xref: /netbsd/sys/net/zlib.c (revision bf9ec67e)
1 /*	$NetBSD: zlib.c,v 1.18 2002/05/07 09:14:20 tron Exp $	*/
2 /*
3  * This file is derived from various .h and .c files from the zlib-1.0.4
4  * distribution by Jean-loup Gailly and Mark Adler, with some additions
5  * by Paul Mackerras to aid in implementing Deflate compression and
6  * decompression for PPP packets.  See zlib.h for conditions of
7  * distribution and use.
8  *
9  * Changes that have been made include:
10  * - added Z_PACKET_FLUSH (see zlib.h for details)
11  * - added inflateIncomp and deflateOutputPending
12  * - allow strm->next_out to be NULL, meaning discard the output
13  *
14  * $Id: zlib.c,v 1.18 2002/05/07 09:14:20 tron Exp $
15  */
16 
17 /*
18  *  ==FILEVERSION 020312==
19  *
20  * This marker is used by the Linux installation script to determine
21  * whether an up-to-date version of this file is already installed.
22  */
23 
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: zlib.c,v 1.18 2002/05/07 09:14:20 tron Exp $");
26 
27 #define NO_DUMMY_DECL
28 #define NO_ZCFUNCS
29 #define MY_ZCALLOC
30 
31 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
32 #define inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
33 #endif
34 
35 
36 /* +++ zutil.h */
37 
38 /* zutil.h -- internal interface and configuration of the compression library
39  * Copyright (C) 1995-2002 Jean-loup Gailly.
40  * For conditions of distribution and use, see copyright notice in zlib.h
41  */
42 
43 /* WARNING: this file should *not* be used by applications. It is
44    part of the implementation of the compression library and is
45    subject to change. Applications should only use zlib.h.
46  */
47 
48 /* @(#) $Id: zlib.c,v 1.18 2002/05/07 09:14:20 tron Exp $ */
49 
50 #ifndef _Z_UTIL_H
51 #define _Z_UTIL_H
52 
53 #include "zlib.h"
54 
55 #if defined(KERNEL) || defined(_KERNEL)
56 /* Assume this is a *BSD or SVR4 kernel */
57 #include <sys/param.h>
58 #include <sys/time.h>
59 #include <sys/systm.h>
60 #  define HAVE_MEMCPY
61 #else
62 #if defined(__KERNEL__)
63 /* Assume this is a Linux kernel */
64 #include <linux/string.h>
65 #define HAVE_MEMCPY
66 
67 #else /* not kernel */
68 
69 #if defined(__NetBSD__) && (defined(_KERNEL) || defined(_STANDALONE))
70 
71 /* XXX doesn't seem to need anything at all, but this is for consistency. */
72 #  include <lib/libkern/libkern.h>
73 
74 #else
75 #ifdef STDC
76 #  include <stddef.h>
77 #  include <string.h>
78 #  include <stdlib.h>
79 #endif
80 #ifdef NO_ERRNO_H
81     extern int errno;
82 #else
83 #   include <errno.h>
84 #endif
85 #endif /* __NetBSD__ && _STANDALONE */
86 #endif /* __KERNEL__ */
87 #endif /* _KERNEL || KERNEL */
88 
89 
90 #ifndef local
91 #  define local static
92 #endif
93 /* compile with -Dlocal if your debugger can't find static symbols */
94 
95 typedef unsigned char  uch;
96 typedef uch FAR uchf;
97 typedef unsigned short ush;
98 typedef ush FAR ushf;
99 typedef unsigned long  ulg;
100 
101 extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
102 /* (size given to avoid silly warnings with Visual C++) */
103 
104 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
105 
106 #define ERR_RETURN(strm,err) \
107   return (strm->msg = (char*)ERR_MSG(err), (err))
108 /* To be used only when the state is known to be valid */
109 
110         /* common constants */
111 
112 #ifndef DEF_WBITS
113 #  define DEF_WBITS MAX_WBITS
114 #endif
115 /* default windowBits for decompression. MAX_WBITS is for compression only */
116 
117 #if MAX_MEM_LEVEL >= 8
118 #  define DEF_MEM_LEVEL 8
119 #else
120 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
121 #endif
122 /* default memLevel */
123 
124 #define STORED_BLOCK 0
125 #define STATIC_TREES 1
126 #define DYN_TREES    2
127 /* The three kinds of block type */
128 
129 #define MIN_MATCH  3
130 #define MAX_MATCH  258
131 /* The minimum and maximum match lengths */
132 
133 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
134 
135         /* target dependencies */
136 
137 #ifdef MSDOS
138 #  define OS_CODE  0x00
139 #  if defined(__TURBOC__) || defined(__BORLANDC__)
140 #    if(__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__))
141        /* Allow compilation with ANSI keywords only enabled */
142        void _Cdecl farfree( void *block );
143        void *_Cdecl farmalloc( unsigned long nbytes );
144 #    else
145 #     include <alloc.h>
146 #    endif
147 #  else /* MSC or DJGPP */
148 #    include <malloc.h>
149 #  endif
150 #endif
151 
152 #ifdef OS2
153 #  define OS_CODE  0x06
154 #endif
155 
156 #ifdef WIN32 /* Window 95 & Windows NT */
157 #  define OS_CODE  0x0b
158 #endif
159 
160 #if defined(VAXC) || defined(VMS)
161 #  define OS_CODE  0x02
162 #  define F_OPEN(name, mode) \
163      fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
164 #endif
165 
166 #ifdef AMIGA
167 #  define OS_CODE  0x01
168 #endif
169 
170 #if defined(ATARI) || defined(atarist)
171 #  define OS_CODE  0x05
172 #endif
173 
174 #if defined(MACOS) || defined(TARGET_OS_MAC)
175 #  define OS_CODE  0x07
176 #  if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
177 #    include <unix.h> /* for fdopen */
178 #  else
179 #    ifndef fdopen
180 #      define fdopen(fd,mode) NULL /* No fdopen() */
181 #    endif
182 #  endif
183 #endif
184 
185 #ifdef __50SERIES /* Prime/PRIMOS */
186 #  define OS_CODE  0x0F
187 #endif
188 
189 #ifdef TOPS20
190 #  define OS_CODE  0x0a
191 #endif
192 
193 #if defined(_BEOS_) || defined(RISCOS)
194 #  define fdopen(fd,mode) NULL /* No fdopen() */
195 #endif
196 
197 #if (defined(_MSC_VER) && (_MSC_VER > 600))
198 #  define fdopen(fd,type)  _fdopen(fd,type)
199 #endif
200 
201 
202         /* Common defaults */
203 
204 #ifndef OS_CODE
205 #  define OS_CODE  0x03  /* assume Unix */
206 #endif
207 
208 #ifndef F_OPEN
209 #  define F_OPEN(name, mode) fopen((name), (mode))
210 #endif
211 
212          /* functions */
213 
214 #ifdef HAVE_STRERROR
215    extern char *strerror __P((int));
216 #  define zstrerror(errnum) strerror(errnum)
217 #else
218 #  define zstrerror(errnum) ""
219 #endif
220 
221 #if defined(pyr)
222 #  define NO_MEMCPY
223 #endif
224 #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__)
225  /* Use our own functions for small and medium model with MSC <= 5.0.
226   * You may have to use the same strategy for Borland C (untested).
227   * The __SC__ check is for Symantec.
228   */
229 #  define NO_MEMCPY
230 #endif
231 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
232 #  define HAVE_MEMCPY
233 #endif
234 #ifdef HAVE_MEMCPY
235 #  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
236 #    define zmemcpy _fmemcpy
237 #    define zmemcmp _fmemcmp
238 #    define zmemzero(dest, len) _fmemset(dest, 0, len)
239 #  else
240 #    define zmemcpy memcpy
241 #    define zmemcmp memcmp
242 #    define zmemzero(dest, len) memset(dest, 0, len)
243 #  endif
244 #else
245    extern void zmemcpy  __P((Bytef* dest, const Bytef* source, uInt len));
246    extern int  zmemcmp  __P((const Bytef* s1, const Bytef* s2, uInt len));
247    extern void zmemzero __P((Bytef* dest, uInt len));
248 #endif
249 
250 /* Diagnostic functions */
251 #if defined(DEBUG_ZLIB) && !defined(_KERNEL) && !defined(_STANDALONE)
252 #  include <stdio.h>
253    extern int z_verbose;
254    extern void z_error    __P((char *m));
255 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
256 #  define Trace(x) {if (z_verbose>=0) fprintf x ;}
257 #  define Tracev(x) {if (z_verbose>0) fprintf x ;}
258 #  define Tracevv(x) {if (z_verbose>1) fprintf x ;}
259 #  define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;}
260 #  define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;}
261 #else
262 #  define Assert(cond,msg)
263 #  define Trace(x)
264 #  define Tracev(x)
265 #  define Tracevv(x)
266 #  define Tracec(c,x)
267 #  define Tracecv(c,x)
268 #endif
269 
270 
271 typedef uLong (ZEXPORT *check_func) __P((uLong check, const Bytef *buf,
272 				       uInt len));
273 voidpf zcalloc __P((voidpf opaque, unsigned items, unsigned size));
274 void   zcfree  __P((voidpf opaque, voidpf ptr));
275 
276 #define ZALLOC(strm, items, size) \
277            (*((strm)->zalloc))((strm)->opaque, (items), (size))
278 #define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
279 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
280 
281 #endif /* _Z_UTIL_H */
282 /* --- zutil.h */
283 
284 /* +++ deflate.h */
285 
286 /* deflate.h -- internal compression state
287  * Copyright (C) 1995-2002 Jean-loup Gailly
288  * For conditions of distribution and use, see copyright notice in zlib.h
289  */
290 
291 /* WARNING: this file should *not* be used by applications. It is
292    part of the implementation of the compression library and is
293    subject to change. Applications should only use zlib.h.
294  */
295 
296 /* @(#) $Id: zlib.c,v 1.18 2002/05/07 09:14:20 tron Exp $ */
297 
298 #ifndef _DEFLATE_H
299 #define _DEFLATE_H
300 
301 /* #include "zutil.h" */
302 
303 /* ===========================================================================
304  * Internal compression state.
305  */
306 
307 #define LENGTH_CODES 29
308 /* number of length codes, not counting the special END_BLOCK code */
309 
310 #define LITERALS  256
311 /* number of literal bytes 0..255 */
312 
313 #define L_CODES (LITERALS+1+LENGTH_CODES)
314 /* number of Literal or Length codes, including the END_BLOCK code */
315 
316 #define D_CODES   30
317 /* number of distance codes */
318 
319 #define BL_CODES  19
320 /* number of codes used to transfer the bit lengths */
321 
322 #define HEAP_SIZE (2*L_CODES+1)
323 /* maximum heap size */
324 
325 #define MAX_BITS 15
326 /* All codes must not exceed MAX_BITS bits */
327 
328 #define INIT_STATE    42
329 #define BUSY_STATE   113
330 #define FINISH_STATE 666
331 /* Stream status */
332 
333 
334 /* Data structure describing a single value and its code string. */
335 typedef struct ct_data_s {
336     union {
337         ush  freq;       /* frequency count */
338         ush  code;       /* bit string */
339     } fc;
340     union {
341         ush  dad;        /* father node in Huffman tree */
342         ush  len;        /* length of bit string */
343     } dl;
344 } FAR ct_data;
345 
346 #define Freq fc.freq
347 #define Code fc.code
348 #define Dad  dl.dad
349 #define Len  dl.len
350 
351 typedef struct static_tree_desc_s  static_tree_desc;
352 
353 typedef struct tree_desc_s {
354     ct_data *dyn_tree;           /* the dynamic tree */
355     int     max_code;            /* largest code with non zero frequency */
356     static_tree_desc *stat_desc; /* the corresponding static tree */
357 } FAR tree_desc;
358 
359 typedef ush Pos;
360 typedef Pos FAR Posf;
361 typedef unsigned IPos;
362 
363 /* A Pos is an index in the character window. We use short instead of int to
364  * save space in the various tables. IPos is used only for parameter passing.
365  */
366 
367 typedef struct deflate_state {
368     z_streamp strm;      /* pointer back to this zlib stream */
369     int   status;        /* as the name implies */
370     Bytef *pending_buf;  /* output still pending */
371     ulg   pending_buf_size; /* size of pending_buf */
372     Bytef *pending_out;  /* next pending byte to output to the stream */
373     int   pending;       /* nb of bytes in the pending buffer */
374     int   noheader;      /* suppress zlib header and adler32 */
375     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
376     Byte  method;        /* STORED (for zip only) or DEFLATED */
377     int   last_flush;    /* value of flush param for previous deflate call */
378 
379                 /* used by deflate.c: */
380 
381     uInt  w_size;        /* LZ77 window size (32K by default) */
382     uInt  w_bits;        /* log2(w_size)  (8..16) */
383     uInt  w_mask;        /* w_size - 1 */
384 
385     Bytef *window;
386     /* Sliding window. Input bytes are read into the second half of the window,
387      * and move to the first half later to keep a dictionary of at least wSize
388      * bytes. With this organization, matches are limited to a distance of
389      * wSize-MAX_MATCH bytes, but this ensures that IO is always
390      * performed with a length multiple of the block size. Also, it limits
391      * the window size to 64K, which is quite useful on MSDOS.
392      * To do: use the user input buffer as sliding window.
393      */
394 
395     ulg window_size;
396     /* Actual size of window: 2*wSize, except when the user input buffer
397      * is directly used as sliding window.
398      */
399 
400     Posf *prev;
401     /* Link to older string with same hash index. To limit the size of this
402      * array to 64K, this link is maintained only for the last 32K strings.
403      * An index in this array is thus a window index modulo 32K.
404      */
405 
406     Posf *head; /* Heads of the hash chains or NIL. */
407 
408     uInt  ins_h;          /* hash index of string to be inserted */
409     uInt  hash_size;      /* number of elements in hash table */
410     uInt  hash_bits;      /* log2(hash_size) */
411     uInt  hash_mask;      /* hash_size-1 */
412 
413     uInt  hash_shift;
414     /* Number of bits by which ins_h must be shifted at each input
415      * step. It must be such that after MIN_MATCH steps, the oldest
416      * byte no longer takes part in the hash key, that is:
417      *   hash_shift * MIN_MATCH >= hash_bits
418      */
419 
420     long block_start;
421     /* Window position at the beginning of the current output block. Gets
422      * negative when the window is moved backwards.
423      */
424 
425     uInt match_length;           /* length of best match */
426     IPos prev_match;             /* previous match */
427     int match_available;         /* set if previous match exists */
428     uInt strstart;               /* start of string to insert */
429     uInt match_start;            /* start of matching string */
430     uInt lookahead;              /* number of valid bytes ahead in window */
431 
432     uInt prev_length;
433     /* Length of the best match at previous step. Matches not greater than this
434      * are discarded. This is used in the lazy match evaluation.
435      */
436 
437     uInt max_chain_length;
438     /* To speed up deflation, hash chains are never searched beyond this
439      * length.  A higher limit improves compression ratio but degrades the
440      * speed.
441      */
442 
443     uInt max_lazy_match;
444     /* Attempt to find a better match only when the current match is strictly
445      * smaller than this value. This mechanism is used only for compression
446      * levels >= 4.
447      */
448 #   define max_insert_length  max_lazy_match
449     /* Insert new strings in the hash table only if the match length is not
450      * greater than this length. This saves time but degrades compression.
451      * max_insert_length is used only for compression levels <= 3.
452      */
453 
454     int level;    /* compression level (1..9) */
455     int strategy; /* favor or force Huffman coding*/
456 
457     uInt good_match;
458     /* Use a faster search when the previous match is longer than this */
459 
460     int nice_match; /* Stop searching when current match exceeds this */
461 
462                 /* used by trees.c: */
463     /* Didn't use ct_data typedef below to supress compiler warning */
464     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
465     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
466     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
467 
468     struct tree_desc_s l_desc;               /* desc. for literal tree */
469     struct tree_desc_s d_desc;               /* desc. for distance tree */
470     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
471 
472     ush bl_count[MAX_BITS+1];
473     /* number of codes at each bit length for an optimal tree */
474 
475     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
476     int heap_len;               /* number of elements in the heap */
477     int heap_max;               /* element of largest frequency */
478     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
479      * The same heap array is used to build all trees.
480      */
481 
482     uch depth[2*L_CODES+1];
483     /* Depth of each subtree used as tie breaker for trees of equal frequency
484      */
485 
486     uchf *l_buf;          /* buffer for literals or lengths */
487 
488     uInt  lit_bufsize;
489     /* Size of match buffer for literals/lengths.  There are 4 reasons for
490      * limiting lit_bufsize to 64K:
491      *   - frequencies can be kept in 16 bit counters
492      *   - if compression is not successful for the first block, all input
493      *     data is still in the window so we can still emit a stored block even
494      *     when input comes from standard input.  (This can also be done for
495      *     all blocks if lit_bufsize is not greater than 32K.)
496      *   - if compression is not successful for a file smaller than 64K, we can
497      *     even emit a stored file instead of a stored block (saving 5 bytes).
498      *     This is applicable only for zip (not gzip or zlib).
499      *   - creating new Huffman trees less frequently may not provide fast
500      *     adaptation to changes in the input data statistics. (Take for
501      *     example a binary file with poorly compressible code followed by
502      *     a highly compressible string table.) Smaller buffer sizes give
503      *     fast adaptation but have of course the overhead of transmitting
504      *     trees more frequently.
505      *   - I can't count above 4
506      */
507 
508     uInt last_lit;      /* running index in l_buf */
509 
510     ushf *d_buf;
511     /* Buffer for distances. To simplify the code, d_buf and l_buf have
512      * the same number of elements. To use different lengths, an extra flag
513      * array would be necessary.
514      */
515 
516     ulg opt_len;        /* bit length of current block with optimal trees */
517     ulg static_len;     /* bit length of current block with static trees */
518     uInt matches;       /* number of string matches in current block */
519     int last_eob_len;   /* bit length of EOB code for last block */
520 
521 #ifdef DEBUG_ZLIB
522     ulg compressed_len; /* total bit length of compressed file mod 2^32 */
523     ulg bits_sent;      /* bit length of compressed data sent mod 2^32 */
524 #endif
525 
526     ush bi_buf;
527     /* Output buffer. bits are inserted starting at the bottom (least
528      * significant bits).
529      */
530     int bi_valid;
531     /* Number of valid bits in bi_buf.  All bits above the last valid bit
532      * are always zero.
533      */
534 
535 } FAR deflate_state;
536 
537 /* Output a byte on the stream.
538  * IN assertion: there is enough room in pending_buf.
539  */
540 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
541 
542 
543 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
544 /* Minimum amount of lookahead, except at the end of the input file.
545  * See deflate.c for comments about the MIN_MATCH+1.
546  */
547 
548 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
549 /* In order to simplify the code, particularly on 16 bit machines, match
550  * distances are limited to MAX_DIST instead of WSIZE.
551  */
552 
553         /* in trees.c */
554 void _tr_init         __P((deflate_state *s));
555 int  _tr_tally        __P((deflate_state *s, unsigned dist, unsigned lc));
556 void _tr_flush_block  __P((deflate_state *s, charf *buf, ulg stored_len,
557 			  int eof));
558 void _tr_align        __P((deflate_state *s));
559 void _tr_stored_block __P((deflate_state *s, charf *buf, ulg stored_len,
560                           int eof));
561 void _tr_stored_type_only __P((deflate_state *));
562 
563 #define d_code(dist) \
564    ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
565 /* Mapping from a distance to a distance code. dist is the distance - 1 and
566  * must not have side effects. _dist_code[256] and _dist_code[257] are never
567  * used.
568  */
569 
570 #ifndef DEBUG_ZLIB
571 /* Inline versions of _tr_tally for speed: */
572 
573 #if defined(GEN_TREES_H) || !defined(STDC)
574   extern uch _length_code[];
575   extern uch _dist_code[];
576 #else
577   extern const uch _length_code[];
578   extern const uch _dist_code[];
579 #endif
580 
581 # define _tr_tally_lit(s, c, flush) \
582   { uch cc = (c); \
583     s->d_buf[s->last_lit] = 0; \
584     s->l_buf[s->last_lit++] = cc; \
585     s->dyn_ltree[cc].Freq++; \
586     flush = (s->last_lit == s->lit_bufsize-1); \
587    }
588 # define _tr_tally_dist(s, distance, length, flush) \
589   { uch len = (length); \
590     ush dist = (distance); \
591     s->d_buf[s->last_lit] = dist; \
592     s->l_buf[s->last_lit++] = len; \
593     dist--; \
594     s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
595     s->dyn_dtree[d_code(dist)].Freq++; \
596     flush = (s->last_lit == s->lit_bufsize-1); \
597   }
598 #else
599 # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
600 # define _tr_tally_dist(s, distance, length, flush) \
601               flush = _tr_tally(s, distance, length)
602 #endif
603 
604 #endif
605 /* --- deflate.h */
606 
607 /* +++ deflate.c */
608 
609 /* deflate.c -- compress data using the deflation algorithm
610  * Copyright (C) 1995-2002 Jean-loup Gailly.
611  * For conditions of distribution and use, see copyright notice in zlib.h
612  */
613 
614 /*
615  *  ALGORITHM
616  *
617  *      The "deflation" process depends on being able to identify portions
618  *      of the input text which are identical to earlier input (within a
619  *      sliding window trailing behind the input currently being processed).
620  *
621  *      The most straightforward technique turns out to be the fastest for
622  *      most input files: try all possible matches and select the longest.
623  *      The key feature of this algorithm is that insertions into the string
624  *      dictionary are very simple and thus fast, and deletions are avoided
625  *      completely. Insertions are performed at each input character, whereas
626  *      string matches are performed only when the previous match ends. So it
627  *      is preferable to spend more time in matches to allow very fast string
628  *      insertions and avoid deletions. The matching algorithm for small
629  *      strings is inspired from that of Rabin & Karp. A brute force approach
630  *      is used to find longer strings when a small match has been found.
631  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
632  *      (by Leonid Broukhis).
633  *         A previous version of this file used a more sophisticated algorithm
634  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
635  *      time, but has a larger average cost, uses more memory and is patented.
636  *      However the F&G algorithm may be faster for some highly redundant
637  *      files if the parameter max_chain_length (described below) is too large.
638  *
639  *  ACKNOWLEDGEMENTS
640  *
641  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
642  *      I found it in 'freeze' written by Leonid Broukhis.
643  *      Thanks to many people for bug reports and testing.
644  *
645  *  REFERENCES
646  *
647  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
648  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
649  *
650  *      A description of the Rabin and Karp algorithm is given in the book
651  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
652  *
653  *      Fiala,E.R., and Greene,D.H.
654  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
655  *
656  */
657 
658 /* @(#) $Id: zlib.c,v 1.18 2002/05/07 09:14:20 tron Exp $ */
659 
660 /* #include "deflate.h" */
661 
662 const char deflate_copyright[] =
663    " deflate 1.1.4 Copyright 1995-2002 Jean-loup Gailly ";
664 /*
665   If you use the zlib library in a product, an acknowledgment is welcome
666   in the documentation of your product. If for some reason you cannot
667   include such an acknowledgment, I would appreciate that you keep this
668   copyright string in the executable of your product.
669  */
670 
671 /* ===========================================================================
672  *  Function prototypes.
673  */
674 typedef enum {
675     need_more,      /* block not completed, need more input or more output */
676     block_done,     /* block flush performed */
677     finish_started, /* finish started, need only more output at next deflate */
678     finish_done     /* finish done, accept no more input or output */
679 } block_state;
680 
681 typedef block_state (*compress_func) __P((deflate_state *s, int flush));
682 /* Compression function. Returns the block state after the call. */
683 
684 local void fill_window    __P((deflate_state *s));
685 local block_state deflate_stored __P((deflate_state *s, int flush));
686 local block_state deflate_fast   __P((deflate_state *s, int flush));
687 local block_state deflate_slow   __P((deflate_state *s, int flush));
688 local void lm_init        __P((deflate_state *s));
689 local void putShortMSB    __P((deflate_state *s, uInt b));
690 local void flush_pending  __P((z_streamp strm));
691 local int read_buf        __P((z_streamp strm, Bytef *buf, unsigned size));
692 #ifdef ASMV
693       void match_init __P((void)); /* asm code initialization */
694       uInt longest_match  __P((deflate_state *s, IPos cur_match));
695 #else
696 local uInt longest_match  __P((deflate_state *s, IPos cur_match));
697 #endif
698 
699 #ifdef DEBUG_ZLIB
700 local  void check_match __P((deflate_state *s, IPos start, IPos match,
701                             int length));
702 #endif
703 
704 /* ===========================================================================
705  * Local data
706  */
707 
708 #define NIL 0
709 /* Tail of hash chains */
710 
711 #ifndef TOO_FAR
712 #  define TOO_FAR 4096
713 #endif
714 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
715 
716 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
717 /* Minimum amount of lookahead, except at the end of the input file.
718  * See deflate.c for comments about the MIN_MATCH+1.
719  */
720 
721 /* Values for max_lazy_match, good_match and max_chain_length, depending on
722  * the desired pack level (0..9). The values given below have been tuned to
723  * exclude worst case performance for pathological files. Better values may be
724  * found for specific files.
725  */
726 typedef struct config_s {
727    ush good_length; /* reduce lazy search above this match length */
728    ush max_lazy;    /* do not perform lazy search above this match length */
729    ush nice_length; /* quit search above this match length */
730    ush max_chain;
731    compress_func func;
732 } config;
733 
734 local const config configuration_table[10] = {
735 /*      good lazy nice chain */
736 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
737 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
738 /* 2 */ {4,    5, 16,    8, deflate_fast},
739 /* 3 */ {4,    6, 32,   32, deflate_fast},
740 
741 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
742 /* 5 */ {8,   16, 32,   32, deflate_slow},
743 /* 6 */ {8,   16, 128, 128, deflate_slow},
744 /* 7 */ {8,   32, 128, 256, deflate_slow},
745 /* 8 */ {32, 128, 258, 1024, deflate_slow},
746 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
747 
748 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
749  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
750  * meaning.
751  */
752 
753 #define EQUAL 0
754 /* result of memcmp for equal strings */
755 
756 #ifndef NO_DUMMY_DECL
757 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
758 #endif
759 
760 /* ===========================================================================
761  * Update a hash value with the given input byte
762  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
763  *    input characters, so that a running hash key can be computed from the
764  *    previous key instead of complete recalculation each time.
765  */
766 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
767 
768 
769 /* ===========================================================================
770  * Insert string str in the dictionary and set match_head to the previous head
771  * of the hash chain (the most recent string with same hash key). Return
772  * the previous length of the hash chain.
773  * If this file is compiled with -DFASTEST, the compression level is forced
774  * to 1, and no hash chains are maintained.
775  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
776  *    input characters and the first MIN_MATCH bytes of str are valid
777  *    (except for the last MIN_MATCH-1 bytes of the input file).
778  */
779 #ifdef FASTEST
780 #define INSERT_STRING(s, str, match_head) \
781    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
782     match_head = s->head[s->ins_h], \
783     s->head[s->ins_h] = (Pos)(str))
784 #else
785 #define INSERT_STRING(s, str, match_head) \
786    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
787     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
788     s->head[s->ins_h] = (Pos)(str))
789 #endif
790 
791 /* ===========================================================================
792  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
793  * prev[] will be initialized on the fly.
794  */
795 #define CLEAR_HASH(s) \
796     s->head[s->hash_size-1] = NIL; \
797     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
798 
799 /* ========================================================================= */
800 int ZEXPORT deflateInit_(strm, level, version, stream_size)
801     z_streamp strm;
802     int level;
803     const char *version;
804     int stream_size;
805 {
806     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
807 			 Z_DEFAULT_STRATEGY, version, stream_size);
808     /* To do: ignore strm->next_in if we use it as window */
809 }
810 
811 /* ========================================================================= */
812 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
813 		  version, stream_size)
814     z_streamp strm;
815     int  level;
816     int  method;
817     int  windowBits;
818     int  memLevel;
819     int  strategy;
820     const char *version;
821     int stream_size;
822 {
823     deflate_state *s;
824     int noheader = 0;
825     static const char* my_version = ZLIB_VERSION;
826 
827     ushf *overlay;
828     /* We overlay pending_buf and d_buf+l_buf. This works since the average
829      * output size for (length,distance) codes is <= 24 bits.
830      */
831 
832     if (version == Z_NULL || version[0] != my_version[0] ||
833         stream_size != sizeof(z_stream)) {
834 	return Z_VERSION_ERROR;
835     }
836     if (strm == Z_NULL) return Z_STREAM_ERROR;
837 
838     strm->msg = Z_NULL;
839 #ifndef NO_ZCFUNCS
840     if (strm->zalloc == Z_NULL) {
841 	strm->zalloc = zcalloc;
842 	strm->opaque = (voidpf)0;
843     }
844     if (strm->zfree == Z_NULL) strm->zfree = zcfree;
845 #endif
846 
847     if (level == Z_DEFAULT_COMPRESSION) level = 6;
848 #ifdef FASTEST
849     level = 1;
850 #endif
851 
852     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
853         noheader = 1;
854         windowBits = -windowBits;
855     }
856     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
857         windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
858 	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
859         return Z_STREAM_ERROR;
860     }
861     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
862     if (s == Z_NULL) return Z_MEM_ERROR;
863     strm->state = (struct internal_state FAR *)s;
864     s->strm = strm;
865 
866     s->noheader = noheader;
867     s->w_bits = windowBits;
868     s->w_size = 1 << s->w_bits;
869     s->w_mask = s->w_size - 1;
870 
871     s->hash_bits = memLevel + 7;
872     s->hash_size = 1 << s->hash_bits;
873     s->hash_mask = s->hash_size - 1;
874     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
875 
876     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
877     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
878     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
879 
880     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
881 
882     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
883     s->pending_buf = (uchf *) overlay;
884     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
885 
886     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
887         s->pending_buf == Z_NULL) {
888         strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
889 	s->status = INIT_STATE;
890         deflateEnd (strm);
891         return Z_MEM_ERROR;
892     }
893     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
894     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
895 
896     s->level = level;
897     s->strategy = strategy;
898     s->method = (Byte)method;
899 
900     return deflateReset(strm);
901 }
902 
903 /* ========================================================================= */
904 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
905     z_streamp strm;
906     const Bytef *dictionary;
907     uInt  dictLength;
908 {
909     deflate_state *s;
910     uInt length = dictLength;
911     uInt n;
912     IPos hash_head = 0;
913 
914     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
915         return Z_STREAM_ERROR;
916 
917     s = (deflate_state *)strm->state;
918     if (s->status != INIT_STATE) return Z_STREAM_ERROR;
919 
920     strm->adler = adler32(strm->adler, dictionary, dictLength);
921 
922     if (length < MIN_MATCH) return Z_OK;
923     if (length > MAX_DIST(s)) {
924 	length = MAX_DIST(s);
925 #ifndef USE_DICT_HEAD
926 	dictionary += dictLength - length; /* use the tail of the dictionary */
927 #endif
928     }
929     zmemcpy(s->window, dictionary, length);
930     s->strstart = length;
931     s->block_start = (long)length;
932 
933     /* Insert all strings in the hash table (except for the last two bytes).
934      * s->lookahead stays null, so s->ins_h will be recomputed at the next
935      * call of fill_window.
936      */
937     s->ins_h = s->window[0];
938     UPDATE_HASH(s, s->ins_h, s->window[1]);
939     for (n = 0; n <= length - MIN_MATCH; n++) {
940 	INSERT_STRING(s, n, hash_head);
941     }
942     if (hash_head) hash_head = 0;  /* to make compiler happy */
943     return Z_OK;
944 }
945 
946 /* ========================================================================= */
947 int ZEXPORT deflateReset (strm)
948     z_streamp strm;
949 {
950     deflate_state *s;
951 
952     if (strm == Z_NULL || strm->state == Z_NULL ||
953         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
954 
955     strm->total_in = strm->total_out = 0;
956     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
957     strm->data_type = Z_UNKNOWN;
958 
959     s = (deflate_state *)strm->state;
960     s->pending = 0;
961     s->pending_out = s->pending_buf;
962 
963     if (s->noheader < 0) {
964         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
965     }
966     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
967     strm->adler = 1;
968     s->last_flush = Z_NO_FLUSH;
969 
970     _tr_init(s);
971     lm_init(s);
972 
973     return Z_OK;
974 }
975 
976 /* ========================================================================= */
977 int ZEXPORT deflateParams(strm, level, strategy)
978     z_streamp strm;
979     int level;
980     int strategy;
981 {
982     deflate_state *s;
983     compress_func func;
984     int err = Z_OK;
985 
986     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
987     s = (deflate_state *)strm->state;
988 
989     if (level == Z_DEFAULT_COMPRESSION) {
990 	level = 6;
991     }
992     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
993 	return Z_STREAM_ERROR;
994     }
995     func = configuration_table[s->level].func;
996 
997     if (func != configuration_table[level].func && strm->total_in != 0) {
998 	/* Flush the last buffer: */
999 	err = deflate(strm, Z_PARTIAL_FLUSH);
1000     }
1001     if (s->level != level) {
1002 	s->level = level;
1003 	s->max_lazy_match   = configuration_table[level].max_lazy;
1004 	s->good_match       = configuration_table[level].good_length;
1005 	s->nice_match       = configuration_table[level].nice_length;
1006 	s->max_chain_length = configuration_table[level].max_chain;
1007     }
1008     s->strategy = strategy;
1009     return err;
1010 }
1011 
1012 /* =========================================================================
1013  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
1014  * IN assertion: the stream state is correct and there is enough room in
1015  * pending_buf.
1016  */
1017 local void putShortMSB (s, b)
1018     deflate_state *s;
1019     uInt b;
1020 {
1021     put_byte(s, (Byte)(b >> 8));
1022     put_byte(s, (Byte)(b & 0xff));
1023 }
1024 
1025 /* =========================================================================
1026  * Flush as much pending output as possible. All deflate() output goes
1027  * through this function so some applications may wish to modify it
1028  * to avoid allocating a large strm->next_out buffer and copying into it.
1029  * (See also read_buf()).
1030  */
1031 local void flush_pending(strm)
1032     z_streamp strm;
1033 {
1034     deflate_state *s = (deflate_state *) strm->state;
1035     unsigned len = s->pending;
1036 
1037     if (len > strm->avail_out) len = strm->avail_out;
1038     if (len == 0) return;
1039 
1040     if (strm->next_out != Z_NULL) {
1041       zmemcpy(strm->next_out, s->pending_out, len);
1042       strm->next_out  += len;
1043     }
1044     s->pending_out  += len;
1045     strm->total_out += len;
1046     strm->avail_out  -= len;
1047     s->pending -= len;
1048     if (s->pending == 0) {
1049         s->pending_out = s->pending_buf;
1050     }
1051 }
1052 
1053 /* ========================================================================= */
1054 int ZEXPORT deflate (strm, flush)
1055     z_streamp strm;
1056     int flush;
1057 {
1058     int old_flush; /* value of flush param for previous deflate call */
1059     deflate_state *s;
1060 
1061     if (strm == Z_NULL || strm->state == Z_NULL ||
1062 	flush > Z_FINISH || flush < 0) {
1063         return Z_STREAM_ERROR;
1064     }
1065     s = (deflate_state *)strm->state;
1066 
1067     if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
1068 	(s->status == FINISH_STATE && flush != Z_FINISH)) {
1069         ERR_RETURN(strm, Z_STREAM_ERROR);
1070     }
1071     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
1072 
1073     s->strm = strm; /* just in case */
1074     old_flush = s->last_flush;
1075     s->last_flush = flush;
1076 
1077     /* Write the zlib header */
1078     if (s->status == INIT_STATE) {
1079 
1080         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
1081         uInt level_flags = (s->level-1) >> 1;
1082 
1083         if (level_flags > 3) level_flags = 3;
1084         header |= (level_flags << 6);
1085 	if (s->strstart != 0) header |= PRESET_DICT;
1086         header += 31 - (header % 31);
1087 
1088         s->status = BUSY_STATE;
1089         putShortMSB(s, header);
1090 
1091 	/* Save the adler32 of the preset dictionary: */
1092 	if (s->strstart != 0) {
1093 	    putShortMSB(s, (uInt)(strm->adler >> 16));
1094 	    putShortMSB(s, (uInt)(strm->adler & 0xffff));
1095 	}
1096 	strm->adler = 1L;
1097     }
1098 
1099     /* Flush as much pending output as possible */
1100     if (s->pending != 0) {
1101         flush_pending(strm);
1102         if (strm->avail_out == 0) {
1103 	    /* Since avail_out is 0, deflate will be called again with
1104 	     * more output space, but possibly with both pending and
1105 	     * avail_in equal to zero. There won't be anything to do,
1106 	     * but this is not an error situation so make sure we
1107 	     * return OK instead of BUF_ERROR at next call of deflate:
1108              */
1109 	    s->last_flush = -1;
1110 	    return Z_OK;
1111 	}
1112 
1113     /* Make sure there is something to do and avoid duplicate consecutive
1114      * flushes. For repeated and useless calls with Z_FINISH, we keep
1115      * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1116      */
1117     } else if (strm->avail_in == 0 && flush <= old_flush &&
1118 	       flush != Z_FINISH) {
1119         ERR_RETURN(strm, Z_BUF_ERROR);
1120     }
1121 
1122     /* User must not provide more input after the first FINISH: */
1123     if (s->status == FINISH_STATE && strm->avail_in != 0) {
1124         ERR_RETURN(strm, Z_BUF_ERROR);
1125     }
1126 
1127     /* Start a new block or continue the current one.
1128      */
1129     if (strm->avail_in != 0 || s->lookahead != 0 ||
1130         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1131         block_state bstate;
1132 
1133 	bstate = (*(configuration_table[s->level].func))(s, flush);
1134 
1135         if (bstate == finish_started || bstate == finish_done) {
1136             s->status = FINISH_STATE;
1137         }
1138         if (bstate == need_more || bstate == finish_started) {
1139 	    if (strm->avail_out == 0) {
1140 	        s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1141 	    }
1142 	    return Z_OK;
1143 	    /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1144 	     * of deflate should use the same flush parameter to make sure
1145 	     * that the flush is complete. So we don't have to output an
1146 	     * empty block here, this will be done at next call. This also
1147 	     * ensures that for a very small output buffer, we emit at most
1148 	     * one empty block.
1149 	     */
1150 	}
1151         if (bstate == block_done) {
1152             if (flush == Z_PARTIAL_FLUSH) {
1153                 _tr_align(s);
1154 	    } else if (flush == Z_PACKET_FLUSH) {
1155 		/* Output just the 3-bit `stored' block type value,
1156 		   but not a zero length. */
1157 		_tr_stored_type_only(s);
1158             } else { /* FULL_FLUSH or SYNC_FLUSH */
1159                 _tr_stored_block(s, (char*)0, 0L, 0);
1160                 /* For a full flush, this empty block will be recognized
1161                  * as a special marker by inflate_sync().
1162                  */
1163                 if (flush == Z_FULL_FLUSH) {
1164                     CLEAR_HASH(s);             /* forget history */
1165                 }
1166             }
1167             flush_pending(strm);
1168 	    if (strm->avail_out == 0) {
1169 	      s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1170 	      return Z_OK;
1171 	    }
1172         }
1173     }
1174     Assert(strm->avail_out > 0, "bug2");
1175 
1176     if (flush != Z_FINISH) return Z_OK;
1177     if (s->noheader) return Z_STREAM_END;
1178 
1179     /* Write the zlib trailer (adler32) */
1180     putShortMSB(s, (uInt)(strm->adler >> 16));
1181     putShortMSB(s, (uInt)(strm->adler & 0xffff));
1182     flush_pending(strm);
1183     /* If avail_out is zero, the application will call deflate again
1184      * to flush the rest.
1185      */
1186     s->noheader = -1; /* write the trailer only once! */
1187     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1188 }
1189 
1190 /* ========================================================================= */
1191 int ZEXPORT deflateEnd (strm)
1192     z_streamp strm;
1193 {
1194     int status;
1195     deflate_state *s;
1196 
1197     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1198     s = (deflate_state *) strm->state;
1199 
1200     status = s->status;
1201     if (status != INIT_STATE && status != BUSY_STATE &&
1202 	status != FINISH_STATE) {
1203       return Z_STREAM_ERROR;
1204     }
1205 
1206     /* Deallocate in reverse order of allocations: */
1207     TRY_FREE(strm, s->pending_buf);
1208     TRY_FREE(strm, s->head);
1209     TRY_FREE(strm, s->prev);
1210     TRY_FREE(strm, s->window);
1211 
1212     ZFREE(strm, s);
1213     strm->state = Z_NULL;
1214 
1215     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1216 }
1217 
1218 /* =========================================================================
1219  * Copy the source state to the destination state.
1220  * To simplify the source, this is not supported for 16-bit MSDOS (which
1221  * doesn't have enough memory anyway to duplicate compression states).
1222  */
1223 int ZEXPORT deflateCopy (dest, source)
1224     z_streamp dest;
1225     z_streamp source;
1226 {
1227 #ifdef MAXSEG_64K
1228     return Z_STREAM_ERROR;
1229 #else
1230     deflate_state *ds;
1231     deflate_state *ss;
1232     ushf *overlay;
1233 
1234 
1235     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
1236         return Z_STREAM_ERROR;
1237     }
1238 
1239     ss = (deflate_state *)source->state;
1240 
1241     *dest = *source;
1242 
1243     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1244     if (ds == Z_NULL) return Z_MEM_ERROR;
1245     dest->state = (void *) ds;
1246     *ds = *ss;
1247     ds->strm = dest;
1248 
1249     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1250     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1251     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1252     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1253     ds->pending_buf = (uchf *) overlay;
1254 
1255     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1256         ds->pending_buf == Z_NULL) {
1257 	ds->status = INIT_STATE;
1258         deflateEnd (dest);
1259         return Z_MEM_ERROR;
1260     }
1261     /* following zmemcpy do not work for 16-bit MSDOS */
1262     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1263     zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1264     zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1265     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1266 
1267     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1268     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1269     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1270 
1271     ds->l_desc.dyn_tree = ds->dyn_ltree;
1272     ds->d_desc.dyn_tree = ds->dyn_dtree;
1273     ds->bl_desc.dyn_tree = ds->bl_tree;
1274 
1275     return Z_OK;
1276 #endif
1277 }
1278 
1279 /* ===========================================================================
1280  * Return the number of bytes of output which are immediately available
1281  * for output from the decompressor.
1282  */
1283 int deflateOutputPending (strm)
1284     z_streamp strm;
1285 {
1286     if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1287 
1288     return ((deflate_state *)(strm->state))->pending;
1289 }
1290 
1291 /* ===========================================================================
1292  * Read a new buffer from the current input stream, update the adler32
1293  * and total number of bytes read.  All deflate() input goes through
1294  * this function so some applications may wish to modify it to avoid
1295  * allocating a large strm->next_in buffer and copying from it.
1296  * (See also flush_pending()).
1297  */
1298 local int read_buf(strm, buf, size)
1299     z_streamp strm;
1300     Bytef *buf;
1301     unsigned size;
1302 {
1303     unsigned len = strm->avail_in;
1304 
1305     if (len > size) len = size;
1306     if (len == 0) return 0;
1307 
1308     strm->avail_in  -= len;
1309 
1310     if (!((deflate_state *)(strm->state))->noheader) {
1311         strm->adler = adler32(strm->adler, strm->next_in, len);
1312     }
1313     zmemcpy(buf, strm->next_in, len);
1314     strm->next_in  += len;
1315     strm->total_in += len;
1316 
1317     return (int)len;
1318 }
1319 
1320 /* ===========================================================================
1321  * Initialize the "longest match" routines for a new zlib stream
1322  */
1323 local void lm_init (s)
1324     deflate_state *s;
1325 {
1326     s->window_size = (ulg)2L*s->w_size;
1327 
1328     CLEAR_HASH(s);
1329 
1330     /* Set the default configuration parameters:
1331      */
1332     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1333     s->good_match       = configuration_table[s->level].good_length;
1334     s->nice_match       = configuration_table[s->level].nice_length;
1335     s->max_chain_length = configuration_table[s->level].max_chain;
1336 
1337     s->strstart = 0;
1338     s->block_start = 0L;
1339     s->lookahead = 0;
1340     s->match_length = s->prev_length = MIN_MATCH-1;
1341     s->match_available = 0;
1342     s->ins_h = 0;
1343 #ifdef ASMV
1344     match_init(); /* initialize the asm code */
1345 #endif
1346 }
1347 
1348 /* ===========================================================================
1349  * Set match_start to the longest match starting at the given string and
1350  * return its length. Matches shorter or equal to prev_length are discarded,
1351  * in which case the result is equal to prev_length and match_start is
1352  * garbage.
1353  * IN assertions: cur_match is the head of the hash chain for the current
1354  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1355  * OUT assertion: the match length is not greater than s->lookahead.
1356  */
1357 #ifndef ASMV
1358 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1359  * match.S. The code will be functionally equivalent.
1360  */
1361 #ifndef FASTEST
1362 local uInt longest_match(s, cur_match)
1363     deflate_state *s;
1364     IPos cur_match;                             /* current match */
1365 {
1366     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1367     Bytef *scan = s->window + s->strstart; /* current string */
1368     Bytef *match;                       /* matched string */
1369     int len;                           /* length of current match */
1370     int best_len = s->prev_length;              /* best match length so far */
1371     int nice_match = s->nice_match;             /* stop if match long enough */
1372     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1373         s->strstart - (IPos)MAX_DIST(s) : NIL;
1374     /* Stop when cur_match becomes <= limit. To simplify the code,
1375      * we prevent matches with the string of window index 0.
1376      */
1377     Posf *prev = s->prev;
1378     uInt wmask = s->w_mask;
1379 
1380 #ifdef UNALIGNED_OK
1381     /* Compare two bytes at a time. Note: this is not always beneficial.
1382      * Try with and without -DUNALIGNED_OK to check.
1383      */
1384     Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1385     ush scan_start = *(ushf*)scan;
1386     ush scan_end   = *(ushf*)(scan+best_len-1);
1387 #else
1388     Bytef *strend = s->window + s->strstart + MAX_MATCH;
1389     Byte scan_end1  = scan[best_len-1];
1390     Byte scan_end   = scan[best_len];
1391 #endif
1392 
1393     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1394      * It is easy to get rid of this optimization if necessary.
1395      */
1396     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1397 
1398     /* Do not waste too much time if we already have a good match: */
1399     if (s->prev_length >= s->good_match) {
1400         chain_length >>= 2;
1401     }
1402     /* Do not look for matches beyond the end of the input. This is necessary
1403      * to make deflate deterministic.
1404      */
1405     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1406 
1407     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1408 
1409     do {
1410         Assert(cur_match < s->strstart, "no future");
1411         match = s->window + cur_match;
1412 
1413         /* Skip to next match if the match length cannot increase
1414          * or if the match length is less than 2:
1415          */
1416 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1417         /* This code assumes sizeof(unsigned short) == 2. Do not use
1418          * UNALIGNED_OK if your compiler uses a different size.
1419          */
1420         if (*(ushf*)(match+best_len-1) != scan_end ||
1421             *(ushf*)match != scan_start) continue;
1422 
1423         /* It is not necessary to compare scan[2] and match[2] since they are
1424          * always equal when the other bytes match, given that the hash keys
1425          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1426          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1427          * lookahead only every 4th comparison; the 128th check will be made
1428          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1429          * necessary to put more guard bytes at the end of the window, or
1430          * to check more often for insufficient lookahead.
1431          */
1432         Assert(scan[2] == match[2], "scan[2]?");
1433         scan++, match++;
1434         do {
1435         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1436                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1437                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1438                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1439                  scan < strend);
1440         /* The funny "do {}" generates better code on most compilers */
1441 
1442         /* Here, scan <= window+strstart+257 */
1443         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1444         if (*scan == *match) scan++;
1445 
1446         len = (MAX_MATCH - 1) - (int)(strend-scan);
1447         scan = strend - (MAX_MATCH-1);
1448 
1449 #else /* UNALIGNED_OK */
1450 
1451         if (match[best_len]   != scan_end  ||
1452             match[best_len-1] != scan_end1 ||
1453             *match            != *scan     ||
1454             *++match          != scan[1])      continue;
1455 
1456         /* The check at best_len-1 can be removed because it will be made
1457          * again later. (This heuristic is not always a win.)
1458          * It is not necessary to compare scan[2] and match[2] since they
1459          * are always equal when the other bytes match, given that
1460          * the hash keys are equal and that HASH_BITS >= 8.
1461          */
1462         scan += 2, match++;
1463         Assert(*scan == *match, "match[2]?");
1464 
1465         /* We check for insufficient lookahead only every 8th comparison;
1466          * the 256th check will be made at strstart+258.
1467          */
1468         do {
1469         } while (*++scan == *++match && *++scan == *++match &&
1470                  *++scan == *++match && *++scan == *++match &&
1471                  *++scan == *++match && *++scan == *++match &&
1472                  *++scan == *++match && *++scan == *++match &&
1473                  scan < strend);
1474 
1475         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1476 
1477         len = MAX_MATCH - (int)(strend - scan);
1478         scan = strend - MAX_MATCH;
1479 
1480 #endif /* UNALIGNED_OK */
1481 
1482         if (len > best_len) {
1483             s->match_start = cur_match;
1484             best_len = len;
1485             if (len >= nice_match) break;
1486 #ifdef UNALIGNED_OK
1487             scan_end = *(ushf*)(scan+best_len-1);
1488 #else
1489             scan_end1  = scan[best_len-1];
1490             scan_end   = scan[best_len];
1491 #endif
1492         }
1493     } while ((cur_match = prev[cur_match & wmask]) > limit
1494              && --chain_length != 0);
1495 
1496     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1497     return s->lookahead;
1498 }
1499 
1500 #else /* FASTEST */
1501 /* ---------------------------------------------------------------------------
1502  * Optimized version for level == 1 only
1503  */
1504 local uInt longest_match(s, cur_match)
1505     deflate_state *s;
1506     IPos cur_match;                             /* current match */
1507 {
1508     register Bytef *scan = s->window + s->strstart; /* current string */
1509     register Bytef *match;                       /* matched string */
1510     register int len;                           /* length of current match */
1511     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1512 
1513     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1514      * It is easy to get rid of this optimization if necessary.
1515      */
1516     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1517 
1518     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1519 
1520     Assert(cur_match < s->strstart, "no future");
1521 
1522     match = s->window + cur_match;
1523 
1524     /* Return failure if the match length is less than 2:
1525      */
1526     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1527 
1528     /* The check at best_len-1 can be removed because it will be made
1529      * again later. (This heuristic is not always a win.)
1530      * It is not necessary to compare scan[2] and match[2] since they
1531      * are always equal when the other bytes match, given that
1532      * the hash keys are equal and that HASH_BITS >= 8.
1533      */
1534     scan += 2, match += 2;
1535     Assert(*scan == *match, "match[2]?");
1536 
1537     /* We check for insufficient lookahead only every 8th comparison;
1538      * the 256th check will be made at strstart+258.
1539      */
1540     do {
1541     } while (*++scan == *++match && *++scan == *++match &&
1542 	     *++scan == *++match && *++scan == *++match &&
1543 	     *++scan == *++match && *++scan == *++match &&
1544 	     *++scan == *++match && *++scan == *++match &&
1545 	     scan < strend);
1546 
1547     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1548 
1549     len = MAX_MATCH - (int)(strend - scan);
1550 
1551     if (len < MIN_MATCH) return MIN_MATCH - 1;
1552 
1553     s->match_start = cur_match;
1554     return len <= s->lookahead ? len : s->lookahead;
1555 }
1556 #endif /* FASTEST */
1557 #endif /* ASMV */
1558 
1559 #ifdef DEBUG_ZLIB
1560 /* ===========================================================================
1561  * Check that the match at match_start is indeed a match.
1562  */
1563 local void check_match(s, start, match, length)
1564     deflate_state *s;
1565     IPos start, match;
1566     int length;
1567 {
1568     /* check that the match is indeed a match */
1569     if (zmemcmp(s->window + match,
1570                 s->window + start, length) != EQUAL) {
1571         fprintf(stderr, " start %u, match %u, length %d\n",
1572 		start, match, length);
1573         do {
1574 	    fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1575 	} while (--length != 0);
1576         z_error("invalid match");
1577     }
1578     if (z_verbose > 1) {
1579         fprintf(stderr,"\\[%d,%d]", start-match, length);
1580         do { putc(s->window[start++], stderr); } while (--length != 0);
1581     }
1582 }
1583 #else
1584 #  define check_match(s, start, match, length)
1585 #endif
1586 
1587 /* ===========================================================================
1588  * Fill the window when the lookahead becomes insufficient.
1589  * Updates strstart and lookahead.
1590  *
1591  * IN assertion: lookahead < MIN_LOOKAHEAD
1592  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1593  *    At least one byte has been read, or avail_in == 0; reads are
1594  *    performed for at least two bytes (required for the zip translate_eol
1595  *    option -- not supported here).
1596  */
1597 local void fill_window(s)
1598     deflate_state *s;
1599 {
1600     unsigned n, m;
1601     Posf *p;
1602     unsigned more;    /* Amount of free space at the end of the window. */
1603     uInt wsize = s->w_size;
1604 
1605     do {
1606         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1607 
1608         /* Deal with !@#$% 64K limit: */
1609         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1610             more = wsize;
1611 
1612         } else if (more == (unsigned)(-1)) {
1613             /* Very unlikely, but possible on 16 bit machine if strstart == 0
1614              * and lookahead == 1 (input done one byte at time)
1615              */
1616             more--;
1617 
1618         /* If the window is almost full and there is insufficient lookahead,
1619          * move the upper half to the lower one to make room in the upper half.
1620          */
1621         } else if (s->strstart >= wsize+MAX_DIST(s)) {
1622 
1623             zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1624             s->match_start -= wsize;
1625             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1626             s->block_start -= (long) wsize;
1627 
1628             /* Slide the hash table (could be avoided with 32 bit values
1629                at the expense of memory usage). We slide even when level == 0
1630                to keep the hash table consistent if we switch back to level > 0
1631                later. (Using level 0 permanently is not an optimal usage of
1632                zlib, so we don't care about this pathological case.)
1633              */
1634 	    n = s->hash_size;
1635 	    p = &s->head[n];
1636 	    do {
1637 		m = *--p;
1638 		*p = (Pos)(m >= wsize ? m-wsize : NIL);
1639 	    } while (--n);
1640 
1641 	    n = wsize;
1642 #ifndef FASTEST
1643 	    p = &s->prev[n];
1644 	    do {
1645 		m = *--p;
1646 		*p = (Pos)(m >= wsize ? m-wsize : NIL);
1647 		/* If n is not on any hash chain, prev[n] is garbage but
1648 		 * its value will never be used.
1649 		 */
1650 	    } while (--n);
1651 #endif
1652             more += wsize;
1653         }
1654         if (s->strm->avail_in == 0) return;
1655 
1656         /* If there was no sliding:
1657          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1658          *    more == window_size - lookahead - strstart
1659          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1660          * => more >= window_size - 2*WSIZE + 2
1661          * In the BIG_MEM or MMAP case (not yet supported),
1662          *   window_size == input_size + MIN_LOOKAHEAD  &&
1663          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1664          * Otherwise, window_size == 2*WSIZE so more >= 2.
1665          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1666          */
1667         Assert(more >= 2, "more < 2");
1668 
1669         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1670         s->lookahead += n;
1671 
1672         /* Initialize the hash value now that we have some input: */
1673         if (s->lookahead >= MIN_MATCH) {
1674             s->ins_h = s->window[s->strstart];
1675             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1676 #if MIN_MATCH != 3
1677             Call UPDATE_HASH() MIN_MATCH-3 more times
1678 #endif
1679         }
1680         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1681          * but this is not important since only literal bytes will be emitted.
1682          */
1683 
1684     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1685 }
1686 
1687 /* ===========================================================================
1688  * Flush the current block, with given end-of-file flag.
1689  * IN assertion: strstart is set to the end of the current match.
1690  */
1691 #define FLUSH_BLOCK_ONLY(s, eof) { \
1692    _tr_flush_block(s, (s->block_start >= 0L ? \
1693                    (charf *)&s->window[(unsigned)s->block_start] : \
1694                    (charf *)Z_NULL), \
1695 		(ulg)((long)s->strstart - s->block_start), \
1696 		(eof)); \
1697    s->block_start = s->strstart; \
1698    flush_pending(s->strm); \
1699    Tracev((stderr,"[FLUSH]")); \
1700 }
1701 
1702 /* Same but force premature exit if necessary. */
1703 #define FLUSH_BLOCK(s, eof) { \
1704    FLUSH_BLOCK_ONLY(s, eof); \
1705    if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1706 }
1707 
1708 /* ===========================================================================
1709  * Copy without compression as much as possible from the input stream, return
1710  * the current block state.
1711  * This function does not insert new strings in the dictionary since
1712  * uncompressible data is probably not useful. This function is used
1713  * only for the level=0 compression option.
1714  * NOTE: this function should be optimized to avoid extra copying from
1715  * window to pending_buf.
1716  */
1717 local block_state deflate_stored(s, flush)
1718     deflate_state *s;
1719     int flush;
1720 {
1721     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1722      * to pending_buf_size, and each stored block has a 5 byte header:
1723      */
1724     ulg max_block_size = 0xffff;
1725     ulg max_start;
1726 
1727     if (max_block_size > s->pending_buf_size - 5) {
1728         max_block_size = s->pending_buf_size - 5;
1729     }
1730 
1731     /* Copy as much as possible from input to output: */
1732     for (;;) {
1733         /* Fill the window as much as possible: */
1734         if (s->lookahead <= 1) {
1735 
1736             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1737 		   s->block_start >= (long)s->w_size, "slide too late");
1738 
1739             fill_window(s);
1740             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1741 
1742             if (s->lookahead == 0) break; /* flush the current block */
1743         }
1744 	Assert(s->block_start >= 0L, "block gone");
1745 
1746 	s->strstart += s->lookahead;
1747 	s->lookahead = 0;
1748 
1749 	/* Emit a stored block if pending_buf will be full: */
1750  	max_start = s->block_start + max_block_size;
1751         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1752 	    /* strstart == 0 is possible when wraparound on 16-bit machine */
1753 	    s->lookahead = (uInt)(s->strstart - max_start);
1754 	    s->strstart = (uInt)max_start;
1755             FLUSH_BLOCK(s, 0);
1756 	}
1757 	/* Flush if we may have to slide, otherwise block_start may become
1758          * negative and the data will be gone:
1759          */
1760         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1761             FLUSH_BLOCK(s, 0);
1762 	}
1763     }
1764     FLUSH_BLOCK(s, flush == Z_FINISH);
1765     return flush == Z_FINISH ? finish_done : block_done;
1766 }
1767 
1768 /* ===========================================================================
1769  * Compress as much as possible from the input stream, return the current
1770  * block state.
1771  * This function does not perform lazy evaluation of matches and inserts
1772  * new strings in the dictionary only for unmatched strings or for short
1773  * matches. It is used only for the fast compression options.
1774  */
1775 local block_state deflate_fast(s, flush)
1776     deflate_state *s;
1777     int flush;
1778 {
1779     IPos hash_head = NIL; /* head of the hash chain */
1780     int bflush;           /* set if current block must be flushed */
1781 
1782     for (;;) {
1783         /* Make sure that we always have enough lookahead, except
1784          * at the end of the input file. We need MAX_MATCH bytes
1785          * for the next match, plus MIN_MATCH bytes to insert the
1786          * string following the next match.
1787          */
1788         if (s->lookahead < MIN_LOOKAHEAD) {
1789             fill_window(s);
1790             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1791 	        return need_more;
1792 	    }
1793             if (s->lookahead == 0) break; /* flush the current block */
1794         }
1795 
1796         /* Insert the string window[strstart .. strstart+2] in the
1797          * dictionary, and set hash_head to the head of the hash chain:
1798          */
1799         if (s->lookahead >= MIN_MATCH) {
1800             INSERT_STRING(s, s->strstart, hash_head);
1801         }
1802 
1803         /* Find the longest match, discarding those <= prev_length.
1804          * At this point we have always match_length < MIN_MATCH
1805          */
1806         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1807             /* To simplify the code, we prevent matches with the string
1808              * of window index 0 (in particular we have to avoid a match
1809              * of the string with itself at the start of the input file).
1810              */
1811             if (s->strategy != Z_HUFFMAN_ONLY) {
1812                 s->match_length = longest_match (s, hash_head);
1813             }
1814             /* longest_match() sets match_start */
1815         }
1816         if (s->match_length >= MIN_MATCH) {
1817             check_match(s, s->strstart, s->match_start, s->match_length);
1818 
1819             _tr_tally_dist(s, s->strstart - s->match_start,
1820                            s->match_length - MIN_MATCH, bflush);
1821 
1822             s->lookahead -= s->match_length;
1823 
1824             /* Insert new strings in the hash table only if the match length
1825              * is not too large. This saves time but degrades compression.
1826              */
1827 #ifndef FASTEST
1828             if (s->match_length <= s->max_insert_length &&
1829                 s->lookahead >= MIN_MATCH) {
1830                 s->match_length--; /* string at strstart already in hash table */
1831                 do {
1832                     s->strstart++;
1833                     INSERT_STRING(s, s->strstart, hash_head);
1834                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1835                      * always MIN_MATCH bytes ahead.
1836                      */
1837                 } while (--s->match_length != 0);
1838                 s->strstart++;
1839             } else
1840 #endif
1841 	    {
1842                 s->strstart += s->match_length;
1843                 s->match_length = 0;
1844                 s->ins_h = s->window[s->strstart];
1845                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1846 #if MIN_MATCH != 3
1847                 Call UPDATE_HASH() MIN_MATCH-3 more times
1848 #endif
1849                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1850                  * matter since it will be recomputed at next deflate call.
1851                  */
1852             }
1853         } else {
1854             /* No match, output a literal byte */
1855             Tracevv((stderr,"%c", s->window[s->strstart]));
1856             _tr_tally_lit (s, s->window[s->strstart], bflush);
1857             s->lookahead--;
1858             s->strstart++;
1859         }
1860         if (bflush) FLUSH_BLOCK(s, 0);
1861     }
1862     FLUSH_BLOCK(s, flush == Z_FINISH);
1863     return flush == Z_FINISH ? finish_done : block_done;
1864 }
1865 
1866 /* ===========================================================================
1867  * Same as above, but achieves better compression. We use a lazy
1868  * evaluation for matches: a match is finally adopted only if there is
1869  * no better match at the next window position.
1870  */
1871 local block_state deflate_slow(s, flush)
1872     deflate_state *s;
1873     int flush;
1874 {
1875     IPos hash_head = NIL;    /* head of hash chain */
1876     int bflush;              /* set if current block must be flushed */
1877 
1878     /* Process the input block. */
1879     for (;;) {
1880         /* Make sure that we always have enough lookahead, except
1881          * at the end of the input file. We need MAX_MATCH bytes
1882          * for the next match, plus MIN_MATCH bytes to insert the
1883          * string following the next match.
1884          */
1885         if (s->lookahead < MIN_LOOKAHEAD) {
1886             fill_window(s);
1887             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1888 	        return need_more;
1889 	    }
1890             if (s->lookahead == 0) break; /* flush the current block */
1891         }
1892 
1893         /* Insert the string window[strstart .. strstart+2] in the
1894          * dictionary, and set hash_head to the head of the hash chain:
1895          */
1896         if (s->lookahead >= MIN_MATCH) {
1897             INSERT_STRING(s, s->strstart, hash_head);
1898         }
1899 
1900         /* Find the longest match, discarding those <= prev_length.
1901          */
1902         s->prev_length = s->match_length, s->prev_match = s->match_start;
1903         s->match_length = MIN_MATCH-1;
1904 
1905         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1906             s->strstart - hash_head <= MAX_DIST(s)) {
1907             /* To simplify the code, we prevent matches with the string
1908              * of window index 0 (in particular we have to avoid a match
1909              * of the string with itself at the start of the input file).
1910              */
1911             if (s->strategy != Z_HUFFMAN_ONLY) {
1912                 s->match_length = longest_match (s, hash_head);
1913             }
1914             /* longest_match() sets match_start */
1915 
1916             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1917                  (s->match_length == MIN_MATCH &&
1918                   s->strstart - s->match_start > TOO_FAR))) {
1919 
1920                 /* If prev_match is also MIN_MATCH, match_start is garbage
1921                  * but we will ignore the current match anyway.
1922                  */
1923                 s->match_length = MIN_MATCH-1;
1924             }
1925         }
1926         /* If there was a match at the previous step and the current
1927          * match is not better, output the previous match:
1928          */
1929         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1930             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1931             /* Do not insert strings in hash table beyond this. */
1932 
1933             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1934 
1935             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1936 			   s->prev_length - MIN_MATCH, bflush);
1937 
1938             /* Insert in hash table all strings up to the end of the match.
1939              * strstart-1 and strstart are already inserted. If there is not
1940              * enough lookahead, the last two strings are not inserted in
1941              * the hash table.
1942              */
1943             s->lookahead -= s->prev_length-1;
1944             s->prev_length -= 2;
1945             do {
1946                 if (++s->strstart <= max_insert) {
1947                     INSERT_STRING(s, s->strstart, hash_head);
1948                 }
1949             } while (--s->prev_length != 0);
1950             s->match_available = 0;
1951             s->match_length = MIN_MATCH-1;
1952             s->strstart++;
1953 
1954             if (bflush) FLUSH_BLOCK(s, 0);
1955 
1956         } else if (s->match_available) {
1957             /* If there was no match at the previous position, output a
1958              * single literal. If there was a match but the current match
1959              * is longer, truncate the previous match to a single literal.
1960              */
1961             Tracevv((stderr,"%c", s->window[s->strstart-1]));
1962 	    _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1963 	    if (bflush) {
1964                 FLUSH_BLOCK_ONLY(s, 0);
1965             }
1966             s->strstart++;
1967             s->lookahead--;
1968             if (s->strm->avail_out == 0) return need_more;
1969         } else {
1970             /* There is no previous match to compare with, wait for
1971              * the next step to decide.
1972              */
1973             s->match_available = 1;
1974             s->strstart++;
1975             s->lookahead--;
1976         }
1977     }
1978     Assert (flush != Z_NO_FLUSH, "no flush?");
1979     if (s->match_available) {
1980         Tracevv((stderr,"%c", s->window[s->strstart-1]));
1981         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1982         s->match_available = 0;
1983     }
1984     FLUSH_BLOCK(s, flush == Z_FINISH);
1985     return flush == Z_FINISH ? finish_done : block_done;
1986 }
1987 /* --- deflate.c */
1988 
1989 /* +++ trees.c */
1990 
1991 /* trees.c -- output deflated data using Huffman coding
1992  * Copyright (C) 1995-2002 Jean-loup Gailly
1993  * For conditions of distribution and use, see copyright notice in zlib.h
1994  */
1995 
1996 /*
1997  *  ALGORITHM
1998  *
1999  *      The "deflation" process uses several Huffman trees. The more
2000  *      common source values are represented by shorter bit sequences.
2001  *
2002  *      Each code tree is stored in a compressed form which is itself
2003  * a Huffman encoding of the lengths of all the code strings (in
2004  * ascending order by source values).  The actual code strings are
2005  * reconstructed from the lengths in the inflate process, as described
2006  * in the deflate specification.
2007  *
2008  *  REFERENCES
2009  *
2010  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
2011  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
2012  *
2013  *      Storer, James A.
2014  *          Data Compression:  Methods and Theory, pp. 49-50.
2015  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
2016  *
2017  *      Sedgewick, R.
2018  *          Algorithms, p290.
2019  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
2020  */
2021 
2022 /* @(#) $Id: zlib.c,v 1.18 2002/05/07 09:14:20 tron Exp $ */
2023 
2024 /* #define GEN_TREES_H */
2025 
2026 /* #include "deflate.h" */
2027 
2028 #ifdef DEBUG_ZLIB
2029 #  include <ctype.h>
2030 #endif
2031 
2032 /* ===========================================================================
2033  * Constants
2034  */
2035 
2036 #define MAX_BL_BITS 7
2037 /* Bit length codes must not exceed MAX_BL_BITS bits */
2038 
2039 #define END_BLOCK 256
2040 /* end of block literal code */
2041 
2042 #define REP_3_6      16
2043 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
2044 
2045 #define REPZ_3_10    17
2046 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
2047 
2048 #define REPZ_11_138  18
2049 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
2050 
2051 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
2052    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
2053 
2054 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
2055    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
2056 
2057 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
2058    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
2059 
2060 local const uch bl_order[BL_CODES]
2061    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
2062 /* The lengths of the bit length codes are sent in order of decreasing
2063  * probability, to avoid transmitting the lengths for unused bit length codes.
2064  */
2065 
2066 #define Buf_size (8 * 2*sizeof(char))
2067 /* Number of bits used within bi_buf. (bi_buf might be implemented on
2068  * more than 16 bits on some systems.)
2069  */
2070 
2071 /* ===========================================================================
2072  * Local data. These are initialized only once.
2073  */
2074 
2075 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
2076 
2077 #if defined(GEN_TREES_H) || !defined(STDC)
2078 /* non ANSI compilers may not accept trees.h */
2079 
2080 local ct_data static_ltree[L_CODES+2];
2081 /* The static literal tree. Since the bit lengths are imposed, there is no
2082  * need for the L_CODES extra codes used during heap construction. However
2083  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
2084  * below).
2085  */
2086 
2087 local ct_data static_dtree[D_CODES];
2088 /* The static distance tree. (Actually a trivial tree since all codes use
2089  * 5 bits.)
2090  */
2091 
2092 uch _dist_code[DIST_CODE_LEN];
2093 /* Distance codes. The first 256 values correspond to the distances
2094  * 3 .. 258, the last 256 values correspond to the top 8 bits of
2095  * the 15 bit distances.
2096  */
2097 
2098 uch _length_code[MAX_MATCH-MIN_MATCH+1];
2099 /* length code for each normalized match length (0 == MIN_MATCH) */
2100 
2101 local int base_length[LENGTH_CODES];
2102 /* First normalized length for each code (0 = MIN_MATCH) */
2103 
2104 local int base_dist[D_CODES];
2105 /* First normalized distance for each code (0 = distance of 1) */
2106 
2107 #else
2108 /* +++ trees.h */
2109 
2110 /* header created automatically with -DGEN_TREES_H */
2111 
2112 local const ct_data static_ltree[L_CODES+2] = {
2113 {{ 12},{  8}}, {{140},{  8}}, {{ 76},{  8}}, {{204},{  8}}, {{ 44},{  8}},
2114 {{172},{  8}}, {{108},{  8}}, {{236},{  8}}, {{ 28},{  8}}, {{156},{  8}},
2115 {{ 92},{  8}}, {{220},{  8}}, {{ 60},{  8}}, {{188},{  8}}, {{124},{  8}},
2116 {{252},{  8}}, {{  2},{  8}}, {{130},{  8}}, {{ 66},{  8}}, {{194},{  8}},
2117 {{ 34},{  8}}, {{162},{  8}}, {{ 98},{  8}}, {{226},{  8}}, {{ 18},{  8}},
2118 {{146},{  8}}, {{ 82},{  8}}, {{210},{  8}}, {{ 50},{  8}}, {{178},{  8}},
2119 {{114},{  8}}, {{242},{  8}}, {{ 10},{  8}}, {{138},{  8}}, {{ 74},{  8}},
2120 {{202},{  8}}, {{ 42},{  8}}, {{170},{  8}}, {{106},{  8}}, {{234},{  8}},
2121 {{ 26},{  8}}, {{154},{  8}}, {{ 90},{  8}}, {{218},{  8}}, {{ 58},{  8}},
2122 {{186},{  8}}, {{122},{  8}}, {{250},{  8}}, {{  6},{  8}}, {{134},{  8}},
2123 {{ 70},{  8}}, {{198},{  8}}, {{ 38},{  8}}, {{166},{  8}}, {{102},{  8}},
2124 {{230},{  8}}, {{ 22},{  8}}, {{150},{  8}}, {{ 86},{  8}}, {{214},{  8}},
2125 {{ 54},{  8}}, {{182},{  8}}, {{118},{  8}}, {{246},{  8}}, {{ 14},{  8}},
2126 {{142},{  8}}, {{ 78},{  8}}, {{206},{  8}}, {{ 46},{  8}}, {{174},{  8}},
2127 {{110},{  8}}, {{238},{  8}}, {{ 30},{  8}}, {{158},{  8}}, {{ 94},{  8}},
2128 {{222},{  8}}, {{ 62},{  8}}, {{190},{  8}}, {{126},{  8}}, {{254},{  8}},
2129 {{  1},{  8}}, {{129},{  8}}, {{ 65},{  8}}, {{193},{  8}}, {{ 33},{  8}},
2130 {{161},{  8}}, {{ 97},{  8}}, {{225},{  8}}, {{ 17},{  8}}, {{145},{  8}},
2131 {{ 81},{  8}}, {{209},{  8}}, {{ 49},{  8}}, {{177},{  8}}, {{113},{  8}},
2132 {{241},{  8}}, {{  9},{  8}}, {{137},{  8}}, {{ 73},{  8}}, {{201},{  8}},
2133 {{ 41},{  8}}, {{169},{  8}}, {{105},{  8}}, {{233},{  8}}, {{ 25},{  8}},
2134 {{153},{  8}}, {{ 89},{  8}}, {{217},{  8}}, {{ 57},{  8}}, {{185},{  8}},
2135 {{121},{  8}}, {{249},{  8}}, {{  5},{  8}}, {{133},{  8}}, {{ 69},{  8}},
2136 {{197},{  8}}, {{ 37},{  8}}, {{165},{  8}}, {{101},{  8}}, {{229},{  8}},
2137 {{ 21},{  8}}, {{149},{  8}}, {{ 85},{  8}}, {{213},{  8}}, {{ 53},{  8}},
2138 {{181},{  8}}, {{117},{  8}}, {{245},{  8}}, {{ 13},{  8}}, {{141},{  8}},
2139 {{ 77},{  8}}, {{205},{  8}}, {{ 45},{  8}}, {{173},{  8}}, {{109},{  8}},
2140 {{237},{  8}}, {{ 29},{  8}}, {{157},{  8}}, {{ 93},{  8}}, {{221},{  8}},
2141 {{ 61},{  8}}, {{189},{  8}}, {{125},{  8}}, {{253},{  8}}, {{ 19},{  9}},
2142 {{275},{  9}}, {{147},{  9}}, {{403},{  9}}, {{ 83},{  9}}, {{339},{  9}},
2143 {{211},{  9}}, {{467},{  9}}, {{ 51},{  9}}, {{307},{  9}}, {{179},{  9}},
2144 {{435},{  9}}, {{115},{  9}}, {{371},{  9}}, {{243},{  9}}, {{499},{  9}},
2145 {{ 11},{  9}}, {{267},{  9}}, {{139},{  9}}, {{395},{  9}}, {{ 75},{  9}},
2146 {{331},{  9}}, {{203},{  9}}, {{459},{  9}}, {{ 43},{  9}}, {{299},{  9}},
2147 {{171},{  9}}, {{427},{  9}}, {{107},{  9}}, {{363},{  9}}, {{235},{  9}},
2148 {{491},{  9}}, {{ 27},{  9}}, {{283},{  9}}, {{155},{  9}}, {{411},{  9}},
2149 {{ 91},{  9}}, {{347},{  9}}, {{219},{  9}}, {{475},{  9}}, {{ 59},{  9}},
2150 {{315},{  9}}, {{187},{  9}}, {{443},{  9}}, {{123},{  9}}, {{379},{  9}},
2151 {{251},{  9}}, {{507},{  9}}, {{  7},{  9}}, {{263},{  9}}, {{135},{  9}},
2152 {{391},{  9}}, {{ 71},{  9}}, {{327},{  9}}, {{199},{  9}}, {{455},{  9}},
2153 {{ 39},{  9}}, {{295},{  9}}, {{167},{  9}}, {{423},{  9}}, {{103},{  9}},
2154 {{359},{  9}}, {{231},{  9}}, {{487},{  9}}, {{ 23},{  9}}, {{279},{  9}},
2155 {{151},{  9}}, {{407},{  9}}, {{ 87},{  9}}, {{343},{  9}}, {{215},{  9}},
2156 {{471},{  9}}, {{ 55},{  9}}, {{311},{  9}}, {{183},{  9}}, {{439},{  9}},
2157 {{119},{  9}}, {{375},{  9}}, {{247},{  9}}, {{503},{  9}}, {{ 15},{  9}},
2158 {{271},{  9}}, {{143},{  9}}, {{399},{  9}}, {{ 79},{  9}}, {{335},{  9}},
2159 {{207},{  9}}, {{463},{  9}}, {{ 47},{  9}}, {{303},{  9}}, {{175},{  9}},
2160 {{431},{  9}}, {{111},{  9}}, {{367},{  9}}, {{239},{  9}}, {{495},{  9}},
2161 {{ 31},{  9}}, {{287},{  9}}, {{159},{  9}}, {{415},{  9}}, {{ 95},{  9}},
2162 {{351},{  9}}, {{223},{  9}}, {{479},{  9}}, {{ 63},{  9}}, {{319},{  9}},
2163 {{191},{  9}}, {{447},{  9}}, {{127},{  9}}, {{383},{  9}}, {{255},{  9}},
2164 {{511},{  9}}, {{  0},{  7}}, {{ 64},{  7}}, {{ 32},{  7}}, {{ 96},{  7}},
2165 {{ 16},{  7}}, {{ 80},{  7}}, {{ 48},{  7}}, {{112},{  7}}, {{  8},{  7}},
2166 {{ 72},{  7}}, {{ 40},{  7}}, {{104},{  7}}, {{ 24},{  7}}, {{ 88},{  7}},
2167 {{ 56},{  7}}, {{120},{  7}}, {{  4},{  7}}, {{ 68},{  7}}, {{ 36},{  7}},
2168 {{100},{  7}}, {{ 20},{  7}}, {{ 84},{  7}}, {{ 52},{  7}}, {{116},{  7}},
2169 {{  3},{  8}}, {{131},{  8}}, {{ 67},{  8}}, {{195},{  8}}, {{ 35},{  8}},
2170 {{163},{  8}}, {{ 99},{  8}}, {{227},{  8}}
2171 };
2172 
2173 local const ct_data static_dtree[D_CODES] = {
2174 {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}},
2175 {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}},
2176 {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}},
2177 {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}},
2178 {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}},
2179 {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}}
2180 };
2181 
2182 const uch _dist_code[DIST_CODE_LEN] = {
2183  0,  1,  2,  3,  4,  4,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  8,
2184  8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9, 10, 10, 10, 10, 10, 10, 10, 10,
2185 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
2186 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
2187 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
2188 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
2189 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
2190 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
2191 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
2192 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
2193 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
2194 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
2195 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,  0,  0, 16, 17,
2196 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
2197 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
2198 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
2199 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
2200 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
2201 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
2202 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
2203 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
2204 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
2205 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
2206 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
2207 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
2208 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
2209 };
2210 
2211 const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {
2212  0,  1,  2,  3,  4,  5,  6,  7,  8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 12, 12,
2213 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
2214 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
2215 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
2216 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
2217 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
2218 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
2219 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
2220 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
2221 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
2222 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
2223 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
2224 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
2225 };
2226 
2227 local const int base_length[LENGTH_CODES] = {
2228 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
2229 64, 80, 96, 112, 128, 160, 192, 224, 0
2230 };
2231 
2232 local const int base_dist[D_CODES] = {
2233     0,     1,     2,     3,     4,     6,     8,    12,    16,    24,
2234    32,    48,    64,    96,   128,   192,   256,   384,   512,   768,
2235  1024,  1536,  2048,  3072,  4096,  6144,  8192, 12288, 16384, 24576
2236 };
2237 /* --- trees.h */
2238 
2239 #endif /* GEN_TREES_H */
2240 
2241 struct static_tree_desc_s {
2242     const ct_data *static_tree;  /* static tree or NULL */
2243     const intf *extra_bits;      /* extra bits for each code or NULL */
2244     int     extra_base;          /* base index for extra_bits */
2245     int     elems;               /* max number of elements in the tree */
2246     int     max_length;          /* max bit length for the codes */
2247 };
2248 
2249 local static_tree_desc  static_l_desc =
2250 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
2251 
2252 local static_tree_desc  static_d_desc =
2253 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
2254 
2255 local static_tree_desc  static_bl_desc =
2256 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
2257 
2258 /* ===========================================================================
2259  * Local (static) routines in this file.
2260  */
2261 
2262 local void tr_static_init __P((void));
2263 local void init_block     __P((deflate_state *s));
2264 local void pqdownheap     __P((deflate_state *s, ct_data *tree, int k));
2265 local void gen_bitlen     __P((deflate_state *s, tree_desc *desc));
2266 local void gen_codes      __P((ct_data *tree, int max_code, ushf *bl_count));
2267 local void build_tree     __P((deflate_state *s, tree_desc *desc));
2268 local void scan_tree      __P((deflate_state *s, ct_data *tree, int max_code));
2269 local void send_tree      __P((deflate_state *s, ct_data *tree, int max_code));
2270 local int  build_bl_tree  __P((deflate_state *s));
2271 local void send_all_trees __P((deflate_state *s, int lcodes, int dcodes,
2272                               int blcodes));
2273 local void compress_block __P((deflate_state *s, ct_data *ltree,
2274                               ct_data *dtree));
2275 local void set_data_type  __P((deflate_state *s));
2276 local unsigned bi_reverse __P((unsigned value, int length));
2277 local void bi_windup      __P((deflate_state *s));
2278 local void bi_flush       __P((deflate_state *s));
2279 local void copy_block     __P((deflate_state *s, charf *buf, unsigned len,
2280                               int header));
2281 
2282 #ifdef GEN_TREES_H
2283 local void gen_trees_header __P((void));
2284 #endif
2285 
2286 #ifndef DEBUG_ZLIB
2287 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
2288    /* Send a code of the given tree. c and tree must not have side effects */
2289 
2290 #else /* DEBUG_ZLIB */
2291 #  define send_code(s, c, tree) \
2292      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
2293        send_bits(s, tree[c].Code, tree[c].Len); }
2294 #endif
2295 
2296 /* ===========================================================================
2297  * Output a short LSB first on the stream.
2298  * IN assertion: there is enough room in pendingBuf.
2299  */
2300 #define put_short(s, w) { \
2301     put_byte(s, (uch)((w) & 0xff)); \
2302     put_byte(s, (uch)((ush)(w) >> 8)); \
2303 }
2304 
2305 /* ===========================================================================
2306  * Send a value on a given number of bits.
2307  * IN assertion: length <= 16 and value fits in length bits.
2308  */
2309 #ifdef DEBUG_ZLIB
2310 local void send_bits      __P((deflate_state *s, int value, int length));
2311 
2312 local void send_bits(s, value, length)
2313     deflate_state *s;
2314     int value;  /* value to send */
2315     int length; /* number of bits */
2316 {
2317     Tracevv((stderr," l %2d v %4x ", length, value));
2318     Assert(length > 0 && length <= 15, "invalid length");
2319     s->bits_sent += (ulg)length;
2320 
2321     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2322      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2323      * unused bits in value.
2324      */
2325     if (s->bi_valid > (int)Buf_size - length) {
2326         s->bi_buf |= (value << s->bi_valid);
2327         put_short(s, s->bi_buf);
2328         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2329         s->bi_valid += length - Buf_size;
2330     } else {
2331         s->bi_buf |= value << s->bi_valid;
2332         s->bi_valid += length;
2333     }
2334 }
2335 #else /* !DEBUG_ZLIB */
2336 
2337 #define send_bits(s, value, length) \
2338 { int len = length;\
2339   if (s->bi_valid > (int)Buf_size - len) {\
2340     int val = value;\
2341     s->bi_buf |= (val << s->bi_valid);\
2342     put_short(s, s->bi_buf);\
2343     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2344     s->bi_valid += len - Buf_size;\
2345   } else {\
2346     s->bi_buf |= (value) << s->bi_valid;\
2347     s->bi_valid += len;\
2348   }\
2349 }
2350 #endif /* DEBUG_ZLIB */
2351 
2352 
2353 /* ===========================================================================
2354  * Initialize the various 'constant' tables.
2355  */
2356 local void tr_static_init()
2357 {
2358 #if defined(GEN_TREES_H) || !defined(STDC)
2359     static int static_init_done = 0;
2360     int n;        /* iterates over tree elements */
2361     int bits;     /* bit counter */
2362     int length;   /* length value */
2363     int code;     /* code value */
2364     int dist;     /* distance index */
2365     ush bl_count[MAX_BITS+1];
2366     /* number of codes at each bit length for an optimal tree */
2367 
2368     if (static_init_done) return;
2369 
2370     /* For some embedded targets, global variables are not initialized: */
2371     static_l_desc.static_tree = static_ltree;
2372     static_l_desc.extra_bits = extra_lbits;
2373     static_d_desc.static_tree = static_dtree;
2374     static_d_desc.extra_bits = extra_dbits;
2375     static_bl_desc.extra_bits = extra_blbits;
2376 
2377     /* Initialize the mapping length (0..255) -> length code (0..28) */
2378     length = 0;
2379     for (code = 0; code < LENGTH_CODES-1; code++) {
2380         base_length[code] = length;
2381         for (n = 0; n < (1<<extra_lbits[code]); n++) {
2382             _length_code[length++] = (uch)code;
2383         }
2384     }
2385     Assert (length == 256, "tr_static_init: length != 256");
2386     /* Note that the length 255 (match length 258) can be represented
2387      * in two different ways: code 284 + 5 bits or code 285, so we
2388      * overwrite length_code[255] to use the best encoding:
2389      */
2390     _length_code[length-1] = (uch)code;
2391 
2392     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2393     dist = 0;
2394     for (code = 0 ; code < 16; code++) {
2395         base_dist[code] = dist;
2396         for (n = 0; n < (1<<extra_dbits[code]); n++) {
2397             _dist_code[dist++] = (uch)code;
2398         }
2399     }
2400     Assert (dist == 256, "tr_static_init: dist != 256");
2401     dist >>= 7; /* from now on, all distances are divided by 128 */
2402     for ( ; code < D_CODES; code++) {
2403         base_dist[code] = dist << 7;
2404         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2405             _dist_code[256 + dist++] = (uch)code;
2406         }
2407     }
2408     Assert (dist == 256, "tr_static_init: 256+dist != 512");
2409 
2410     /* Construct the codes of the static literal tree */
2411     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2412     n = 0;
2413     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2414     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2415     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2416     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2417     /* Codes 286 and 287 do not exist, but we must include them in the
2418      * tree construction to get a canonical Huffman tree (longest code
2419      * all ones)
2420      */
2421     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2422 
2423     /* The static distance tree is trivial: */
2424     for (n = 0; n < D_CODES; n++) {
2425         static_dtree[n].Len = 5;
2426         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2427     }
2428     static_init_done = 1;
2429 
2430 #  ifdef GEN_TREES_H
2431     gen_trees_header();
2432 #  endif
2433 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
2434 }
2435 
2436 /* ===========================================================================
2437  * Genererate the file trees.h describing the static trees.
2438  */
2439 #ifdef GEN_TREES_H
2440 #  ifndef DEBUG_ZLIB
2441 #    include <stdio.h>
2442 #  endif
2443 
2444 #  define SEPARATOR(i, last, width) \
2445       ((i) == (last)? "\n};\n\n" :    \
2446        ((i) % (width) == (width)-1 ? ",\n" : ", "))
2447 
2448 void gen_trees_header()
2449 {
2450     FILE *header = fopen("trees.h", "w");
2451     int i;
2452 
2453     Assert (header != NULL, "Can't open trees.h");
2454     fprintf(header,
2455 	    "/* header created automatically with -DGEN_TREES_H */\n\n");
2456 
2457     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
2458     for (i = 0; i < L_CODES+2; i++) {
2459 	fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
2460 		static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
2461     }
2462 
2463     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
2464     for (i = 0; i < D_CODES; i++) {
2465 	fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
2466 		static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
2467     }
2468 
2469     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
2470     for (i = 0; i < DIST_CODE_LEN; i++) {
2471 	fprintf(header, "%2u%s", _dist_code[i],
2472 		SEPARATOR(i, DIST_CODE_LEN-1, 20));
2473     }
2474 
2475     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
2476     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
2477 	fprintf(header, "%2u%s", _length_code[i],
2478 		SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
2479     }
2480 
2481     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
2482     for (i = 0; i < LENGTH_CODES; i++) {
2483 	fprintf(header, "%1u%s", base_length[i],
2484 		SEPARATOR(i, LENGTH_CODES-1, 20));
2485     }
2486 
2487     fprintf(header, "local const int base_dist[D_CODES] = {\n");
2488     for (i = 0; i < D_CODES; i++) {
2489 	fprintf(header, "%5u%s", base_dist[i],
2490 		SEPARATOR(i, D_CODES-1, 10));
2491     }
2492 
2493     fclose(header);
2494 }
2495 #endif /* GEN_TREES_H */
2496 
2497 /* ===========================================================================
2498  * Initialize the tree data structures for a new zlib stream.
2499  */
2500 void _tr_init(s)
2501     deflate_state *s;
2502 {
2503     tr_static_init();
2504 
2505     s->l_desc.dyn_tree = s->dyn_ltree;
2506     s->l_desc.stat_desc = &static_l_desc;
2507 
2508     s->d_desc.dyn_tree = s->dyn_dtree;
2509     s->d_desc.stat_desc = &static_d_desc;
2510 
2511     s->bl_desc.dyn_tree = s->bl_tree;
2512     s->bl_desc.stat_desc = &static_bl_desc;
2513 
2514     s->bi_buf = 0;
2515     s->bi_valid = 0;
2516     s->last_eob_len = 8; /* enough lookahead for inflate */
2517 #ifdef DEBUG_ZLIB
2518     s->compressed_len = 0L;
2519     s->bits_sent = 0L;
2520 #endif
2521 
2522     /* Initialize the first block of the first file: */
2523     init_block(s);
2524 }
2525 
2526 /* ===========================================================================
2527  * Initialize a new block.
2528  */
2529 local void init_block(s)
2530     deflate_state *s;
2531 {
2532     int n; /* iterates over tree elements */
2533 
2534     /* Initialize the trees. */
2535     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
2536     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
2537     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2538 
2539     s->dyn_ltree[END_BLOCK].Freq = 1;
2540     s->opt_len = s->static_len = 0L;
2541     s->last_lit = s->matches = 0;
2542 }
2543 
2544 #define SMALLEST 1
2545 /* Index within the heap array of least frequent node in the Huffman tree */
2546 
2547 
2548 /* ===========================================================================
2549  * Remove the smallest element from the heap and recreate the heap with
2550  * one less element. Updates heap and heap_len.
2551  */
2552 #define pqremove(s, tree, top) \
2553 {\
2554     top = s->heap[SMALLEST]; \
2555     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2556     pqdownheap(s, tree, SMALLEST); \
2557 }
2558 
2559 /* ===========================================================================
2560  * Compares to subtrees, using the tree depth as tie breaker when
2561  * the subtrees have equal frequency. This minimizes the worst case length.
2562  */
2563 #define smaller(tree, n, m, depth) \
2564    (tree[n].Freq < tree[m].Freq || \
2565    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2566 
2567 /* ===========================================================================
2568  * Restore the heap property by moving down the tree starting at node k,
2569  * exchanging a node with the smallest of its two sons if necessary, stopping
2570  * when the heap property is re-established (each father smaller than its
2571  * two sons).
2572  */
2573 local void pqdownheap(s, tree, k)
2574     deflate_state *s;
2575     ct_data *tree;  /* the tree to restore */
2576     int k;               /* node to move down */
2577 {
2578     int v = s->heap[k];
2579     int j = k << 1;  /* left son of k */
2580     while (j <= s->heap_len) {
2581         /* Set j to the smallest of the two sons: */
2582         if (j < s->heap_len &&
2583             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2584             j++;
2585         }
2586         /* Exit if v is smaller than both sons */
2587         if (smaller(tree, v, s->heap[j], s->depth)) break;
2588 
2589         /* Exchange v with the smallest son */
2590         s->heap[k] = s->heap[j];  k = j;
2591 
2592         /* And continue down the tree, setting j to the left son of k */
2593         j <<= 1;
2594     }
2595     s->heap[k] = v;
2596 }
2597 
2598 /* ===========================================================================
2599  * Compute the optimal bit lengths for a tree and update the total bit length
2600  * for the current block.
2601  * IN assertion: the fields freq and dad are set, heap[heap_max] and
2602  *    above are the tree nodes sorted by increasing frequency.
2603  * OUT assertions: the field len is set to the optimal bit length, the
2604  *     array bl_count contains the frequencies for each bit length.
2605  *     The length opt_len is updated; static_len is also updated if stree is
2606  *     not null.
2607  */
2608 local void gen_bitlen(s, desc)
2609     deflate_state *s;
2610     tree_desc *desc;    /* the tree descriptor */
2611 {
2612     ct_data *tree        = desc->dyn_tree;
2613     int max_code         = desc->max_code;
2614     const ct_data *stree = desc->stat_desc->static_tree;
2615     const intf *extra    = desc->stat_desc->extra_bits;
2616     int base             = desc->stat_desc->extra_base;
2617     int max_length       = desc->stat_desc->max_length;
2618     int h;              /* heap index */
2619     int n, m;           /* iterate over the tree elements */
2620     int bits;           /* bit length */
2621     int xbits;          /* extra bits */
2622     ush f;              /* frequency */
2623     int overflow = 0;   /* number of elements with bit length too large */
2624 
2625     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2626 
2627     /* In a first pass, compute the optimal bit lengths (which may
2628      * overflow in the case of the bit length tree).
2629      */
2630     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2631 
2632     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2633         n = s->heap[h];
2634         bits = tree[tree[n].Dad].Len + 1;
2635         if (bits > max_length) bits = max_length, overflow++;
2636         tree[n].Len = (ush)bits;
2637         /* We overwrite tree[n].Dad which is no longer needed */
2638 
2639         if (n > max_code) continue; /* not a leaf node */
2640 
2641         s->bl_count[bits]++;
2642         xbits = 0;
2643         if (n >= base) xbits = extra[n-base];
2644         f = tree[n].Freq;
2645         s->opt_len += (ulg)f * (bits + xbits);
2646         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2647     }
2648     if (overflow == 0) return;
2649 
2650     Trace((stderr,"\nbit length overflow\n"));
2651     /* This happens for example on obj2 and pic of the Calgary corpus */
2652 
2653     /* Find the first bit length which could increase: */
2654     do {
2655         bits = max_length-1;
2656         while (s->bl_count[bits] == 0) bits--;
2657         s->bl_count[bits]--;      /* move one leaf down the tree */
2658         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2659         s->bl_count[max_length]--;
2660         /* The brother of the overflow item also moves one step up,
2661          * but this does not affect bl_count[max_length]
2662          */
2663         overflow -= 2;
2664     } while (overflow > 0);
2665 
2666     /* Now recompute all bit lengths, scanning in increasing frequency.
2667      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2668      * lengths instead of fixing only the wrong ones. This idea is taken
2669      * from 'ar' written by Haruhiko Okumura.)
2670      */
2671     for (bits = max_length; bits != 0; bits--) {
2672         n = s->bl_count[bits];
2673         while (n != 0) {
2674             m = s->heap[--h];
2675             if (m > max_code) continue;
2676             if (tree[m].Len != (unsigned) bits) {
2677                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2678                 s->opt_len += ((long)bits - (long)tree[m].Len)
2679                               *(long)tree[m].Freq;
2680                 tree[m].Len = (ush)bits;
2681             }
2682             n--;
2683         }
2684     }
2685 }
2686 
2687 /* ===========================================================================
2688  * Generate the codes for a given tree and bit counts (which need not be
2689  * optimal).
2690  * IN assertion: the array bl_count contains the bit length statistics for
2691  * the given tree and the field len is set for all tree elements.
2692  * OUT assertion: the field code is set for all tree elements of non
2693  *     zero code length.
2694  */
2695 local void gen_codes (tree, max_code, bl_count)
2696     ct_data *tree;             /* the tree to decorate */
2697     int max_code;              /* largest code with non zero frequency */
2698     ushf *bl_count;            /* number of codes at each bit length */
2699 {
2700     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2701     ush code = 0;              /* running code value */
2702     int bits;                  /* bit index */
2703     int n;                     /* code index */
2704 
2705     /* The distribution counts are first used to generate the code values
2706      * without bit reversal.
2707      */
2708     for (bits = 1; bits <= MAX_BITS; bits++) {
2709         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2710     }
2711     /* Check that the bit counts in bl_count are consistent. The last code
2712      * must be all ones.
2713      */
2714     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2715             "inconsistent bit counts");
2716     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2717 
2718     for (n = 0;  n <= max_code; n++) {
2719         int len = tree[n].Len;
2720         if (len == 0) continue;
2721         /* Now reverse the bits */
2722         tree[n].Code = bi_reverse(next_code[len]++, len);
2723 
2724         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2725              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2726     }
2727 }
2728 
2729 /* ===========================================================================
2730  * Construct one Huffman tree and assigns the code bit strings and lengths.
2731  * Update the total bit length for the current block.
2732  * IN assertion: the field freq is set for all tree elements.
2733  * OUT assertions: the fields len and code are set to the optimal bit length
2734  *     and corresponding code. The length opt_len is updated; static_len is
2735  *     also updated if stree is not null. The field max_code is set.
2736  */
2737 local void build_tree(s, desc)
2738     deflate_state *s;
2739     tree_desc *desc; /* the tree descriptor */
2740 {
2741     ct_data *tree         = desc->dyn_tree;
2742     const ct_data *stree  = desc->stat_desc->static_tree;
2743     int elems             = desc->stat_desc->elems;
2744     int n, m;          /* iterate over heap elements */
2745     int max_code = -1; /* largest code with non zero frequency */
2746     int node;          /* new node being created */
2747 
2748     /* Construct the initial heap, with least frequent element in
2749      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2750      * heap[0] is not used.
2751      */
2752     s->heap_len = 0, s->heap_max = HEAP_SIZE;
2753 
2754     for (n = 0; n < elems; n++) {
2755         if (tree[n].Freq != 0) {
2756             s->heap[++(s->heap_len)] = max_code = n;
2757             s->depth[n] = 0;
2758         } else {
2759             tree[n].Len = 0;
2760         }
2761     }
2762 
2763     /* The pkzip format requires that at least one distance code exists,
2764      * and that at least one bit should be sent even if there is only one
2765      * possible code. So to avoid special checks later on we force at least
2766      * two codes of non zero frequency.
2767      */
2768     while (s->heap_len < 2) {
2769         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2770         tree[node].Freq = 1;
2771         s->depth[node] = 0;
2772         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2773         /* node is 0 or 1 so it does not have extra bits */
2774     }
2775     desc->max_code = max_code;
2776 
2777     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2778      * establish sub-heaps of increasing lengths:
2779      */
2780     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2781 
2782     /* Construct the Huffman tree by repeatedly combining the least two
2783      * frequent nodes.
2784      */
2785     node = elems;              /* next internal node of the tree */
2786     do {
2787         pqremove(s, tree, n);  /* n = node of least frequency */
2788         m = s->heap[SMALLEST]; /* m = node of next least frequency */
2789 
2790         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2791         s->heap[--(s->heap_max)] = m;
2792 
2793         /* Create a new node father of n and m */
2794         tree[node].Freq = tree[n].Freq + tree[m].Freq;
2795         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2796         tree[n].Dad = tree[m].Dad = (ush)node;
2797 #ifdef DUMP_BL_TREE
2798         if (tree == s->bl_tree) {
2799             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2800                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2801         }
2802 #endif
2803         /* and insert the new node in the heap */
2804         s->heap[SMALLEST] = node++;
2805         pqdownheap(s, tree, SMALLEST);
2806 
2807     } while (s->heap_len >= 2);
2808 
2809     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2810 
2811     /* At this point, the fields freq and dad are set. We can now
2812      * generate the bit lengths.
2813      */
2814     gen_bitlen(s, (tree_desc *)desc);
2815 
2816     /* The field len is now set, we can generate the bit codes */
2817     gen_codes ((ct_data *)tree, max_code, s->bl_count);
2818 }
2819 
2820 /* ===========================================================================
2821  * Scan a literal or distance tree to determine the frequencies of the codes
2822  * in the bit length tree.
2823  */
2824 local void scan_tree (s, tree, max_code)
2825     deflate_state *s;
2826     ct_data *tree;   /* the tree to be scanned */
2827     int max_code;    /* and its largest code of non zero frequency */
2828 {
2829     int n;                     /* iterates over all tree elements */
2830     int prevlen = -1;          /* last emitted length */
2831     int curlen;                /* length of current code */
2832     int nextlen = tree[0].Len; /* length of next code */
2833     int count = 0;             /* repeat count of the current code */
2834     int max_count = 7;         /* max repeat count */
2835     int min_count = 4;         /* min repeat count */
2836 
2837     if (nextlen == 0) max_count = 138, min_count = 3;
2838     tree[max_code+1].Len = (ush)0xffff; /* guard */
2839 
2840     for (n = 0; n <= max_code; n++) {
2841         curlen = nextlen; nextlen = tree[n+1].Len;
2842         if (++count < max_count && curlen == nextlen) {
2843             continue;
2844         } else if (count < min_count) {
2845             s->bl_tree[curlen].Freq += count;
2846         } else if (curlen != 0) {
2847             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2848             s->bl_tree[REP_3_6].Freq++;
2849         } else if (count <= 10) {
2850             s->bl_tree[REPZ_3_10].Freq++;
2851         } else {
2852             s->bl_tree[REPZ_11_138].Freq++;
2853         }
2854         count = 0; prevlen = curlen;
2855         if (nextlen == 0) {
2856             max_count = 138, min_count = 3;
2857         } else if (curlen == nextlen) {
2858             max_count = 6, min_count = 3;
2859         } else {
2860             max_count = 7, min_count = 4;
2861         }
2862     }
2863 }
2864 
2865 /* ===========================================================================
2866  * Send a literal or distance tree in compressed form, using the codes in
2867  * bl_tree.
2868  */
2869 local void send_tree (s, tree, max_code)
2870     deflate_state *s;
2871     ct_data *tree; /* the tree to be scanned */
2872     int max_code;       /* and its largest code of non zero frequency */
2873 {
2874     int n;                     /* iterates over all tree elements */
2875     int prevlen = -1;          /* last emitted length */
2876     int curlen;                /* length of current code */
2877     int nextlen = tree[0].Len; /* length of next code */
2878     int count = 0;             /* repeat count of the current code */
2879     int max_count = 7;         /* max repeat count */
2880     int min_count = 4;         /* min repeat count */
2881 
2882     /* tree[max_code+1].Len = -1; */  /* guard already set */
2883     if (nextlen == 0) max_count = 138, min_count = 3;
2884 
2885     for (n = 0; n <= max_code; n++) {
2886         curlen = nextlen; nextlen = tree[n+1].Len;
2887         if (++count < max_count && curlen == nextlen) {
2888             continue;
2889         } else if (count < min_count) {
2890             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2891 
2892         } else if (curlen != 0) {
2893             if (curlen != prevlen) {
2894                 send_code(s, curlen, s->bl_tree); count--;
2895             }
2896             Assert(count >= 3 && count <= 6, " 3_6?");
2897             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2898 
2899         } else if (count <= 10) {
2900             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2901 
2902         } else {
2903             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2904         }
2905         count = 0; prevlen = curlen;
2906         if (nextlen == 0) {
2907             max_count = 138, min_count = 3;
2908         } else if (curlen == nextlen) {
2909             max_count = 6, min_count = 3;
2910         } else {
2911             max_count = 7, min_count = 4;
2912         }
2913     }
2914 }
2915 
2916 /* ===========================================================================
2917  * Construct the Huffman tree for the bit lengths and return the index in
2918  * bl_order of the last bit length code to send.
2919  */
2920 local int build_bl_tree(s)
2921     deflate_state *s;
2922 {
2923     int max_blindex;  /* index of last bit length code of non zero freq */
2924 
2925     /* Determine the bit length frequencies for literal and distance trees */
2926     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2927     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2928 
2929     /* Build the bit length tree: */
2930     build_tree(s, (tree_desc *)(&(s->bl_desc)));
2931     /* opt_len now includes the length of the tree representations, except
2932      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2933      */
2934 
2935     /* Determine the number of bit length codes to send. The pkzip format
2936      * requires that at least 4 bit length codes be sent. (appnote.txt says
2937      * 3 but the actual value used is 4.)
2938      */
2939     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2940         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2941     }
2942     /* Update opt_len to include the bit length tree and counts */
2943     s->opt_len += 3*(max_blindex+1) + 5+5+4;
2944     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2945             s->opt_len, s->static_len));
2946 
2947     return max_blindex;
2948 }
2949 
2950 /* ===========================================================================
2951  * Send the header for a block using dynamic Huffman trees: the counts, the
2952  * lengths of the bit length codes, the literal tree and the distance tree.
2953  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2954  */
2955 local void send_all_trees(s, lcodes, dcodes, blcodes)
2956     deflate_state *s;
2957     int lcodes, dcodes, blcodes; /* number of codes for each tree */
2958 {
2959     int rank;                    /* index in bl_order */
2960 
2961     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2962     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2963             "too many codes");
2964     Tracev((stderr, "\nbl counts: "));
2965     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2966     send_bits(s, dcodes-1,   5);
2967     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2968     for (rank = 0; rank < blcodes; rank++) {
2969         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2970         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2971     }
2972     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2973 
2974     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2975     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2976 
2977     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2978     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2979 }
2980 
2981 /* ===========================================================================
2982  * Send a stored block
2983  */
2984 void _tr_stored_block(s, buf, stored_len, eof)
2985     deflate_state *s;
2986     charf *buf;       /* input block */
2987     ulg stored_len;   /* length of input block */
2988     int eof;          /* true if this is the last block for a file */
2989 {
2990     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2991 #ifdef DEBUG_ZLIB
2992     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2993     s->compressed_len += (stored_len + 4) << 3;
2994 #endif
2995     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2996 }
2997 
2998 /* Send just the `stored block' type code without any length bytes or data.
2999  */
3000 void _tr_stored_type_only(s)
3001     deflate_state *s;
3002 {
3003     send_bits(s, (STORED_BLOCK << 1), 3);
3004     bi_windup(s);
3005 #ifdef DEBUG_ZLIB
3006     s->compressed_len = (s->compressed_len + 3) & ~7L;
3007 #endif
3008 }
3009 
3010 /* ===========================================================================
3011  * Send one empty static block to give enough lookahead for inflate.
3012  * This takes 10 bits, of which 7 may remain in the bit buffer.
3013  * The current inflate code requires 9 bits of lookahead. If the
3014  * last two codes for the previous block (real code plus EOB) were coded
3015  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
3016  * the last real code. In this case we send two empty static blocks instead
3017  * of one. (There are no problems if the previous block is stored or fixed.)
3018  * To simplify the code, we assume the worst case of last real code encoded
3019  * on one bit only.
3020  */
3021 void _tr_align(s)
3022     deflate_state *s;
3023 {
3024     send_bits(s, STATIC_TREES<<1, 3);
3025     send_code(s, END_BLOCK, static_ltree);
3026 #ifdef DEBUG_ZLIB
3027     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
3028 #endif
3029     bi_flush(s);
3030     /* Of the 10 bits for the empty block, we have already sent
3031      * (10 - bi_valid) bits. The lookahead for the last real code (before
3032      * the EOB of the previous block) was thus at least one plus the length
3033      * of the EOB plus what we have just sent of the empty static block.
3034      */
3035     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
3036         send_bits(s, STATIC_TREES<<1, 3);
3037         send_code(s, END_BLOCK, static_ltree);
3038 #ifdef DEBUG_ZLIB
3039         s->compressed_len += 10L;
3040 #endif
3041         bi_flush(s);
3042     }
3043     s->last_eob_len = 7;
3044 }
3045 
3046 /* ===========================================================================
3047  * Determine the best encoding for the current block: dynamic trees, static
3048  * trees or store, and output the encoded block to the zip file.
3049  */
3050 void _tr_flush_block(s, buf, stored_len, eof)
3051     deflate_state *s;
3052     charf *buf;       /* input block, or NULL if too old */
3053     ulg stored_len;   /* length of input block */
3054     int eof;          /* true if this is the last block for a file */
3055 {
3056     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
3057     int max_blindex = 0;  /* index of last bit length code of non zero freq */
3058 
3059     /* Build the Huffman trees unless a stored block is forced */
3060     if (s->level > 0) {
3061 
3062 	 /* Check if the file is ascii or binary */
3063 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
3064 
3065 	/* Construct the literal and distance trees */
3066 	build_tree(s, (tree_desc *)(&(s->l_desc)));
3067 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
3068 		s->static_len));
3069 
3070 	build_tree(s, (tree_desc *)(&(s->d_desc)));
3071 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
3072 		s->static_len));
3073 	/* At this point, opt_len and static_len are the total bit lengths of
3074 	 * the compressed block data, excluding the tree representations.
3075 	 */
3076 
3077 	/* Build the bit length tree for the above two trees, and get the index
3078 	 * in bl_order of the last bit length code to send.
3079 	 */
3080 	max_blindex = build_bl_tree(s);
3081 
3082 	/* Determine the best encoding. Compute first the block length in bytes*/
3083 	opt_lenb = (s->opt_len+3+7)>>3;
3084 	static_lenb = (s->static_len+3+7)>>3;
3085 
3086 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
3087 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
3088 		s->last_lit));
3089 
3090 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
3091 
3092     } else {
3093         Assert(buf != (char*)0, "lost buf");
3094 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
3095     }
3096 
3097 #ifdef FORCE_STORED
3098     if (buf != (char*)0) { /* force stored block */
3099 #else
3100     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
3101                        /* 4: two words for the lengths */
3102 #endif
3103         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
3104          * Otherwise we can't have processed more than WSIZE input bytes since
3105          * the last block flush, because compression would have been
3106          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
3107          * transform a block into a stored block.
3108          */
3109         _tr_stored_block(s, buf, stored_len, eof);
3110 
3111 #ifdef FORCE_STATIC
3112     } else if (static_lenb >= 0) { /* force static trees */
3113 #else
3114     } else if (static_lenb == opt_lenb) {
3115 #endif
3116         send_bits(s, (STATIC_TREES<<1)+eof, 3);
3117         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
3118 #ifdef DEBUG_ZLIB
3119         s->compressed_len += 3 + s->static_len;
3120 #endif
3121     } else {
3122         send_bits(s, (DYN_TREES<<1)+eof, 3);
3123         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
3124                        max_blindex+1);
3125         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
3126 #ifdef DEBUG_ZLIB
3127         s->compressed_len += 3 + s->opt_len;
3128 #endif
3129     }
3130     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
3131     /* The above check is made mod 2^32, for files larger than 512 MB
3132      * and uLong implemented on 32 bits.
3133      */
3134     init_block(s);
3135 
3136     if (eof) {
3137         bi_windup(s);
3138 #ifdef DEBUG_ZLIB
3139         s->compressed_len += 7;  /* align on byte boundary */
3140 #endif
3141     }
3142     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
3143            s->compressed_len-7*eof));
3144 }
3145 
3146 /* ===========================================================================
3147  * Save the match info and tally the frequency counts. Return true if
3148  * the current block must be flushed.
3149  */
3150 int _tr_tally (s, dist, lc)
3151     deflate_state *s;
3152     unsigned dist;  /* distance of matched string */
3153     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
3154 {
3155     s->d_buf[s->last_lit] = (ush)dist;
3156     s->l_buf[s->last_lit++] = (uch)lc;
3157     if (dist == 0) {
3158         /* lc is the unmatched char */
3159         s->dyn_ltree[lc].Freq++;
3160     } else {
3161         s->matches++;
3162         /* Here, lc is the match length - MIN_MATCH */
3163         dist--;             /* dist = match distance - 1 */
3164         Assert((ush)dist < (ush)MAX_DIST(s) &&
3165                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
3166                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
3167 
3168         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
3169         s->dyn_dtree[d_code(dist)].Freq++;
3170     }
3171 
3172 #ifdef TRUNCATE_BLOCK
3173     /* Try to guess if it is profitable to stop the current block here */
3174     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
3175         /* Compute an upper bound for the compressed length */
3176         ulg out_length = (ulg)s->last_lit*8L;
3177         ulg in_length = (ulg)((long)s->strstart - s->block_start);
3178         int dcode;
3179         for (dcode = 0; dcode < D_CODES; dcode++) {
3180             out_length += (ulg)s->dyn_dtree[dcode].Freq *
3181                 (5L+extra_dbits[dcode]);
3182         }
3183         out_length >>= 3;
3184         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
3185                s->last_lit, in_length, out_length,
3186                100L - out_length*100L/in_length));
3187         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
3188     }
3189 #endif
3190     return (s->last_lit == s->lit_bufsize-1);
3191     /* We avoid equality with lit_bufsize because of wraparound at 64K
3192      * on 16 bit machines and because stored blocks are restricted to
3193      * 64K-1 bytes.
3194      */
3195 }
3196 
3197 /* ===========================================================================
3198  * Send the block data compressed using the given Huffman trees
3199  */
3200 local void compress_block(s, ltree, dtree)
3201     deflate_state *s;
3202     ct_data *ltree; /* literal tree */
3203     ct_data *dtree; /* distance tree */
3204 {
3205     unsigned dist;      /* distance of matched string */
3206     int lc;             /* match length or unmatched char (if dist == 0) */
3207     unsigned lx = 0;    /* running index in l_buf */
3208     unsigned code;      /* the code to send */
3209     int extra;          /* number of extra bits to send */
3210 
3211     if (s->last_lit != 0) do {
3212         dist = s->d_buf[lx];
3213         lc = s->l_buf[lx++];
3214         if (dist == 0) {
3215             send_code(s, lc, ltree); /* send a literal byte */
3216             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
3217         } else {
3218             /* Here, lc is the match length - MIN_MATCH */
3219             code = _length_code[lc];
3220             send_code(s, code+LITERALS+1, ltree); /* send the length code */
3221             extra = extra_lbits[code];
3222             if (extra != 0) {
3223                 lc -= base_length[code];
3224                 send_bits(s, lc, extra);       /* send the extra length bits */
3225             }
3226             dist--; /* dist is now the match distance - 1 */
3227             code = d_code(dist);
3228             Assert (code < D_CODES, "bad d_code");
3229 
3230             send_code(s, code, dtree);       /* send the distance code */
3231             extra = extra_dbits[code];
3232             if (extra != 0) {
3233                 dist -= base_dist[code];
3234                 send_bits(s, dist, extra);   /* send the extra distance bits */
3235             }
3236         } /* literal or match pair ? */
3237 
3238         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
3239         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
3240 
3241     } while (lx < s->last_lit);
3242 
3243     send_code(s, END_BLOCK, ltree);
3244     s->last_eob_len = ltree[END_BLOCK].Len;
3245 }
3246 
3247 /* ===========================================================================
3248  * Set the data type to ASCII or BINARY, using a crude approximation:
3249  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
3250  * IN assertion: the fields freq of dyn_ltree are set and the total of all
3251  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
3252  */
3253 local void set_data_type(s)
3254     deflate_state *s;
3255 {
3256     int n = 0;
3257     unsigned ascii_freq = 0;
3258     unsigned bin_freq = 0;
3259     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
3260     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
3261     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
3262     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
3263 }
3264 
3265 /* ===========================================================================
3266  * Reverse the first len bits of a code, using straightforward code (a faster
3267  * method would use a table)
3268  * IN assertion: 1 <= len <= 15
3269  */
3270 local unsigned bi_reverse(code, len)
3271     unsigned code; /* the value to invert */
3272     int len;       /* its bit length */
3273 {
3274     unsigned res = 0;
3275     do {
3276         res |= code & 1;
3277         code >>= 1, res <<= 1;
3278     } while (--len > 0);
3279     return res >> 1;
3280 }
3281 
3282 /* ===========================================================================
3283  * Flush the bit buffer, keeping at most 7 bits in it.
3284  */
3285 local void bi_flush(s)
3286     deflate_state *s;
3287 {
3288     if (s->bi_valid == 16) {
3289         put_short(s, s->bi_buf);
3290         s->bi_buf = 0;
3291         s->bi_valid = 0;
3292     } else if (s->bi_valid >= 8) {
3293         put_byte(s, (Byte)s->bi_buf);
3294         s->bi_buf >>= 8;
3295         s->bi_valid -= 8;
3296     }
3297 }
3298 
3299 /* ===========================================================================
3300  * Flush the bit buffer and align the output on a byte boundary
3301  */
3302 local void bi_windup(s)
3303     deflate_state *s;
3304 {
3305     if (s->bi_valid > 8) {
3306         put_short(s, s->bi_buf);
3307     } else if (s->bi_valid > 0) {
3308         put_byte(s, (Byte)s->bi_buf);
3309     }
3310     s->bi_buf = 0;
3311     s->bi_valid = 0;
3312 #ifdef DEBUG_ZLIB
3313     s->bits_sent = (s->bits_sent+7) & ~7;
3314 #endif
3315 }
3316 
3317 /* ===========================================================================
3318  * Copy a stored block, storing first the length and its
3319  * one's complement if requested.
3320  */
3321 local void copy_block(s, buf, len, header)
3322     deflate_state *s;
3323     charf    *buf;    /* the input data */
3324     unsigned len;     /* its length */
3325     int      header;  /* true if block header must be written */
3326 {
3327     bi_windup(s);        /* align on byte boundary */
3328     s->last_eob_len = 8; /* enough lookahead for inflate */
3329 
3330     if (header) {
3331         put_short(s, (ush)len);
3332         put_short(s, (ush)~len);
3333 #ifdef DEBUG_ZLIB
3334         s->bits_sent += 2*16;
3335 #endif
3336     }
3337 #ifdef DEBUG_ZLIB
3338     s->bits_sent += (ulg)len<<3;
3339 #endif
3340     /* bundle up the put_byte(s, *buf++) calls */
3341     zmemcpy(&s->pending_buf[s->pending], buf, len);
3342     s->pending += len;
3343 }
3344 /* --- trees.c */
3345 
3346 /* +++ inflate.c */
3347 
3348 /* inflate.c -- zlib interface to inflate modules
3349  * Copyright (C) 1995-2002 Mark Adler
3350  * For conditions of distribution and use, see copyright notice in zlib.h
3351  */
3352 
3353 /* #include "zutil.h" */
3354 
3355 /* +++ infblock.h */
3356 
3357 /* infblock.h -- header to use infblock.c
3358  * Copyright (C) 1995-2002 Mark Adler
3359  * For conditions of distribution and use, see copyright notice in zlib.h
3360  */
3361 
3362 /* WARNING: this file should *not* be used by applications. It is
3363    part of the implementation of the compression library and is
3364    subject to change. Applications should only use zlib.h.
3365  */
3366 
3367 struct inflate_blocks_state;
3368 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3369 
3370 extern inflate_blocks_statef * inflate_blocks_new __P((
3371     z_streamp z,
3372     check_func c,               /* check function */
3373     uInt w));                   /* window size */
3374 
3375 extern int inflate_blocks __P((
3376     inflate_blocks_statef *,
3377     z_streamp ,
3378     int));                      /* initial return code */
3379 
3380 extern void inflate_blocks_reset __P((
3381     inflate_blocks_statef *,
3382     z_streamp ,
3383     uLongf *));                  /* check value on output */
3384 
3385 extern int inflate_blocks_free __P((
3386     inflate_blocks_statef *,
3387     z_streamp));
3388 
3389 extern void inflate_set_dictionary __P((
3390     inflate_blocks_statef *s,
3391     const Bytef *d,  /* dictionary */
3392     uInt  n));       /* dictionary length */
3393 
3394 extern int inflate_blocks_sync_point __P((
3395     inflate_blocks_statef *s));
3396 extern int inflate_addhistory __P((
3397     inflate_blocks_statef *,
3398     z_streamp));
3399 
3400 extern int inflate_packet_flush __P((
3401     inflate_blocks_statef *));
3402 
3403 /* --- infblock.h */
3404 
3405 #ifndef NO_DUMMY_DECL
3406 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3407 #endif
3408 
3409 typedef enum {
3410       METHOD,   /* waiting for method byte */
3411       FLAG,     /* waiting for flag byte */
3412       DICT4,    /* four dictionary check bytes to go */
3413       DICT3,    /* three dictionary check bytes to go */
3414       DICT2,    /* two dictionary check bytes to go */
3415       DICT1,    /* one dictionary check byte to go */
3416       DICT0,    /* waiting for inflateSetDictionary */
3417       BLOCKS,   /* decompressing blocks */
3418       CHECK4,   /* four check bytes to go */
3419       CHECK3,   /* three check bytes to go */
3420       CHECK2,   /* two check bytes to go */
3421       CHECK1,   /* one check byte to go */
3422       DONE,     /* finished check, done */
3423       BAD}      /* got an error--stay here */
3424 inflate_mode;
3425 
3426 /* inflate private state */
3427 struct internal_state {
3428 
3429   /* mode */
3430   inflate_mode  mode;   /* current inflate mode */
3431 
3432   /* mode dependent information */
3433   union {
3434     uInt method;        /* if FLAGS, method byte */
3435     struct {
3436       uLong was;                /* computed check value */
3437       uLong need;               /* stream check value */
3438     } check;            /* if CHECK, check values to compare */
3439     uInt marker;        /* if BAD, inflateSync's marker bytes count */
3440   } sub;        /* submode */
3441 
3442   /* mode independent information */
3443   int  nowrap;          /* flag for no wrapper */
3444   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
3445   inflate_blocks_statef
3446     *blocks;            /* current inflate_blocks state */
3447 
3448 };
3449 
3450 
3451 int ZEXPORT inflateReset(z)
3452 z_streamp z;
3453 {
3454   if (z == Z_NULL || z->state == Z_NULL)
3455     return Z_STREAM_ERROR;
3456   z->total_in = z->total_out = 0;
3457   z->msg = Z_NULL;
3458   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3459   inflate_blocks_reset(z->state->blocks, z, Z_NULL);
3460   Tracev((stderr, "inflate: reset\n"));
3461   return Z_OK;
3462 }
3463 
3464 
3465 int ZEXPORT inflateEnd(z)
3466 z_streamp z;
3467 {
3468   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3469     return Z_STREAM_ERROR;
3470   if (z->state->blocks != Z_NULL)
3471     inflate_blocks_free(z->state->blocks, z);
3472   ZFREE(z, z->state);
3473   z->state = Z_NULL;
3474   Tracev((stderr, "inflate: end\n"));
3475   return Z_OK;
3476 }
3477 
3478 
3479 int ZEXPORT inflateInit2_(z, w, version, stream_size)
3480 z_streamp z;
3481 int w;
3482 const char *version;
3483 int stream_size;
3484 {
3485   if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3486       stream_size != sizeof(z_stream))
3487       return Z_VERSION_ERROR;
3488 
3489   /* initialize state */
3490   if (z == Z_NULL)
3491     return Z_STREAM_ERROR;
3492   z->msg = Z_NULL;
3493 #ifndef NO_ZCFUNCS
3494   if (z->zalloc == Z_NULL)
3495   {
3496     z->zalloc = zcalloc;
3497     z->opaque = (voidpf)0;
3498   }
3499   if (z->zfree == Z_NULL) z->zfree = zcfree;
3500 #endif
3501   if ((z->state = (struct internal_state FAR *)
3502        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3503     return Z_MEM_ERROR;
3504   z->state->blocks = Z_NULL;
3505 
3506   /* handle undocumented nowrap option (no zlib header or check) */
3507   z->state->nowrap = 0;
3508   if (w < 0)
3509   {
3510     w = - w;
3511     z->state->nowrap = 1;
3512   }
3513 
3514   /* set window size */
3515   if (w < 8 || w > 15)
3516   {
3517     inflateEnd(z);
3518     return Z_STREAM_ERROR;
3519   }
3520   z->state->wbits = (uInt)w;
3521 
3522   /* create inflate_blocks state */
3523   if ((z->state->blocks =
3524       inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3525       == Z_NULL)
3526   {
3527     inflateEnd(z);
3528     return Z_MEM_ERROR;
3529   }
3530   Tracev((stderr, "inflate: allocated\n"));
3531 
3532   /* reset state */
3533   inflateReset(z);
3534   return Z_OK;
3535 }
3536 
3537 
3538 int ZEXPORT inflateInit_(z, version, stream_size)
3539 z_streamp z;
3540 const char *version;
3541 int stream_size;
3542 {
3543   return inflateInit2_(z, DEF_WBITS, version, stream_size);
3544 }
3545 
3546 
3547 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3548 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3549 
3550 int ZEXPORT inflate(z, f)
3551 z_streamp z;
3552 int f;
3553 {
3554   int r, r2;
3555   uInt b;
3556 
3557   if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL)
3558     return Z_STREAM_ERROR;
3559   r2 = f == Z_FINISH ? Z_BUF_ERROR : Z_OK;
3560   r = Z_BUF_ERROR;
3561   while (1) switch (z->state->mode)
3562   {
3563     case METHOD:
3564       NEEDBYTE
3565       if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3566       {
3567         z->state->mode = BAD;
3568         z->msg = (char*)"unknown compression method";
3569         z->state->sub.marker = 5;       /* can't try inflateSync */
3570         break;
3571       }
3572       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3573       {
3574         z->state->mode = BAD;
3575         z->msg = (char*)"invalid window size";
3576         z->state->sub.marker = 5;       /* can't try inflateSync */
3577         break;
3578       }
3579       z->state->mode = FLAG;
3580     case FLAG:
3581       NEEDBYTE
3582       b = NEXTBYTE;
3583       if (((z->state->sub.method << 8) + b) % 31)
3584       {
3585         z->state->mode = BAD;
3586         z->msg = (char*)"incorrect header check";
3587         z->state->sub.marker = 5;       /* can't try inflateSync */
3588         break;
3589       }
3590       Tracev((stderr, "inflate: zlib header ok\n"));
3591       if (!(b & PRESET_DICT))
3592       {
3593         z->state->mode = BLOCKS;
3594         break;
3595       }
3596       z->state->mode = DICT4;
3597     case DICT4:
3598       NEEDBYTE
3599       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3600       z->state->mode = DICT3;
3601     case DICT3:
3602       NEEDBYTE
3603       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3604       z->state->mode = DICT2;
3605     case DICT2:
3606       NEEDBYTE
3607       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3608       z->state->mode = DICT1;
3609     case DICT1:
3610       NEEDBYTE
3611       z->state->sub.check.need += (uLong)NEXTBYTE;
3612       z->adler = z->state->sub.check.need;
3613       z->state->mode = DICT0;
3614       return Z_NEED_DICT;
3615     case DICT0:
3616       z->state->mode = BAD;
3617       z->msg = (char*)"need dictionary";
3618       z->state->sub.marker = 0;       /* can try inflateSync */
3619       return Z_STREAM_ERROR;
3620     case BLOCKS:
3621       r = inflate_blocks(z->state->blocks, z, r);
3622       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3623          r = inflate_packet_flush(z->state->blocks);
3624       if (r == Z_DATA_ERROR)
3625       {
3626         z->state->mode = BAD;
3627         z->state->sub.marker = 0;       /* can try inflateSync */
3628         break;
3629       }
3630       if (r == Z_OK)
3631         r = r2;
3632       if (r != Z_STREAM_END)
3633         return r;
3634       r = r2;
3635       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3636       if (z->state->nowrap)
3637       {
3638         z->state->mode = DONE;
3639         break;
3640       }
3641       z->state->mode = CHECK4;
3642     case CHECK4:
3643       NEEDBYTE
3644       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3645       z->state->mode = CHECK3;
3646     case CHECK3:
3647       NEEDBYTE
3648       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3649       z->state->mode = CHECK2;
3650     case CHECK2:
3651       NEEDBYTE
3652       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3653       z->state->mode = CHECK1;
3654     case CHECK1:
3655       NEEDBYTE
3656       z->state->sub.check.need += (uLong)NEXTBYTE;
3657 
3658       if (z->state->sub.check.was != z->state->sub.check.need)
3659       {
3660         z->state->mode = BAD;
3661         z->msg = (char*)"incorrect data check";
3662         z->state->sub.marker = 5;       /* can't try inflateSync */
3663         break;
3664       }
3665       Tracev((stderr, "inflate: zlib check ok\n"));
3666       z->state->mode = DONE;
3667     case DONE:
3668       return Z_STREAM_END;
3669     case BAD:
3670       return Z_DATA_ERROR;
3671     default:
3672       return Z_STREAM_ERROR;
3673   }
3674  empty:
3675   if (f != Z_PACKET_FLUSH)
3676     return r;
3677   z->state->mode = BAD;
3678   z->msg = (char *)"need more for packet flush";
3679   z->state->sub.marker = 0;
3680   return Z_DATA_ERROR;
3681 }
3682 
3683 
3684 int ZEXPORT inflateSetDictionary(z, dictionary, dictLength)
3685 z_streamp z;
3686 const Bytef *dictionary;
3687 uInt  dictLength;
3688 {
3689   uInt length = dictLength;
3690 
3691   if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3692     return Z_STREAM_ERROR;
3693 
3694   if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3695   z->adler = 1L;
3696 
3697   if (length >= ((uInt)1<<z->state->wbits))
3698   {
3699     length = (1<<z->state->wbits)-1;
3700     dictionary += dictLength - length;
3701   }
3702   inflate_set_dictionary(z->state->blocks, dictionary, length);
3703   z->state->mode = BLOCKS;
3704   return Z_OK;
3705 }
3706 
3707 /*
3708  * This subroutine adds the data at next_in/avail_in to the output history
3709  * without performing any output.  The output buffer must be "caught up";
3710  * i.e. no pending output (hence s->read equals s->write), and the state must
3711  * be BLOCKS (i.e. we should be willing to see the start of a series of
3712  * BLOCKS).  On exit, the output will also be caught up, and the checksum
3713  * will have been updated if need be.
3714  */
3715 
3716 int inflateIncomp(z)
3717 z_stream *z;
3718 {
3719     if (z->state->mode != BLOCKS)
3720 	return Z_DATA_ERROR;
3721     return inflate_addhistory(z->state->blocks, z);
3722 }
3723 
3724 int ZEXPORT inflateSync(z)
3725 z_streamp z;
3726 {
3727   uInt n;       /* number of bytes to look at */
3728   Bytef *p;     /* pointer to bytes */
3729   uInt m;       /* number of marker bytes found in a row */
3730   uLong r, w;   /* temporaries to save total_in and total_out */
3731 
3732   /* set up */
3733   if (z == Z_NULL || z->state == Z_NULL)
3734     return Z_STREAM_ERROR;
3735   if (z->state->mode != BAD)
3736   {
3737     z->state->mode = BAD;
3738     z->state->sub.marker = 0;
3739   }
3740   if ((n = z->avail_in) == 0)
3741     return Z_BUF_ERROR;
3742   p = z->next_in;
3743   m = z->state->sub.marker;
3744 
3745   /* search */
3746   while (n && m < 4)
3747   {
3748     static const Byte mark[4] = {0, 0, 0xff, 0xff};
3749     if (*p == mark[m])
3750       m++;
3751     else if (*p)
3752       m = 0;
3753     else
3754       m = 4 - m;
3755     p++, n--;
3756   }
3757 
3758   /* restore */
3759   z->total_in += p - z->next_in;
3760   z->next_in = p;
3761   z->avail_in = n;
3762   z->state->sub.marker = m;
3763 
3764   /* return no joy or set up to restart on a new block */
3765   if (m != 4)
3766     return Z_DATA_ERROR;
3767   r = z->total_in;  w = z->total_out;
3768   inflateReset(z);
3769   z->total_in = r;  z->total_out = w;
3770   z->state->mode = BLOCKS;
3771   return Z_OK;
3772 }
3773 
3774 
3775 /* Returns true if inflate is currently at the end of a block generated
3776  * by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
3777  * implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH
3778  * but removes the length bytes of the resulting empty stored block. When
3779  * decompressing, PPP checks that at the end of input packet, inflate is
3780  * waiting for these length bytes.
3781  */
3782 int ZEXPORT inflateSyncPoint(z)
3783 z_streamp z;
3784 {
3785   if (z == Z_NULL || z->state == Z_NULL || z->state->blocks == Z_NULL)
3786     return Z_STREAM_ERROR;
3787   return inflate_blocks_sync_point(z->state->blocks);
3788 }
3789 #undef NEEDBYTE
3790 #undef NEXTBYTE
3791 /* --- inflate.c */
3792 
3793 /* +++ infblock.c */
3794 
3795 /* infblock.c -- interpret and process block types to last block
3796  * Copyright (C) 1995-2002 Mark Adler
3797  * For conditions of distribution and use, see copyright notice in zlib.h
3798  */
3799 
3800 /* #include "zutil.h" */
3801 /* #include "infblock.h" */
3802 
3803 /* +++ inftrees.h */
3804 
3805 /* inftrees.h -- header to use inftrees.c
3806  * Copyright (C) 1995-2002 Mark Adler
3807  * For conditions of distribution and use, see copyright notice in zlib.h
3808  */
3809 
3810 /* WARNING: this file should *not* be used by applications. It is
3811    part of the implementation of the compression library and is
3812    subject to change. Applications should only use zlib.h.
3813  */
3814 
3815 /* Huffman code lookup table entry--this entry is four bytes for machines
3816    that have 16-bit pointers (e.g. PC's in the small or medium model). */
3817 
3818 typedef struct inflate_huft_s FAR inflate_huft;
3819 
3820 struct inflate_huft_s {
3821   union {
3822     struct {
3823       Byte Exop;        /* number of extra bits or operation */
3824       Byte Bits;        /* number of bits in this code or subcode */
3825     } what;
3826     uInt pad;           /* pad structure to a power of 2 (4 bytes for */
3827   } word;               /*  16-bit, 8 bytes for 32-bit int's) */
3828   uInt base;            /* literal, length base, distance base,
3829                            or table offset */
3830 };
3831 
3832 /* Maximum size of dynamic tree.  The maximum found in a long but non-
3833    exhaustive search was 1004 huft structures (850 for length/literals
3834    and 154 for distances, the latter actually the result of an
3835    exhaustive search).  The actual maximum is not known, but the
3836    value below is more than safe. */
3837 #define MANY 1440
3838 
3839 extern int inflate_trees_bits __P((
3840     uIntf *,                    /* 19 code lengths */
3841     uIntf *,                    /* bits tree desired/actual depth */
3842     inflate_huft * FAR *,       /* bits tree result */
3843     inflate_huft *,             /* space for trees */
3844     z_streamp));                /* for messages */
3845 
3846 extern int inflate_trees_dynamic __P((
3847     uInt,                       /* number of literal/length codes */
3848     uInt,                       /* number of distance codes */
3849     uIntf *,                    /* that many (total) code lengths */
3850     uIntf *,                    /* literal desired/actual bit depth */
3851     uIntf *,                    /* distance desired/actual bit depth */
3852     inflate_huft * FAR *,       /* literal/length tree result */
3853     inflate_huft * FAR *,       /* distance tree result */
3854     inflate_huft *,             /* space for trees */
3855     z_streamp));                /* for messages */
3856 
3857 extern int inflate_trees_fixed __P((
3858     uIntf *,                    /* literal desired/actual bit depth */
3859     uIntf *,                    /* distance desired/actual bit depth */
3860     inflate_huft * FAR *,       /* literal/length tree result */
3861     inflate_huft * FAR *,       /* distance tree result */
3862     z_streamp));                /* for memory allocation */
3863 /* --- inftrees.h */
3864 
3865 /* +++ infcodes.h */
3866 
3867 /* infcodes.h -- header to use infcodes.c
3868  * Copyright (C) 1995-2002 Mark Adler
3869  * For conditions of distribution and use, see copyright notice in zlib.h
3870  */
3871 
3872 /* WARNING: this file should *not* be used by applications. It is
3873    part of the implementation of the compression library and is
3874    subject to change. Applications should only use zlib.h.
3875  */
3876 
3877 struct inflate_codes_state;
3878 typedef struct inflate_codes_state FAR inflate_codes_statef;
3879 
3880 extern inflate_codes_statef *inflate_codes_new __P((
3881     uInt, uInt,
3882     inflate_huft *, inflate_huft *,
3883     z_streamp ));
3884 
3885 extern int inflate_codes __P((
3886     inflate_blocks_statef *,
3887     z_streamp ,
3888     int));
3889 
3890 extern void inflate_codes_free __P((
3891     inflate_codes_statef *,
3892     z_streamp ));
3893 
3894 /* --- infcodes.h */
3895 
3896 /* +++ infutil.h */
3897 
3898 /* infutil.h -- types and macros common to blocks and codes
3899  * Copyright (C) 1995-2002 Mark Adler
3900  * For conditions of distribution and use, see copyright notice in zlib.h
3901  */
3902 
3903 /* WARNING: this file should *not* be used by applications. It is
3904    part of the implementation of the compression library and is
3905    subject to change. Applications should only use zlib.h.
3906  */
3907 
3908 #ifndef _INFUTIL_H
3909 #define _INFUTIL_H
3910 
3911 typedef enum {
3912       TYPE,     /* get type bits (3, including end bit) */
3913       LENS,     /* get lengths for stored */
3914       STORED,   /* processing stored block */
3915       TABLE,    /* get table lengths */
3916       BTREE,    /* get bit lengths tree for a dynamic block */
3917       DTREE,    /* get length, distance trees for a dynamic block */
3918       CODES,    /* processing fixed or dynamic block */
3919       DRY,      /* output remaining window bytes */
3920       DONEB,    /* finished last block, done */
3921       BADB}     /* got a data error--stuck here */
3922 inflate_block_mode;
3923 
3924 /* inflate blocks semi-private state */
3925 struct inflate_blocks_state {
3926 
3927   /* mode */
3928   inflate_block_mode  mode;     /* current inflate_block mode */
3929 
3930   /* mode dependent information */
3931   union {
3932     uInt left;          /* if STORED, bytes left to copy */
3933     struct {
3934       uInt table;               /* table lengths (14 bits) */
3935       uInt index;               /* index into blens (or border) */
3936       uIntf *blens;             /* bit lengths of codes */
3937       uInt bb;                  /* bit length tree depth */
3938       inflate_huft *tb;         /* bit length decoding tree */
3939     } trees;            /* if DTREE, decoding info for trees */
3940     struct {
3941       inflate_codes_statef
3942          *codes;
3943     } decode;           /* if CODES, current state */
3944   } sub;                /* submode */
3945   uInt last;            /* true if this block is the last block */
3946 
3947   /* mode independent information */
3948   uInt bitk;            /* bits in bit buffer */
3949   uLong bitb;           /* bit buffer */
3950   inflate_huft *hufts;  /* single malloc for tree space */
3951   Bytef *window;        /* sliding window */
3952   Bytef *end;           /* one byte after sliding window */
3953   Bytef *read;          /* window read pointer */
3954   Bytef *write;         /* window write pointer */
3955   check_func checkfn;   /* check function */
3956   uLong check;          /* check on output */
3957 
3958 };
3959 
3960 
3961 /* defines for inflate input/output */
3962 /*   update pointers and return */
3963 #define UPDBITS {s->bitb=b;s->bitk=k;}
3964 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3965 #define UPDOUT {s->write=q;}
3966 #define UPDATE {UPDBITS UPDIN UPDOUT}
3967 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3968 /*   get bytes and bits */
3969 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3970 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3971 #define NEXTBYTE (n--,*p++)
3972 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3973 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3974 /*   output bytes */
3975 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3976 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3977 #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3978 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3979 #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
3980 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3981 /*   load local pointers */
3982 #define LOAD {LOADIN LOADOUT}
3983 
3984 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3985 extern uInt inflate_mask[17];
3986 
3987 /* copy as much as possible from the sliding window to the output area */
3988 extern int inflate_flush __P((
3989     inflate_blocks_statef *,
3990     z_streamp ,
3991     int));
3992 
3993 #ifndef NO_DUMMY_DECL
3994 struct internal_state      {int dummy;}; /* for buggy compilers */
3995 #endif
3996 
3997 #endif
3998 /* --- infutil.h */
3999 
4000 #ifndef NO_DUMMY_DECL
4001 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4002 #endif
4003 
4004 /* simplify the use of the inflate_huft type with some defines */
4005 #define exop word.what.Exop
4006 #define bits word.what.Bits
4007 
4008 /* Table for deflate from PKZIP's appnote.txt. */
4009 local const uInt border[] = { /* Order of the bit length code lengths */
4010         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
4011 
4012 /*
4013    Notes beyond the 1.93a appnote.txt:
4014 
4015    1. Distance pointers never point before the beginning of the output
4016       stream.
4017    2. Distance pointers can point back across blocks, up to 32k away.
4018    3. There is an implied maximum of 7 bits for the bit length table and
4019       15 bits for the actual data.
4020    4. If only one code exists, then it is encoded using one bit.  (Zero
4021       would be more efficient, but perhaps a little confusing.)  If two
4022       codes exist, they are coded using one bit each (0 and 1).
4023    5. There is no way of sending zero distance codes--a dummy must be
4024       sent if there are none.  (History: a pre 2.0 version of PKZIP would
4025       store blocks with no distance codes, but this was discovered to be
4026       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
4027       zero distance codes, which is sent as one code of zero bits in
4028       length.
4029    6. There are up to 286 literal/length codes.  Code 256 represents the
4030       end-of-block.  Note however that the static length tree defines
4031       288 codes just to fill out the Huffman codes.  Codes 286 and 287
4032       cannot be used though, since there is no length base or extra bits
4033       defined for them.  Similarily, there are up to 30 distance codes.
4034       However, static trees define 32 codes (all 5 bits) to fill out the
4035       Huffman codes, but the last two had better not show up in the data.
4036    7. Unzip can check dynamic Huffman blocks for complete code sets.
4037       The exception is that a single code would not be complete (see #4).
4038    8. The five bits following the block type is really the number of
4039       literal codes sent minus 257.
4040    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
4041       (1+6+6).  Therefore, to output three times the length, you output
4042       three codes (1+1+1), whereas to output four times the same length,
4043       you only need two codes (1+3).  Hmm.
4044   10. In the tree reconstruction algorithm, Code = Code + Increment
4045       only if BitLength(i) is not zero.  (Pretty obvious.)
4046   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
4047   12. Note: length code 284 can represent 227-258, but length code 285
4048       really is 258.  The last length deserves its own, short code
4049       since it gets used a lot in very redundant files.  The length
4050       258 is special since 258 - 3 (the min match length) is 255.
4051   13. The literal/length and distance code bit lengths are read as a
4052       single stream of lengths.  It is possible (and advantageous) for
4053       a repeat code (16, 17, or 18) to go across the boundary between
4054       the two sets of lengths.
4055  */
4056 
4057 
4058 void inflate_blocks_reset(s, z, c)
4059 inflate_blocks_statef *s;
4060 z_streamp z;
4061 uLongf *c;
4062 {
4063   if (c != Z_NULL)
4064     *c = s->check;
4065   if (s->mode == BTREE || s->mode == DTREE)
4066     ZFREE(z, s->sub.trees.blens);
4067   if (s->mode == CODES)
4068     inflate_codes_free(s->sub.decode.codes, z);
4069   s->mode = TYPE;
4070   s->bitk = 0;
4071   s->bitb = 0;
4072   s->read = s->write = s->window;
4073   if (s->checkfn != Z_NULL)
4074     z->adler = s->check = (*s->checkfn)(0L, (const Bytef *)Z_NULL, 0);
4075   Tracev((stderr, "inflate:   blocks reset\n"));
4076 }
4077 
4078 
4079 inflate_blocks_statef *inflate_blocks_new(z, c, w)
4080 z_streamp z;
4081 check_func c;
4082 uInt w;
4083 {
4084   inflate_blocks_statef *s;
4085 
4086   if ((s = (inflate_blocks_statef *)ZALLOC
4087        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
4088     return s;
4089   if ((s->hufts =
4090        (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL)
4091   {
4092     ZFREE(z, s);
4093     return Z_NULL;
4094   }
4095   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
4096   {
4097     ZFREE(z, s->hufts);
4098     ZFREE(z, s);
4099     return Z_NULL;
4100   }
4101   s->end = s->window + w;
4102   s->checkfn = c;
4103   s->mode = TYPE;
4104   Tracev((stderr, "inflate:   blocks allocated\n"));
4105   inflate_blocks_reset(s, z, Z_NULL);
4106   return s;
4107 }
4108 
4109 
4110 int inflate_blocks(s, z, r)
4111 inflate_blocks_statef *s;
4112 z_streamp z;
4113 int r;
4114 {
4115   uInt t;               /* temporary storage */
4116   uLong b;              /* bit buffer */
4117   uInt k;               /* bits in bit buffer */
4118   Bytef *p;             /* input data pointer */
4119   uInt n;               /* bytes available there */
4120   Bytef *q;             /* output window write pointer */
4121   uInt m;               /* bytes to end of window or read pointer */
4122 
4123   /* copy input/output information to locals (UPDATE macro restores) */
4124   LOAD
4125 
4126   /* process input based on current state */
4127   while (1) switch (s->mode)
4128   {
4129     case TYPE:
4130       NEEDBITS(3)
4131       t = (uInt)b & 7;
4132       s->last = t & 1;
4133       switch (t >> 1)
4134       {
4135         case 0:                         /* stored */
4136           Tracev((stderr, "inflate:     stored block%s\n",
4137                  s->last ? " (last)" : ""));
4138           DUMPBITS(3)
4139           t = k & 7;                    /* go to byte boundary */
4140           DUMPBITS(t)
4141           s->mode = LENS;               /* get length of stored block */
4142           break;
4143         case 1:                         /* fixed */
4144           Tracev((stderr, "inflate:     fixed codes block%s\n",
4145                  s->last ? " (last)" : ""));
4146           {
4147             uInt bl, bd;
4148             inflate_huft *tl, *td;
4149 
4150             inflate_trees_fixed(&bl, &bd, &tl, &td, z);
4151             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
4152             if (s->sub.decode.codes == Z_NULL)
4153             {
4154               r = Z_MEM_ERROR;
4155               LEAVE
4156             }
4157           }
4158           DUMPBITS(3)
4159           s->mode = CODES;
4160           break;
4161         case 2:                         /* dynamic */
4162           Tracev((stderr, "inflate:     dynamic codes block%s\n",
4163                  s->last ? " (last)" : ""));
4164           DUMPBITS(3)
4165           s->mode = TABLE;
4166           break;
4167         case 3:                         /* illegal */
4168           DUMPBITS(3)
4169           s->mode = BADB;
4170           z->msg = (char*)"invalid block type";
4171           r = Z_DATA_ERROR;
4172           LEAVE
4173       }
4174       break;
4175     case LENS:
4176       NEEDBITS(32)
4177       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
4178       {
4179         s->mode = BADB;
4180         z->msg = (char*)"invalid stored block lengths";
4181         r = Z_DATA_ERROR;
4182         LEAVE
4183       }
4184       s->sub.left = (uInt)b & 0xffff;
4185       b = k = 0;                      /* dump bits */
4186       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
4187       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
4188       break;
4189     case STORED:
4190       if (n == 0)
4191         LEAVE
4192       NEEDOUT
4193       t = s->sub.left;
4194       if (t > n) t = n;
4195       if (t > m) t = m;
4196       zmemcpy(q, p, t);
4197       p += t;  n -= t;
4198       q += t;  m -= t;
4199       if ((s->sub.left -= t) != 0)
4200         break;
4201       Tracev((stderr, "inflate:       stored end, %lu total out\n",
4202               z->total_out + (q >= s->read ? q - s->read :
4203               (s->end - s->read) + (q - s->window))));
4204       s->mode = s->last ? DRY : TYPE;
4205       break;
4206     case TABLE:
4207       NEEDBITS(14)
4208       s->sub.trees.table = t = (uInt)b & 0x3fff;
4209 #ifndef PKZIP_BUG_WORKAROUND
4210       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
4211       {
4212         s->mode = BADB;
4213         z->msg = (char*)"too many length or distance symbols";
4214         r = Z_DATA_ERROR;
4215         LEAVE
4216       }
4217 #endif
4218       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
4219       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
4220       {
4221         r = Z_MEM_ERROR;
4222         LEAVE
4223       }
4224       DUMPBITS(14)
4225       s->sub.trees.index = 0;
4226       Tracev((stderr, "inflate:       table sizes ok\n"));
4227       s->mode = BTREE;
4228     case BTREE:
4229       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
4230       {
4231         NEEDBITS(3)
4232         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
4233         DUMPBITS(3)
4234       }
4235       while (s->sub.trees.index < 19)
4236         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
4237       s->sub.trees.bb = 7;
4238       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
4239                              &s->sub.trees.tb, s->hufts, z);
4240       if (t != Z_OK)
4241       {
4242         r = t;
4243         if (r == Z_DATA_ERROR)
4244         {
4245           ZFREE(z, s->sub.trees.blens);
4246           s->mode = BADB;
4247         }
4248         LEAVE
4249       }
4250       s->sub.trees.index = 0;
4251       Tracev((stderr, "inflate:       bits tree ok\n"));
4252       s->mode = DTREE;
4253     case DTREE:
4254       while (t = s->sub.trees.table,
4255              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
4256       {
4257         inflate_huft *h;
4258         uInt i, j, c;
4259 
4260         t = s->sub.trees.bb;
4261         NEEDBITS(t)
4262         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
4263         t = h->bits;
4264         c = h->base;
4265         if (c < 16)
4266         {
4267           DUMPBITS(t)
4268           s->sub.trees.blens[s->sub.trees.index++] = c;
4269         }
4270         else /* c == 16..18 */
4271         {
4272           i = c == 18 ? 7 : c - 14;
4273           j = c == 18 ? 11 : 3;
4274           NEEDBITS(t + i)
4275           DUMPBITS(t)
4276           j += (uInt)b & inflate_mask[i];
4277           DUMPBITS(i)
4278           i = s->sub.trees.index;
4279           t = s->sub.trees.table;
4280           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
4281               (c == 16 && i < 1))
4282           {
4283             ZFREE(z, s->sub.trees.blens);
4284             s->mode = BADB;
4285             z->msg = (char*)"invalid bit length repeat";
4286             r = Z_DATA_ERROR;
4287             LEAVE
4288           }
4289           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
4290           do {
4291             s->sub.trees.blens[i++] = c;
4292           } while (--j);
4293           s->sub.trees.index = i;
4294         }
4295       }
4296       s->sub.trees.tb = Z_NULL;
4297       {
4298         uInt bl, bd;
4299         inflate_huft *tl, *td;
4300         inflate_codes_statef *c;
4301 
4302         bl = 9;         /* must be <= 9 for lookahead assumptions */
4303         bd = 6;         /* must be <= 9 for lookahead assumptions */
4304         t = s->sub.trees.table;
4305         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
4306                                   s->sub.trees.blens, &bl, &bd, &tl, &td,
4307                                   s->hufts, z);
4308         if (t != Z_OK)
4309         {
4310           if (t == (uInt)Z_DATA_ERROR)
4311           {
4312             ZFREE(z, s->sub.trees.blens);
4313             s->mode = BADB;
4314           }
4315           r = t;
4316           LEAVE
4317         }
4318         Tracev((stderr, "inflate:       trees ok\n"));
4319         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
4320         {
4321           r = Z_MEM_ERROR;
4322           LEAVE
4323         }
4324         s->sub.decode.codes = c;
4325       }
4326       ZFREE(z, s->sub.trees.blens);
4327       s->mode = CODES;
4328     case CODES:
4329       UPDATE
4330       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
4331         return inflate_flush(s, z, r);
4332       r = Z_OK;
4333       inflate_codes_free(s->sub.decode.codes, z);
4334       LOAD
4335       Tracev((stderr, "inflate:       codes end, %lu total out\n",
4336               z->total_out + (q >= s->read ? q - s->read :
4337               (s->end - s->read) + (q - s->window))));
4338       if (!s->last)
4339       {
4340         s->mode = TYPE;
4341         break;
4342       }
4343       s->mode = DRY;
4344     case DRY:
4345       FLUSH
4346       if (s->read != s->write)
4347         LEAVE
4348       s->mode = DONEB;
4349     case DONEB:
4350       r = Z_STREAM_END;
4351       LEAVE
4352     case BADB:
4353       r = Z_DATA_ERROR;
4354       LEAVE
4355     default:
4356       r = Z_STREAM_ERROR;
4357       LEAVE
4358   }
4359 }
4360 
4361 
4362 int inflate_blocks_free(s, z)
4363 inflate_blocks_statef *s;
4364 z_streamp z;
4365 {
4366   inflate_blocks_reset(s, z, Z_NULL);
4367   ZFREE(z, s->window);
4368   ZFREE(z, s->hufts);
4369   ZFREE(z, s);
4370   Tracev((stderr, "inflate:   blocks freed\n"));
4371   return Z_OK;
4372 }
4373 
4374 
4375 void inflate_set_dictionary(s, d, n)
4376 inflate_blocks_statef *s;
4377 const Bytef *d;
4378 uInt  n;
4379 {
4380   zmemcpy(s->window, d, n);
4381   s->read = s->write = s->window + n;
4382 }
4383 
4384 /*
4385  * This subroutine adds the data at next_in/avail_in to the output history
4386  * without performing any output.  The output buffer must be "caught up";
4387  * i.e. no pending output (hence s->read equals s->write), and the state must
4388  * be BLOCKS (i.e. we should be willing to see the start of a series of
4389  * BLOCKS).  On exit, the output will also be caught up, and the checksum
4390  * will have been updated if need be.
4391  */
4392 int inflate_addhistory(s, z)
4393 inflate_blocks_statef *s;
4394 z_stream *z;
4395 {
4396     uLong b;              /* bit buffer */  /* NOT USED HERE */
4397     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
4398     uInt t;               /* temporary storage */
4399     Bytef *p;             /* input data pointer */
4400     uInt n;               /* bytes available there */
4401     Bytef *q;             /* output window write pointer */
4402     uInt m;               /* bytes to end of window or read pointer */
4403 
4404     if (s->read != s->write)
4405 	return Z_STREAM_ERROR;
4406     if (s->mode != TYPE)
4407 	return Z_DATA_ERROR;
4408 
4409     /* we're ready to rock */
4410     LOAD
4411     /* while there is input ready, copy to output buffer, moving
4412      * pointers as needed.
4413      */
4414     while (n) {
4415 	t = n;  /* how many to do */
4416 	/* is there room until end of buffer? */
4417 	if (t > m) t = m;
4418 	/* update check information */
4419 	if (s->checkfn != Z_NULL)
4420 	    s->check = (*s->checkfn)(s->check, q, t);
4421 	zmemcpy(q, p, t);
4422 	q += t;
4423 	p += t;
4424 	n -= t;
4425 	z->total_out += t;
4426 	s->read = q;    /* drag read pointer forward */
4427 /*      WWRAP  */ 	/* expand WWRAP macro by hand to handle s->read */
4428 	if (q == s->end) {
4429 	    s->read = q = s->window;
4430 	    m = WAVAIL;
4431 	}
4432     }
4433     UPDATE
4434     return Z_OK;
4435 }
4436 
4437 
4438 /*
4439  * At the end of a Deflate-compressed PPP packet, we expect to have seen
4440  * a `stored' block type value but not the (zero) length bytes.
4441  */
4442 int inflate_packet_flush(s)
4443     inflate_blocks_statef *s;
4444 {
4445     if (s->mode != LENS)
4446 	return Z_DATA_ERROR;
4447     s->mode = TYPE;
4448     return Z_OK;
4449 }
4450 
4451 /* Returns true if inflate is currently at the end of a block generated
4452  * by Z_SYNC_FLUSH or Z_FULL_FLUSH.
4453  * IN assertion: s != Z_NULL
4454  */
4455 int inflate_blocks_sync_point(s)
4456 inflate_blocks_statef *s;
4457 {
4458   return s->mode == LENS;
4459 }
4460 /* --- infblock.c */
4461 
4462 
4463 /* +++ inftrees.c */
4464 
4465 /* inftrees.c -- generate Huffman trees for efficient decoding
4466  * Copyright (C) 1995-2002 Mark Adler
4467  * For conditions of distribution and use, see copyright notice in zlib.h
4468  */
4469 
4470 /* #include "zutil.h" */
4471 /* #include "inftrees.h" */
4472 
4473 #if !defined(BUILDFIXED) && !defined(STDC)
4474 #  define BUILDFIXED   /* non ANSI compilers may not accept inffixed.h */
4475 #endif
4476 
4477 const char inflate_copyright[] =
4478    " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
4479 /*
4480   If you use the zlib library in a product, an acknowledgment is welcome
4481   in the documentation of your product. If for some reason you cannot
4482   include such an acknowledgment, I would appreciate that you keep this
4483   copyright string in the executable of your product.
4484  */
4485 
4486 #ifndef NO_DUMMY_DECL
4487 struct internal_state  {int dummy;}; /* for buggy compilers */
4488 #endif
4489 
4490 /* simplify the use of the inflate_huft type with some defines */
4491 #define exop word.what.Exop
4492 #define bits word.what.Bits
4493 
4494 
4495 local int huft_build __P((
4496     uIntf *,            /* code lengths in bits */
4497     uInt,               /* number of codes */
4498     uInt,               /* number of "simple" codes */
4499     const uIntf *,      /* list of base values for non-simple codes */
4500     const uIntf *,      /* list of extra bits for non-simple codes */
4501     inflate_huft * FAR*,/* result: starting table */
4502     uIntf *,            /* maximum lookup bits (returns actual) */
4503     inflate_huft *,     /* space for trees */
4504     uInt *,             /* hufts used in space */
4505     uIntf * ));         /* space for values */
4506 
4507 /* Tables for deflate from PKZIP's appnote.txt. */
4508 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4509         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4510         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4511         /* see note #13 above about 258 */
4512 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4513         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4514         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4515 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4516         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4517         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4518         8193, 12289, 16385, 24577};
4519 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4520         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4521         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4522         12, 12, 13, 13};
4523 
4524 /*
4525    Huffman code decoding is performed using a multi-level table lookup.
4526    The fastest way to decode is to simply build a lookup table whose
4527    size is determined by the longest code.  However, the time it takes
4528    to build this table can also be a factor if the data being decoded
4529    is not very long.  The most common codes are necessarily the
4530    shortest codes, so those codes dominate the decoding time, and hence
4531    the speed.  The idea is you can have a shorter table that decodes the
4532    shorter, more probable codes, and then point to subsidiary tables for
4533    the longer codes.  The time it costs to decode the longer codes is
4534    then traded against the time it takes to make longer tables.
4535 
4536    This results of this trade are in the variables lbits and dbits
4537    below.  lbits is the number of bits the first level table for literal/
4538    length codes can decode in one step, and dbits is the same thing for
4539    the distance codes.  Subsequent tables are also less than or equal to
4540    those sizes.  These values may be adjusted either when all of the
4541    codes are shorter than that, in which case the longest code length in
4542    bits is used, or when the shortest code is *longer* than the requested
4543    table size, in which case the length of the shortest code in bits is
4544    used.
4545 
4546    There are two different values for the two tables, since they code a
4547    different number of possibilities each.  The literal/length table
4548    codes 286 possible values, or in a flat code, a little over eight
4549    bits.  The distance table codes 30 possible values, or a little less
4550    than five bits, flat.  The optimum values for speed end up being
4551    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4552    The optimum values may differ though from machine to machine, and
4553    possibly even between compilers.  Your mileage may vary.
4554  */
4555 
4556 
4557 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4558 #define BMAX 15         /* maximum bit length of any code */
4559 
4560 local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
4561 uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
4562 uInt n;                 /* number of codes (assumed <= 288) */
4563 uInt s;                 /* number of simple-valued codes (0..s-1) */
4564 const uIntf *d;         /* list of base values for non-simple codes */
4565 const uIntf *e;         /* list of extra bits for non-simple codes */
4566 inflate_huft * FAR *t;  /* result: starting table */
4567 uIntf *m;               /* maximum lookup bits, returns actual */
4568 inflate_huft *hp;       /* space for trees */
4569 uInt *hn;               /* hufts used in space */
4570 uIntf *v;               /* working area: values in order of bit length */
4571 /* Given a list of code lengths and a maximum table size, make a set of
4572    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
4573    if the given code set is incomplete (the tables are still built in this
4574    case), or Z_DATA_ERROR if the input is invalid. */
4575 {
4576 
4577   uInt a;                       /* counter for codes of length k */
4578   uInt c[BMAX+1];               /* bit length count table */
4579   uInt f;                       /* i repeats in table every f entries */
4580   int g;                        /* maximum code length */
4581   int h;                        /* table level */
4582   uInt i;                       /* counter, current code */
4583   uInt j;                       /* counter */
4584   int k;                        /* number of bits in current code */
4585   int l;                        /* bits per table (returned in m) */
4586   uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
4587   uIntf *p;                      /* pointer into c[], b[], or v[] */
4588   inflate_huft *q;              /* points to current table */
4589   struct inflate_huft_s r;      /* table entry for structure assignment */
4590   inflate_huft *u[BMAX];        /* table stack */
4591   int w;               /* bits before this table == (l * h) */
4592   uInt x[BMAX+1];               /* bit offsets, then code stack */
4593   uIntf *xp;                    /* pointer into x */
4594   int y;                        /* number of dummy codes added */
4595   uInt z;                       /* number of entries in current table */
4596 
4597 
4598   /* Generate counts for each bit length */
4599   p = c;
4600 #define C0 *p++ = 0;
4601 #define C2 C0 C0 C0 C0
4602 #define C4 C2 C2 C2 C2
4603   C4                            /* clear c[]--assume BMAX+1 is 16 */
4604   p = b;  i = n;
4605   do {
4606     c[*p++]++;                  /* assume all entries <= BMAX */
4607   } while (--i);
4608   if (c[0] == n)                /* null input--all zero length codes */
4609   {
4610     *t = (inflate_huft *)Z_NULL;
4611     *m = 0;
4612     return Z_OK;
4613   }
4614 
4615 
4616   /* Find minimum and maximum length, bound *m by those */
4617   l = *m;
4618   for (j = 1; j <= BMAX; j++)
4619     if (c[j])
4620       break;
4621   k = j;                        /* minimum code length */
4622   if ((uInt)l < j)
4623     l = j;
4624   for (i = BMAX; i; i--)
4625     if (c[i])
4626       break;
4627   g = i;                        /* maximum code length */
4628   if ((uInt)l > i)
4629     l = i;
4630   *m = l;
4631 
4632 
4633   /* Adjust last length count to fill out codes, if needed */
4634   for (y = 1 << j; j < i; j++, y <<= 1)
4635     if ((y -= c[j]) < 0)
4636       return Z_DATA_ERROR;
4637   if ((y -= c[i]) < 0)
4638     return Z_DATA_ERROR;
4639   c[i] += y;
4640 
4641 
4642   /* Generate starting offsets into the value table for each length */
4643   x[1] = j = 0;
4644   p = c + 1;  xp = x + 2;
4645   while (--i) {                 /* note that i == g from above */
4646     *xp++ = (j += *p++);
4647   }
4648 
4649 
4650   /* Make a table of values in order of bit lengths */
4651   p = b;  i = 0;
4652   do {
4653     if ((j = *p++) != 0)
4654       v[x[j]++] = i;
4655   } while (++i < n);
4656   n = x[g];                     /* set n to length of v */
4657 
4658 
4659   /* Generate the Huffman codes and for each, make the table entries */
4660   x[0] = i = 0;                 /* first Huffman code is zero */
4661   p = v;                        /* grab values in bit order */
4662   h = -1;                       /* no tables yet--level -1 */
4663   w = -l;                       /* bits decoded == (l * h) */
4664   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
4665   q = (inflate_huft *)Z_NULL;   /* ditto */
4666   z = 0;                        /* ditto */
4667 
4668   /* go through the bit lengths (k already is bits in shortest code) */
4669   for (; k <= g; k++)
4670   {
4671     a = c[k];
4672     while (a--)
4673     {
4674       /* here i is the Huffman code of length k bits for value *p */
4675       /* make tables up to required level */
4676       while (k > w + l)
4677       {
4678         h++;
4679         w += l;                 /* previous table always l bits */
4680 
4681         /* compute minimum size table less than or equal to l bits */
4682         z = g - w;
4683         z = z > (uInt)l ? l : z;        /* table size upper limit */
4684         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
4685         {                       /* too few codes for k-w bit table */
4686           f -= a + 1;           /* deduct codes from patterns left */
4687           xp = c + k;
4688           if (j < z)
4689             while (++j < z)     /* try smaller tables up to z bits */
4690             {
4691               if ((f <<= 1) <= *++xp)
4692                 break;          /* enough codes to use up j bits */
4693               f -= *xp;         /* else deduct codes from patterns */
4694             }
4695         }
4696         z = 1 << j;             /* table entries for j-bit table */
4697 
4698         /* allocate new table */
4699         if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
4700           return Z_DATA_ERROR;  /* overflow of MANY */
4701         u[h] = q = hp + *hn;
4702         *hn += z;
4703 
4704         /* connect to last table, if there is one */
4705         if (h)
4706         {
4707           x[h] = i;             /* save pattern for backing up */
4708           r.bits = (Byte)l;     /* bits to dump before this table */
4709           r.exop = (Byte)j;     /* bits in this table */
4710           j = i >> (w - l);
4711           r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
4712           u[h-1][j] = r;        /* connect to last table */
4713         }
4714         else
4715           *t = q;               /* first table is returned result */
4716       }
4717 
4718       /* set up table entry in r */
4719       r.bits = (Byte)(k - w);
4720       if (p >= v + n)
4721         r.exop = 128 + 64;      /* out of values--invalid code */
4722       else if (*p < s)
4723       {
4724         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
4725         r.base = *p++;          /* simple code is just the value */
4726       }
4727       else
4728       {
4729         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4730         r.base = d[*p++ - s];
4731       }
4732 
4733       /* fill code-like entries with r */
4734       f = 1 << (k - w);
4735       for (j = i >> w; j < z; j += f)
4736         q[j] = r;
4737 
4738       /* backwards increment the k-bit code i */
4739       for (j = 1 << (k - 1); i & j; j >>= 1)
4740         i ^= j;
4741       i ^= j;
4742 
4743       /* backup over finished tables */
4744       mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
4745       while ((i & mask) != x[h])
4746       {
4747         h--;                    /* don't need to update q */
4748         w -= l;
4749         mask = (1 << w) - 1;
4750       }
4751     }
4752   }
4753 
4754 
4755   /* Return Z_BUF_ERROR if we were given an incomplete table */
4756   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4757 }
4758 
4759 
4760 int inflate_trees_bits(c, bb, tb, hp, z)
4761 uIntf *c;               /* 19 code lengths */
4762 uIntf *bb;              /* bits tree desired/actual depth */
4763 inflate_huft * FAR *tb; /* bits tree result */
4764 inflate_huft *hp;       /* space for trees */
4765 z_streamp z;            /* for messages */
4766 {
4767   int r;
4768   uInt hn = 0;          /* hufts used in space */
4769   uIntf *v;             /* work area for huft_build */
4770 
4771   if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
4772     return Z_MEM_ERROR;
4773   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
4774                  tb, bb, hp, &hn, v);
4775   if (r == Z_DATA_ERROR)
4776     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4777   else if (r == Z_BUF_ERROR || *bb == 0)
4778   {
4779     z->msg = (char*)"incomplete dynamic bit lengths tree";
4780     r = Z_DATA_ERROR;
4781   }
4782   ZFREE(z, v);
4783   return r;
4784 }
4785 
4786 
4787 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
4788 uInt nl;                /* number of literal/length codes */
4789 uInt nd;                /* number of distance codes */
4790 uIntf *c;               /* that many (total) code lengths */
4791 uIntf *bl;              /* literal desired/actual bit depth */
4792 uIntf *bd;              /* distance desired/actual bit depth */
4793 inflate_huft * FAR *tl; /* literal/length tree result */
4794 inflate_huft * FAR *td; /* distance tree result */
4795 inflate_huft *hp;       /* space for trees */
4796 z_streamp z;            /* for messages */
4797 {
4798   int r;
4799   uInt hn = 0;          /* hufts used in space */
4800   uIntf *v;             /* work area for huft_build */
4801 
4802   /* allocate work area */
4803   if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
4804     return Z_MEM_ERROR;
4805 
4806   /* build literal/length tree */
4807   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
4808   if (r != Z_OK || *bl == 0)
4809   {
4810     if (r == Z_DATA_ERROR)
4811       z->msg = (char*)"oversubscribed literal/length tree";
4812     else if (r != Z_MEM_ERROR)
4813     {
4814       z->msg = (char*)"incomplete literal/length tree";
4815       r = Z_DATA_ERROR;
4816     }
4817     ZFREE(z, v);
4818     return r;
4819   }
4820 
4821   /* build distance tree */
4822   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
4823   if (r != Z_OK || (*bd == 0 && nl > 257))
4824   {
4825     if (r == Z_DATA_ERROR)
4826       z->msg = (char*)"oversubscribed distance tree";
4827     else if (r == Z_BUF_ERROR) {
4828 #ifdef PKZIP_BUG_WORKAROUND
4829       r = Z_OK;
4830     }
4831 #else
4832       z->msg = (char*)"incomplete distance tree";
4833       r = Z_DATA_ERROR;
4834     }
4835     else if (r != Z_MEM_ERROR)
4836     {
4837       z->msg = (char*)"empty distance tree with lengths";
4838       r = Z_DATA_ERROR;
4839     }
4840     ZFREE(z, v);
4841     return r;
4842 #endif
4843   }
4844 
4845   /* done */
4846   ZFREE(z, v);
4847   return Z_OK;
4848 }
4849 
4850 
4851 /* build fixed tables only once--keep them here */
4852 #ifdef BUILDFIXED
4853 local int fixed_built = 0;
4854 #define FIXEDH 544      /* number of hufts used by fixed tables */
4855 local inflate_huft fixed_mem[FIXEDH];
4856 local uInt fixed_bl;
4857 local uInt fixed_bd;
4858 local inflate_huft *fixed_tl;
4859 local inflate_huft *fixed_td;
4860 #else
4861 
4862 /* +++ inffixed.h */
4863 /* inffixed.h -- table for decoding fixed codes
4864  * Generated automatically by the maketree.c program
4865  */
4866 
4867 /* WARNING: this file should *not* be used by applications. It is
4868    part of the implementation of the compression library and is
4869    subject to change. Applications should only use zlib.h.
4870  */
4871 
4872 local uInt fixed_bl = 9;
4873 local uInt fixed_bd = 5;
4874 local inflate_huft fixed_tl[] = {
4875     {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
4876     {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},192},
4877     {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},160},
4878     {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},224},
4879     {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},144},
4880     {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},208},
4881     {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},176},
4882     {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},240},
4883     {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
4884     {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},200},
4885     {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},168},
4886     {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},232},
4887     {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},152},
4888     {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},216},
4889     {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},184},
4890     {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},248},
4891     {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
4892     {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},196},
4893     {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},164},
4894     {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},228},
4895     {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},148},
4896     {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},212},
4897     {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},180},
4898     {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},244},
4899     {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
4900     {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},204},
4901     {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},172},
4902     {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},236},
4903     {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},156},
4904     {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},220},
4905     {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},188},
4906     {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},252},
4907     {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
4908     {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},194},
4909     {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},162},
4910     {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},226},
4911     {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},146},
4912     {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},210},
4913     {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},178},
4914     {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},242},
4915     {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
4916     {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},202},
4917     {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},170},
4918     {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},234},
4919     {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},154},
4920     {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},218},
4921     {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},186},
4922     {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},250},
4923     {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
4924     {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},198},
4925     {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},166},
4926     {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},230},
4927     {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},150},
4928     {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},214},
4929     {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},182},
4930     {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},246},
4931     {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
4932     {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},206},
4933     {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},174},
4934     {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},238},
4935     {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},158},
4936     {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},222},
4937     {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},190},
4938     {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},254},
4939     {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
4940     {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},193},
4941     {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},161},
4942     {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},225},
4943     {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},145},
4944     {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},209},
4945     {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},177},
4946     {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},241},
4947     {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
4948     {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},201},
4949     {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},169},
4950     {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},233},
4951     {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},153},
4952     {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},217},
4953     {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},185},
4954     {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},249},
4955     {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
4956     {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},197},
4957     {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},165},
4958     {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},229},
4959     {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},149},
4960     {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},213},
4961     {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},181},
4962     {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},245},
4963     {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
4964     {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},205},
4965     {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},173},
4966     {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},237},
4967     {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},157},
4968     {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},221},
4969     {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},189},
4970     {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},253},
4971     {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
4972     {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},195},
4973     {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},163},
4974     {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},227},
4975     {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},147},
4976     {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},211},
4977     {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},179},
4978     {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},243},
4979     {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
4980     {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},203},
4981     {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},171},
4982     {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},235},
4983     {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},155},
4984     {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},219},
4985     {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},187},
4986     {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},251},
4987     {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
4988     {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},199},
4989     {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},167},
4990     {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},231},
4991     {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},151},
4992     {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},215},
4993     {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},183},
4994     {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},247},
4995     {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
4996     {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},207},
4997     {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},175},
4998     {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},239},
4999     {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},159},
5000     {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},223},
5001     {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},191},
5002     {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},255}
5003   };
5004 local inflate_huft fixed_td[] = {
5005     {{{80,5}},1}, {{{87,5}},257}, {{{83,5}},17}, {{{91,5}},4097},
5006     {{{81,5}},5}, {{{89,5}},1025}, {{{85,5}},65}, {{{93,5}},16385},
5007     {{{80,5}},3}, {{{88,5}},513}, {{{84,5}},33}, {{{92,5}},8193},
5008     {{{82,5}},9}, {{{90,5}},2049}, {{{86,5}},129}, {{{192,5}},24577},
5009     {{{80,5}},2}, {{{87,5}},385}, {{{83,5}},25}, {{{91,5}},6145},
5010     {{{81,5}},7}, {{{89,5}},1537}, {{{85,5}},97}, {{{93,5}},24577},
5011     {{{80,5}},4}, {{{88,5}},769}, {{{84,5}},49}, {{{92,5}},12289},
5012     {{{82,5}},13}, {{{90,5}},3073}, {{{86,5}},193}, {{{192,5}},24577}
5013   };
5014 /* --- inffixed.h */
5015 
5016 #endif
5017 
5018 
5019 int inflate_trees_fixed(bl, bd, tl, td, z)
5020 uIntf *bl;               /* literal desired/actual bit depth */
5021 uIntf *bd;               /* distance desired/actual bit depth */
5022 inflate_huft * FAR *tl;  /* literal/length tree result */
5023 inflate_huft * FAR *td;  /* distance tree result */
5024 z_streamp z;             /* for memory allocation */
5025 {
5026 #ifdef BUILDFIXED
5027   /* build fixed tables if not already */
5028   if (!fixed_built)
5029   {
5030     int k;              /* temporary variable */
5031     uInt f = 0;         /* number of hufts used in fixed_mem */
5032     uIntf *c;           /* length list for huft_build */
5033     uIntf *v;           /* work area for huft_build */
5034 
5035     /* allocate memory */
5036     if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
5037       return Z_MEM_ERROR;
5038     if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
5039     {
5040       ZFREE(z, c);
5041       return Z_MEM_ERROR;
5042     }
5043 
5044     /* literal table */
5045     for (k = 0; k < 144; k++)
5046       c[k] = 8;
5047     for (; k < 256; k++)
5048       c[k] = 9;
5049     for (; k < 280; k++)
5050       c[k] = 7;
5051     for (; k < 288; k++)
5052       c[k] = 8;
5053     fixed_bl = 9;
5054     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
5055                fixed_mem, &f, v);
5056 
5057     /* distance table */
5058     for (k = 0; k < 30; k++)
5059       c[k] = 5;
5060     fixed_bd = 5;
5061     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
5062                fixed_mem, &f, v);
5063 
5064     /* done */
5065     ZFREE(z, v);
5066     ZFREE(z, c);
5067     fixed_built = 1;
5068   }
5069 #endif
5070   *bl = fixed_bl;
5071   *bd = fixed_bd;
5072   *tl = fixed_tl;
5073   *td = fixed_td;
5074   return Z_OK;
5075 }
5076 /* --- inftrees.c */
5077 
5078 /* +++ infcodes.c */
5079 
5080 /* infcodes.c -- process literals and length/distance pairs
5081  * Copyright (C) 1995-2002 Mark Adler
5082  * For conditions of distribution and use, see copyright notice in zlib.h
5083  */
5084 
5085 /* #include "zutil.h" */
5086 /* #include "inftrees.h" */
5087 /* #include "infblock.h" */
5088 /* #include "infcodes.h" */
5089 /* #include "infutil.h" */
5090 
5091 /* +++ inffast.h */
5092 
5093 /* inffast.h -- header to use inffast.c
5094  * Copyright (C) 1995-2002 Mark Adler
5095  * For conditions of distribution and use, see copyright notice in zlib.h
5096  */
5097 
5098 /* WARNING: this file should *not* be used by applications. It is
5099    part of the implementation of the compression library and is
5100    subject to change. Applications should only use zlib.h.
5101  */
5102 
5103 extern int inflate_fast __P((
5104     uInt,
5105     uInt,
5106     inflate_huft *,
5107     inflate_huft *,
5108     inflate_blocks_statef *,
5109     z_streamp ));
5110 /* --- inffast.h */
5111 
5112 /* simplify the use of the inflate_huft type with some defines */
5113 #define exop word.what.Exop
5114 #define bits word.what.Bits
5115 
5116 typedef enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5117       START,    /* x: set up for LEN */
5118       LEN,      /* i: get length/literal/eob next */
5119       LENEXT,   /* i: getting length extra (have base) */
5120       DIST,     /* i: get distance next */
5121       DISTEXT,  /* i: getting distance extra */
5122       COPY,     /* o: copying bytes in window, waiting for space */
5123       LIT,      /* o: got literal, waiting for output space */
5124       WASH,     /* o: got eob, possibly still output waiting */
5125       END,      /* x: got eob and all data flushed */
5126       BADCODE}  /* x: got error */
5127 inflate_codes_mode;
5128 
5129 /* inflate codes private state */
5130 struct inflate_codes_state {
5131 
5132   /* mode */
5133   inflate_codes_mode mode;      /* current inflate_codes mode */
5134 
5135   /* mode dependent information */
5136   uInt len;
5137   union {
5138     struct {
5139       inflate_huft *tree;       /* pointer into tree */
5140       uInt need;                /* bits needed */
5141     } code;             /* if LEN or DIST, where in tree */
5142     uInt lit;           /* if LIT, literal */
5143     struct {
5144       uInt get;                 /* bits to get for extra */
5145       uInt dist;                /* distance back to copy from */
5146     } copy;             /* if EXT or COPY, where and how much */
5147   } sub;                /* submode */
5148 
5149   /* mode independent information */
5150   Byte lbits;           /* ltree bits decoded per branch */
5151   Byte dbits;           /* dtree bits decoder per branch */
5152   inflate_huft *ltree;          /* literal/length/eob tree */
5153   inflate_huft *dtree;          /* distance tree */
5154 
5155 };
5156 
5157 
5158 inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
5159 uInt bl, bd;
5160 inflate_huft *tl;
5161 inflate_huft *td; /* need separate declaration for Borland C++ */
5162 z_streamp z;
5163 {
5164   inflate_codes_statef *c;
5165 
5166   if ((c = (inflate_codes_statef *)
5167        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
5168   {
5169     c->mode = START;
5170     c->lbits = (Byte)bl;
5171     c->dbits = (Byte)bd;
5172     c->ltree = tl;
5173     c->dtree = td;
5174     Tracev((stderr, "inflate:       codes new\n"));
5175   }
5176   return c;
5177 }
5178 
5179 
5180 int inflate_codes(s, z, r)
5181 inflate_blocks_statef *s;
5182 z_streamp z;
5183 int r;
5184 {
5185   uInt j;               /* temporary storage */
5186   inflate_huft *t;      /* temporary pointer */
5187   uInt e;               /* extra bits or operation */
5188   uLong b;              /* bit buffer */
5189   uInt k;               /* bits in bit buffer */
5190   Bytef *p;             /* input data pointer */
5191   uInt n;               /* bytes available there */
5192   Bytef *q;             /* output window write pointer */
5193   uInt m;               /* bytes to end of window or read pointer */
5194   Bytef *f;             /* pointer to copy strings from */
5195   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
5196 
5197   /* copy input/output information to locals (UPDATE macro restores) */
5198   LOAD
5199 
5200   /* process input and output based on current state */
5201   while (1) switch (c->mode)
5202   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5203     case START:         /* x: set up for LEN */
5204 #ifndef SLOW
5205       if (m >= 258 && n >= 10)
5206       {
5207         UPDATE
5208         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
5209         LOAD
5210         if (r != Z_OK)
5211         {
5212           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
5213           break;
5214         }
5215       }
5216 #endif /* !SLOW */
5217       c->sub.code.need = c->lbits;
5218       c->sub.code.tree = c->ltree;
5219       c->mode = LEN;
5220     case LEN:           /* i: get length/literal/eob next */
5221       j = c->sub.code.need;
5222       NEEDBITS(j)
5223       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
5224       DUMPBITS(t->bits)
5225       e = (uInt)(t->exop);
5226       if (e == 0)               /* literal */
5227       {
5228         c->sub.lit = t->base;
5229         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5230                  "inflate:         literal '%c'\n" :
5231                  "inflate:         literal 0x%02x\n", t->base));
5232         c->mode = LIT;
5233         break;
5234       }
5235       if (e & 16)               /* length */
5236       {
5237         c->sub.copy.get = e & 15;
5238         c->len = t->base;
5239         c->mode = LENEXT;
5240         break;
5241       }
5242       if ((e & 64) == 0)        /* next table */
5243       {
5244         c->sub.code.need = e;
5245         c->sub.code.tree = t + t->base;
5246         break;
5247       }
5248       if (e & 32)               /* end of block */
5249       {
5250         Tracevv((stderr, "inflate:         end of block\n"));
5251         c->mode = WASH;
5252         break;
5253       }
5254       c->mode = BADCODE;        /* invalid code */
5255       z->msg = (char*)"invalid literal/length code";
5256       r = Z_DATA_ERROR;
5257       LEAVE
5258     case LENEXT:        /* i: getting length extra (have base) */
5259       j = c->sub.copy.get;
5260       NEEDBITS(j)
5261       c->len += (uInt)b & inflate_mask[j];
5262       DUMPBITS(j)
5263       c->sub.code.need = c->dbits;
5264       c->sub.code.tree = c->dtree;
5265       Tracevv((stderr, "inflate:         length %u\n", c->len));
5266       c->mode = DIST;
5267     case DIST:          /* i: get distance next */
5268       j = c->sub.code.need;
5269       NEEDBITS(j)
5270       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
5271       DUMPBITS(t->bits)
5272       e = (uInt)(t->exop);
5273       if (e & 16)               /* distance */
5274       {
5275         c->sub.copy.get = e & 15;
5276         c->sub.copy.dist = t->base;
5277         c->mode = DISTEXT;
5278         break;
5279       }
5280       if ((e & 64) == 0)        /* next table */
5281       {
5282         c->sub.code.need = e;
5283         c->sub.code.tree = t + t->base;
5284         break;
5285       }
5286       c->mode = BADCODE;        /* invalid code */
5287       z->msg = (char*)"invalid distance code";
5288       r = Z_DATA_ERROR;
5289       LEAVE
5290     case DISTEXT:       /* i: getting distance extra */
5291       j = c->sub.copy.get;
5292       NEEDBITS(j)
5293       c->sub.copy.dist += (uInt)b & inflate_mask[j];
5294       DUMPBITS(j)
5295       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
5296       c->mode = COPY;
5297     case COPY:          /* o: copying bytes in window, waiting for space */
5298       f = q - c->sub.copy.dist;
5299       while (f < s->window)             /* modulo window size-"while" instead */
5300         f += s->end - s->window;        /* of "if" handles invalid distances */
5301       while (c->len)
5302       {
5303         NEEDOUT
5304         OUTBYTE(*f++)
5305         if (f == s->end)
5306           f = s->window;
5307         c->len--;
5308       }
5309       c->mode = START;
5310       break;
5311     case LIT:           /* o: got literal, waiting for output space */
5312       NEEDOUT
5313       OUTBYTE(c->sub.lit)
5314       c->mode = START;
5315       break;
5316     case WASH:          /* o: got eob, possibly more output */
5317       if (k > 7)        /* return unused byte, if any */
5318       {
5319         Assert(k < 16, "inflate_codes grabbed too many bytes")
5320         k -= 8;
5321         n++;
5322         p--;            /* can always return one */
5323       }
5324       FLUSH
5325       if (s->read != s->write)
5326         LEAVE
5327       c->mode = END;
5328     case END:
5329       r = Z_STREAM_END;
5330       LEAVE
5331     case BADCODE:       /* x: got error */
5332       r = Z_DATA_ERROR;
5333       LEAVE
5334     default:
5335       r = Z_STREAM_ERROR;
5336       LEAVE
5337   }
5338 #ifdef NEED_DUMMY_RETURN
5339   return Z_STREAM_ERROR;  /* Some dumb compilers complain without this */
5340 #endif
5341 }
5342 
5343 
5344 void inflate_codes_free(c, z)
5345 inflate_codes_statef *c;
5346 z_streamp z;
5347 {
5348   ZFREE(z, c);
5349   Tracev((stderr, "inflate:       codes free\n"));
5350 }
5351 /* --- infcodes.c */
5352 
5353 /* +++ infutil.c */
5354 
5355 /* inflate_util.c -- data and routines common to blocks and codes
5356  * Copyright (C) 1995-2002 Mark Adler
5357  * For conditions of distribution and use, see copyright notice in zlib.h
5358  */
5359 
5360 /* #include "zutil.h" */
5361 /* #include "infblock.h" */
5362 /* #include "inftrees.h" */
5363 /* #include "infcodes.h" */
5364 /* #include "infutil.h" */
5365 
5366 #ifndef NO_DUMMY_DECL
5367 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
5368 #endif
5369 
5370 /* And'ing with mask[n] masks the lower n bits */
5371 uInt inflate_mask[17] = {
5372     0x0000,
5373     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
5374     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
5375 };
5376 
5377 
5378 /* copy as much as possible from the sliding window to the output area */
5379 int inflate_flush(s, z, r)
5380 inflate_blocks_statef *s;
5381 z_streamp z;
5382 int r;
5383 {
5384   uInt n;
5385   Bytef *p;
5386   Bytef *q;
5387 
5388   /* local copies of source and destination pointers */
5389   p = z->next_out;
5390   q = s->read;
5391 
5392   /* compute number of bytes to copy as far as end of window */
5393   n = (uInt)((q <= s->write ? s->write : s->end) - q);
5394   if (n > z->avail_out) n = z->avail_out;
5395   if (n && r == Z_BUF_ERROR) r = Z_OK;
5396 
5397   /* update counters */
5398   z->avail_out -= n;
5399   z->total_out += n;
5400 
5401   /* update check information */
5402   if (s->checkfn != Z_NULL)
5403     z->adler = s->check = (*s->checkfn)(s->check, q, n);
5404 
5405   /* copy as far as end of window */
5406   if (p != Z_NULL) {
5407     zmemcpy(p, q, n);
5408     p += n;
5409   }
5410   q += n;
5411 
5412   /* see if more to copy at beginning of window */
5413   if (q == s->end)
5414   {
5415     /* wrap pointers */
5416     q = s->window;
5417     if (s->write == s->end)
5418       s->write = s->window;
5419 
5420     /* compute bytes to copy */
5421     n = (uInt)(s->write - q);
5422     if (n > z->avail_out) n = z->avail_out;
5423     if (n && r == Z_BUF_ERROR) r = Z_OK;
5424 
5425     /* update counters */
5426     z->avail_out -= n;
5427     z->total_out += n;
5428 
5429     /* update check information */
5430     if (s->checkfn != Z_NULL)
5431       z->adler = s->check = (*s->checkfn)(s->check, q, n);
5432 
5433     /* copy */
5434     if (p != NULL) {
5435       zmemcpy(p, q, n);
5436       p += n;
5437     }
5438     q += n;
5439   }
5440 
5441   /* update pointers */
5442   z->next_out = p;
5443   s->read = q;
5444 
5445   /* done */
5446   return r;
5447 }
5448 /* --- infutil.c */
5449 
5450 /* +++ inffast.c */
5451 
5452 /* inffast.c -- process literals and length/distance pairs fast
5453  * Copyright (C) 1995-2002 Mark Adler
5454  * For conditions of distribution and use, see copyright notice in zlib.h
5455  */
5456 
5457 /* #include "zutil.h" */
5458 /* #include "inftrees.h" */
5459 /* #include "infblock.h" */
5460 /* #include "infcodes.h" */
5461 /* #include "infutil.h" */
5462 /* #include "inffast.h" */
5463 
5464 #ifndef NO_DUMMY_DECL
5465 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
5466 #endif
5467 
5468 /* simplify the use of the inflate_huft type with some defines */
5469 #define exop word.what.Exop
5470 #define bits word.what.Bits
5471 
5472 /* macros for bit input with no checking and for returning unused bytes */
5473 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
5474 #define UNGRAB {c=z->avail_in-n;c=(k>>3)<c?k>>3:c;n+=c;p-=c;k-=c<<3;}
5475 
5476 /* Called with number of bytes left to write in window at least 258
5477    (the maximum string length) and number of input bytes available
5478    at least ten.  The ten bytes are six bytes for the longest length/
5479    distance pair plus four bytes for overloading the bit buffer. */
5480 
5481 int inflate_fast(bl, bd, tl, td, s, z)
5482 uInt bl, bd;
5483 inflate_huft *tl;
5484 inflate_huft *td; /* need separate declaration for Borland C++ */
5485 inflate_blocks_statef *s;
5486 z_streamp z;
5487 {
5488   inflate_huft *t;      /* temporary pointer */
5489   uInt e;               /* extra bits or operation */
5490   uLong b;              /* bit buffer */
5491   uInt k;               /* bits in bit buffer */
5492   Bytef *p;             /* input data pointer */
5493   uInt n;               /* bytes available there */
5494   Bytef *q;             /* output window write pointer */
5495   uInt m;               /* bytes to end of window or read pointer */
5496   uInt ml;              /* mask for literal/length tree */
5497   uInt md;              /* mask for distance tree */
5498   uInt c;               /* bytes to copy */
5499   uInt d;               /* distance back to copy from */
5500   Bytef *r;             /* copy source pointer */
5501 
5502   /* load input, output, bit values */
5503   LOAD
5504 
5505   /* initialize masks */
5506   ml = inflate_mask[bl];
5507   md = inflate_mask[bd];
5508 
5509   /* do until not enough input or output space for fast loop */
5510   do {                          /* assume called with m >= 258 && n >= 10 */
5511     /* get literal/length code */
5512     GRABBITS(20)                /* max bits for literal/length code */
5513     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5514     {
5515       DUMPBITS(t->bits)
5516       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5517                 "inflate:         * literal '%c'\n" :
5518                 "inflate:         * literal 0x%02x\n", t->base));
5519       *q++ = (Byte)t->base;
5520       m--;
5521       continue;
5522     }
5523     do {
5524       DUMPBITS(t->bits)
5525       if (e & 16)
5526       {
5527         /* get extra bits for length */
5528         e &= 15;
5529         c = t->base + ((uInt)b & inflate_mask[e]);
5530         DUMPBITS(e)
5531         Tracevv((stderr, "inflate:         * length %u\n", c));
5532 
5533         /* decode distance base of block to copy */
5534         GRABBITS(15);           /* max bits for distance code */
5535         e = (t = td + ((uInt)b & md))->exop;
5536         do {
5537           DUMPBITS(t->bits)
5538           if (e & 16)
5539           {
5540             /* get extra bits to add to distance base */
5541             e &= 15;
5542             GRABBITS(e)         /* get extra bits (up to 13) */
5543             d = t->base + ((uInt)b & inflate_mask[e]);
5544             DUMPBITS(e)
5545             Tracevv((stderr, "inflate:         * distance %u\n", d));
5546 
5547             /* do the copy */
5548             m -= c;
5549             r = q - d;
5550             if (r < s->window)                  /* wrap if needed */
5551             {
5552               do {
5553                 r += s->end - s->window;        /* force pointer in window */
5554               } while (r < s->window);          /* covers invalid distances */
5555               e = s->end - r;
5556               if (c > e)
5557               {
5558                 c -= e;                         /* wrapped copy */
5559                 do {
5560                     *q++ = *r++;
5561                 } while (--e);
5562                 r = s->window;
5563                 do {
5564                     *q++ = *r++;
5565                 } while (--c);
5566               }
5567               else                              /* normal copy */
5568               {
5569                 *q++ = *r++;  c--;
5570                 *q++ = *r++;  c--;
5571                 do {
5572                     *q++ = *r++;
5573                 } while (--c);
5574               }
5575             }
5576             else                                /* normal copy */
5577             {
5578               *q++ = *r++;  c--;
5579               *q++ = *r++;  c--;
5580               do {
5581                 *q++ = *r++;
5582               } while (--c);
5583             }
5584             break;
5585           }
5586           else if ((e & 64) == 0)
5587           {
5588             t += t->base;
5589             e = (t += ((uInt)b & inflate_mask[e]))->exop;
5590           }
5591           else
5592           {
5593             z->msg = (char*)"invalid distance code";
5594             UNGRAB
5595             UPDATE
5596             return Z_DATA_ERROR;
5597           }
5598         } while (1);
5599         break;
5600       }
5601       if ((e & 64) == 0)
5602       {
5603         t += t->base;
5604         if ((e = (t += ((uInt)b & inflate_mask[e]))->exop) == 0)
5605         {
5606           DUMPBITS(t->bits)
5607           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5608                     "inflate:         * literal '%c'\n" :
5609                     "inflate:         * literal 0x%02x\n", t->base));
5610           *q++ = (Byte)t->base;
5611           m--;
5612           break;
5613         }
5614       }
5615       else if (e & 32)
5616       {
5617         Tracevv((stderr, "inflate:         * end of block\n"));
5618         UNGRAB
5619         UPDATE
5620         return Z_STREAM_END;
5621       }
5622       else
5623       {
5624         z->msg = (char*)"invalid literal/length code";
5625         UNGRAB
5626         UPDATE
5627         return Z_DATA_ERROR;
5628       }
5629     } while (1);
5630   } while (m >= 258 && n >= 10);
5631 
5632   /* not enough input or output--restore pointers and return */
5633   UNGRAB
5634   UPDATE
5635   return Z_OK;
5636 }
5637 /* --- inffast.c */
5638 
5639 /* +++ zutil.c */
5640 
5641 /* zutil.c -- target dependent utility functions for the compression library
5642  * Copyright (C) 1995-2002 Jean-loup Gailly.
5643  * For conditions of distribution and use, see copyright notice in zlib.h
5644  */
5645 
5646 /* @(#) Id */
5647 
5648 #ifdef DEBUG_ZLIB
5649 #include <stdio.h>
5650 #endif
5651 
5652 /* #include "zutil.h" */
5653 
5654 #ifndef NO_DUMMY_DECL
5655 struct internal_state      {int dummy;}; /* for buggy compilers */
5656 #endif
5657 
5658 #ifndef STDC
5659 extern void exit __P((int));
5660 #endif
5661 
5662 const char *z_errmsg[10] = {
5663 "need dictionary",     /* Z_NEED_DICT       2  */
5664 "stream end",          /* Z_STREAM_END      1  */
5665 "",                    /* Z_OK              0  */
5666 "file error",          /* Z_ERRNO         (-1) */
5667 "stream error",        /* Z_STREAM_ERROR  (-2) */
5668 "data error",          /* Z_DATA_ERROR    (-3) */
5669 "insufficient memory", /* Z_MEM_ERROR     (-4) */
5670 "buffer error",        /* Z_BUF_ERROR     (-5) */
5671 "incompatible version",/* Z_VERSION_ERROR (-6) */
5672 ""};
5673 
5674 
5675 const char * ZEXPORT zlibVersion()
5676 {
5677     return ZLIB_VERSION;
5678 }
5679 
5680 #ifdef DEBUG_ZLIB
5681 
5682 #  ifndef verbose
5683 #    define verbose 0
5684 #  endif
5685 int z_verbose = verbose;
5686 
5687 void z_error (m)
5688     char *m;
5689 {
5690     fprintf(stderr, "%s\n", m);
5691     exit(1);
5692 }
5693 #endif
5694 
5695 /* exported to allow conversion of error code to string for compress() and
5696  * uncompress()
5697  */
5698 const char * ZEXPORT zError(err)
5699     int err;
5700 {
5701     return ERR_MSG(err);
5702 }
5703 
5704 
5705 #ifndef HAVE_MEMCPY
5706 
5707 void zmemcpy(dest, source, len)
5708     Bytef* dest;
5709     const Bytef* source;
5710     uInt  len;
5711 {
5712     if (len == 0) return;
5713     do {
5714         *dest++ = *source++; /* ??? to be unrolled */
5715     } while (--len != 0);
5716 }
5717 
5718 int zmemcmp(s1, s2, len)
5719     const Bytef* s1;
5720     const Bytef* s2;
5721     uInt  len;
5722 {
5723     uInt j;
5724 
5725     for (j = 0; j < len; j++) {
5726         if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5727     }
5728     return 0;
5729 }
5730 
5731 void zmemzero(dest, len)
5732     Bytef* dest;
5733     uInt  len;
5734 {
5735     if (len == 0) return;
5736     do {
5737         *dest++ = 0;  /* ??? to be unrolled */
5738     } while (--len != 0);
5739 }
5740 #endif
5741 
5742 #ifdef __TURBOC__
5743 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5744 /* Small and medium model in Turbo C are for now limited to near allocation
5745  * with reduced MAX_WBITS and MAX_MEM_LEVEL
5746  */
5747 #  define MY_ZCALLOC
5748 
5749 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5750  * and farmalloc(64K) returns a pointer with an offset of 8, so we
5751  * must fix the pointer. Warning: the pointer must be put back to its
5752  * original form in order to free it, use zcfree().
5753  */
5754 
5755 #define MAX_PTR 10
5756 /* 10*64K = 640K */
5757 
5758 local int next_ptr = 0;
5759 
5760 typedef struct ptr_table_s {
5761     voidpf org_ptr;
5762     voidpf new_ptr;
5763 } ptr_table;
5764 
5765 local ptr_table table[MAX_PTR];
5766 /* This table is used to remember the original form of pointers
5767  * to large buffers (64K). Such pointers are normalized with a zero offset.
5768  * Since MSDOS is not a preemptive multitasking OS, this table is not
5769  * protected from concurrent access. This hack doesn't work anyway on
5770  * a protected system like OS/2. Use Microsoft C instead.
5771  */
5772 
5773 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5774 {
5775     voidpf buf = opaque; /* just to make some compilers happy */
5776     ulg bsize = (ulg)items*size;
5777 
5778     /* If we allocate less than 65520 bytes, we assume that farmalloc
5779      * will return a usable pointer which doesn't have to be normalized.
5780      */
5781     if (bsize < 65520L) {
5782         buf = farmalloc(bsize);
5783         if (*(ush*)&buf != 0) return buf;
5784     } else {
5785         buf = farmalloc(bsize + 16L);
5786     }
5787     if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5788     table[next_ptr].org_ptr = buf;
5789 
5790     /* Normalize the pointer to seg:0 */
5791     *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5792     *(ush*)&buf = 0;
5793     table[next_ptr++].new_ptr = buf;
5794     return buf;
5795 }
5796 
5797 void  zcfree (voidpf opaque, voidpf ptr)
5798 {
5799     int n;
5800     if (*(ush*)&ptr != 0) { /* object < 64K */
5801         farfree(ptr);
5802         return;
5803     }
5804     /* Find the original pointer */
5805     for (n = 0; n < next_ptr; n++) {
5806         if (ptr != table[n].new_ptr) continue;
5807 
5808         farfree(table[n].org_ptr);
5809         while (++n < next_ptr) {
5810             table[n-1] = table[n];
5811         }
5812         next_ptr--;
5813         return;
5814     }
5815     ptr = opaque; /* just to make some compilers happy */
5816     Assert(0, "zcfree: ptr not found");
5817 }
5818 #endif
5819 #endif /* __TURBOC__ */
5820 
5821 
5822 #if defined(M_I86) && !defined(__32BIT__)
5823 /* Microsoft C in 16-bit mode */
5824 
5825 #  define MY_ZCALLOC
5826 
5827 #if (!defined(_MSC_VER) || (_MSC_VER <= 600))
5828 #  define _halloc  halloc
5829 #  define _hfree   hfree
5830 #endif
5831 
5832 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5833 {
5834     if (opaque) opaque = 0; /* to make compiler happy */
5835     return _halloc((long)items, size);
5836 }
5837 
5838 void  zcfree (voidpf opaque, voidpf ptr)
5839 {
5840     if (opaque) opaque = 0; /* to make compiler happy */
5841     _hfree(ptr);
5842 }
5843 
5844 #endif /* MSC */
5845 
5846 
5847 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5848 
5849 #ifndef STDC
5850 extern voidp  calloc __P((uInt items, uInt size));
5851 extern void   free   __P((voidpf ptr));
5852 #endif
5853 
5854 voidpf zcalloc (opaque, items, size)
5855     voidpf opaque;
5856     unsigned items;
5857     unsigned size;
5858 {
5859     if (opaque) items += size - size; /* make compiler happy */
5860     return (voidpf)calloc(items, size);
5861 }
5862 
5863 void  zcfree (opaque, ptr)
5864     voidpf opaque;
5865     voidpf ptr;
5866 {
5867     free(ptr);
5868     if (opaque) return; /* make compiler happy */
5869 }
5870 
5871 #endif /* MY_ZCALLOC */
5872 /* --- zutil.c */
5873 
5874 /* +++ adler32.c */
5875 /* adler32.c -- compute the Adler-32 checksum of a data stream
5876  * Copyright (C) 1995-2002 Mark Adler
5877  * For conditions of distribution and use, see copyright notice in zlib.h
5878  */
5879 
5880 /* @(#) $Id: zlib.c,v 1.18 2002/05/07 09:14:20 tron Exp $ */
5881 
5882 /* #include "zlib.h" */
5883 
5884 #define BASE 65521L /* largest prime smaller than 65536 */
5885 #define NMAX 5552
5886 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5887 
5888 #define DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
5889 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
5890 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
5891 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
5892 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
5893 
5894 /* ========================================================================= */
5895 uLong ZEXPORT adler32(adler, buf, len)
5896     uLong adler;
5897     const Bytef *buf;
5898     uInt len;
5899 {
5900     unsigned long s1 = adler & 0xffff;
5901     unsigned long s2 = (adler >> 16) & 0xffff;
5902     int k;
5903 
5904     if (buf == Z_NULL) return 1L;
5905 
5906     while (len > 0) {
5907         k = len < NMAX ? len : NMAX;
5908         len -= k;
5909         while (k >= 16) {
5910             DO16(buf);
5911 	    buf += 16;
5912             k -= 16;
5913         }
5914         if (k != 0) do {
5915             s1 += *buf++;
5916 	    s2 += s1;
5917         } while (--k);
5918         s1 %= BASE;
5919         s2 %= BASE;
5920     }
5921     return (s2 << 16) | s1;
5922 }
5923 /* --- adler32.c */
5924 
5925