B, 48(sp)
186	lda	sp, 64(sp)
187	ret	zero, (t9), 1
188
189Ldotrap:
190	ldiq	a0, -2			/* This is the signal to SIGFPE! */
191	call_pal PAL_gentrap
192ifelse(OP, `div',
193`', `	mov	zero, A			/* so that zero will be returned */
194')
195	br	zero, Lret_result
196
197END(NAME)
198