xref: /netbsd/sys/miscfs/kernfs/kernfs_vnops.c (revision 6550d01e)
1 /*	$NetBSD: kernfs_vnops.c,v 1.143 2010/07/21 09:06:38 hannken Exp $	*/
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software donated to Berkeley by
8  * Jan-Simon Pendry.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kernfs_vnops.c	8.15 (Berkeley) 5/21/95
35  */
36 
37 /*
38  * Kernel parameter filesystem (/kern)
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.143 2010/07/21 09:06:38 hannken Exp $");
43 
44 #ifdef _KERNEL_OPT
45 #include "opt_ipsec.h"
46 #endif
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/vmmeter.h>
52 #include <sys/time.h>
53 #include <sys/proc.h>
54 #include <sys/vnode.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>
57 #include <sys/stat.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/buf.h>
61 #include <sys/dirent.h>
62 #include <sys/msgbuf.h>
63 
64 #include <miscfs/genfs/genfs.h>
65 #include <miscfs/kernfs/kernfs.h>
66 
67 #ifdef IPSEC
68 #include <sys/mbuf.h>
69 #include <net/route.h>
70 #include <netinet/in.h>
71 #include <netinet6/ipsec.h>
72 #include <netkey/key.h>
73 #endif
74 
75 #include <uvm/uvm_extern.h>
76 
77 #define KSTRING	256		/* Largest I/O available via this filesystem */
78 #define	UIO_MX 32
79 
80 #define	READ_MODE	(S_IRUSR|S_IRGRP|S_IROTH)
81 #define	WRITE_MODE	(S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
82 #define	UREAD_MODE	(S_IRUSR)
83 #define	DIR_MODE	(S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
84 #define	UDIR_MODE	(S_IRUSR|S_IXUSR)
85 
86 #define N(s) sizeof(s)-1, s
87 const struct kern_target kern_targets[] = {
88 /* NOTE: The name must be less than UIO_MX-16 chars in length */
89      /*        name            data          tag           type  ro/rw */
90      { DT_DIR, N("."),         0,            KFSkern,        VDIR, DIR_MODE   },
91      { DT_DIR, N(".."),        0,            KFSroot,        VDIR, DIR_MODE   },
92      { DT_REG, N("boottime"),  &boottime.tv_sec, KFSint,     VREG, READ_MODE  },
93 			/* XXXUNCONST */
94      { DT_REG, N("copyright"), __UNCONST(copyright),
95      					     KFSstring,      VREG, READ_MODE  },
96      { DT_REG, N("hostname"),  0,            KFShostname,    VREG, WRITE_MODE },
97      { DT_REG, N("hz"),        &hz,          KFSint,         VREG, READ_MODE  },
98 #ifdef IPSEC
99      { DT_DIR, N("ipsecsa"),   0,	     KFSipsecsadir,  VDIR, UDIR_MODE  },
100      { DT_DIR, N("ipsecsp"),   0,	     KFSipsecspdir,  VDIR, UDIR_MODE  },
101 #endif
102      { DT_REG, N("loadavg"),   0,            KFSavenrun,     VREG, READ_MODE  },
103      { DT_REG, N("msgbuf"),    0,	     KFSmsgbuf,      VREG, READ_MODE  },
104      { DT_REG, N("pagesize"),  &uvmexp.pagesize, KFSint,     VREG, READ_MODE  },
105      { DT_REG, N("physmem"),   &physmem,     KFSint,         VREG, READ_MODE  },
106 #if 0
107      { DT_DIR, N("root"),      0,            KFSnull,        VDIR, DIR_MODE   },
108 #endif
109      { DT_BLK, N("rootdev"),   &rootdev,     KFSdevice,      VBLK, READ_MODE  },
110      { DT_CHR, N("rrootdev"),  &rrootdev,    KFSdevice,      VCHR, READ_MODE  },
111      { DT_REG, N("time"),      0,            KFStime,        VREG, READ_MODE  },
112 			/* XXXUNCONST */
113      { DT_REG, N("version"),   __UNCONST(version),
114      					     KFSstring,      VREG, READ_MODE  },
115 };
116 const struct kern_target subdir_targets[] = {
117 /* NOTE: The name must be less than UIO_MX-16 chars in length */
118      /*        name            data          tag           type  ro/rw */
119      { DT_DIR, N("."),         0,            KFSsubdir,      VDIR, DIR_MODE   },
120      { DT_DIR, N(".."),        0,            KFSkern,        VDIR, DIR_MODE   },
121 };
122 #ifdef IPSEC
123 const struct kern_target ipsecsa_targets[] = {
124 /* NOTE: The name must be less than UIO_MX-16 chars in length */
125      /*        name            data          tag           type  ro/rw */
126      { DT_DIR, N("."),         0,            KFSipsecsadir,  VDIR, DIR_MODE   },
127      { DT_DIR, N(".."),        0,            KFSkern,        VDIR, DIR_MODE   },
128 };
129 const struct kern_target ipsecsp_targets[] = {
130 /* NOTE: The name must be less than UIO_MX-16 chars in length */
131      /*        name            data          tag           type  ro/rw */
132      { DT_DIR, N("."),         0,            KFSipsecspdir,  VDIR, DIR_MODE   },
133      { DT_DIR, N(".."),        0,            KFSkern,        VDIR, DIR_MODE   },
134 };
135 const struct kern_target ipsecsa_kt =
136      { DT_DIR, N(""),          0,            KFSipsecsa,     VREG, UREAD_MODE };
137 const struct kern_target ipsecsp_kt =
138      { DT_DIR, N(""),          0,            KFSipsecsp,     VREG, UREAD_MODE };
139 #endif
140 #undef N
141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
142 	SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
145 #ifdef IPSEC
146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]);
147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]);
148 int nkern_dirs = 4; /* 2 extra subdirs */
149 #else
150 int nkern_dirs = 2;
151 #endif
152 
153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
154 int kernfs_try_xread(kfstype, const struct kernfs_node *, char **,
155     size_t, int);
156 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
157     size_t, int);
158 
159 static int kernfs_default_xread(void *v);
160 static int kernfs_default_xwrite(void *v);
161 static int kernfs_default_fileop_getattr(void *);
162 
163 /* must include all fileop's */
164 const struct kernfs_fileop kernfs_default_fileops[] = {
165   { .kf_fileop = KERNFS_XREAD },
166   { .kf_fileop = KERNFS_XWRITE },
167   { .kf_fileop = KERNFS_FILEOP_OPEN },
168   { .kf_fileop = KERNFS_FILEOP_GETATTR,
169     .kf_vop = kernfs_default_fileop_getattr },
170   { .kf_fileop = KERNFS_FILEOP_IOCTL },
171   { .kf_fileop = KERNFS_FILEOP_CLOSE },
172   { .kf_fileop = KERNFS_FILEOP_READ,
173     .kf_vop = kernfs_default_xread },
174   { .kf_fileop = KERNFS_FILEOP_WRITE,
175     .kf_vop = kernfs_default_xwrite },
176 };
177 
178 int	kernfs_lookup(void *);
179 #define	kernfs_create	genfs_eopnotsupp
180 #define	kernfs_mknod	genfs_eopnotsupp
181 int	kernfs_open(void *);
182 int	kernfs_close(void *);
183 int	kernfs_access(void *);
184 int	kernfs_getattr(void *);
185 int	kernfs_setattr(void *);
186 int	kernfs_read(void *);
187 int	kernfs_write(void *);
188 #define	kernfs_fcntl	genfs_fcntl
189 int	kernfs_ioctl(void *);
190 #define	kernfs_poll	genfs_poll
191 #define kernfs_revoke	genfs_revoke
192 #define	kernfs_fsync	genfs_nullop
193 #define	kernfs_seek	genfs_nullop
194 #define	kernfs_remove	genfs_eopnotsupp
195 int	kernfs_link(void *);
196 #define	kernfs_rename	genfs_eopnotsupp
197 #define	kernfs_mkdir	genfs_eopnotsupp
198 #define	kernfs_rmdir	genfs_eopnotsupp
199 int	kernfs_symlink(void *);
200 int	kernfs_readdir(void *);
201 #define	kernfs_readlink	genfs_eopnotsupp
202 #define	kernfs_abortop	genfs_abortop
203 int	kernfs_inactive(void *);
204 int	kernfs_reclaim(void *);
205 #define	kernfs_lock	genfs_lock
206 #define	kernfs_unlock	genfs_unlock
207 #define	kernfs_bmap	genfs_badop
208 #define	kernfs_strategy	genfs_badop
209 int	kernfs_print(void *);
210 #define	kernfs_islocked	genfs_islocked
211 int	kernfs_pathconf(void *);
212 #define	kernfs_advlock	genfs_einval
213 #define	kernfs_bwrite	genfs_eopnotsupp
214 #define	kernfs_putpages	genfs_putpages
215 
216 static int	kernfs_xread(struct kernfs_node *, int, char **,
217 				size_t, size_t *);
218 static int	kernfs_xwrite(const struct kernfs_node *, char *, size_t);
219 
220 int (**kernfs_vnodeop_p)(void *);
221 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
222 	{ &vop_default_desc, vn_default_error },
223 	{ &vop_lookup_desc, kernfs_lookup },		/* lookup */
224 	{ &vop_create_desc, kernfs_create },		/* create */
225 	{ &vop_mknod_desc, kernfs_mknod },		/* mknod */
226 	{ &vop_open_desc, kernfs_open },		/* open */
227 	{ &vop_close_desc, kernfs_close },		/* close */
228 	{ &vop_access_desc, kernfs_access },		/* access */
229 	{ &vop_getattr_desc, kernfs_getattr },		/* getattr */
230 	{ &vop_setattr_desc, kernfs_setattr },		/* setattr */
231 	{ &vop_read_desc, kernfs_read },		/* read */
232 	{ &vop_write_desc, kernfs_write },		/* write */
233 	{ &vop_fcntl_desc, kernfs_fcntl },		/* fcntl */
234 	{ &vop_ioctl_desc, kernfs_ioctl },		/* ioctl */
235 	{ &vop_poll_desc, kernfs_poll },		/* poll */
236 	{ &vop_revoke_desc, kernfs_revoke },		/* revoke */
237 	{ &vop_fsync_desc, kernfs_fsync },		/* fsync */
238 	{ &vop_seek_desc, kernfs_seek },		/* seek */
239 	{ &vop_remove_desc, kernfs_remove },		/* remove */
240 	{ &vop_link_desc, kernfs_link },		/* link */
241 	{ &vop_rename_desc, kernfs_rename },		/* rename */
242 	{ &vop_mkdir_desc, kernfs_mkdir },		/* mkdir */
243 	{ &vop_rmdir_desc, kernfs_rmdir },		/* rmdir */
244 	{ &vop_symlink_desc, kernfs_symlink },		/* symlink */
245 	{ &vop_readdir_desc, kernfs_readdir },		/* readdir */
246 	{ &vop_readlink_desc, kernfs_readlink },	/* readlink */
247 	{ &vop_abortop_desc, kernfs_abortop },		/* abortop */
248 	{ &vop_inactive_desc, kernfs_inactive },	/* inactive */
249 	{ &vop_reclaim_desc, kernfs_reclaim },		/* reclaim */
250 	{ &vop_lock_desc, kernfs_lock },		/* lock */
251 	{ &vop_unlock_desc, kernfs_unlock },		/* unlock */
252 	{ &vop_bmap_desc, kernfs_bmap },		/* bmap */
253 	{ &vop_strategy_desc, kernfs_strategy },	/* strategy */
254 	{ &vop_print_desc, kernfs_print },		/* print */
255 	{ &vop_islocked_desc, kernfs_islocked },	/* islocked */
256 	{ &vop_pathconf_desc, kernfs_pathconf },	/* pathconf */
257 	{ &vop_advlock_desc, kernfs_advlock },		/* advlock */
258 	{ &vop_bwrite_desc, kernfs_bwrite },		/* bwrite */
259 	{ &vop_putpages_desc, kernfs_putpages },	/* putpages */
260 	{ NULL, NULL }
261 };
262 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
263 	{ &kernfs_vnodeop_p, kernfs_vnodeop_entries };
264 
265 static inline int
266 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
267 {
268 	if (a->kf_type < b->kf_type)
269 		return -1;
270 	if (a->kf_type > b->kf_type)
271 		return 1;
272 	if (a->kf_fileop < b->kf_fileop)
273 		return -1;
274 	if (a->kf_fileop > b->kf_fileop)
275 		return 1;
276 	return (0);
277 }
278 
279 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
280 	SPLAY_INITIALIZER(kfsfileoptree);
281 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
282 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
283 
284 kfstype
285 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
286 {
287 	static u_char nextfreetype = KFSlasttype;
288 	struct kernfs_fileop *dkf, *fkf, skf;
289 	int i;
290 
291 	/* XXX need to keep track of dkf's memory if we support
292            deallocating types */
293 	dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
294 	memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
295 
296 	for (i = 0; i < sizeof(kernfs_default_fileops) /
297 		     sizeof(kernfs_default_fileops[0]); i++) {
298 		dkf[i].kf_type = nextfreetype;
299 		SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
300 	}
301 
302 	for (i = 0; i < nkf; i++) {
303 		skf.kf_type = nextfreetype;
304 		skf.kf_fileop = kf[i].kf_fileop;
305 		if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
306 			fkf->kf_vop = kf[i].kf_vop;
307 	}
308 
309 	return nextfreetype++;
310 }
311 
312 int
313 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
314 {
315 	struct kernfs_fileop *kf, skf;
316 
317 	skf.kf_type = type;
318 	skf.kf_fileop = fileop;
319 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
320 		if (kf->kf_vop)
321 			return kf->kf_vop(v);
322 	return error;
323 }
324 
325 int
326 kernfs_try_xread(kfstype type, const struct kernfs_node *kfs, char **bfp,
327     size_t len, int error)
328 {
329 	struct kernfs_fileop *kf, skf;
330 
331 	skf.kf_type = type;
332 	skf.kf_fileop = KERNFS_XREAD;
333 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
334 		if (kf->kf_xread)
335 			return kf->kf_xread(kfs, bfp, len);
336 	return error;
337 }
338 
339 int
340 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
341     size_t len, int error)
342 {
343 	struct kernfs_fileop *kf, skf;
344 
345 	skf.kf_type = type;
346 	skf.kf_fileop = KERNFS_XWRITE;
347 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
348 		if (kf->kf_xwrite)
349 			return kf->kf_xwrite(kfs, bf, len);
350 	return error;
351 }
352 
353 int
354 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
355 {
356 	struct kernfs_subdir *ks, *parent;
357 
358 	if (pkt == NULL) {
359 		SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
360 		nkern_targets++;
361 		if (dkt->dkt_kt.kt_vtype == VDIR)
362 			nkern_dirs++;
363 	} else {
364 		parent = (struct kernfs_subdir *)pkt->kt_data;
365 		SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
366 		parent->ks_nentries++;
367 		if (dkt->dkt_kt.kt_vtype == VDIR)
368 			parent->ks_dirs++;
369 	}
370 	if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
371 		ks = malloc(sizeof(struct kernfs_subdir),
372 		    M_TEMP, M_WAITOK);
373 		SIMPLEQ_INIT(&ks->ks_entries);
374 		ks->ks_nentries = 2; /* . and .. */
375 		ks->ks_dirs = 2;
376 		ks->ks_parent = pkt ? pkt : &kern_targets[0];
377 		dkt->dkt_kt.kt_data = ks;
378 	}
379 	return 0;
380 }
381 
382 static int
383 kernfs_xread(struct kernfs_node *kfs, int off, char **bufp, size_t len, size_t *wrlen)
384 {
385 	const struct kern_target *kt;
386 #ifdef IPSEC
387 	struct mbuf *m;
388 #endif
389 	int err;
390 
391 	kt = kfs->kfs_kt;
392 
393 	switch (kfs->kfs_type) {
394 	case KFStime: {
395 		struct timeval tv;
396 
397 		microtime(&tv);
398 		snprintf(*bufp, len, "%lld %ld\n", (long long)tv.tv_sec,
399 		    (long)tv.tv_usec);
400 		break;
401 	}
402 
403 	case KFSint: {
404 		int *ip = kt->kt_data;
405 
406 		snprintf(*bufp, len, "%d\n", *ip);
407 		break;
408 	}
409 
410 	case KFSstring: {
411 		char *cp = kt->kt_data;
412 
413 		*bufp = cp;
414 		break;
415 	}
416 
417 	case KFSmsgbuf: {
418 		long n;
419 
420 		/*
421 		 * deal with cases where the message buffer has
422 		 * become corrupted.
423 		 */
424 		if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
425 			msgbufenabled = 0;
426 			return (ENXIO);
427 		}
428 
429 		/*
430 		 * Note that reads of /kern/msgbuf won't necessarily yield
431 		 * consistent results, if the message buffer is modified
432 		 * while the read is in progress.  The worst that can happen
433 		 * is that incorrect data will be read.  There's no way
434 		 * that this can crash the system unless the values in the
435 		 * message buffer header are corrupted, but that'll cause
436 		 * the system to die anyway.
437 		 */
438 		if (off >= msgbufp->msg_bufs) {
439 			*wrlen = 0;
440 			return (0);
441 		}
442 		n = msgbufp->msg_bufx + off;
443 		if (n >= msgbufp->msg_bufs)
444 			n -= msgbufp->msg_bufs;
445 		len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
446 		*bufp = msgbufp->msg_bufc + n;
447 		*wrlen = len;
448 		return (0);
449 	}
450 
451 	case KFShostname: {
452 		char *cp = hostname;
453 		size_t xlen = hostnamelen;
454 
455 		if (xlen >= (len - 2))
456 			return (EINVAL);
457 
458 		memcpy(*bufp, cp, xlen);
459 		(*bufp)[xlen] = '\n';
460 		(*bufp)[xlen+1] = '\0';
461 		break;
462 	}
463 
464 	case KFSavenrun:
465 		averunnable.fscale = FSCALE;
466 		snprintf(*bufp, len, "%d %d %d %ld\n",
467 		    averunnable.ldavg[0], averunnable.ldavg[1],
468 		    averunnable.ldavg[2], averunnable.fscale);
469 		break;
470 
471 #ifdef IPSEC
472 	case KFSipsecsa:
473 		if (key_setdumpsa_spi == NULL)
474 			return 0;
475 		/*
476 		 * Note that SA configuration could be changed during the
477 		 * read operation, resulting in garbled output.
478 		 */
479 		m = key_setdumpsa_spi(htonl(kfs->kfs_value));
480 		if (!m)
481 			return (ENOBUFS);
482 		if (off >= m->m_pkthdr.len) {
483 			*wrlen = 0;
484 			m_freem(m);
485 			return (0);
486 		}
487 		if (len > m->m_pkthdr.len - off)
488 			len = m->m_pkthdr.len - off;
489 		m_copydata(m, off, len, *bufp);
490 		*wrlen = len;
491 		m_freem(m);
492 		return (0);
493 
494 	case KFSipsecsp:
495 		/*
496 		 * Note that SP configuration could be changed during the
497 		 * read operation, resulting in garbled output.
498 		 */
499 		if (key_getspbyid == NULL)
500 			return 0;
501 		if (!kfs->kfs_v) {
502 			struct secpolicy *sp;
503 
504 			sp = key_getspbyid(kfs->kfs_value);
505 			if (sp)
506 				kfs->kfs_v = sp;
507 			else
508 				return (ENOENT);
509 		}
510 		m = key_setdumpsp((struct secpolicy *)kfs->kfs_v,
511 		    SADB_X_SPDGET, 0, 0);
512 		if (!m)
513 			return (ENOBUFS);
514 		if (off >= m->m_pkthdr.len) {
515 			*wrlen = 0;
516 			m_freem(m);
517 			return (0);
518 		}
519 		if (len > m->m_pkthdr.len - off)
520 			len = m->m_pkthdr.len - off;
521 		m_copydata(m, off, len, *bufp);
522 		*wrlen = len;
523 		m_freem(m);
524 		return (0);
525 #endif
526 
527 	default:
528 		err = kernfs_try_xread(kfs->kfs_type, kfs, bufp, len,
529 		    EOPNOTSUPP);
530 		if (err)
531 			return err;
532 	}
533 
534 	len = strlen(*bufp);
535 	if (len <= off)
536 		*wrlen = 0;
537 	else {
538 		*bufp += off;
539 		*wrlen = len - off;
540 	}
541 	return (0);
542 }
543 
544 static int
545 kernfs_xwrite(const struct kernfs_node *kfs, char *bf, size_t len)
546 {
547 
548 	switch (kfs->kfs_type) {
549 	case KFShostname:
550 		if (bf[len-1] == '\n')
551 			--len;
552 		memcpy(hostname, bf, len);
553 		hostname[len] = '\0';
554 		hostnamelen = (size_t) len;
555 		return (0);
556 
557 	default:
558 		return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
559 	}
560 }
561 
562 
563 /*
564  * vp is the current namei directory
565  * ndp is the name to locate in that directory...
566  */
567 int
568 kernfs_lookup(void *v)
569 {
570 	struct vop_lookup_args /* {
571 		struct vnode * a_dvp;
572 		struct vnode ** a_vpp;
573 		struct componentname * a_cnp;
574 	} */ *ap = v;
575 	struct componentname *cnp = ap->a_cnp;
576 	struct vnode **vpp = ap->a_vpp;
577 	struct vnode *dvp = ap->a_dvp;
578 	const char *pname = cnp->cn_nameptr;
579 	const struct kernfs_node *kfs;
580 	const struct kern_target *kt;
581 	const struct dyn_kern_target *dkt;
582 	const struct kernfs_subdir *ks;
583 	int error, i;
584 #ifdef IPSEC
585 	char *ep;
586 	u_int32_t id;
587 #endif
588 
589 	*vpp = NULLVP;
590 
591 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
592 		return (EROFS);
593 
594 	if (cnp->cn_namelen == 1 && *pname == '.') {
595 		*vpp = dvp;
596 		vref(dvp);
597 		return (0);
598 	}
599 
600 	kfs = VTOKERN(dvp);
601 	switch (kfs->kfs_type) {
602 	case KFSkern:
603 		/*
604 		 * Shouldn't get here with .. in the root node.
605 		 */
606 		if (cnp->cn_flags & ISDOTDOT)
607 			return (EIO);
608 
609 		for (i = 0; i < static_nkern_targets; i++) {
610 			kt = &kern_targets[i];
611 			if (cnp->cn_namelen == kt->kt_namlen &&
612 			    memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
613 				goto found;
614 		}
615 		SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
616 			if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
617 			    memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
618 				kt = &dkt->dkt_kt;
619 				goto found;
620 			}
621 		}
622 		break;
623 
624 	found:
625 		error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0);
626 		return (error);
627 
628 	case KFSsubdir:
629 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
630 		if (cnp->cn_flags & ISDOTDOT) {
631 			kt = ks->ks_parent;
632 			goto found;
633 		}
634 
635 		SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
636 			if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
637 			    memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
638 				kt = &dkt->dkt_kt;
639 				goto found;
640 			}
641 		}
642 		break;
643 
644 #ifdef IPSEC
645 	case KFSipsecsadir:
646 		if (cnp->cn_flags & ISDOTDOT) {
647 			kt = &kern_targets[0];
648 			goto found;
649 		}
650 
651 		for (i = 2; i < nipsecsa_targets; i++) {
652 			kt = &ipsecsa_targets[i];
653 			if (cnp->cn_namelen == kt->kt_namlen &&
654 			    memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
655 				goto found;
656 		}
657 
658 		ep = NULL;
659 		id = strtoul(pname, &ep, 10);
660 		if (!ep || *ep || ep == pname)
661 			break;
662 
663 		error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id);
664 		return (error);
665 
666 	case KFSipsecspdir:
667 		if (cnp->cn_flags & ISDOTDOT) {
668 			kt = &kern_targets[0];
669 			goto found;
670 		}
671 
672 		for (i = 2; i < nipsecsp_targets; i++) {
673 			kt = &ipsecsp_targets[i];
674 			if (cnp->cn_namelen == kt->kt_namlen &&
675 			    memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
676 				goto found;
677 		}
678 
679 		ep = NULL;
680 		id = strtoul(pname, &ep, 10);
681 		if (!ep || *ep || ep == pname)
682 			break;
683 
684 		error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id);
685 		return (error);
686 #endif
687 
688 	default:
689 		return (ENOTDIR);
690 	}
691 
692 	return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
693 }
694 
695 int
696 kernfs_open(void *v)
697 {
698 	struct vop_open_args /* {
699 		struct vnode *a_vp;
700 		int a_mode;
701 		kauth_cred_t a_cred;
702 	} */ *ap = v;
703 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
704 #ifdef IPSEC
705 	struct mbuf *m;
706 	struct secpolicy *sp;
707 #endif
708 
709 	switch (kfs->kfs_type) {
710 #ifdef IPSEC
711 	case KFSipsecsa:
712 		if (key_setdumpsa_spi == NULL)
713 			return 0;
714 		m = key_setdumpsa_spi(htonl(kfs->kfs_value));
715 		if (m) {
716 			m_freem(m);
717 			return (0);
718 		} else
719 			return (ENOENT);
720 
721 	case KFSipsecsp:
722 		if (key_getspbyid == NULL)
723 			return 0;
724 		sp = key_getspbyid(kfs->kfs_value);
725 		if (sp) {
726 			kfs->kfs_v = sp;
727 			return (0);
728 		} else
729 			return (ENOENT);
730 #endif
731 
732 	default:
733 		return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN,
734 		    v, 0);
735 	}
736 }
737 
738 int
739 kernfs_close(void *v)
740 {
741 	struct vop_close_args /* {
742 		struct vnode *a_vp;
743 		int a_fflag;
744 		kauth_cred_t a_cred;
745 	} */ *ap = v;
746 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
747 
748 	switch (kfs->kfs_type) {
749 #ifdef IPSEC
750 	case KFSipsecsp:
751 		if (key_freesp == NULL)
752 			return 0;
753 		key_freesp((struct secpolicy *)kfs->kfs_v);
754 		break;
755 #endif
756 
757 	default:
758 		return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE,
759 		    v, 0);
760 	}
761 
762 	return (0);
763 }
764 
765 static int
766 kernfs_check_possible(struct vnode *vp, mode_t mode)
767 {
768 
769 	return 0;
770 }
771 
772 static int
773 kernfs_check_permitted(struct vattr *va, mode_t mode, kauth_cred_t cred)
774 {
775 
776 	return genfs_can_access(va->va_type, va->va_mode, va->va_uid, va->va_gid,
777 	    mode, cred);
778 }
779 
780 int
781 kernfs_access(void *v)
782 {
783 	struct vop_access_args /* {
784 		struct vnode *a_vp;
785 		int a_mode;
786 		kauth_cred_t a_cred;
787 	} */ *ap = v;
788 	struct vattr va;
789 	int error;
790 
791 	if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred)) != 0)
792 		return (error);
793 
794 	error = kernfs_check_possible(ap->a_vp, ap->a_mode);
795 	if (error)
796 		return error;
797 
798 	error = kernfs_check_permitted(&va, ap->a_mode, ap->a_cred);
799 
800 	return error;
801 }
802 
803 static int
804 kernfs_default_fileop_getattr(void *v)
805 {
806 	struct vop_getattr_args /* {
807 		struct vnode *a_vp;
808 		struct vattr *a_vap;
809 		kauth_cred_t a_cred;
810 	} */ *ap = v;
811 	struct vattr *vap = ap->a_vap;
812 
813 	vap->va_nlink = 1;
814 	vap->va_bytes = vap->va_size = 0;
815 
816 	return 0;
817 }
818 
819 int
820 kernfs_getattr(void *v)
821 {
822 	struct vop_getattr_args /* {
823 		struct vnode *a_vp;
824 		struct vattr *a_vap;
825 		kauth_cred_t a_cred;
826 	} */ *ap = v;
827 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
828 	struct kernfs_subdir *ks;
829 	struct vattr *vap = ap->a_vap;
830 	int error = 0;
831 	char strbuf[KSTRING], *bf;
832 	size_t nread, total;
833 
834 	vattr_null(vap);
835 	vap->va_type = ap->a_vp->v_type;
836 	vap->va_uid = 0;
837 	vap->va_gid = 0;
838 	vap->va_mode = kfs->kfs_mode;
839 	vap->va_fileid = kfs->kfs_fileno;
840 	vap->va_flags = 0;
841 	vap->va_size = 0;
842 	vap->va_blocksize = DEV_BSIZE;
843 	/* Make all times be current TOD, except for the "boottime" node. */
844 	if (kfs->kfs_kt->kt_namlen == 8 &&
845 	    !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
846 		vap->va_ctime = boottime;
847 	} else {
848 		getnanotime(&vap->va_ctime);
849 	}
850 	vap->va_atime = vap->va_mtime = vap->va_ctime;
851 	vap->va_gen = 0;
852 	vap->va_flags = 0;
853 	vap->va_rdev = 0;
854 	vap->va_bytes = 0;
855 
856 	switch (kfs->kfs_type) {
857 	case KFSkern:
858 		vap->va_nlink = nkern_dirs;
859 		vap->va_bytes = vap->va_size = DEV_BSIZE;
860 		break;
861 
862 	case KFSroot:
863 		vap->va_nlink = 1;
864 		vap->va_bytes = vap->va_size = DEV_BSIZE;
865 		break;
866 
867 	case KFSsubdir:
868 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
869 		vap->va_nlink = ks->ks_dirs;
870 		vap->va_bytes = vap->va_size = DEV_BSIZE;
871 		break;
872 
873 	case KFSnull:
874 	case KFStime:
875 	case KFSint:
876 	case KFSstring:
877 	case KFShostname:
878 	case KFSavenrun:
879 	case KFSdevice:
880 	case KFSmsgbuf:
881 #ifdef IPSEC
882 	case KFSipsecsa:
883 	case KFSipsecsp:
884 #endif
885 		vap->va_nlink = 1;
886 		total = 0;
887 		do {
888 			bf = strbuf;
889 			error = kernfs_xread(kfs, total, &bf,
890 			    sizeof(strbuf), &nread);
891 			total += nread;
892 		} while (error == 0 && nread != 0);
893 		vap->va_bytes = vap->va_size = total;
894 		break;
895 
896 #ifdef IPSEC
897 	case KFSipsecsadir:
898 	case KFSipsecspdir:
899 		vap->va_nlink = 2;
900 		vap->va_bytes = vap->va_size = DEV_BSIZE;
901 		break;
902 #endif
903 
904 	default:
905 		error = kernfs_try_fileop(kfs->kfs_type,
906 		    KERNFS_FILEOP_GETATTR, v, EINVAL);
907 		break;
908 	}
909 
910 	return (error);
911 }
912 
913 /*ARGSUSED*/
914 int
915 kernfs_setattr(void *v)
916 {
917 
918 	/*
919 	 * Silently ignore attribute changes.
920 	 * This allows for open with truncate to have no
921 	 * effect until some data is written.  I want to
922 	 * do it this way because all writes are atomic.
923 	 */
924 	return (0);
925 }
926 
927 int
928 kernfs_default_xread(void *v)
929 {
930 	struct vop_read_args /* {
931 		struct vnode *a_vp;
932 		struct uio *a_uio;
933 		int  a_ioflag;
934 		kauth_cred_t a_cred;
935 	} */ *ap = v;
936 	struct uio *uio = ap->a_uio;
937 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
938 	char strbuf[KSTRING], *bf;
939 	int off;
940 	size_t len;
941 	int error;
942 
943 	if (ap->a_vp->v_type == VDIR)
944 		return (EOPNOTSUPP);
945 
946 	off = (int)uio->uio_offset;
947 	/* Don't allow negative offsets */
948 	if (off < 0)
949 		return EINVAL;
950 
951 	bf = strbuf;
952 	if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
953 		error = uiomove(bf, len, uio);
954 	return (error);
955 }
956 
957 int
958 kernfs_read(void *v)
959 {
960 	struct vop_read_args /* {
961 		struct vnode *a_vp;
962 		struct uio *a_uio;
963 		int  a_ioflag;
964 		struct ucred *a_cred;
965 	} */ *ap = v;
966 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
967 
968 	if (kfs->kfs_type < KFSlasttype) {
969 		/* use default function */
970 		return kernfs_default_xread(v);
971 	}
972 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_READ, v,
973 	   EOPNOTSUPP);
974 }
975 
976 static int
977 kernfs_default_xwrite(void *v)
978 {
979 	struct vop_write_args /* {
980 		struct vnode *a_vp;
981 		struct uio *a_uio;
982 		int  a_ioflag;
983 		kauth_cred_t a_cred;
984 	} */ *ap = v;
985 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
986 	struct uio *uio = ap->a_uio;
987 	int error;
988 	size_t xlen;
989 	char strbuf[KSTRING];
990 
991 	if (uio->uio_offset != 0)
992 		return (EINVAL);
993 
994 	xlen = min(uio->uio_resid, KSTRING-1);
995 	if ((error = uiomove(strbuf, xlen, uio)) != 0)
996 		return (error);
997 
998 	if (uio->uio_resid != 0)
999 		return (EIO);
1000 
1001 	strbuf[xlen] = '\0';
1002 	xlen = strlen(strbuf);
1003 	return (kernfs_xwrite(kfs, strbuf, xlen));
1004 }
1005 
1006 int
1007 kernfs_write(void *v)
1008 {
1009 	struct vop_write_args /* {
1010 		struct vnode *a_vp;
1011 		struct uio *a_uio;
1012 		int  a_ioflag;
1013 		kauth_cred_t a_cred;
1014 	} */ *ap = v;
1015 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1016 
1017 	if (kfs->kfs_type < KFSlasttype) {
1018 		/* use default function */
1019 		return kernfs_default_xwrite(v);
1020 	}
1021 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v,
1022 	    EOPNOTSUPP);
1023 }
1024 
1025 int
1026 kernfs_ioctl(void *v)
1027 {
1028 	struct vop_ioctl_args /* {
1029 		const struct vnodeop_desc *a_desc;
1030 		struct vnode *a_vp;
1031 		u_long a_command;
1032 		void *a_data;
1033 		int a_fflag;
1034 		kauth_cred_t a_cred;
1035 	} */ *ap = v;
1036 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1037 
1038 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
1039 	    EPASSTHROUGH);
1040 }
1041 
1042 static int
1043 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
1044     u_int32_t value, struct vop_readdir_args *ap)
1045 {
1046 	struct kernfs_node *kfs;
1047 	struct vnode *vp;
1048 	int error;
1049 
1050 	if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
1051 	    value)) != 0)
1052 		return error;
1053 	if (kt->kt_tag == KFSdevice) {
1054 		struct vattr va;
1055 
1056 		error = VOP_GETATTR(vp, &va, ap->a_cred);
1057 		if (error != 0) {
1058 			return error;
1059 		}
1060 		d->d_fileno = va.va_fileid;
1061 	} else {
1062 		kfs = VTOKERN(vp);
1063 		d->d_fileno = kfs->kfs_fileno;
1064 	}
1065 	vput(vp);
1066 	return 0;
1067 }
1068 
1069 static int
1070 kernfs_setdirentfileno(struct dirent *d, off_t entry,
1071     struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
1072     const struct kern_target *kt, struct vop_readdir_args *ap)
1073 {
1074 	const struct kern_target *ikt;
1075 	int error;
1076 
1077 	switch (entry) {
1078 	case 0:
1079 		d->d_fileno = thisdir_kfs->kfs_fileno;
1080 		return 0;
1081 	case 1:
1082 		ikt = parent_kt;
1083 		break;
1084 	default:
1085 		ikt = kt;
1086 		break;
1087 	}
1088 	if (ikt != thisdir_kfs->kfs_kt) {
1089 		if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
1090 			return error;
1091 	} else
1092 		d->d_fileno = thisdir_kfs->kfs_fileno;
1093 	return 0;
1094 }
1095 
1096 int
1097 kernfs_readdir(void *v)
1098 {
1099 	struct vop_readdir_args /* {
1100 		struct vnode *a_vp;
1101 		struct uio *a_uio;
1102 		kauth_cred_t a_cred;
1103 		int *a_eofflag;
1104 		off_t **a_cookies;
1105 		int a_*ncookies;
1106 	} */ *ap = v;
1107 	struct uio *uio = ap->a_uio;
1108 	struct dirent d;
1109 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1110 	const struct kern_target *kt;
1111 	const struct dyn_kern_target *dkt = NULL;
1112 	const struct kernfs_subdir *ks;
1113 	off_t i, j;
1114 	int error;
1115 	off_t *cookies = NULL;
1116 	int ncookies = 0, n;
1117 #ifdef IPSEC
1118 	struct secasvar *sav, *sav2;
1119 	struct secpolicy *sp;
1120 #endif
1121 
1122 	if (uio->uio_resid < UIO_MX)
1123 		return (EINVAL);
1124 	if (uio->uio_offset < 0)
1125 		return (EINVAL);
1126 
1127 	error = 0;
1128 	i = uio->uio_offset;
1129 	memset(&d, 0, sizeof(d));
1130 	d.d_reclen = UIO_MX;
1131 	ncookies = uio->uio_resid / UIO_MX;
1132 
1133 	switch (kfs->kfs_type) {
1134 	case KFSkern:
1135 		if (i >= nkern_targets)
1136 			return (0);
1137 
1138 		if (ap->a_ncookies) {
1139 			ncookies = min(ncookies, (nkern_targets - i));
1140 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1141 			    M_WAITOK);
1142 			*ap->a_cookies = cookies;
1143 		}
1144 
1145 		n = 0;
1146 		for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
1147 			if (i < static_nkern_targets)
1148 				kt = &kern_targets[i];
1149 			else {
1150 				if (dkt == NULL) {
1151 					dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
1152 					for (j = static_nkern_targets; j < i &&
1153 						     dkt != NULL; j++)
1154 						dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1155 					if (j != i)
1156 						break;
1157 				} else {
1158 					dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1159 				}
1160 				if (dkt == NULL)
1161 					break;
1162 				kt = &dkt->dkt_kt;
1163 			}
1164 			if (kt->kt_tag == KFSdevice) {
1165 				dev_t *dp = kt->kt_data;
1166 				struct vnode *fvp;
1167 
1168 				if (*dp == NODEV ||
1169 				    !vfinddev(*dp, kt->kt_vtype, &fvp))
1170 					continue;
1171 				vrele(fvp);
1172 			}
1173 			if (kt->kt_tag == KFSmsgbuf) {
1174 				if (!msgbufenabled
1175 				    || msgbufp->msg_magic != MSG_MAGIC) {
1176 					continue;
1177 				}
1178 			}
1179 			d.d_namlen = kt->kt_namlen;
1180 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
1181 			    &kern_targets[0], kt, ap)) != 0)
1182 				break;
1183 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1184 			d.d_type = kt->kt_type;
1185 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1186 				break;
1187 			if (cookies)
1188 				*cookies++ = i + 1;
1189 			n++;
1190 		}
1191 		ncookies = n;
1192 		break;
1193 
1194 	case KFSroot:
1195 		if (i >= 2)
1196 			return 0;
1197 
1198 		if (ap->a_ncookies) {
1199 			ncookies = min(ncookies, (2 - i));
1200 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1201 			    M_WAITOK);
1202 			*ap->a_cookies = cookies;
1203 		}
1204 
1205 		n = 0;
1206 		for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
1207 			kt = &kern_targets[i];
1208 			d.d_namlen = kt->kt_namlen;
1209 			d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
1210 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1211 			d.d_type = kt->kt_type;
1212 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1213 				break;
1214 			if (cookies)
1215 				*cookies++ = i + 1;
1216 			n++;
1217 		}
1218 		ncookies = n;
1219 		break;
1220 
1221 	case KFSsubdir:
1222 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
1223 		if (i >= ks->ks_nentries)
1224 			return (0);
1225 
1226 		if (ap->a_ncookies) {
1227 			ncookies = min(ncookies, (ks->ks_nentries - i));
1228 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1229 			    M_WAITOK);
1230 			*ap->a_cookies = cookies;
1231 		}
1232 
1233 		dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1234 		for (j = 0; j < i && dkt != NULL; j++)
1235 			dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1236 		n = 0;
1237 		for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1238 			if (i < 2)
1239 				kt = &subdir_targets[i];
1240 			else {
1241 				/* check if ks_nentries lied to us */
1242 				if (dkt == NULL)
1243 					break;
1244 				kt = &dkt->dkt_kt;
1245 				dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1246 			}
1247 			if (kt->kt_tag == KFSdevice) {
1248 				dev_t *dp = kt->kt_data;
1249 				struct vnode *fvp;
1250 
1251 				if (*dp == NODEV ||
1252 				    !vfinddev(*dp, kt->kt_vtype, &fvp))
1253 					continue;
1254 				vrele(fvp);
1255 			}
1256 			d.d_namlen = kt->kt_namlen;
1257 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
1258 			    ks->ks_parent, kt, ap)) != 0)
1259 				break;
1260 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1261 			d.d_type = kt->kt_type;
1262 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1263 				break;
1264 			if (cookies)
1265 				*cookies++ = i + 1;
1266 			n++;
1267 		}
1268 		ncookies = n;
1269 		break;
1270 
1271 #ifdef IPSEC
1272 	case KFSipsecsadir:
1273 		/* count SA in the system */
1274 		n = 0;
1275 		if (&satailq == NULL)
1276 			return 0;
1277 		TAILQ_FOREACH(sav, &satailq, tailq) {
1278 			for (sav2 = TAILQ_FIRST(&satailq);
1279 			    sav2 != sav;
1280 			    sav2 = TAILQ_NEXT(sav2, tailq)) {
1281 				if (sav->spi == sav2->spi) {
1282 					/* multiple SA with same SPI */
1283 					break;
1284 				}
1285 			}
1286 			if (sav == sav2 || sav->spi != sav2->spi)
1287 				n++;
1288 		}
1289 
1290 		if (i >= nipsecsa_targets + n)
1291 			return (0);
1292 
1293 		if (ap->a_ncookies) {
1294 			ncookies = min(ncookies, (n - i));
1295 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1296 			    M_WAITOK);
1297 			*ap->a_cookies = cookies;
1298 		}
1299 
1300 		n = 0;
1301 		for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) {
1302 			kt = &ipsecsa_targets[i];
1303 			d.d_namlen = kt->kt_namlen;
1304 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
1305 			    &kern_targets[0], kt, ap)) != 0)
1306 				break;
1307 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1308 			d.d_type = kt->kt_type;
1309 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1310 				break;
1311 			if (cookies)
1312 				*cookies++ = i + 1;
1313 			n++;
1314 		}
1315 		if (error) {
1316 			ncookies = n;
1317 			break;
1318 		}
1319 
1320 		TAILQ_FOREACH(sav, &satailq, tailq) {
1321 			for (sav2 = TAILQ_FIRST(&satailq);
1322 			    sav2 != sav;
1323 			    sav2 = TAILQ_NEXT(sav2, tailq)) {
1324 				if (sav->spi == sav2->spi) {
1325 					/* multiple SA with same SPI */
1326 					break;
1327 				}
1328 			}
1329 			if (sav != sav2 && sav->spi == sav2->spi)
1330 				continue;
1331 			if (uio->uio_resid < UIO_MX)
1332 				break;
1333 			if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt,
1334 			    sav->spi, ap)) != 0)
1335 				break;
1336 			d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1337 			    "%u", ntohl(sav->spi));
1338 			d.d_type = DT_REG;
1339 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1340 				break;
1341 			if (cookies)
1342 				*cookies++ = i + 1;
1343 			n++;
1344 			i++;
1345 		}
1346 		ncookies = n;
1347 		break;
1348 
1349 	case KFSipsecspdir:
1350 		/* count SP in the system */
1351 		if (&sptailq == NULL)
1352 			return 0;
1353 
1354 		n = 0;
1355 		TAILQ_FOREACH(sp, &sptailq, tailq)
1356 			n++;
1357 
1358 		if (i >= nipsecsp_targets + n)
1359 			return (0);
1360 
1361 		if (ap->a_ncookies) {
1362 			ncookies = min(ncookies, (n - i));
1363 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1364 			    M_WAITOK);
1365 			*ap->a_cookies = cookies;
1366 		}
1367 
1368 		n = 0;
1369 		for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) {
1370 			kt = &ipsecsp_targets[i];
1371 			d.d_namlen = kt->kt_namlen;
1372 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
1373 			    &kern_targets[0], kt, ap)) != 0)
1374 				break;
1375 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1376 			d.d_type = kt->kt_type;
1377 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1378 				break;
1379 			if (cookies)
1380 				*cookies++ = i + 1;
1381 			n++;
1382 		}
1383 		if (error) {
1384 			ncookies = n;
1385 			break;
1386 		}
1387 
1388 		TAILQ_FOREACH(sp, &sptailq, tailq) {
1389 			if (uio->uio_resid < UIO_MX)
1390 				break;
1391 			if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt,
1392 			    sp->id, ap)) != 0)
1393 				break;
1394 			d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1395 			    "%u", sp->id);
1396 			d.d_type = DT_REG;
1397 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1398 				break;
1399 			if (cookies)
1400 				*cookies++ = i + 1;
1401 			n++;
1402 			i++;
1403 		}
1404 		ncookies = n;
1405 		break;
1406 #endif
1407 
1408 	default:
1409 		error = ENOTDIR;
1410 		break;
1411 	}
1412 
1413 	if (ap->a_ncookies) {
1414 		if (error) {
1415 			if (cookies)
1416 				free(*ap->a_cookies, M_TEMP);
1417 			*ap->a_ncookies = 0;
1418 			*ap->a_cookies = NULL;
1419 		} else
1420 			*ap->a_ncookies = ncookies;
1421 	}
1422 
1423 	uio->uio_offset = i;
1424 	return (error);
1425 }
1426 
1427 int
1428 kernfs_inactive(void *v)
1429 {
1430 	struct vop_inactive_args /* {
1431 		struct vnode *a_vp;
1432 		bool *a_recycle;
1433 	} */ *ap = v;
1434 	struct vnode *vp = ap->a_vp;
1435 	const struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1436 #ifdef IPSEC
1437 	struct mbuf *m;
1438 	struct secpolicy *sp;
1439 #endif
1440 
1441 	*ap->a_recycle = false;
1442 	switch (kfs->kfs_type) {
1443 #ifdef IPSEC
1444 	case KFSipsecsa:
1445 		if (key_setdumpsa_spi == NULL)
1446 			return 0;
1447 		m = key_setdumpsa_spi(htonl(kfs->kfs_value));
1448 		if (m)
1449 			m_freem(m);
1450 		else
1451 			*ap->a_recycle = true;
1452 		break;
1453 	case KFSipsecsp:
1454 		if (key_getspbyid == NULL)
1455 			return 0;
1456 		sp = key_getspbyid(kfs->kfs_value);
1457 		if (sp)
1458 			key_freesp(sp);
1459 		else {
1460 			*ap->a_recycle = true;
1461 		}
1462 		break;
1463 #endif
1464 	default:
1465 		break;
1466 	}
1467 	VOP_UNLOCK(vp);
1468 	return (0);
1469 }
1470 
1471 int
1472 kernfs_reclaim(void *v)
1473 {
1474 	struct vop_reclaim_args /* {
1475 		struct vnode *a_vp;
1476 	} */ *ap = v;
1477 
1478 	return (kernfs_freevp(ap->a_vp));
1479 }
1480 
1481 /*
1482  * Return POSIX pathconf information applicable to special devices.
1483  */
1484 int
1485 kernfs_pathconf(void *v)
1486 {
1487 	struct vop_pathconf_args /* {
1488 		struct vnode *a_vp;
1489 		int a_name;
1490 		register_t *a_retval;
1491 	} */ *ap = v;
1492 
1493 	switch (ap->a_name) {
1494 	case _PC_LINK_MAX:
1495 		*ap->a_retval = LINK_MAX;
1496 		return (0);
1497 	case _PC_MAX_CANON:
1498 		*ap->a_retval = MAX_CANON;
1499 		return (0);
1500 	case _PC_MAX_INPUT:
1501 		*ap->a_retval = MAX_INPUT;
1502 		return (0);
1503 	case _PC_PIPE_BUF:
1504 		*ap->a_retval = PIPE_BUF;
1505 		return (0);
1506 	case _PC_CHOWN_RESTRICTED:
1507 		*ap->a_retval = 1;
1508 		return (0);
1509 	case _PC_VDISABLE:
1510 		*ap->a_retval = _POSIX_VDISABLE;
1511 		return (0);
1512 	case _PC_SYNC_IO:
1513 		*ap->a_retval = 1;
1514 		return (0);
1515 	default:
1516 		return (EINVAL);
1517 	}
1518 	/* NOTREACHED */
1519 }
1520 
1521 /*
1522  * Print out the contents of a /dev/fd vnode.
1523  */
1524 /* ARGSUSED */
1525 int
1526 kernfs_print(void *v)
1527 {
1528 
1529 	printf("tag VT_KERNFS, kernfs vnode\n");
1530 	return (0);
1531 }
1532 
1533 int
1534 kernfs_link(void *v)
1535 {
1536 	struct vop_link_args /* {
1537 		struct vnode *a_dvp;
1538 		struct vnode *a_vp;
1539 		struct componentname *a_cnp;
1540 	} */ *ap = v;
1541 
1542 	VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1543 	vput(ap->a_dvp);
1544 	return (EROFS);
1545 }
1546 
1547 int
1548 kernfs_symlink(void *v)
1549 {
1550 	struct vop_symlink_args /* {
1551 		struct vnode *a_dvp;
1552 		struct vnode **a_vpp;
1553 		struct componentname *a_cnp;
1554 		struct vattr *a_vap;
1555 		char *a_target;
1556 	} */ *ap = v;
1557 
1558 	VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1559 	vput(ap->a_dvp);
1560 	return (EROFS);
1561 }
1562