xref: /netbsd/sys/miscfs/genfs/genfs_vnops.c (revision c4a72b64)
1 /*	$NetBSD: genfs_vnops.c,v 1.68 2002/11/15 14:01:57 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.68 2002/11/15 14:01:57 yamt Exp $");
39 
40 #include "opt_nfsserver.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/mount.h>
47 #include <sys/namei.h>
48 #include <sys/vnode.h>
49 #include <sys/fcntl.h>
50 #include <sys/malloc.h>
51 #include <sys/poll.h>
52 #include <sys/mman.h>
53 #include <sys/file.h>
54 
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58 
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61 
62 #ifdef NFSSERVER
63 #include <nfs/rpcv2.h>
64 #include <nfs/nfsproto.h>
65 #include <nfs/nfs.h>
66 #include <nfs/nqnfs.h>
67 #include <nfs/nfs_var.h>
68 #endif
69 
70 static __inline void genfs_rel_pages(struct vm_page **, int);
71 
72 #define MAX_READ_AHEAD	16 	/* XXXUBC 16 */
73 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
74 int genfs_racount = 2;		/* # of page chunks to readahead */
75 int genfs_raskip = 2;		/* # of busy page chunks allowed to skip */
76 
77 int
78 genfs_poll(void *v)
79 {
80 	struct vop_poll_args /* {
81 		struct vnode *a_vp;
82 		int a_events;
83 		struct proc *a_p;
84 	} */ *ap = v;
85 
86 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
87 }
88 
89 int
90 genfs_fsync(void *v)
91 {
92 	struct vop_fsync_args /* {
93 		struct vnode *a_vp;
94 		struct ucred *a_cred;
95 		int a_flags;
96 		off_t offlo;
97 		off_t offhi;
98 		struct proc *a_p;
99 	} */ *ap = v;
100 	struct vnode *vp = ap->a_vp;
101 	int wait;
102 
103 	wait = (ap->a_flags & FSYNC_WAIT) != 0;
104 	vflushbuf(vp, wait);
105 	if ((ap->a_flags & FSYNC_DATAONLY) != 0)
106 		return (0);
107 	else
108 		return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
109 }
110 
111 int
112 genfs_seek(void *v)
113 {
114 	struct vop_seek_args /* {
115 		struct vnode *a_vp;
116 		off_t a_oldoff;
117 		off_t a_newoff;
118 		struct ucred *a_ucred;
119 	} */ *ap = v;
120 
121 	if (ap->a_newoff < 0)
122 		return (EINVAL);
123 
124 	return (0);
125 }
126 
127 int
128 genfs_abortop(void *v)
129 {
130 	struct vop_abortop_args /* {
131 		struct vnode *a_dvp;
132 		struct componentname *a_cnp;
133 	} */ *ap = v;
134 
135 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
136 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
137 	return (0);
138 }
139 
140 int
141 genfs_fcntl(void *v)
142 {
143 	struct vop_fcntl_args /* {
144 		struct vnode *a_vp;
145 		u_int a_command;
146 		caddr_t a_data;
147 		int a_fflag;
148 		struct ucred *a_cred;
149 		struct proc *a_p;
150 	} */ *ap = v;
151 
152 	if (ap->a_command == F_SETFL)
153 		return (0);
154 	else
155 		return (EOPNOTSUPP);
156 }
157 
158 /*ARGSUSED*/
159 int
160 genfs_badop(void *v)
161 {
162 
163 	panic("genfs: bad op");
164 }
165 
166 /*ARGSUSED*/
167 int
168 genfs_nullop(void *v)
169 {
170 
171 	return (0);
172 }
173 
174 /*ARGSUSED*/
175 int
176 genfs_einval(void *v)
177 {
178 
179 	return (EINVAL);
180 }
181 
182 /*ARGSUSED*/
183 int
184 genfs_eopnotsupp(void *v)
185 {
186 
187 	return (EOPNOTSUPP);
188 }
189 
190 /*
191  * Called when an fs doesn't support a particular vop but the vop needs to
192  * vrele, vput, or vunlock passed in vnodes.
193  */
194 int
195 genfs_eopnotsupp_rele(void *v)
196 {
197 	struct vop_generic_args /*
198 		struct vnodeop_desc *a_desc;
199 		/ * other random data follows, presumably * /
200 	} */ *ap = v;
201 	struct vnodeop_desc *desc = ap->a_desc;
202 	struct vnode *vp;
203 	int flags, i, j, offset;
204 
205 	flags = desc->vdesc_flags;
206 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
207 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
208 			break;	/* stop at end of list */
209 		if ((j = flags & VDESC_VP0_WILLPUT)) {
210 			vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
211 			switch (j) {
212 			case VDESC_VP0_WILLPUT:
213 				vput(vp);
214 				break;
215 			case VDESC_VP0_WILLUNLOCK:
216 				VOP_UNLOCK(vp, 0);
217 				break;
218 			case VDESC_VP0_WILLRELE:
219 				vrele(vp);
220 				break;
221 			}
222 		}
223 	}
224 
225 	return (EOPNOTSUPP);
226 }
227 
228 /*ARGSUSED*/
229 int
230 genfs_ebadf(void *v)
231 {
232 
233 	return (EBADF);
234 }
235 
236 /* ARGSUSED */
237 int
238 genfs_enoioctl(void *v)
239 {
240 
241 	return (EPASSTHROUGH);
242 }
243 
244 
245 /*
246  * Eliminate all activity associated with the requested vnode
247  * and with all vnodes aliased to the requested vnode.
248  */
249 int
250 genfs_revoke(void *v)
251 {
252 	struct vop_revoke_args /* {
253 		struct vnode *a_vp;
254 		int a_flags;
255 	} */ *ap = v;
256 	struct vnode *vp, *vq;
257 	struct proc *p = curproc;	/* XXX */
258 
259 #ifdef DIAGNOSTIC
260 	if ((ap->a_flags & REVOKEALL) == 0)
261 		panic("genfs_revoke: not revokeall");
262 #endif
263 
264 	vp = ap->a_vp;
265 	simple_lock(&vp->v_interlock);
266 
267 	if (vp->v_flag & VALIASED) {
268 		/*
269 		 * If a vgone (or vclean) is already in progress,
270 		 * wait until it is done and return.
271 		 */
272 		if (vp->v_flag & VXLOCK) {
273 			vp->v_flag |= VXWANT;
274 			simple_unlock(&vp->v_interlock);
275 			tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
276 			return (0);
277 		}
278 		/*
279 		 * Ensure that vp will not be vgone'd while we
280 		 * are eliminating its aliases.
281 		 */
282 		vp->v_flag |= VXLOCK;
283 		simple_unlock(&vp->v_interlock);
284 		while (vp->v_flag & VALIASED) {
285 			simple_lock(&spechash_slock);
286 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
287 				if (vq->v_rdev != vp->v_rdev ||
288 				    vq->v_type != vp->v_type || vp == vq)
289 					continue;
290 				simple_unlock(&spechash_slock);
291 				vgone(vq);
292 				break;
293 			}
294 			if (vq == NULLVP)
295 				simple_unlock(&spechash_slock);
296 		}
297 		/*
298 		 * Remove the lock so that vgone below will
299 		 * really eliminate the vnode after which time
300 		 * vgone will awaken any sleepers.
301 		 */
302 		simple_lock(&vp->v_interlock);
303 		vp->v_flag &= ~VXLOCK;
304 	}
305 	vgonel(vp, p);
306 	return (0);
307 }
308 
309 /*
310  * Lock the node.
311  */
312 int
313 genfs_lock(void *v)
314 {
315 	struct vop_lock_args /* {
316 		struct vnode *a_vp;
317 		int a_flags;
318 	} */ *ap = v;
319 	struct vnode *vp = ap->a_vp;
320 
321 	return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock));
322 }
323 
324 /*
325  * Unlock the node.
326  */
327 int
328 genfs_unlock(void *v)
329 {
330 	struct vop_unlock_args /* {
331 		struct vnode *a_vp;
332 		int a_flags;
333 	} */ *ap = v;
334 	struct vnode *vp = ap->a_vp;
335 
336 	return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
337 	    &vp->v_interlock));
338 }
339 
340 /*
341  * Return whether or not the node is locked.
342  */
343 int
344 genfs_islocked(void *v)
345 {
346 	struct vop_islocked_args /* {
347 		struct vnode *a_vp;
348 	} */ *ap = v;
349 	struct vnode *vp = ap->a_vp;
350 
351 	return (lockstatus(&vp->v_lock));
352 }
353 
354 /*
355  * Stubs to use when there is no locking to be done on the underlying object.
356  */
357 int
358 genfs_nolock(void *v)
359 {
360 	struct vop_lock_args /* {
361 		struct vnode *a_vp;
362 		int a_flags;
363 		struct proc *a_p;
364 	} */ *ap = v;
365 
366 	/*
367 	 * Since we are not using the lock manager, we must clear
368 	 * the interlock here.
369 	 */
370 	if (ap->a_flags & LK_INTERLOCK)
371 		simple_unlock(&ap->a_vp->v_interlock);
372 	return (0);
373 }
374 
375 int
376 genfs_nounlock(void *v)
377 {
378 
379 	return (0);
380 }
381 
382 int
383 genfs_noislocked(void *v)
384 {
385 
386 	return (0);
387 }
388 
389 /*
390  * Local lease check for NFS servers.  Just set up args and let
391  * nqsrv_getlease() do the rest.  If NFSSERVER is not in the kernel,
392  * this is a null operation.
393  */
394 int
395 genfs_lease_check(void *v)
396 {
397 #ifdef NFSSERVER
398 	struct vop_lease_args /* {
399 		struct vnode *a_vp;
400 		struct proc *a_p;
401 		struct ucred *a_cred;
402 		int a_flag;
403 	} */ *ap = v;
404 	u_int32_t duration = 0;
405 	int cache;
406 	u_quad_t frev;
407 
408 	(void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
409 	    NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
410 	return (0);
411 #else
412 	return (0);
413 #endif /* NFSSERVER */
414 }
415 
416 int
417 genfs_mmap(void *v)
418 {
419 
420 	return (0);
421 }
422 
423 static __inline void
424 genfs_rel_pages(struct vm_page **pgs, int npages)
425 {
426 	int i;
427 
428 	for (i = 0; i < npages; i++) {
429 		struct vm_page *pg = pgs[i];
430 
431 		if (pg == NULL)
432 			continue;
433 		if (pg->flags & PG_FAKE) {
434 			pg->flags |= PG_RELEASED;
435 		}
436 	}
437 	uvm_lock_pageq();
438 	uvm_page_unbusy(pgs, npages);
439 	uvm_unlock_pageq();
440 }
441 
442 /*
443  * generic VM getpages routine.
444  * Return PG_BUSY pages for the given range,
445  * reading from backing store if necessary.
446  */
447 
448 int
449 genfs_getpages(void *v)
450 {
451 	struct vop_getpages_args /* {
452 		struct vnode *a_vp;
453 		voff_t a_offset;
454 		struct vm_page **a_m;
455 		int *a_count;
456 		int a_centeridx;
457 		vm_prot_t a_access_type;
458 		int a_advice;
459 		int a_flags;
460 	} */ *ap = v;
461 
462 	off_t newsize, diskeof, memeof;
463 	off_t offset, origoffset, startoffset, endoffset, raoffset;
464 	daddr_t lbn, blkno;
465 	int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
466 	int fs_bshift, fs_bsize, dev_bshift;
467 	int flags = ap->a_flags;
468 	size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
469 	vaddr_t kva;
470 	struct buf *bp, *mbp;
471 	struct vnode *vp = ap->a_vp;
472 	struct vnode *devvp;
473 	struct genfs_node *gp = VTOG(vp);
474 	struct uvm_object *uobj = &vp->v_uobj;
475 	struct vm_page *pg, *pgs[MAX_READ_AHEAD];
476 	struct ucred *cred = curproc->p_ucred;		/* XXXUBC curproc */
477 	boolean_t async = (flags & PGO_SYNCIO) == 0;
478 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
479 	boolean_t sawhole = FALSE;
480 	boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
481 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
482 
483 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
484 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
485 
486 	/* XXXUBC temp limit */
487 	if (*ap->a_count > MAX_READ_AHEAD) {
488 		panic("genfs_getpages: too many pages");
489 	}
490 
491 	error = 0;
492 	origoffset = ap->a_offset;
493 	orignpages = *ap->a_count;
494 	GOP_SIZE(vp, vp->v_size, &diskeof);
495 	if (flags & PGO_PASTEOF) {
496 		newsize = MAX(vp->v_size,
497 		    origoffset + (orignpages << PAGE_SHIFT));
498 		GOP_SIZE(vp, newsize, &memeof);
499 	} else {
500 		memeof = diskeof;
501 	}
502 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
503 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
504 	KASSERT(orignpages > 0);
505 
506 	/*
507 	 * Bounds-check the request.
508 	 */
509 
510 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
511 		if ((flags & PGO_LOCKED) == 0) {
512 			simple_unlock(&uobj->vmobjlock);
513 		}
514 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
515 		    origoffset, *ap->a_count, memeof,0);
516 		return (EINVAL);
517 	}
518 
519 	/*
520 	 * For PGO_LOCKED requests, just return whatever's in memory.
521 	 */
522 
523 	if (flags & PGO_LOCKED) {
524 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
525 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
526 
527 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
528 	}
529 
530 	/* vnode is VOP_LOCKed, uobj is locked */
531 
532 	if (write && (vp->v_flag & VONWORKLST) == 0) {
533 		vn_syncer_add_to_worklist(vp, filedelay);
534 	}
535 
536 	/*
537 	 * find the requested pages and make some simple checks.
538 	 * leave space in the page array for a whole block.
539 	 */
540 
541 	if (vp->v_type == VREG) {
542 		fs_bshift = vp->v_mount->mnt_fs_bshift;
543 		dev_bshift = vp->v_mount->mnt_dev_bshift;
544 	} else {
545 		fs_bshift = DEV_BSHIFT;
546 		dev_bshift = DEV_BSHIFT;
547 	}
548 	fs_bsize = 1 << fs_bshift;
549 
550 	orignpages = MIN(orignpages,
551 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
552 	npages = orignpages;
553 	startoffset = origoffset & ~(fs_bsize - 1);
554 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
555 	    fs_bsize - 1) & ~(fs_bsize - 1));
556 	endoffset = MIN(endoffset, round_page(memeof));
557 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
558 
559 	memset(pgs, 0, sizeof(pgs));
560 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
561 	    ridx, npages, startoffset, endoffset);
562 	KASSERT(&pgs[ridx + npages] <= &pgs[MAX_READ_AHEAD]);
563 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
564 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
565 		KASSERT(async != 0);
566 		genfs_rel_pages(&pgs[ridx], orignpages);
567 		simple_unlock(&uobj->vmobjlock);
568 		return (EBUSY);
569 	}
570 
571 	/*
572 	 * if the pages are already resident, just return them.
573 	 */
574 
575 	for (i = 0; i < npages; i++) {
576 		struct vm_page *pg = pgs[ridx + i];
577 
578 		if ((pg->flags & PG_FAKE) ||
579 		    (write && (pg->flags & PG_RDONLY))) {
580 			break;
581 		}
582 	}
583 	if (i == npages) {
584 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
585 		raoffset = origoffset + (orignpages << PAGE_SHIFT);
586 		npages += ridx;
587 		goto raout;
588 	}
589 
590 	/*
591 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
592 	 */
593 
594 	if (flags & PGO_OVERWRITE) {
595 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
596 
597 		for (i = 0; i < npages; i++) {
598 			struct vm_page *pg = pgs[ridx + i];
599 
600 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
601 		}
602 		npages += ridx;
603 		goto out;
604 	}
605 
606 	/*
607 	 * the page wasn't resident and we're not overwriting,
608 	 * so we're going to have to do some i/o.
609 	 * find any additional pages needed to cover the expanded range.
610 	 */
611 
612 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
613 	if (startoffset != origoffset || npages != orignpages) {
614 
615 		/*
616 		 * we need to avoid deadlocks caused by locking
617 		 * additional pages at lower offsets than pages we
618 		 * already have locked.  unlock them all and start over.
619 		 */
620 
621 		genfs_rel_pages(&pgs[ridx], orignpages);
622 		memset(pgs, 0, sizeof(pgs));
623 
624 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
625 		    startoffset, endoffset, 0,0);
626 		npgs = npages;
627 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
628 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
629 			KASSERT(async != 0);
630 			genfs_rel_pages(pgs, npages);
631 			simple_unlock(&uobj->vmobjlock);
632 			return (EBUSY);
633 		}
634 	}
635 	simple_unlock(&uobj->vmobjlock);
636 
637 	/*
638 	 * read the desired page(s).
639 	 */
640 
641 	totalbytes = npages << PAGE_SHIFT;
642 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
643 	tailbytes = totalbytes - bytes;
644 	skipbytes = 0;
645 
646 	kva = uvm_pagermapin(pgs, npages,
647 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
648 
649 	s = splbio();
650 	mbp = pool_get(&bufpool, PR_WAITOK);
651 	splx(s);
652 	mbp->b_bufsize = totalbytes;
653 	mbp->b_data = (void *)kva;
654 	mbp->b_resid = mbp->b_bcount = bytes;
655 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
656 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
657 	mbp->b_vp = vp;
658 	LIST_INIT(&mbp->b_dep);
659 
660 	/*
661 	 * if EOF is in the middle of the range, zero the part past EOF.
662 	 * if the page including EOF is not PG_FAKE, skip over it since
663 	 * in that case it has valid data that we need to preserve.
664 	 */
665 
666 	if (tailbytes > 0) {
667 		size_t tailstart = bytes;
668 
669 		if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
670 			tailstart = round_page(tailstart);
671 			tailbytes -= tailstart - bytes;
672 		}
673 		UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
674 		    kva, tailstart, tailbytes,0);
675 		memset((void *)(kva + tailstart), 0, tailbytes);
676 	}
677 
678 	/*
679 	 * now loop over the pages, reading as needed.
680 	 */
681 
682 	if (write) {
683 		lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
684 	} else {
685 		lockmgr(&gp->g_glock, LK_SHARED, NULL);
686 	}
687 
688 	bp = NULL;
689 	for (offset = startoffset;
690 	    bytes > 0;
691 	    offset += iobytes, bytes -= iobytes) {
692 
693 		/*
694 		 * skip pages which don't need to be read.
695 		 */
696 
697 		pidx = (offset - startoffset) >> PAGE_SHIFT;
698 		while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
699 			size_t b;
700 
701 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
702 			b = MIN(PAGE_SIZE, bytes);
703 			offset += b;
704 			bytes -= b;
705 			skipbytes += b;
706 			pidx++;
707 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
708 			    offset, 0,0,0);
709 			if (bytes == 0) {
710 				goto loopdone;
711 			}
712 		}
713 
714 		/*
715 		 * bmap the file to find out the blkno to read from and
716 		 * how much we can read in one i/o.  if bmap returns an error,
717 		 * skip the rest of the top-level i/o.
718 		 */
719 
720 		lbn = offset >> fs_bshift;
721 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
722 		if (error) {
723 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
724 			    lbn, error,0,0);
725 			skipbytes += bytes;
726 			goto loopdone;
727 		}
728 
729 		/*
730 		 * see how many pages can be read with this i/o.
731 		 * reduce the i/o size if necessary to avoid
732 		 * overwriting pages with valid data.
733 		 */
734 
735 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
736 		    bytes);
737 		if (offset + iobytes > round_page(offset)) {
738 			pcount = 1;
739 			while (pidx + pcount < npages &&
740 			    pgs[pidx + pcount]->flags & PG_FAKE) {
741 				pcount++;
742 			}
743 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
744 			    (offset - trunc_page(offset)));
745 		}
746 
747 		/*
748 		 * if this block isn't allocated, zero it instead of
749 		 * reading it.  if this is a read access, mark the
750 		 * pages we zeroed PG_RDONLY.
751 		 */
752 
753 		if (blkno < 0) {
754 			int holepages = (round_page(offset + iobytes) -
755 			    trunc_page(offset)) >> PAGE_SHIFT;
756 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
757 
758 			sawhole = TRUE;
759 			memset((char *)kva + (offset - startoffset), 0,
760 			    iobytes);
761 			skipbytes += iobytes;
762 
763 			for (i = 0; i < holepages; i++) {
764 				if (write) {
765 					pgs[pidx + i]->flags &= ~PG_CLEAN;
766 				} else {
767 					pgs[pidx + i]->flags |= PG_RDONLY;
768 				}
769 			}
770 			continue;
771 		}
772 
773 		/*
774 		 * allocate a sub-buf for this piece of the i/o
775 		 * (or just use mbp if there's only 1 piece),
776 		 * and start it going.
777 		 */
778 
779 		if (offset == startoffset && iobytes == bytes) {
780 			bp = mbp;
781 		} else {
782 			s = splbio();
783 			bp = pool_get(&bufpool, PR_WAITOK);
784 			splx(s);
785 			bp->b_data = (char *)kva + offset - startoffset;
786 			bp->b_resid = bp->b_bcount = iobytes;
787 			bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
788 			bp->b_iodone = uvm_aio_biodone1;
789 			bp->b_vp = vp;
790 			bp->b_proc = NULL;
791 			LIST_INIT(&bp->b_dep);
792 		}
793 		bp->b_lblkno = 0;
794 		bp->b_private = mbp;
795 		if (devvp->v_type == VBLK) {
796 			bp->b_dev = devvp->v_rdev;
797 		}
798 
799 		/* adjust physical blkno for partial blocks */
800 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
801 		    dev_bshift);
802 
803 		UVMHIST_LOG(ubchist,
804 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
805 		    bp, offset, iobytes, bp->b_blkno);
806 
807 		VOP_STRATEGY(bp);
808 	}
809 
810 loopdone:
811 	if (skipbytes) {
812 		s = splbio();
813 		if (error) {
814 			mbp->b_flags |= B_ERROR;
815 			mbp->b_error = error;
816 		}
817 		mbp->b_resid -= skipbytes;
818 		if (mbp->b_resid == 0) {
819 			biodone(mbp);
820 		}
821 		splx(s);
822 	}
823 
824 	if (async) {
825 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
826 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
827 		return (0);
828 	}
829 	if (bp != NULL) {
830 		error = biowait(mbp);
831 	}
832 	s = splbio();
833 	pool_put(&bufpool, mbp);
834 	splx(s);
835 	uvm_pagermapout(kva, npages);
836 	raoffset = startoffset + totalbytes;
837 
838 	/*
839 	 * if this we encountered a hole then we have to do a little more work.
840 	 * for read faults, we marked the page PG_RDONLY so that future
841 	 * write accesses to the page will fault again.
842 	 * for write faults, we must make sure that the backing store for
843 	 * the page is completely allocated while the pages are locked.
844 	 */
845 
846 	if (!error && sawhole && write) {
847 		for (i = 0; i < npages; i++) {
848 			if (pgs[i] == NULL) {
849 				continue;
850 			}
851 			pgs[i]->flags &= ~PG_CLEAN;
852 			UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
853 		}
854 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
855 		    cred);
856 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
857 		    startoffset, npages << PAGE_SHIFT, error,0);
858 	}
859 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
860 	simple_lock(&uobj->vmobjlock);
861 
862 	/*
863 	 * see if we want to start any readahead.
864 	 * XXXUBC for now, just read the next 128k on 64k boundaries.
865 	 * this is pretty nonsensical, but it is 50% faster than reading
866 	 * just the next 64k.
867 	 */
868 
869 raout:
870 	if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
871 	    PAGE_SHIFT <= 16) {
872 		off_t rasize;
873 		int rapages, err, i, skipped;
874 
875 		/* XXXUBC temp limit, from above */
876 		rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
877 		    genfs_rapages);
878 		rasize = rapages << PAGE_SHIFT;
879 		for (i = skipped = 0; i < genfs_racount; i++) {
880 			err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
881 			    VM_PROT_READ, 0, 0);
882 			simple_lock(&uobj->vmobjlock);
883 			if (err) {
884 				if (err != EBUSY ||
885 				    skipped++ == genfs_raskip)
886 					break;
887 			}
888 			raoffset += rasize;
889 			rapages = rasize >> PAGE_SHIFT;
890 		}
891 	}
892 
893 	/*
894 	 * we're almost done!  release the pages...
895 	 * for errors, we free the pages.
896 	 * otherwise we activate them and mark them as valid and clean.
897 	 * also, unbusy pages that were not actually requested.
898 	 */
899 
900 	if (error) {
901 		for (i = 0; i < npages; i++) {
902 			if (pgs[i] == NULL) {
903 				continue;
904 			}
905 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
906 			    pgs[i], pgs[i]->flags, 0,0);
907 			if (pgs[i]->flags & PG_FAKE) {
908 				pgs[i]->flags |= PG_RELEASED;
909 			}
910 		}
911 		uvm_lock_pageq();
912 		uvm_page_unbusy(pgs, npages);
913 		uvm_unlock_pageq();
914 		simple_unlock(&uobj->vmobjlock);
915 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
916 		return (error);
917 	}
918 
919 out:
920 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
921 	uvm_lock_pageq();
922 	for (i = 0; i < npages; i++) {
923 		pg = pgs[i];
924 		if (pg == NULL) {
925 			continue;
926 		}
927 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
928 		    pg, pg->flags, 0,0);
929 		if (pg->flags & PG_FAKE && !overwrite) {
930 			pg->flags &= ~(PG_FAKE);
931 			pmap_clear_modify(pgs[i]);
932 		}
933 		if (write) {
934 			pg->flags &= ~(PG_RDONLY);
935 		}
936 		if (i < ridx || i >= ridx + orignpages || async) {
937 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
938 			    pg, pg->offset,0,0);
939 			if (pg->flags & PG_WANTED) {
940 				wakeup(pg);
941 			}
942 			if (pg->flags & PG_FAKE) {
943 				KASSERT(overwrite);
944 				uvm_pagezero(pg);
945 			}
946 			if (pg->flags & PG_RELEASED) {
947 				uvm_pagefree(pg);
948 				continue;
949 			}
950 			uvm_pageactivate(pg);
951 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
952 			UVM_PAGE_OWN(pg, NULL);
953 		}
954 	}
955 	uvm_unlock_pageq();
956 	simple_unlock(&uobj->vmobjlock);
957 	if (ap->a_m != NULL) {
958 		memcpy(ap->a_m, &pgs[ridx],
959 		    orignpages * sizeof(struct vm_page *));
960 	}
961 	return (0);
962 }
963 
964 /*
965  * generic VM putpages routine.
966  * Write the given range of pages to backing store.
967  *
968  * => "offhi == 0" means flush all pages at or after "offlo".
969  * => object should be locked by caller.   we may _unlock_ the object
970  *	if (and only if) we need to clean a page (PGO_CLEANIT), or
971  *	if PGO_SYNCIO is set and there are pages busy.
972  *	we return with the object locked.
973  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
974  *	thus, a caller might want to unlock higher level resources
975  *	(e.g. vm_map) before calling flush.
976  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
977  *	unlock the object nor block.
978  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
979  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
980  *	that new pages are inserted on the tail end of the list.   thus,
981  *	we can make a complete pass through the object in one go by starting
982  *	at the head and working towards the tail (new pages are put in
983  *	front of us).
984  * => NOTE: we are allowed to lock the page queues, so the caller
985  *	must not be holding the page queue lock.
986  *
987  * note on "cleaning" object and PG_BUSY pages:
988  *	this routine is holding the lock on the object.   the only time
989  *	that it can run into a PG_BUSY page that it does not own is if
990  *	some other process has started I/O on the page (e.g. either
991  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
992  *	in, then it can not be dirty (!PG_CLEAN) because no one has
993  *	had a chance to modify it yet.    if the PG_BUSY page is being
994  *	paged out then it means that someone else has already started
995  *	cleaning the page for us (how nice!).    in this case, if we
996  *	have syncio specified, then after we make our pass through the
997  *	object we need to wait for the other PG_BUSY pages to clear
998  *	off (i.e. we need to do an iosync).   also note that once a
999  *	page is PG_BUSY it must stay in its object until it is un-busyed.
1000  *
1001  * note on page traversal:
1002  *	we can traverse the pages in an object either by going down the
1003  *	linked list in "uobj->memq", or we can go over the address range
1004  *	by page doing hash table lookups for each address.    depending
1005  *	on how many pages are in the object it may be cheaper to do one
1006  *	or the other.   we set "by_list" to true if we are using memq.
1007  *	if the cost of a hash lookup was equal to the cost of the list
1008  *	traversal we could compare the number of pages in the start->stop
1009  *	range to the total number of pages in the object.   however, it
1010  *	seems that a hash table lookup is more expensive than the linked
1011  *	list traversal, so we multiply the number of pages in the
1012  *	range by an estimate of the relatively higher cost of the hash lookup.
1013  */
1014 
1015 int
1016 genfs_putpages(void *v)
1017 {
1018 	struct vop_putpages_args /* {
1019 		struct vnode *a_vp;
1020 		voff_t a_offlo;
1021 		voff_t a_offhi;
1022 		int a_flags;
1023 	} */ *ap = v;
1024 	struct vnode *vp = ap->a_vp;
1025 	struct uvm_object *uobj = &vp->v_uobj;
1026 	struct simplelock *slock = &uobj->vmobjlock;
1027 	off_t startoff = ap->a_offlo;
1028 	off_t endoff = ap->a_offhi;
1029 	off_t off;
1030 	int flags = ap->a_flags;
1031 	const int maxpages = MAXBSIZE >> PAGE_SHIFT;
1032 	int i, s, error, npages, nback;
1033 	int freeflag;
1034 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1035 	boolean_t wasclean, by_list, needs_clean, yield;
1036 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1037 	boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1038 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1039 
1040 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1041 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1042 	KASSERT(startoff < endoff || endoff == 0);
1043 
1044 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1045 	    vp, uobj->uo_npages, startoff, endoff - startoff);
1046 	if (uobj->uo_npages == 0) {
1047 		s = splbio();
1048 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1049 		    (vp->v_flag & VONWORKLST)) {
1050 			vp->v_flag &= ~VONWORKLST;
1051 			LIST_REMOVE(vp, v_synclist);
1052 		}
1053 		splx(s);
1054 		simple_unlock(slock);
1055 		return (0);
1056 	}
1057 
1058 	/*
1059 	 * the vnode has pages, set up to process the request.
1060 	 */
1061 
1062 	error = 0;
1063 	s = splbio();
1064 	wasclean = (vp->v_numoutput == 0);
1065 	splx(s);
1066 	off = startoff;
1067 	if (endoff == 0 || flags & PGO_ALLPAGES) {
1068 		endoff = trunc_page(LLONG_MAX);
1069 	}
1070 	by_list = (uobj->uo_npages <=
1071 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1072 
1073 	/*
1074 	 * start the loop.  when scanning by list, hold the last page
1075 	 * in the list before we start.  pages allocated after we start
1076 	 * will be added to the end of the list, so we can stop at the
1077 	 * current last page.
1078 	 */
1079 
1080 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1081 	curmp.uobject = uobj;
1082 	curmp.offset = (voff_t)-1;
1083 	curmp.flags = PG_BUSY;
1084 	endmp.uobject = uobj;
1085 	endmp.offset = (voff_t)-1;
1086 	endmp.flags = PG_BUSY;
1087 	if (by_list) {
1088 		pg = TAILQ_FIRST(&uobj->memq);
1089 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1090 		PHOLD(curproc);
1091 	} else {
1092 		pg = uvm_pagelookup(uobj, off);
1093 	}
1094 	nextpg = NULL;
1095 	while (by_list || off < endoff) {
1096 
1097 		/*
1098 		 * if the current page is not interesting, move on to the next.
1099 		 */
1100 
1101 		KASSERT(pg == NULL || pg->uobject == uobj);
1102 		KASSERT(pg == NULL ||
1103 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1104 		    (pg->flags & PG_BUSY) != 0);
1105 		if (by_list) {
1106 			if (pg == &endmp) {
1107 				break;
1108 			}
1109 			if (pg->offset < startoff || pg->offset >= endoff ||
1110 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1111 				pg = TAILQ_NEXT(pg, listq);
1112 				continue;
1113 			}
1114 			off = pg->offset;
1115 		} else if (pg == NULL ||
1116 		    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1117 			off += PAGE_SIZE;
1118 			if (off < endoff) {
1119 				pg = uvm_pagelookup(uobj, off);
1120 			}
1121 			continue;
1122 		}
1123 
1124 		/*
1125 		 * if the current page needs to be cleaned and it's busy,
1126 		 * wait for it to become unbusy.
1127 		 */
1128 
1129 		yield = (curproc->p_cpu->ci_schedstate.spc_flags &
1130 		    SPCF_SHOULDYIELD) && !pagedaemon;
1131 		if (pg->flags & PG_BUSY || yield) {
1132 			KASSERT(!pagedaemon);
1133 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1134 			if (by_list) {
1135 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1136 				UVMHIST_LOG(ubchist, "curmp next %p",
1137 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1138 			}
1139 			if (yield) {
1140 				simple_unlock(slock);
1141 				preempt(NULL);
1142 				simple_lock(slock);
1143 			} else {
1144 				pg->flags |= PG_WANTED;
1145 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1146 				simple_lock(slock);
1147 			}
1148 			if (by_list) {
1149 				UVMHIST_LOG(ubchist, "after next %p",
1150 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
1151 				pg = TAILQ_NEXT(&curmp, listq);
1152 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1153 			} else {
1154 				pg = uvm_pagelookup(uobj, off);
1155 			}
1156 			continue;
1157 		}
1158 
1159 		/*
1160 		 * if we're freeing, remove all mappings of the page now.
1161 		 * if we're cleaning, check if the page is needs to be cleaned.
1162 		 */
1163 
1164 		if (flags & PGO_FREE) {
1165 			pmap_page_protect(pg, VM_PROT_NONE);
1166 		}
1167 		if (flags & PGO_CLEANIT) {
1168 			needs_clean = pmap_clear_modify(pg) ||
1169 			    (pg->flags & PG_CLEAN) == 0;
1170 			pg->flags |= PG_CLEAN;
1171 		} else {
1172 			needs_clean = FALSE;
1173 		}
1174 
1175 		/*
1176 		 * if we're cleaning, build a cluster.
1177 		 * the cluster will consist of pages which are currently dirty,
1178 		 * but they will be returned to us marked clean.
1179 		 * if not cleaning, just operate on the one page.
1180 		 */
1181 
1182 		if (needs_clean) {
1183 			wasclean = FALSE;
1184 			memset(pgs, 0, sizeof(pgs));
1185 			pg->flags |= PG_BUSY;
1186 			UVM_PAGE_OWN(pg, "genfs_putpages");
1187 
1188 			/*
1189 			 * first look backward.
1190 			 */
1191 
1192 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1193 			nback = npages;
1194 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1195 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1196 			if (nback) {
1197 				memmove(&pgs[0], &pgs[npages - nback],
1198 				    nback * sizeof(pgs[0]));
1199 				if (npages - nback < nback)
1200 					memset(&pgs[nback], 0,
1201 					    (npages - nback) * sizeof(pgs[0]));
1202 				else
1203 					memset(&pgs[npages - nback], 0,
1204 					    nback * sizeof(pgs[0]));
1205 			}
1206 
1207 			/*
1208 			 * then plug in our page of interest.
1209 			 */
1210 
1211 			pgs[nback] = pg;
1212 
1213 			/*
1214 			 * then look forward to fill in the remaining space in
1215 			 * the array of pages.
1216 			 */
1217 
1218 			npages = maxpages - nback - 1;
1219 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1220 			    &pgs[nback + 1],
1221 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1222 			npages += nback + 1;
1223 		} else {
1224 			pgs[0] = pg;
1225 			npages = 1;
1226 			nback = 0;
1227 		}
1228 
1229 		/*
1230 		 * apply FREE or DEACTIVATE options if requested.
1231 		 */
1232 
1233 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1234 			uvm_lock_pageq();
1235 		}
1236 		for (i = 0; i < npages; i++) {
1237 			tpg = pgs[i];
1238 			KASSERT(tpg->uobject == uobj);
1239 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
1240 				pg = tpg;
1241 			if (tpg->offset < startoff || tpg->offset >= endoff)
1242 				continue;
1243 			if (flags & PGO_DEACTIVATE &&
1244 			    (tpg->pqflags & PQ_INACTIVE) == 0 &&
1245 			    tpg->wire_count == 0) {
1246 				(void) pmap_clear_reference(tpg);
1247 				uvm_pagedeactivate(tpg);
1248 			} else if (flags & PGO_FREE) {
1249 				pmap_page_protect(tpg, VM_PROT_NONE);
1250 				if (tpg->flags & PG_BUSY) {
1251 					tpg->flags |= freeflag;
1252 					if (pagedaemon) {
1253 						uvmexp.paging++;
1254 						uvm_pagedequeue(tpg);
1255 					}
1256 				} else {
1257 
1258 					/*
1259 					 * ``page is not busy''
1260 					 * implies that npages is 1
1261 					 * and needs_clean is false.
1262 					 */
1263 
1264 					nextpg = TAILQ_NEXT(tpg, listq);
1265 					uvm_pagefree(tpg);
1266 				}
1267 			}
1268 		}
1269 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1270 			uvm_unlock_pageq();
1271 		}
1272 		if (needs_clean) {
1273 
1274 			/*
1275 			 * start the i/o.  if we're traversing by list,
1276 			 * keep our place in the list with a marker page.
1277 			 */
1278 
1279 			if (by_list) {
1280 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1281 				    listq);
1282 			}
1283 			simple_unlock(slock);
1284 			error = GOP_WRITE(vp, pgs, npages, flags);
1285 			simple_lock(slock);
1286 			if (by_list) {
1287 				pg = TAILQ_NEXT(&curmp, listq);
1288 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1289 			}
1290 			if (error) {
1291 				break;
1292 			}
1293 			if (by_list) {
1294 				continue;
1295 			}
1296 		}
1297 
1298 		/*
1299 		 * find the next page and continue if there was no error.
1300 		 */
1301 
1302 		if (by_list) {
1303 			if (nextpg) {
1304 				pg = nextpg;
1305 				nextpg = NULL;
1306 			} else {
1307 				pg = TAILQ_NEXT(pg, listq);
1308 			}
1309 		} else {
1310 			off += (npages - nback) << PAGE_SHIFT;
1311 			if (off < endoff) {
1312 				pg = uvm_pagelookup(uobj, off);
1313 			}
1314 		}
1315 	}
1316 	if (by_list) {
1317 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1318 		PRELE(curproc);
1319 	}
1320 
1321 	/*
1322 	 * if we're cleaning and there was nothing to clean,
1323 	 * take us off the syncer list.  if we started any i/o
1324 	 * and we're doing sync i/o, wait for all writes to finish.
1325 	 */
1326 
1327 	s = splbio();
1328 	if ((flags & PGO_CLEANIT) && wasclean &&
1329 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1330 	    LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1331 	    (vp->v_flag & VONWORKLST)) {
1332 		vp->v_flag &= ~VONWORKLST;
1333 		LIST_REMOVE(vp, v_synclist);
1334 	}
1335 	splx(s);
1336 	if (!wasclean && !async) {
1337 		s = splbio();
1338 		while (vp->v_numoutput != 0) {
1339 			vp->v_flag |= VBWAIT;
1340 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1341 			    "genput2", 0);
1342 			simple_lock(slock);
1343 		}
1344 		splx(s);
1345 	}
1346 	simple_unlock(&uobj->vmobjlock);
1347 	return (error);
1348 }
1349 
1350 int
1351 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1352 {
1353 	int s, error, run;
1354 	int fs_bshift, dev_bshift;
1355 	vaddr_t kva;
1356 	off_t eof, offset, startoffset;
1357 	size_t bytes, iobytes, skipbytes;
1358 	daddr_t lbn, blkno;
1359 	struct vm_page *pg;
1360 	struct buf *mbp, *bp;
1361 	struct vnode *devvp;
1362 	boolean_t async = (flags & PGO_SYNCIO) == 0;
1363 	UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1364 
1365 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1366 	    vp, pgs, npages, flags);
1367 
1368 	GOP_SIZE(vp, vp->v_size, &eof);
1369 	if (vp->v_type == VREG) {
1370 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1371 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1372 	} else {
1373 		fs_bshift = DEV_BSHIFT;
1374 		dev_bshift = DEV_BSHIFT;
1375 	}
1376 	error = 0;
1377 	pg = pgs[0];
1378 	startoffset = pg->offset;
1379 	bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1380 	skipbytes = 0;
1381 	KASSERT(bytes != 0);
1382 
1383 	kva = uvm_pagermapin(pgs, npages,
1384 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1385 
1386 	s = splbio();
1387 	vp->v_numoutput += 2;
1388 	mbp = pool_get(&bufpool, PR_WAITOK);
1389 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1390 	    vp, mbp, vp->v_numoutput, bytes);
1391 	splx(s);
1392 	mbp->b_bufsize = npages << PAGE_SHIFT;
1393 	mbp->b_data = (void *)kva;
1394 	mbp->b_resid = mbp->b_bcount = bytes;
1395 	mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1396 	mbp->b_iodone = uvm_aio_biodone;
1397 	mbp->b_vp = vp;
1398 	LIST_INIT(&mbp->b_dep);
1399 
1400 	bp = NULL;
1401 	for (offset = startoffset;
1402 	    bytes > 0;
1403 	    offset += iobytes, bytes -= iobytes) {
1404 		lbn = offset >> fs_bshift;
1405 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1406 		if (error) {
1407 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1408 			skipbytes += bytes;
1409 			bytes = 0;
1410 			break;
1411 		}
1412 
1413 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1414 		    bytes);
1415 		if (blkno == (daddr_t)-1) {
1416 			skipbytes += iobytes;
1417 			continue;
1418 		}
1419 
1420 		/* if it's really one i/o, don't make a second buf */
1421 		if (offset == startoffset && iobytes == bytes) {
1422 			bp = mbp;
1423 		} else {
1424 			s = splbio();
1425 			vp->v_numoutput++;
1426 			bp = pool_get(&bufpool, PR_WAITOK);
1427 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1428 			    vp, bp, vp->v_numoutput, 0);
1429 			splx(s);
1430 			bp->b_data = (char *)kva +
1431 			    (vaddr_t)(offset - pg->offset);
1432 			bp->b_resid = bp->b_bcount = iobytes;
1433 			bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1434 			bp->b_iodone = uvm_aio_biodone1;
1435 			bp->b_vp = vp;
1436 			LIST_INIT(&bp->b_dep);
1437 		}
1438 		bp->b_lblkno = 0;
1439 		bp->b_private = mbp;
1440 		if (devvp->v_type == VBLK) {
1441 			bp->b_dev = devvp->v_rdev;
1442 		}
1443 
1444 		/* adjust physical blkno for partial blocks */
1445 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1446 		    dev_bshift);
1447 		UVMHIST_LOG(ubchist,
1448 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1449 		    vp, offset, bp->b_bcount, bp->b_blkno);
1450 		VOP_STRATEGY(bp);
1451 	}
1452 	if (skipbytes) {
1453 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1454 		s = splbio();
1455 		if (error) {
1456 			mbp->b_flags |= B_ERROR;
1457 			mbp->b_error = error;
1458 		}
1459 		mbp->b_resid -= skipbytes;
1460 		if (mbp->b_resid == 0) {
1461 			biodone(mbp);
1462 		}
1463 		splx(s);
1464 	}
1465 	if (async) {
1466 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1467 		return (0);
1468 	}
1469 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1470 	error = biowait(mbp);
1471 	uvm_aio_aiodone(mbp);
1472 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1473 	return (error);
1474 }
1475 
1476 /*
1477  * VOP_PUTPAGES() for vnodes which never have pages.
1478  */
1479 
1480 int
1481 genfs_null_putpages(void *v)
1482 {
1483 	struct vop_putpages_args /* {
1484 		struct vnode *a_vp;
1485 		voff_t a_offlo;
1486 		voff_t a_offhi;
1487 		int a_flags;
1488 	} */ *ap = v;
1489 	struct vnode *vp = ap->a_vp;
1490 
1491 	KASSERT(vp->v_uobj.uo_npages == 0);
1492 	simple_unlock(&vp->v_interlock);
1493 	return (0);
1494 }
1495 
1496 void
1497 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
1498 {
1499 	struct genfs_node *gp = VTOG(vp);
1500 
1501 	lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1502 	gp->g_op = ops;
1503 }
1504 
1505 void
1506 genfs_size(struct vnode *vp, off_t size, off_t *eobp)
1507 {
1508 	int bsize;
1509 
1510 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
1511 	*eobp = (size + bsize - 1) & ~(bsize - 1);
1512 }
1513 
1514 int
1515 genfs_compat_getpages(void *v)
1516 {
1517 	struct vop_getpages_args /* {
1518 		struct vnode *a_vp;
1519 		voff_t a_offset;
1520 		struct vm_page **a_m;
1521 		int *a_count;
1522 		int a_centeridx;
1523 		vm_prot_t a_access_type;
1524 		int a_advice;
1525 		int a_flags;
1526 	} */ *ap = v;
1527 
1528 	off_t origoffset;
1529 	struct vnode *vp = ap->a_vp;
1530 	struct uvm_object *uobj = &vp->v_uobj;
1531 	struct vm_page *pg, **pgs;
1532 	vaddr_t kva;
1533 	int i, error, orignpages, npages;
1534 	struct iovec iov;
1535 	struct uio uio;
1536 	struct ucred *cred = curproc->p_ucred;
1537 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1538 
1539 	error = 0;
1540 	origoffset = ap->a_offset;
1541 	orignpages = *ap->a_count;
1542 	pgs = ap->a_m;
1543 
1544 	if (write && (vp->v_flag & VONWORKLST) == 0) {
1545 		vn_syncer_add_to_worklist(vp, filedelay);
1546 	}
1547 	if (ap->a_flags & PGO_LOCKED) {
1548 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1549 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1550 
1551 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1552 	}
1553 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1554 		simple_unlock(&uobj->vmobjlock);
1555 		return (EINVAL);
1556 	}
1557 	npages = orignpages;
1558 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1559 	simple_unlock(&uobj->vmobjlock);
1560 	kva = uvm_pagermapin(pgs, npages,
1561 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1562 	for (i = 0; i < npages; i++) {
1563 		pg = pgs[i];
1564 		if ((pg->flags & PG_FAKE) == 0) {
1565 			continue;
1566 		}
1567 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1568 		iov.iov_len = PAGE_SIZE;
1569 		uio.uio_iov = &iov;
1570 		uio.uio_iovcnt = 1;
1571 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1572 		uio.uio_segflg = UIO_SYSSPACE;
1573 		uio.uio_rw = UIO_READ;
1574 		uio.uio_resid = PAGE_SIZE;
1575 		uio.uio_procp = curproc;
1576 		error = VOP_READ(vp, &uio, 0, cred);
1577 		if (error) {
1578 			break;
1579 		}
1580 		if (uio.uio_resid) {
1581 			memset(iov.iov_base, 0, uio.uio_resid);
1582 		}
1583 	}
1584 	uvm_pagermapout(kva, npages);
1585 	simple_lock(&uobj->vmobjlock);
1586 	uvm_lock_pageq();
1587 	for (i = 0; i < npages; i++) {
1588 		pg = pgs[i];
1589 		if (error && (pg->flags & PG_FAKE) != 0) {
1590 			pg->flags |= PG_RELEASED;
1591 		} else {
1592 			pmap_clear_modify(pg);
1593 			uvm_pageactivate(pg);
1594 		}
1595 	}
1596 	if (error) {
1597 		uvm_page_unbusy(pgs, npages);
1598 	}
1599 	uvm_unlock_pageq();
1600 	simple_unlock(&uobj->vmobjlock);
1601 	return (error);
1602 }
1603 
1604 int
1605 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1606     int flags)
1607 {
1608 	off_t offset;
1609 	struct iovec iov;
1610 	struct uio uio;
1611 	struct ucred *cred = curproc->p_ucred;
1612 	struct buf *bp;
1613 	vaddr_t kva;
1614 	int s, error;
1615 
1616 	offset = pgs[0]->offset;
1617 	kva = uvm_pagermapin(pgs, npages,
1618 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1619 
1620 	iov.iov_base = (void *)kva;
1621 	iov.iov_len = npages << PAGE_SHIFT;
1622 	uio.uio_iov = &iov;
1623 	uio.uio_iovcnt = 1;
1624 	uio.uio_offset = offset;
1625 	uio.uio_segflg = UIO_SYSSPACE;
1626 	uio.uio_rw = UIO_WRITE;
1627 	uio.uio_resid = npages << PAGE_SHIFT;
1628 	uio.uio_procp = curproc;
1629 	error = VOP_WRITE(vp, &uio, 0, cred);
1630 
1631 	s = splbio();
1632 	vp->v_numoutput++;
1633 	bp = pool_get(&bufpool, PR_WAITOK);
1634 	splx(s);
1635 
1636 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1637 	bp->b_vp = vp;
1638 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1639 	bp->b_data = (char *)kva;
1640 	bp->b_bcount = npages << PAGE_SHIFT;
1641 	bp->b_bufsize = npages << PAGE_SHIFT;
1642 	bp->b_resid = 0;
1643 	LIST_INIT(&bp->b_dep);
1644 	if (error) {
1645 		bp->b_flags |= B_ERROR;
1646 		bp->b_error = error;
1647 	}
1648 	uvm_aio_aiodone(bp);
1649 	return (error);
1650 }
1651 
1652 static void
1653 filt_genfsdetach(struct knote *kn)
1654 {
1655 	struct vnode *vp = (struct vnode *)kn->kn_hook;
1656 
1657 	/* XXXLUKEM lock the struct? */
1658 	SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1659 }
1660 
1661 static int
1662 filt_genfsread(struct knote *kn, long hint)
1663 {
1664 	struct vnode *vp = (struct vnode *)kn->kn_hook;
1665 
1666 	/*
1667 	 * filesystem is gone, so set the EOF flag and schedule
1668 	 * the knote for deletion.
1669 	 */
1670 	if (hint == NOTE_REVOKE) {
1671 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1672 		return (1);
1673 	}
1674 
1675 	/* XXXLUKEM lock the struct? */
1676 	kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1677         return (kn->kn_data != 0);
1678 }
1679 
1680 static int
1681 filt_genfsvnode(struct knote *kn, long hint)
1682 {
1683 
1684 	if (kn->kn_sfflags & hint)
1685 		kn->kn_fflags |= hint;
1686 	if (hint == NOTE_REVOKE) {
1687 		kn->kn_flags |= EV_EOF;
1688 		return (1);
1689 	}
1690 	return (kn->kn_fflags != 0);
1691 }
1692 
1693 static const struct filterops genfsread_filtops =
1694 	{ 1, NULL, filt_genfsdetach, filt_genfsread };
1695 static const struct filterops genfsvnode_filtops =
1696 	{ 1, NULL, filt_genfsdetach, filt_genfsvnode };
1697 
1698 int
1699 genfs_kqfilter(void *v)
1700 {
1701 	struct vop_kqfilter_args /* {
1702 		struct vnode	*a_vp;
1703 		struct knote	*a_kn;
1704 	} */ *ap = v;
1705 	struct vnode *vp;
1706 	struct knote *kn;
1707 
1708 	vp = ap->a_vp;
1709 	kn = ap->a_kn;
1710 	switch (kn->kn_filter) {
1711 	case EVFILT_READ:
1712 		kn->kn_fop = &genfsread_filtops;
1713 		break;
1714 	case EVFILT_VNODE:
1715 		kn->kn_fop = &genfsvnode_filtops;
1716 		break;
1717 	default:
1718 		return (1);
1719 	}
1720 
1721 	kn->kn_hook = vp;
1722 
1723 	/* XXXLUKEM lock the struct? */
1724 	SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1725 
1726 	return (0);
1727 }
1728