xref: /netbsd/sys/net/if_vlan.c (revision c4a72b64)
1 /*	$NetBSD: if_vlan.c,v 1.34 2002/06/11 06:00:57 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright 1998 Massachusetts Institute of Technology
41  *
42  * Permission to use, copy, modify, and distribute this software and
43  * its documentation for any purpose and without fee is hereby
44  * granted, provided that both the above copyright notice and this
45  * permission notice appear in all copies, that both the above
46  * copyright notice and this permission notice appear in all
47  * supporting documentation, and that the name of M.I.T. not be used
48  * in advertising or publicity pertaining to distribution of the
49  * software without specific, written prior permission.  M.I.T. makes
50  * no representations about the suitability of this software for any
51  * purpose.  It is provided "as is" without express or implied
52  * warranty.
53  *
54  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
55  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
56  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
57  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
58  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
61  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
62  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
68  * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
69  */
70 
71 /*
72  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.  Might be
73  * extended some day to also handle IEEE 802.1P priority tagging.  This is
74  * sort of sneaky in the implementation, since we need to pretend to be
75  * enough of an Ethernet implementation to make ARP work.  The way we do
76  * this is by telling everyone that we are an Ethernet interface, and then
77  * catch the packets that ether_output() left on our output queue when it
78  * calls if_start(), rewrite them for use by the real outgoing interface,
79  * and ask it to send them.
80  *
81  * TODO:
82  *
83  *	- Need some way to notify vlan interfaces when the parent
84  *	  interface changes MTU.
85  */
86 
87 #include <sys/cdefs.h>
88 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.34 2002/06/11 06:00:57 pooka Exp $");
89 
90 #include "opt_inet.h"
91 #include "bpfilter.h"
92 
93 #include <sys/param.h>
94 #include <sys/kernel.h>
95 #include <sys/mbuf.h>
96 #include <sys/queue.h>
97 #include <sys/socket.h>
98 #include <sys/sockio.h>
99 #include <sys/systm.h>
100 #include <sys/proc.h>
101 
102 #if NBPFILTER > 0
103 #include <net/bpf.h>
104 #endif
105 #include <net/if.h>
106 #include <net/if_dl.h>
107 #include <net/if_types.h>
108 #include <net/if_ether.h>
109 #include <net/if_vlanvar.h>
110 
111 #ifdef INET
112 #include <netinet/in.h>
113 #include <netinet/if_inarp.h>
114 #endif
115 
116 struct vlan_mc_entry {
117 	LIST_ENTRY(vlan_mc_entry)	mc_entries;
118 	/*
119 	 * A key to identify this entry.  The mc_addr below can't be
120 	 * used since multiple sockaddr may mapped into the same
121 	 * ether_multi (e.g., AF_UNSPEC).
122 	 */
123 	union {
124 		struct ether_multi	*mcu_enm;
125 	} mc_u;
126 	struct sockaddr_storage		mc_addr;
127 };
128 
129 #define	mc_enm		mc_u.mcu_enm
130 
131 struct ifvlan {
132 	union {
133 		struct ethercom ifvu_ec;
134 	} ifv_u;
135 	struct ifnet *ifv_p;	/* parent interface of this vlan */
136 	struct ifv_linkmib {
137 		const struct vlan_multisw *ifvm_msw;
138 		int	ifvm_encaplen;	/* encapsulation length */
139 		int	ifvm_mtufudge;	/* MTU fudged by this much */
140 		int	ifvm_mintu;	/* min transmission unit */
141 		u_int16_t ifvm_proto;	/* encapsulation ethertype */
142 		u_int16_t ifvm_tag;	/* tag to apply on packets */
143 	} ifv_mib;
144 	LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
145 	LIST_ENTRY(ifvlan) ifv_list;
146 	int ifv_flags;
147 };
148 
149 #define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
150 
151 #define	ifv_ec		ifv_u.ifvu_ec
152 
153 #define	ifv_if		ifv_ec.ec_if
154 
155 #define	ifv_msw		ifv_mib.ifvm_msw
156 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
157 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
158 #define	ifv_mintu	ifv_mib.ifvm_mintu
159 #define	ifv_tag		ifv_mib.ifvm_tag
160 
161 struct vlan_multisw {
162 	int	(*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
163 	int	(*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
164 	void	(*vmsw_purgemulti)(struct ifvlan *);
165 };
166 
167 static int	vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
168 static int	vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
169 static void	vlan_ether_purgemulti(struct ifvlan *);
170 
171 const struct vlan_multisw vlan_ether_multisw = {
172 	vlan_ether_addmulti,
173 	vlan_ether_delmulti,
174 	vlan_ether_purgemulti,
175 };
176 
177 static int	vlan_clone_create(struct if_clone *, int);
178 static void	vlan_clone_destroy(struct ifnet *);
179 static int	vlan_config(struct ifvlan *, struct ifnet *);
180 static int	vlan_ioctl(struct ifnet *, u_long, caddr_t);
181 static void	vlan_start(struct ifnet *);
182 static void	vlan_unconfig(struct ifnet *);
183 
184 void		vlanattach(int);
185 
186 /* XXX This should be a hash table with the tag as the basis of the key. */
187 static LIST_HEAD(, ifvlan) ifv_list;
188 
189 struct if_clone vlan_cloner =
190     IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
191 
192 void
193 vlanattach(int n)
194 {
195 
196 	LIST_INIT(&ifv_list);
197 	if_clone_attach(&vlan_cloner);
198 }
199 
200 static void
201 vlan_reset_linkname(struct ifnet *ifp)
202 {
203 
204 	/*
205 	 * We start out with a "802.1Q VLAN" type and zero-length
206 	 * addresses.  When we attach to a parent interface, we
207 	 * inherit its type, address length, address, and data link
208 	 * type.
209 	 */
210 
211 	ifp->if_type = IFT_L2VLAN;
212 	ifp->if_addrlen = 0;
213 	ifp->if_dlt = DLT_NULL;
214 	if_alloc_sadl(ifp);
215 }
216 
217 static int
218 vlan_clone_create(struct if_clone *ifc, int unit)
219 {
220 	struct ifvlan *ifv;
221 	struct ifnet *ifp;
222 	int s;
223 
224 	ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK);
225 	memset(ifv, 0, sizeof(struct ifvlan));
226 	ifp = &ifv->ifv_if;
227 	LIST_INIT(&ifv->ifv_mc_listhead);
228 
229 	s = splnet();
230 	LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
231 	splx(s);
232 
233 	sprintf(ifp->if_xname, "%s%d", ifc->ifc_name, unit);
234 	ifp->if_softc = ifv;
235 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
236 	ifp->if_start = vlan_start;
237 	ifp->if_ioctl = vlan_ioctl;
238 	IFQ_SET_READY(&ifp->if_snd);
239 
240 	if_attach(ifp);
241 	vlan_reset_linkname(ifp);
242 
243 	return (0);
244 }
245 
246 static void
247 vlan_clone_destroy(struct ifnet *ifp)
248 {
249 	struct ifvlan *ifv = ifp->if_softc;
250 	int s;
251 
252 	s = splnet();
253 	LIST_REMOVE(ifv, ifv_list);
254 	vlan_unconfig(ifp);
255 	splx(s);
256 
257 	if_detach(ifp);
258 	free(ifv, M_DEVBUF);
259 }
260 
261 /*
262  * Configure a VLAN interface.  Must be called at splnet().
263  */
264 static int
265 vlan_config(struct ifvlan *ifv, struct ifnet *p)
266 {
267 	struct ifnet *ifp = &ifv->ifv_if;
268 	int error;
269 
270 	if (ifv->ifv_p != NULL)
271 		return (EBUSY);
272 
273 	switch (p->if_type) {
274 	case IFT_ETHER:
275 	    {
276 		struct ethercom *ec = (void *) p;
277 
278 		ifv->ifv_msw = &vlan_ether_multisw;
279 		ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
280 		ifv->ifv_mintu = ETHERMIN;
281 
282 		/*
283 		 * If the parent supports the VLAN_MTU capability,
284 		 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
285 		 * enable it.
286 		 */
287 		if (ec->ec_nvlans++ == 0 &&
288 		    (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) {
289 			/*
290 			 * Enable Tx/Rx of VLAN-sized frames.
291 			 */
292 			ec->ec_capenable |= ETHERCAP_VLAN_MTU;
293 			if (p->if_flags & IFF_UP) {
294 				struct ifreq ifr;
295 
296 				ifr.ifr_flags = p->if_flags;
297 				error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
298 				    (caddr_t) &ifr);
299 				if (error) {
300 					if (ec->ec_nvlans-- == 1)
301 						ec->ec_capenable &=
302 						    ~ETHERCAP_VLAN_MTU;
303 					return (error);
304 				}
305 			}
306 			ifv->ifv_mtufudge = 0;
307 		} else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) {
308 			/*
309 			 * Fudge the MTU by the encapsulation size.  This
310 			 * makes us incompatible with strictly compliant
311 			 * 802.1Q implementations, but allows us to use
312 			 * the feature with other NetBSD implementations,
313 			 * which might still be useful.
314 			 */
315 			ifv->ifv_mtufudge = ifv->ifv_encaplen;
316 		}
317 
318 		/*
319 		 * If the parent interface can do hardware-assisted
320 		 * VLAN encapsulation, then propagate its hardware-
321 		 * assisted checksumming flags.
322 		 */
323 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
324 			ifp->if_capabilities = p->if_capabilities &
325 			    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|
326 			     IFCAP_CSUM_UDPv4|IFCAP_CSUM_TCPv6|
327 			     IFCAP_CSUM_UDPv6);
328 
329 		/*
330 		 * We inherit the parent's Ethernet address.
331 		 */
332 		ether_ifattach(ifp, LLADDR(p->if_sadl));
333 		ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
334 		break;
335 	    }
336 
337 	default:
338 		return (EPROTONOSUPPORT);
339 	}
340 
341 	ifv->ifv_p = p;
342 	ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
343 	ifv->ifv_if.if_flags = p->if_flags &
344 	    (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
345 
346 	/*
347 	 * Inherit the if_type from the parent.  This allows us
348 	 * to participate in bridges of that type.
349 	 */
350 	ifv->ifv_if.if_type = p->if_type;
351 
352 	return (0);
353 }
354 
355 /*
356  * Unconfigure a VLAN interface.  Must be called at splnet().
357  */
358 static void
359 vlan_unconfig(struct ifnet *ifp)
360 {
361 	struct ifvlan *ifv = ifp->if_softc;
362 
363 	if (ifv->ifv_p == NULL)
364 		return;
365 
366 	/*
367  	 * Since the interface is being unconfigured, we need to empty the
368 	 * list of multicast groups that we may have joined while we were
369 	 * alive and remove them from the parent's list also.
370 	 */
371 	(*ifv->ifv_msw->vmsw_purgemulti)(ifv);
372 
373 	/* Disconnect from parent. */
374 	switch (ifv->ifv_p->if_type) {
375 	case IFT_ETHER:
376 	    {
377 		struct ethercom *ec = (void *) ifv->ifv_p;
378 
379 		if (ec->ec_nvlans-- == 1) {
380 			/*
381 			 * Disable Tx/Rx of VLAN-sized frames.
382 			 */
383 			ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
384 			if (ifv->ifv_p->if_flags & IFF_UP) {
385 				struct ifreq ifr;
386 
387 				ifr.ifr_flags = ifv->ifv_p->if_flags;
388 				(void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
389 				    SIOCSIFFLAGS, (caddr_t) &ifr);
390 			}
391 		}
392 
393 		ether_ifdetach(ifp);
394 		vlan_reset_linkname(ifp);
395 		break;
396 	    }
397 
398 #ifdef DIAGNOSTIC
399 	default:
400 		panic("vlan_unconfig: impossible");
401 #endif
402 	}
403 
404 	ifv->ifv_p = NULL;
405 	ifv->ifv_if.if_mtu = 0;
406 	ifv->ifv_flags = 0;
407 
408 	if_down(ifp);
409 	ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
410 	ifp->if_capabilities = 0;
411 }
412 
413 /*
414  * Called when a parent interface is detaching; destroy any VLAN
415  * configuration for the parent interface.
416  */
417 void
418 vlan_ifdetach(struct ifnet *p)
419 {
420 	struct ifvlan *ifv;
421 	int s;
422 
423 	s = splnet();
424 
425 	for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
426 	     ifv = LIST_NEXT(ifv, ifv_list)) {
427 		if (ifv->ifv_p == p)
428 			vlan_unconfig(&ifv->ifv_if);
429 	}
430 
431 	splx(s);
432 }
433 
434 static int
435 vlan_set_promisc(struct ifnet *ifp)
436 {
437 	struct ifvlan *ifv = ifp->if_softc;
438 	int error = 0;
439 
440 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
441 		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
442 			error = ifpromisc(ifv->ifv_p, 1);
443 			if (error == 0)
444 				ifv->ifv_flags |= IFVF_PROMISC;
445 		}
446 	} else {
447 		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
448 			error = ifpromisc(ifv->ifv_p, 0);
449 			if (error == 0)
450 				ifv->ifv_flags &= ~IFVF_PROMISC;
451 		}
452 	}
453 
454 	return (error);
455 }
456 
457 static int
458 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
459 {
460 	struct proc *p = curproc;	/* XXX */
461 	struct ifvlan *ifv = ifp->if_softc;
462 	struct ifaddr *ifa = (struct ifaddr *) data;
463 	struct ifreq *ifr = (struct ifreq *) data;
464 	struct ifnet *pr;
465 	struct vlanreq vlr;
466 	struct sockaddr *sa;
467 	int s, error = 0;
468 
469 	s = splnet();
470 
471 	switch (cmd) {
472 	case SIOCSIFADDR:
473 		if (ifv->ifv_p != NULL) {
474 			ifp->if_flags |= IFF_UP;
475 
476 			switch (ifa->ifa_addr->sa_family) {
477 #ifdef INET
478 			case AF_INET:
479 				arp_ifinit(ifp, ifa);
480 				break;
481 #endif
482 			default:
483 				break;
484 			}
485 		} else {
486 			error = EINVAL;
487 		}
488 		break;
489 
490 	case SIOCGIFADDR:
491 		sa = (struct sockaddr *)&ifr->ifr_data;
492 		memcpy(sa->sa_data, LLADDR(ifp->if_sadl), ifp->if_addrlen);
493 		break;
494 
495 	case SIOCSIFMTU:
496 		if (ifv->ifv_p != NULL) {
497 			if (ifr->ifr_mtu >
498 			     (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
499 			    ifr->ifr_mtu <
500 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
501 				error = EINVAL;
502 			else
503 				ifp->if_mtu = ifr->ifr_mtu;
504 		} else
505 			error = EINVAL;
506 		break;
507 
508 	case SIOCSETVLAN:
509 		if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
510 			break;
511 		if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
512 			break;
513 		if (vlr.vlr_parent[0] == '\0') {
514 			vlan_unconfig(ifp);
515 			break;
516 		}
517 		if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
518 			error = EINVAL;		 /* check for valid tag */
519 			break;
520 		}
521 		if ((pr = ifunit(vlr.vlr_parent)) == 0) {
522 			error = ENOENT;
523 			break;
524 		}
525 		if ((error = vlan_config(ifv, pr)) != 0)
526 			break;
527 		ifv->ifv_tag = vlr.vlr_tag;
528 		ifp->if_flags |= IFF_RUNNING;
529 
530 		/* Update promiscuous mode, if necessary. */
531 		vlan_set_promisc(ifp);
532 		break;
533 
534 	case SIOCGETVLAN:
535 		memset(&vlr, 0, sizeof(vlr));
536 		if (ifv->ifv_p != NULL) {
537 			snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
538 			    ifv->ifv_p->if_xname);
539 			vlr.vlr_tag = ifv->ifv_tag;
540 		}
541 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
542 		break;
543 
544 	case SIOCSIFFLAGS:
545 		/*
546 		 * For promiscuous mode, we enable promiscuous mode on
547 		 * the parent if we need promiscuous on the VLAN interface.
548 		 */
549 		if (ifv->ifv_p != NULL)
550 			error = vlan_set_promisc(ifp);
551 		break;
552 
553 	case SIOCADDMULTI:
554 		error = (ifv->ifv_p != NULL) ?
555 		    (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
556 		break;
557 
558 	case SIOCDELMULTI:
559 		error = (ifv->ifv_p != NULL) ?
560 		    (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
561 		break;
562 
563 	default:
564 		error = EINVAL;
565 	}
566 
567 	splx(s);
568 
569 	return (error);
570 }
571 
572 static int
573 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
574 {
575 	struct vlan_mc_entry *mc;
576 	u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
577 	int error;
578 
579 	if (ifr->ifr_addr.sa_len > sizeof(struct sockaddr_storage))
580 		return (EINVAL);
581 
582 	error = ether_addmulti(ifr, &ifv->ifv_ec);
583 	if (error != ENETRESET)
584 		return (error);
585 
586 	/*
587 	 * This is new multicast address.  We have to tell parent
588 	 * about it.  Also, remember this multicast address so that
589 	 * we can delete them on unconfigure.
590 	 */
591 	MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry),
592 	    M_DEVBUF, M_NOWAIT);
593 	if (mc == NULL) {
594 		error = ENOMEM;
595 		goto alloc_failed;
596 	}
597 
598 	/*
599 	 * As ether_addmulti() returns ENETRESET, following two
600 	 * statement shouldn't fail.
601 	 */
602 	(void)ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi);
603 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
604 	memcpy(&mc->mc_addr, &ifr->ifr_addr, ifr->ifr_addr.sa_len);
605 	LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
606 
607 	error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI,
608 	    (caddr_t)ifr);
609 	if (error != 0)
610 		goto ioctl_failed;
611 	return (error);
612 
613  ioctl_failed:
614 	LIST_REMOVE(mc, mc_entries);
615 	FREE(mc, M_DEVBUF);
616  alloc_failed:
617 	(void)ether_delmulti(ifr, &ifv->ifv_ec);
618 	return (error);
619 }
620 
621 static int
622 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
623 {
624 	struct ether_multi *enm;
625 	struct vlan_mc_entry *mc;
626 	u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
627 	int error;
628 
629 	/*
630 	 * Find a key to lookup vlan_mc_entry.  We have to do this
631 	 * before calling ether_delmulti for obvious reason.
632 	 */
633 	if ((error = ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi)) != 0)
634 		return (error);
635 	ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
636 
637 	error = ether_delmulti(ifr, &ifv->ifv_ec);
638 	if (error != ENETRESET)
639 		return (error);
640 
641 	/* We no longer use this multicast address.  Tell parent so. */
642 	error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI,
643 	    (caddr_t)ifr);
644 	if (error == 0) {
645 		/* And forget about this address. */
646 		for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
647 		    mc = LIST_NEXT(mc, mc_entries)) {
648 			if (mc->mc_enm == enm) {
649 				LIST_REMOVE(mc, mc_entries);
650 				FREE(mc, M_DEVBUF);
651 				break;
652 			}
653 		}
654 		KASSERT(mc != NULL);
655 	} else
656 		(void)ether_addmulti(ifr, &ifv->ifv_ec);
657 	return (error);
658 }
659 
660 /*
661  * Delete any multicast address we have asked to add from parent
662  * interface.  Called when the vlan is being unconfigured.
663  */
664 static void
665 vlan_ether_purgemulti(struct ifvlan *ifv)
666 {
667 	struct ifnet *ifp = ifv->ifv_p;		/* Parent. */
668 	struct vlan_mc_entry *mc;
669 	union {
670 		struct ifreq ifreq;
671 		struct {
672 			char ifr_name[IFNAMSIZ];
673 			struct sockaddr_storage ifr_ss;
674 		} ifreq_storage;
675 	} ifreq;
676 	struct ifreq *ifr = &ifreq.ifreq;
677 
678 	memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
679 	while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
680 		memcpy(&ifr->ifr_addr, &mc->mc_addr, mc->mc_addr.ss_len);
681 		(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)ifr);
682 		LIST_REMOVE(mc, mc_entries);
683 		FREE(mc, M_DEVBUF);
684 	}
685 }
686 
687 static void
688 vlan_start(struct ifnet *ifp)
689 {
690 	struct ifvlan *ifv = ifp->if_softc;
691 	struct ifnet *p = ifv->ifv_p;
692 	struct ethercom *ec = (void *) ifv->ifv_p;
693 	struct mbuf *m;
694 	int error;
695 	ALTQ_DECL(struct altq_pktattr pktattr;)
696 
697 	ifp->if_flags |= IFF_OACTIVE;
698 
699 	for (;;) {
700 		IFQ_DEQUEUE(&ifp->if_snd, m);
701 		if (m == NULL)
702 			break;
703 
704 #ifdef ALTQ
705 		/*
706 		 * If ALTQ is enabled on the parent interface, do
707 		 * classification; the queueing discipline might
708 		 * not require classification, but might require
709 		 * the address family/header pointer in the pktattr.
710 		 */
711 		if (ALTQ_IS_ENABLED(&p->if_snd)) {
712 			switch (p->if_type) {
713 			case IFT_ETHER:
714 				altq_etherclassify(&p->if_snd, m, &pktattr);
715 				break;
716 #ifdef DIAGNOSTIC
717 			default:
718 				panic("vlan_start: impossible (altq)");
719 #endif
720 			}
721 		}
722 #endif /* ALTQ */
723 
724 #if NBPFILTER > 0
725 		if (ifp->if_bpf)
726 			bpf_mtap(ifp->if_bpf, m);
727 #endif
728 		/*
729 		 * If the parent can insert the tag itself, just mark
730 		 * the tag in the mbuf header.
731 		 */
732 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
733 			struct mbuf *n;
734 			n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
735 			if (n == NULL) {
736 				ifp->if_oerrors++;
737 				m_freem(m);
738 				continue;
739 			}
740 			*mtod(n, int *) = ifv->ifv_tag;
741 			n->m_len = sizeof(int);
742 		} else {
743 			/*
744 			 * insert the tag ourselves
745 			 */
746 			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
747 			if (m == NULL) {
748 				printf("%s: unable to prepend encap header",
749 				    ifv->ifv_p->if_xname);
750 				ifp->if_oerrors++;
751 				continue;
752 			}
753 
754 			switch (p->if_type) {
755 			case IFT_ETHER:
756 			    {
757 				struct ether_vlan_header *evl;
758 
759 				if (m->m_len < sizeof(struct ether_vlan_header))
760 					m = m_pullup(m,
761 					    sizeof(struct ether_vlan_header));
762 				if (m == NULL) {
763 					printf("%s: unable to pullup encap "
764 					    "header", ifv->ifv_p->if_xname);
765 					ifp->if_oerrors++;
766 					continue;
767 				}
768 
769 				/*
770 				 * Transform the Ethernet header into an
771 				 * Ethernet header with 802.1Q encapsulation.
772 				 */
773 				memmove(mtod(m, caddr_t),
774 				    mtod(m, caddr_t) + ifv->ifv_encaplen,
775 				    sizeof(struct ether_header));
776 				evl = mtod(m, struct ether_vlan_header *);
777 				evl->evl_proto = evl->evl_encap_proto;
778 				evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
779 				evl->evl_tag = htons(ifv->ifv_tag);
780 				break;
781 			    }
782 
783 #ifdef DIAGNOSTIC
784 			default:
785 				panic("vlan_start: impossible");
786 #endif
787 			}
788 		}
789 
790 		/*
791 		 * Send it, precisely as the parent's output routine
792 		 * would have.  We are already running at splnet.
793 		 */
794 		IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error);
795 		if (error) {
796 			/* mbuf is already freed */
797 			ifp->if_oerrors++;
798 			continue;
799 		}
800 
801 		ifp->if_opackets++;
802 		if ((p->if_flags & IFF_OACTIVE) == 0)
803 			(*p->if_start)(p);
804 	}
805 
806 	ifp->if_flags &= ~IFF_OACTIVE;
807 }
808 
809 /*
810  * Given an Ethernet frame, find a valid vlan interface corresponding to the
811  * given source interface and tag, then run the the real packet through
812  * the parent's input routine.
813  */
814 void
815 vlan_input(struct ifnet *ifp, struct mbuf *m)
816 {
817 	struct ifvlan *ifv;
818 	u_int tag;
819 	struct mbuf *n;
820 
821 	n = m_aux_find(m, AF_LINK, ETHERTYPE_VLAN);
822 	if (n) {
823 		/* m contains a normal ethernet frame, the tag is in m_aux */
824 		tag = *mtod(n, int *);
825 		m_aux_delete(m, n);
826 		for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
827 		    ifv = LIST_NEXT(ifv, ifv_list))
828 			if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
829 				break;
830 	} else {
831 		switch (ifp->if_type) {
832 		case IFT_ETHER:
833 		    {
834 			struct ether_vlan_header *evl;
835 
836 			if (m->m_len < sizeof(struct ether_vlan_header) &&
837 			    (m = m_pullup(m,
838 			     sizeof(struct ether_vlan_header))) == NULL) {
839 				printf("%s: no memory for VLAN header, "
840 				    "dropping packet.\n", ifp->if_xname);
841 				return;
842 			}
843 			evl = mtod(m, struct ether_vlan_header *);
844 			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
845 
846 			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
847 
848 			/*
849 			 * Restore the original ethertype.  We'll remove
850 			 * the encapsulation after we've found the vlan
851 			 * interface corresponding to the tag.
852 			 */
853 			evl->evl_encap_proto = evl->evl_proto;
854 			break;
855 		    }
856 
857 		default:
858 			tag = (u_int) -1;	/* XXX GCC */
859 #ifdef DIAGNOSTIC
860 			panic("vlan_input: impossible");
861 #endif
862 		}
863 
864 		for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
865 		     ifv = LIST_NEXT(ifv, ifv_list))
866 			if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
867 				break;
868 
869 
870 		/*
871 		 * Now, remove the encapsulation header.  The original
872 		 * header has already been fixed up above.
873 		 */
874 		if (ifv) {
875 			memmove(mtod(m, caddr_t) + ifv->ifv_encaplen,
876 			    mtod(m, caddr_t), sizeof(struct ether_header));
877 			m_adj(m, ifv->ifv_encaplen);
878 		}
879 	}
880 
881 	if (ifv == NULL ||
882 	    (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
883 	     (IFF_UP|IFF_RUNNING)) {
884 		m_free(m);
885 		ifp->if_noproto++;
886 		return;
887 	}
888 	m->m_pkthdr.rcvif = &ifv->ifv_if;
889 	ifv->ifv_if.if_ipackets++;
890 
891 #if NBPFILTER > 0
892 	if (ifv->ifv_if.if_bpf)
893 		bpf_mtap(ifv->ifv_if.if_bpf, m);
894 #endif
895 
896 	/* Pass it back through the parent's input routine. */
897 	(*ifp->if_input)(&ifv->ifv_if, m);
898 }
899