xref: /netbsd/sys/net/zlib.c (revision c4a72b64)
1 /*	$NetBSD: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $	*/
2 /*
3  * This file is derived from various .h and .c files from the zlib-1.0.4
4  * distribution by Jean-loup Gailly and Mark Adler, with some additions
5  * by Paul Mackerras to aid in implementing Deflate compression and
6  * decompression for PPP packets.  See zlib.h for conditions of
7  * distribution and use.
8  *
9  * Changes that have been made include:
10  * - added Z_PACKET_FLUSH (see zlib.h for details)
11  * - added inflateIncomp and deflateOutputPending
12  * - allow strm->next_out to be NULL, meaning discard the output
13  *
14  * $Id: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $
15  */
16 
17 /*
18  *  ==FILEVERSION 020312==
19  *
20  * This marker is used by the Linux installation script to determine
21  * whether an up-to-date version of this file is already installed.
22  */
23 
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $");
26 
27 #define NO_DUMMY_DECL
28 #define NO_ZCFUNCS
29 #define MY_ZCALLOC
30 
31 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
32 #define inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
33 #endif
34 
35 
36 /* +++ zutil.h */
37 
38 /* zutil.h -- internal interface and configuration of the compression library
39  * Copyright (C) 1995-2002 Jean-loup Gailly.
40  * For conditions of distribution and use, see copyright notice in zlib.h
41  */
42 
43 /* WARNING: this file should *not* be used by applications. It is
44    part of the implementation of the compression library and is
45    subject to change. Applications should only use zlib.h.
46  */
47 
48 /* @(#) $Id: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $ */
49 
50 #ifndef _Z_UTIL_H
51 #define _Z_UTIL_H
52 
53 #include "zlib.h"
54 
55 #if defined(KERNEL) || defined(_KERNEL)
56 /* Assume this is a *BSD or SVR4 kernel */
57 #include <sys/param.h>
58 #include <sys/time.h>
59 #include <sys/systm.h>
60 #  define HAVE_MEMCPY
61 #else
62 #if defined(__KERNEL__)
63 /* Assume this is a Linux kernel */
64 #include <linux/string.h>
65 #define HAVE_MEMCPY
66 
67 #else /* not kernel */
68 
69 #if defined(__NetBSD__) && (defined(_KERNEL) || defined(_STANDALONE))
70 
71 /* XXX doesn't seem to need anything at all, but this is for consistency. */
72 #  include <lib/libkern/libkern.h>
73 
74 #else
75 #ifdef STDC
76 #  include <stddef.h>
77 #  include <string.h>
78 #  include <stdlib.h>
79 #endif
80 #ifdef NO_ERRNO_H
81     extern int errno;
82 #else
83 #   include <errno.h>
84 #endif
85 #endif /* __NetBSD__ && _STANDALONE */
86 #endif /* __KERNEL__ */
87 #endif /* _KERNEL || KERNEL */
88 
89 
90 #ifndef local
91 #  define local static
92 #endif
93 /* compile with -Dlocal if your debugger can't find static symbols */
94 
95 typedef unsigned char  uch;
96 typedef uch FAR uchf;
97 typedef unsigned short ush;
98 typedef ush FAR ushf;
99 typedef unsigned long  ulg;
100 
101 extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
102 /* (size given to avoid silly warnings with Visual C++) */
103 
104 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
105 
106 #define ERR_RETURN(strm,err) \
107   return (strm->msg = (char*)ERR_MSG(err), (err))
108 /* To be used only when the state is known to be valid */
109 
110         /* common constants */
111 
112 #ifndef DEF_WBITS
113 #  define DEF_WBITS MAX_WBITS
114 #endif
115 /* default windowBits for decompression. MAX_WBITS is for compression only */
116 
117 #if MAX_MEM_LEVEL >= 8
118 #  define DEF_MEM_LEVEL 8
119 #else
120 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
121 #endif
122 /* default memLevel */
123 
124 #define STORED_BLOCK 0
125 #define STATIC_TREES 1
126 #define DYN_TREES    2
127 /* The three kinds of block type */
128 
129 #define MIN_MATCH  3
130 #define MAX_MATCH  258
131 /* The minimum and maximum match lengths */
132 
133 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
134 
135         /* target dependencies */
136 
137 #ifdef MSDOS
138 #  define OS_CODE  0x00
139 #  if defined(__TURBOC__) || defined(__BORLANDC__)
140 #    if(__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__))
141        /* Allow compilation with ANSI keywords only enabled */
142        void _Cdecl farfree( void *block );
143        void *_Cdecl farmalloc( unsigned long nbytes );
144 #    else
145 #     include <alloc.h>
146 #    endif
147 #  else /* MSC or DJGPP */
148 #    include <malloc.h>
149 #  endif
150 #endif
151 
152 #ifdef OS2
153 #  define OS_CODE  0x06
154 #endif
155 
156 #ifdef WIN32 /* Window 95 & Windows NT */
157 #  define OS_CODE  0x0b
158 #endif
159 
160 #if defined(VAXC) || defined(VMS)
161 #  define OS_CODE  0x02
162 #  define F_OPEN(name, mode) \
163      fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
164 #endif
165 
166 #ifdef AMIGA
167 #  define OS_CODE  0x01
168 #endif
169 
170 #if defined(ATARI) || defined(atarist)
171 #  define OS_CODE  0x05
172 #endif
173 
174 #if defined(MACOS) || defined(TARGET_OS_MAC)
175 #  define OS_CODE  0x07
176 #  if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
177 #    include <unix.h> /* for fdopen */
178 #  else
179 #    ifndef fdopen
180 #      define fdopen(fd,mode) NULL /* No fdopen() */
181 #    endif
182 #  endif
183 #endif
184 
185 #ifdef __50SERIES /* Prime/PRIMOS */
186 #  define OS_CODE  0x0F
187 #endif
188 
189 #ifdef TOPS20
190 #  define OS_CODE  0x0a
191 #endif
192 
193 #if defined(_BEOS_) || defined(RISCOS)
194 #  define fdopen(fd,mode) NULL /* No fdopen() */
195 #endif
196 
197 #if (defined(_MSC_VER) && (_MSC_VER > 600))
198 #  define fdopen(fd,type)  _fdopen(fd,type)
199 #endif
200 
201 
202         /* Common defaults */
203 
204 #ifndef OS_CODE
205 #  define OS_CODE  0x03  /* assume Unix */
206 #endif
207 
208 #ifndef F_OPEN
209 #  define F_OPEN(name, mode) fopen((name), (mode))
210 #endif
211 
212          /* functions */
213 
214 #ifdef HAVE_STRERROR
215    extern char *strerror __P((int));
216 #  define zstrerror(errnum) strerror(errnum)
217 #else
218 #  define zstrerror(errnum) ""
219 #endif
220 
221 #if defined(pyr)
222 #  define NO_MEMCPY
223 #endif
224 #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__)
225  /* Use our own functions for small and medium model with MSC <= 5.0.
226   * You may have to use the same strategy for Borland C (untested).
227   * The __SC__ check is for Symantec.
228   */
229 #  define NO_MEMCPY
230 #endif
231 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
232 #  define HAVE_MEMCPY
233 #endif
234 #ifdef HAVE_MEMCPY
235 #  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
236 #    define zmemcpy _fmemcpy
237 #    define zmemcmp _fmemcmp
238 #    define zmemzero(dest, len) _fmemset(dest, 0, len)
239 #  else
240 #    define zmemcpy memcpy
241 #    define zmemcmp memcmp
242 #    define zmemzero(dest, len) memset(dest, 0, len)
243 #  endif
244 #else
245    extern void zmemcpy  __P((Bytef* dest, const Bytef* source, uInt len));
246    extern int  zmemcmp  __P((const Bytef* s1, const Bytef* s2, uInt len));
247    extern void zmemzero __P((Bytef* dest, uInt len));
248 #endif
249 
250 /* Diagnostic functions */
251 #if defined(DEBUG_ZLIB) && !defined(_KERNEL) && !defined(_STANDALONE)
252 #  include <stdio.h>
253    extern int z_verbose;
254    extern void z_error    __P((char *m));
255 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
256 #  define Trace(x) {if (z_verbose>=0) fprintf x ;}
257 #  define Tracev(x) {if (z_verbose>0) fprintf x ;}
258 #  define Tracevv(x) {if (z_verbose>1) fprintf x ;}
259 #  define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;}
260 #  define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;}
261 #else
262 #  define Assert(cond,msg)
263 #  define Trace(x)
264 #  define Tracev(x)
265 #  define Tracevv(x)
266 #  define Tracec(c,x)
267 #  define Tracecv(c,x)
268 #endif
269 
270 
271 typedef uLong (ZEXPORT *check_func) __P((uLong check, const Bytef *buf,
272 				       uInt len));
273 voidpf zcalloc __P((voidpf opaque, unsigned items, unsigned size));
274 void   zcfree  __P((voidpf opaque, voidpf ptr));
275 
276 #define ZALLOC(strm, items, size) \
277            (*((strm)->zalloc))((strm)->opaque, (items), (size))
278 #define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
279 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
280 
281 #endif /* _Z_UTIL_H */
282 /* --- zutil.h */
283 
284 /* +++ deflate.h */
285 
286 /* deflate.h -- internal compression state
287  * Copyright (C) 1995-2002 Jean-loup Gailly
288  * For conditions of distribution and use, see copyright notice in zlib.h
289  */
290 
291 /* WARNING: this file should *not* be used by applications. It is
292    part of the implementation of the compression library and is
293    subject to change. Applications should only use zlib.h.
294  */
295 
296 /* @(#) $Id: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $ */
297 
298 #ifndef _DEFLATE_H
299 #define _DEFLATE_H
300 
301 /* #include "zutil.h" */
302 
303 /* ===========================================================================
304  * Internal compression state.
305  */
306 
307 #define LENGTH_CODES 29
308 /* number of length codes, not counting the special END_BLOCK code */
309 
310 #define LITERALS  256
311 /* number of literal bytes 0..255 */
312 
313 #define L_CODES (LITERALS+1+LENGTH_CODES)
314 /* number of Literal or Length codes, including the END_BLOCK code */
315 
316 #define D_CODES   30
317 /* number of distance codes */
318 
319 #define BL_CODES  19
320 /* number of codes used to transfer the bit lengths */
321 
322 #define HEAP_SIZE (2*L_CODES+1)
323 /* maximum heap size */
324 
325 #define MAX_BITS 15
326 /* All codes must not exceed MAX_BITS bits */
327 
328 #define INIT_STATE    42
329 #define BUSY_STATE   113
330 #define FINISH_STATE 666
331 /* Stream status */
332 
333 
334 /* Data structure describing a single value and its code string. */
335 typedef struct ct_data_s {
336     union {
337         ush  freq;       /* frequency count */
338         ush  code;       /* bit string */
339     } fc;
340     union {
341         ush  dad;        /* father node in Huffman tree */
342         ush  len;        /* length of bit string */
343     } dl;
344 } FAR ct_data;
345 
346 #define Freq fc.freq
347 #define Code fc.code
348 #define Dad  dl.dad
349 #define Len  dl.len
350 
351 typedef struct static_tree_desc_s  static_tree_desc;
352 
353 typedef struct tree_desc_s {
354     ct_data *dyn_tree;           /* the dynamic tree */
355     int     max_code;            /* largest code with non zero frequency */
356     static_tree_desc *stat_desc; /* the corresponding static tree */
357 } FAR tree_desc;
358 
359 typedef ush Pos;
360 typedef Pos FAR Posf;
361 typedef unsigned IPos;
362 
363 /* A Pos is an index in the character window. We use short instead of int to
364  * save space in the various tables. IPos is used only for parameter passing.
365  */
366 
367 typedef struct deflate_state {
368     z_streamp strm;      /* pointer back to this zlib stream */
369     int   status;        /* as the name implies */
370     Bytef *pending_buf;  /* output still pending */
371     ulg   pending_buf_size; /* size of pending_buf */
372     Bytef *pending_out;  /* next pending byte to output to the stream */
373     int   pending;       /* nb of bytes in the pending buffer */
374     int   noheader;      /* suppress zlib header and adler32 */
375     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
376     Byte  method;        /* STORED (for zip only) or DEFLATED */
377     int   last_flush;    /* value of flush param for previous deflate call */
378 
379                 /* used by deflate.c: */
380 
381     uInt  w_size;        /* LZ77 window size (32K by default) */
382     uInt  w_bits;        /* log2(w_size)  (8..16) */
383     uInt  w_mask;        /* w_size - 1 */
384 
385     Bytef *window;
386     /* Sliding window. Input bytes are read into the second half of the window,
387      * and move to the first half later to keep a dictionary of at least wSize
388      * bytes. With this organization, matches are limited to a distance of
389      * wSize-MAX_MATCH bytes, but this ensures that IO is always
390      * performed with a length multiple of the block size. Also, it limits
391      * the window size to 64K, which is quite useful on MSDOS.
392      * To do: use the user input buffer as sliding window.
393      */
394 
395     ulg window_size;
396     /* Actual size of window: 2*wSize, except when the user input buffer
397      * is directly used as sliding window.
398      */
399 
400     Posf *prev;
401     /* Link to older string with same hash index. To limit the size of this
402      * array to 64K, this link is maintained only for the last 32K strings.
403      * An index in this array is thus a window index modulo 32K.
404      */
405 
406     Posf *head; /* Heads of the hash chains or NIL. */
407 
408     uInt  ins_h;          /* hash index of string to be inserted */
409     uInt  hash_size;      /* number of elements in hash table */
410     uInt  hash_bits;      /* log2(hash_size) */
411     uInt  hash_mask;      /* hash_size-1 */
412 
413     uInt  hash_shift;
414     /* Number of bits by which ins_h must be shifted at each input
415      * step. It must be such that after MIN_MATCH steps, the oldest
416      * byte no longer takes part in the hash key, that is:
417      *   hash_shift * MIN_MATCH >= hash_bits
418      */
419 
420     long block_start;
421     /* Window position at the beginning of the current output block. Gets
422      * negative when the window is moved backwards.
423      */
424 
425     uInt match_length;           /* length of best match */
426     IPos prev_match;             /* previous match */
427     int match_available;         /* set if previous match exists */
428     uInt strstart;               /* start of string to insert */
429     uInt match_start;            /* start of matching string */
430     uInt lookahead;              /* number of valid bytes ahead in window */
431 
432     uInt prev_length;
433     /* Length of the best match at previous step. Matches not greater than this
434      * are discarded. This is used in the lazy match evaluation.
435      */
436 
437     uInt max_chain_length;
438     /* To speed up deflation, hash chains are never searched beyond this
439      * length.  A higher limit improves compression ratio but degrades the
440      * speed.
441      */
442 
443     uInt max_lazy_match;
444     /* Attempt to find a better match only when the current match is strictly
445      * smaller than this value. This mechanism is used only for compression
446      * levels >= 4.
447      */
448 #   define max_insert_length  max_lazy_match
449     /* Insert new strings in the hash table only if the match length is not
450      * greater than this length. This saves time but degrades compression.
451      * max_insert_length is used only for compression levels <= 3.
452      */
453 
454     int level;    /* compression level (1..9) */
455     int strategy; /* favor or force Huffman coding*/
456 
457     uInt good_match;
458     /* Use a faster search when the previous match is longer than this */
459 
460     int nice_match; /* Stop searching when current match exceeds this */
461 
462                 /* used by trees.c: */
463     /* Didn't use ct_data typedef below to supress compiler warning */
464     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
465     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
466     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
467 
468     struct tree_desc_s l_desc;               /* desc. for literal tree */
469     struct tree_desc_s d_desc;               /* desc. for distance tree */
470     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
471 
472     ush bl_count[MAX_BITS+1];
473     /* number of codes at each bit length for an optimal tree */
474 
475     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
476     int heap_len;               /* number of elements in the heap */
477     int heap_max;               /* element of largest frequency */
478     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
479      * The same heap array is used to build all trees.
480      */
481 
482     uch depth[2*L_CODES+1];
483     /* Depth of each subtree used as tie breaker for trees of equal frequency
484      */
485 
486     uchf *l_buf;          /* buffer for literals or lengths */
487 
488     uInt  lit_bufsize;
489     /* Size of match buffer for literals/lengths.  There are 4 reasons for
490      * limiting lit_bufsize to 64K:
491      *   - frequencies can be kept in 16 bit counters
492      *   - if compression is not successful for the first block, all input
493      *     data is still in the window so we can still emit a stored block even
494      *     when input comes from standard input.  (This can also be done for
495      *     all blocks if lit_bufsize is not greater than 32K.)
496      *   - if compression is not successful for a file smaller than 64K, we can
497      *     even emit a stored file instead of a stored block (saving 5 bytes).
498      *     This is applicable only for zip (not gzip or zlib).
499      *   - creating new Huffman trees less frequently may not provide fast
500      *     adaptation to changes in the input data statistics. (Take for
501      *     example a binary file with poorly compressible code followed by
502      *     a highly compressible string table.) Smaller buffer sizes give
503      *     fast adaptation but have of course the overhead of transmitting
504      *     trees more frequently.
505      *   - I can't count above 4
506      */
507 
508     uInt last_lit;      /* running index in l_buf */
509 
510     ushf *d_buf;
511     /* Buffer for distances. To simplify the code, d_buf and l_buf have
512      * the same number of elements. To use different lengths, an extra flag
513      * array would be necessary.
514      */
515 
516     ulg opt_len;        /* bit length of current block with optimal trees */
517     ulg static_len;     /* bit length of current block with static trees */
518     uInt matches;       /* number of string matches in current block */
519     int last_eob_len;   /* bit length of EOB code for last block */
520 
521 #ifdef DEBUG_ZLIB
522     ulg compressed_len; /* total bit length of compressed file mod 2^32 */
523     ulg bits_sent;      /* bit length of compressed data sent mod 2^32 */
524 #endif
525 
526     ush bi_buf;
527     /* Output buffer. bits are inserted starting at the bottom (least
528      * significant bits).
529      */
530     int bi_valid;
531     /* Number of valid bits in bi_buf.  All bits above the last valid bit
532      * are always zero.
533      */
534 
535 } FAR deflate_state;
536 
537 /* Output a byte on the stream.
538  * IN assertion: there is enough room in pending_buf.
539  */
540 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
541 
542 
543 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
544 /* Minimum amount of lookahead, except at the end of the input file.
545  * See deflate.c for comments about the MIN_MATCH+1.
546  */
547 
548 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
549 /* In order to simplify the code, particularly on 16 bit machines, match
550  * distances are limited to MAX_DIST instead of WSIZE.
551  */
552 
553         /* in trees.c */
554 void _tr_init         __P((deflate_state *s));
555 int  _tr_tally        __P((deflate_state *s, unsigned dist, unsigned lc));
556 void _tr_flush_block  __P((deflate_state *s, charf *buf, ulg stored_len,
557 			  int eof));
558 void _tr_align        __P((deflate_state *s));
559 void _tr_stored_block __P((deflate_state *s, charf *buf, ulg stored_len,
560                           int eof));
561 void _tr_stored_type_only __P((deflate_state *));
562 
563 #define d_code(dist) \
564    ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
565 /* Mapping from a distance to a distance code. dist is the distance - 1 and
566  * must not have side effects. _dist_code[256] and _dist_code[257] are never
567  * used.
568  */
569 
570 #ifndef DEBUG_ZLIB
571 /* Inline versions of _tr_tally for speed: */
572 
573 #if defined(GEN_TREES_H) || !defined(STDC)
574   extern uch _length_code[];
575   extern uch _dist_code[];
576 #else
577   extern const uch _length_code[];
578   extern const uch _dist_code[];
579 #endif
580 
581 # define _tr_tally_lit(s, c, flush) \
582   { uch cc = (c); \
583     s->d_buf[s->last_lit] = 0; \
584     s->l_buf[s->last_lit++] = cc; \
585     s->dyn_ltree[cc].Freq++; \
586     flush = (s->last_lit == s->lit_bufsize-1); \
587    }
588 # define _tr_tally_dist(s, distance, length, flush) \
589   { uch len = (length); \
590     ush dist = (distance); \
591     s->d_buf[s->last_lit] = dist; \
592     s->l_buf[s->last_lit++] = len; \
593     dist--; \
594     s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
595     s->dyn_dtree[d_code(dist)].Freq++; \
596     flush = (s->last_lit == s->lit_bufsize-1); \
597   }
598 #else
599 # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
600 # define _tr_tally_dist(s, distance, length, flush) \
601               flush = _tr_tally(s, distance, length)
602 #endif
603 
604 #endif
605 /* --- deflate.h */
606 
607 /* +++ deflate.c */
608 
609 /* deflate.c -- compress data using the deflation algorithm
610  * Copyright (C) 1995-2002 Jean-loup Gailly.
611  * For conditions of distribution and use, see copyright notice in zlib.h
612  */
613 
614 /*
615  *  ALGORITHM
616  *
617  *      The "deflation" process depends on being able to identify portions
618  *      of the input text which are identical to earlier input (within a
619  *      sliding window trailing behind the input currently being processed).
620  *
621  *      The most straightforward technique turns out to be the fastest for
622  *      most input files: try all possible matches and select the longest.
623  *      The key feature of this algorithm is that insertions into the string
624  *      dictionary are very simple and thus fast, and deletions are avoided
625  *      completely. Insertions are performed at each input character, whereas
626  *      string matches are performed only when the previous match ends. So it
627  *      is preferable to spend more time in matches to allow very fast string
628  *      insertions and avoid deletions. The matching algorithm for small
629  *      strings is inspired from that of Rabin & Karp. A brute force approach
630  *      is used to find longer strings when a small match has been found.
631  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
632  *      (by Leonid Broukhis).
633  *         A previous version of this file used a more sophisticated algorithm
634  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
635  *      time, but has a larger average cost, uses more memory and is patented.
636  *      However the F&G algorithm may be faster for some highly redundant
637  *      files if the parameter max_chain_length (described below) is too large.
638  *
639  *  ACKNOWLEDGEMENTS
640  *
641  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
642  *      I found it in 'freeze' written by Leonid Broukhis.
643  *      Thanks to many people for bug reports and testing.
644  *
645  *  REFERENCES
646  *
647  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
648  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
649  *
650  *      A description of the Rabin and Karp algorithm is given in the book
651  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
652  *
653  *      Fiala,E.R., and Greene,D.H.
654  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
655  *
656  */
657 
658 /* @(#) $Id: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $ */
659 
660 /* #include "deflate.h" */
661 
662 const char deflate_copyright[] =
663    " deflate 1.1.4 Copyright 1995-2002 Jean-loup Gailly ";
664 /*
665   If you use the zlib library in a product, an acknowledgment is welcome
666   in the documentation of your product. If for some reason you cannot
667   include such an acknowledgment, I would appreciate that you keep this
668   copyright string in the executable of your product.
669  */
670 
671 /* ===========================================================================
672  *  Function prototypes.
673  */
674 typedef enum {
675     need_more,      /* block not completed, need more input or more output */
676     block_done,     /* block flush performed */
677     finish_started, /* finish started, need only more output at next deflate */
678     finish_done     /* finish done, accept no more input or output */
679 } block_state;
680 
681 typedef block_state (*compress_func) __P((deflate_state *s, int flush));
682 /* Compression function. Returns the block state after the call. */
683 
684 local void fill_window    __P((deflate_state *s));
685 local block_state deflate_stored __P((deflate_state *s, int flush));
686 local block_state deflate_fast   __P((deflate_state *s, int flush));
687 local block_state deflate_slow   __P((deflate_state *s, int flush));
688 local void lm_init        __P((deflate_state *s));
689 local void putShortMSB    __P((deflate_state *s, uInt b));
690 local void flush_pending  __P((z_streamp strm));
691 local int read_buf        __P((z_streamp strm, Bytef *buf, unsigned size));
692 #ifdef ASMV
693       void match_init __P((void)); /* asm code initialization */
694       uInt longest_match  __P((deflate_state *s, IPos cur_match));
695 #else
696 local uInt longest_match  __P((deflate_state *s, IPos cur_match));
697 #endif
698 
699 #ifdef DEBUG_ZLIB
700 local  void check_match __P((deflate_state *s, IPos start, IPos match,
701                             int length));
702 #endif
703 
704 /* ===========================================================================
705  * Local data
706  */
707 
708 #define NIL 0
709 /* Tail of hash chains */
710 
711 #ifndef TOO_FAR
712 #  define TOO_FAR 4096
713 #endif
714 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
715 
716 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
717 /* Minimum amount of lookahead, except at the end of the input file.
718  * See deflate.c for comments about the MIN_MATCH+1.
719  */
720 
721 /* Values for max_lazy_match, good_match and max_chain_length, depending on
722  * the desired pack level (0..9). The values given below have been tuned to
723  * exclude worst case performance for pathological files. Better values may be
724  * found for specific files.
725  */
726 typedef struct config_s {
727    ush good_length; /* reduce lazy search above this match length */
728    ush max_lazy;    /* do not perform lazy search above this match length */
729    ush nice_length; /* quit search above this match length */
730    ush max_chain;
731    compress_func func;
732 } config;
733 
734 local const config configuration_table[10] = {
735 /*      good lazy nice chain */
736 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
737 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
738 /* 2 */ {4,    5, 16,    8, deflate_fast},
739 /* 3 */ {4,    6, 32,   32, deflate_fast},
740 
741 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
742 /* 5 */ {8,   16, 32,   32, deflate_slow},
743 /* 6 */ {8,   16, 128, 128, deflate_slow},
744 /* 7 */ {8,   32, 128, 256, deflate_slow},
745 /* 8 */ {32, 128, 258, 1024, deflate_slow},
746 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
747 
748 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
749  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
750  * meaning.
751  */
752 
753 #define EQUAL 0
754 /* result of memcmp for equal strings */
755 
756 #ifndef NO_DUMMY_DECL
757 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
758 #endif
759 
760 /* ===========================================================================
761  * Update a hash value with the given input byte
762  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
763  *    input characters, so that a running hash key can be computed from the
764  *    previous key instead of complete recalculation each time.
765  */
766 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
767 
768 
769 /* ===========================================================================
770  * Insert string str in the dictionary and set match_head to the previous head
771  * of the hash chain (the most recent string with same hash key). Return
772  * the previous length of the hash chain.
773  * If this file is compiled with -DFASTEST, the compression level is forced
774  * to 1, and no hash chains are maintained.
775  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
776  *    input characters and the first MIN_MATCH bytes of str are valid
777  *    (except for the last MIN_MATCH-1 bytes of the input file).
778  */
779 #ifdef FASTEST
780 #define INSERT_STRING(s, str, match_head) \
781    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
782     match_head = s->head[s->ins_h], \
783     s->head[s->ins_h] = (Pos)(str))
784 #else
785 #define INSERT_STRING(s, str, match_head) \
786    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
787     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
788     s->head[s->ins_h] = (Pos)(str))
789 #endif
790 
791 /* ===========================================================================
792  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
793  * prev[] will be initialized on the fly.
794  */
795 #define CLEAR_HASH(s) \
796     s->head[s->hash_size-1] = NIL; \
797     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
798 
799 /* ========================================================================= */
800 #if 0
801 int ZEXPORT deflateInit_(strm, level, version, stream_size)
802     z_streamp strm;
803     int level;
804     const char *version;
805     int stream_size;
806 {
807     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
808 			 Z_DEFAULT_STRATEGY, version, stream_size);
809     /* To do: ignore strm->next_in if we use it as window */
810 }
811 #endif
812 
813 /* ========================================================================= */
814 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
815 		  version, stream_size)
816     z_streamp strm;
817     int  level;
818     int  method;
819     int  windowBits;
820     int  memLevel;
821     int  strategy;
822     const char *version;
823     int stream_size;
824 {
825     deflate_state *s;
826     int noheader = 0;
827     static const char* my_version = ZLIB_VERSION;
828 
829     ushf *overlay;
830     /* We overlay pending_buf and d_buf+l_buf. This works since the average
831      * output size for (length,distance) codes is <= 24 bits.
832      */
833 
834     if (version == Z_NULL || version[0] != my_version[0] ||
835         stream_size != sizeof(z_stream)) {
836 	return Z_VERSION_ERROR;
837     }
838     if (strm == Z_NULL) return Z_STREAM_ERROR;
839 
840     strm->msg = Z_NULL;
841 #ifndef NO_ZCFUNCS
842     if (strm->zalloc == Z_NULL) {
843 	strm->zalloc = zcalloc;
844 	strm->opaque = (voidpf)0;
845     }
846     if (strm->zfree == Z_NULL) strm->zfree = zcfree;
847 #endif
848 
849     if (level == Z_DEFAULT_COMPRESSION) level = 6;
850 #ifdef FASTEST
851     level = 1;
852 #endif
853 
854     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
855         noheader = 1;
856         windowBits = -windowBits;
857     }
858     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
859         windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
860 	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
861         return Z_STREAM_ERROR;
862     }
863     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
864     if (s == Z_NULL) return Z_MEM_ERROR;
865     strm->state = (struct internal_state FAR *)s;
866     s->strm = strm;
867 
868     s->noheader = noheader;
869     s->w_bits = windowBits;
870     s->w_size = 1 << s->w_bits;
871     s->w_mask = s->w_size - 1;
872 
873     s->hash_bits = memLevel + 7;
874     s->hash_size = 1 << s->hash_bits;
875     s->hash_mask = s->hash_size - 1;
876     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
877 
878     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
879     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
880     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
881 
882     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
883 
884     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
885     s->pending_buf = (uchf *) overlay;
886     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
887 
888     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
889         s->pending_buf == Z_NULL) {
890         strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
891 	s->status = INIT_STATE;
892         deflateEnd (strm);
893         return Z_MEM_ERROR;
894     }
895     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
896     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
897 
898     s->level = level;
899     s->strategy = strategy;
900     s->method = (Byte)method;
901 
902     return deflateReset(strm);
903 }
904 
905 /* ========================================================================= */
906 #if 0
907 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
908     z_streamp strm;
909     const Bytef *dictionary;
910     uInt  dictLength;
911 {
912     deflate_state *s;
913     uInt length = dictLength;
914     uInt n;
915     IPos hash_head = 0;
916 
917     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
918         return Z_STREAM_ERROR;
919 
920     s = (deflate_state *)strm->state;
921     if (s->status != INIT_STATE) return Z_STREAM_ERROR;
922 
923     strm->adler = adler32(strm->adler, dictionary, dictLength);
924 
925     if (length < MIN_MATCH) return Z_OK;
926     if (length > MAX_DIST(s)) {
927 	length = MAX_DIST(s);
928 #ifndef USE_DICT_HEAD
929 	dictionary += dictLength - length; /* use the tail of the dictionary */
930 #endif
931     }
932     zmemcpy(s->window, dictionary, length);
933     s->strstart = length;
934     s->block_start = (long)length;
935 
936     /* Insert all strings in the hash table (except for the last two bytes).
937      * s->lookahead stays null, so s->ins_h will be recomputed at the next
938      * call of fill_window.
939      */
940     s->ins_h = s->window[0];
941     UPDATE_HASH(s, s->ins_h, s->window[1]);
942     for (n = 0; n <= length - MIN_MATCH; n++) {
943 	INSERT_STRING(s, n, hash_head);
944     }
945     if (hash_head) hash_head = 0;  /* to make compiler happy */
946     return Z_OK;
947 }
948 #endif
949 
950 /* ========================================================================= */
951 int ZEXPORT deflateReset (strm)
952     z_streamp strm;
953 {
954     deflate_state *s;
955 
956     if (strm == Z_NULL || strm->state == Z_NULL ||
957         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
958 
959     strm->total_in = strm->total_out = 0;
960     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
961     strm->data_type = Z_UNKNOWN;
962 
963     s = (deflate_state *)strm->state;
964     s->pending = 0;
965     s->pending_out = s->pending_buf;
966 
967     if (s->noheader < 0) {
968         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
969     }
970     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
971     strm->adler = 1;
972     s->last_flush = Z_NO_FLUSH;
973 
974     _tr_init(s);
975     lm_init(s);
976 
977     return Z_OK;
978 }
979 
980 /* ========================================================================= */
981 #if 0
982 int ZEXPORT deflateParams(strm, level, strategy)
983     z_streamp strm;
984     int level;
985     int strategy;
986 {
987     deflate_state *s;
988     compress_func func;
989     int err = Z_OK;
990 
991     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
992     s = (deflate_state *)strm->state;
993 
994     if (level == Z_DEFAULT_COMPRESSION) {
995 	level = 6;
996     }
997     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
998 	return Z_STREAM_ERROR;
999     }
1000     func = configuration_table[s->level].func;
1001 
1002     if (func != configuration_table[level].func && strm->total_in != 0) {
1003 	/* Flush the last buffer: */
1004 	err = deflate(strm, Z_PARTIAL_FLUSH);
1005     }
1006     if (s->level != level) {
1007 	s->level = level;
1008 	s->max_lazy_match   = configuration_table[level].max_lazy;
1009 	s->good_match       = configuration_table[level].good_length;
1010 	s->nice_match       = configuration_table[level].nice_length;
1011 	s->max_chain_length = configuration_table[level].max_chain;
1012     }
1013     s->strategy = strategy;
1014     return err;
1015 }
1016 #endif
1017 
1018 /* =========================================================================
1019  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
1020  * IN assertion: the stream state is correct and there is enough room in
1021  * pending_buf.
1022  */
1023 local void putShortMSB (s, b)
1024     deflate_state *s;
1025     uInt b;
1026 {
1027     put_byte(s, (Byte)(b >> 8));
1028     put_byte(s, (Byte)(b & 0xff));
1029 }
1030 
1031 /* =========================================================================
1032  * Flush as much pending output as possible. All deflate() output goes
1033  * through this function so some applications may wish to modify it
1034  * to avoid allocating a large strm->next_out buffer and copying into it.
1035  * (See also read_buf()).
1036  */
1037 local void flush_pending(strm)
1038     z_streamp strm;
1039 {
1040     deflate_state *s = (deflate_state *) strm->state;
1041     unsigned len = s->pending;
1042 
1043     if (len > strm->avail_out) len = strm->avail_out;
1044     if (len == 0) return;
1045 
1046     if (strm->next_out != Z_NULL) {
1047       zmemcpy(strm->next_out, s->pending_out, len);
1048       strm->next_out  += len;
1049     }
1050     s->pending_out  += len;
1051     strm->total_out += len;
1052     strm->avail_out  -= len;
1053     s->pending -= len;
1054     if (s->pending == 0) {
1055         s->pending_out = s->pending_buf;
1056     }
1057 }
1058 
1059 /* ========================================================================= */
1060 int ZEXPORT deflate (strm, flush)
1061     z_streamp strm;
1062     int flush;
1063 {
1064     int old_flush; /* value of flush param for previous deflate call */
1065     deflate_state *s;
1066 
1067     if (strm == Z_NULL || strm->state == Z_NULL ||
1068 	flush > Z_FINISH || flush < 0) {
1069         return Z_STREAM_ERROR;
1070     }
1071     s = (deflate_state *)strm->state;
1072 
1073     if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
1074 	(s->status == FINISH_STATE && flush != Z_FINISH)) {
1075         ERR_RETURN(strm, Z_STREAM_ERROR);
1076     }
1077     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
1078 
1079     s->strm = strm; /* just in case */
1080     old_flush = s->last_flush;
1081     s->last_flush = flush;
1082 
1083     /* Write the zlib header */
1084     if (s->status == INIT_STATE) {
1085 
1086         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
1087         uInt level_flags = (s->level-1) >> 1;
1088 
1089         if (level_flags > 3) level_flags = 3;
1090         header |= (level_flags << 6);
1091 	if (s->strstart != 0) header |= PRESET_DICT;
1092         header += 31 - (header % 31);
1093 
1094         s->status = BUSY_STATE;
1095         putShortMSB(s, header);
1096 
1097 	/* Save the adler32 of the preset dictionary: */
1098 	if (s->strstart != 0) {
1099 	    putShortMSB(s, (uInt)(strm->adler >> 16));
1100 	    putShortMSB(s, (uInt)(strm->adler & 0xffff));
1101 	}
1102 	strm->adler = 1L;
1103     }
1104 
1105     /* Flush as much pending output as possible */
1106     if (s->pending != 0) {
1107         flush_pending(strm);
1108         if (strm->avail_out == 0) {
1109 	    /* Since avail_out is 0, deflate will be called again with
1110 	     * more output space, but possibly with both pending and
1111 	     * avail_in equal to zero. There won't be anything to do,
1112 	     * but this is not an error situation so make sure we
1113 	     * return OK instead of BUF_ERROR at next call of deflate:
1114              */
1115 	    s->last_flush = -1;
1116 	    return Z_OK;
1117 	}
1118 
1119     /* Make sure there is something to do and avoid duplicate consecutive
1120      * flushes. For repeated and useless calls with Z_FINISH, we keep
1121      * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1122      */
1123     } else if (strm->avail_in == 0 && flush <= old_flush &&
1124 	       flush != Z_FINISH) {
1125         ERR_RETURN(strm, Z_BUF_ERROR);
1126     }
1127 
1128     /* User must not provide more input after the first FINISH: */
1129     if (s->status == FINISH_STATE && strm->avail_in != 0) {
1130         ERR_RETURN(strm, Z_BUF_ERROR);
1131     }
1132 
1133     /* Start a new block or continue the current one.
1134      */
1135     if (strm->avail_in != 0 || s->lookahead != 0 ||
1136         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1137         block_state bstate;
1138 
1139 	bstate = (*(configuration_table[s->level].func))(s, flush);
1140 
1141         if (bstate == finish_started || bstate == finish_done) {
1142             s->status = FINISH_STATE;
1143         }
1144         if (bstate == need_more || bstate == finish_started) {
1145 	    if (strm->avail_out == 0) {
1146 	        s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1147 	    }
1148 	    return Z_OK;
1149 	    /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1150 	     * of deflate should use the same flush parameter to make sure
1151 	     * that the flush is complete. So we don't have to output an
1152 	     * empty block here, this will be done at next call. This also
1153 	     * ensures that for a very small output buffer, we emit at most
1154 	     * one empty block.
1155 	     */
1156 	}
1157         if (bstate == block_done) {
1158             if (flush == Z_PARTIAL_FLUSH) {
1159                 _tr_align(s);
1160 	    } else if (flush == Z_PACKET_FLUSH) {
1161 		/* Output just the 3-bit `stored' block type value,
1162 		   but not a zero length. */
1163 		_tr_stored_type_only(s);
1164             } else { /* FULL_FLUSH or SYNC_FLUSH */
1165                 _tr_stored_block(s, (char*)0, 0L, 0);
1166                 /* For a full flush, this empty block will be recognized
1167                  * as a special marker by inflate_sync().
1168                  */
1169                 if (flush == Z_FULL_FLUSH) {
1170                     CLEAR_HASH(s);             /* forget history */
1171                 }
1172             }
1173             flush_pending(strm);
1174 	    if (strm->avail_out == 0) {
1175 	      s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1176 	      return Z_OK;
1177 	    }
1178         }
1179     }
1180     Assert(strm->avail_out > 0, "bug2");
1181 
1182     if (flush != Z_FINISH) return Z_OK;
1183     if (s->noheader) return Z_STREAM_END;
1184 
1185     /* Write the zlib trailer (adler32) */
1186     putShortMSB(s, (uInt)(strm->adler >> 16));
1187     putShortMSB(s, (uInt)(strm->adler & 0xffff));
1188     flush_pending(strm);
1189     /* If avail_out is zero, the application will call deflate again
1190      * to flush the rest.
1191      */
1192     s->noheader = -1; /* write the trailer only once! */
1193     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1194 }
1195 
1196 /* ========================================================================= */
1197 int ZEXPORT deflateEnd (strm)
1198     z_streamp strm;
1199 {
1200     int status;
1201     deflate_state *s;
1202 
1203     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1204     s = (deflate_state *) strm->state;
1205 
1206     status = s->status;
1207     if (status != INIT_STATE && status != BUSY_STATE &&
1208 	status != FINISH_STATE) {
1209       return Z_STREAM_ERROR;
1210     }
1211 
1212     /* Deallocate in reverse order of allocations: */
1213     TRY_FREE(strm, s->pending_buf);
1214     TRY_FREE(strm, s->head);
1215     TRY_FREE(strm, s->prev);
1216     TRY_FREE(strm, s->window);
1217 
1218     ZFREE(strm, s);
1219     strm->state = Z_NULL;
1220 
1221     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1222 }
1223 
1224 /* =========================================================================
1225  * Copy the source state to the destination state.
1226  * To simplify the source, this is not supported for 16-bit MSDOS (which
1227  * doesn't have enough memory anyway to duplicate compression states).
1228  */
1229 #if 0
1230 int ZEXPORT deflateCopy (dest, source)
1231     z_streamp dest;
1232     z_streamp source;
1233 {
1234 #ifdef MAXSEG_64K
1235     return Z_STREAM_ERROR;
1236 #else
1237     deflate_state *ds;
1238     deflate_state *ss;
1239     ushf *overlay;
1240 
1241 
1242     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
1243         return Z_STREAM_ERROR;
1244     }
1245 
1246     ss = (deflate_state *)source->state;
1247 
1248     *dest = *source;
1249 
1250     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1251     if (ds == Z_NULL) return Z_MEM_ERROR;
1252     dest->state = (void *) ds;
1253     *ds = *ss;
1254     ds->strm = dest;
1255 
1256     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1257     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1258     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1259     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1260     ds->pending_buf = (uchf *) overlay;
1261 
1262     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1263         ds->pending_buf == Z_NULL) {
1264 	ds->status = INIT_STATE;
1265         deflateEnd (dest);
1266         return Z_MEM_ERROR;
1267     }
1268     /* following zmemcpy do not work for 16-bit MSDOS */
1269     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1270     zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1271     zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1272     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1273 
1274     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1275     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1276     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1277 
1278     ds->l_desc.dyn_tree = ds->dyn_ltree;
1279     ds->d_desc.dyn_tree = ds->dyn_dtree;
1280     ds->bl_desc.dyn_tree = ds->bl_tree;
1281 
1282     return Z_OK;
1283 #endif
1284 }
1285 #endif
1286 
1287 /* ===========================================================================
1288  * Return the number of bytes of output which are immediately available
1289  * for output from the decompressor.
1290  */
1291 #if 0
1292 int deflateOutputPending (strm)
1293     z_streamp strm;
1294 {
1295     if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1296 
1297     return ((deflate_state *)(strm->state))->pending;
1298 }
1299 #endif
1300 
1301 /* ===========================================================================
1302  * Read a new buffer from the current input stream, update the adler32
1303  * and total number of bytes read.  All deflate() input goes through
1304  * this function so some applications may wish to modify it to avoid
1305  * allocating a large strm->next_in buffer and copying from it.
1306  * (See also flush_pending()).
1307  */
1308 local int read_buf(strm, buf, size)
1309     z_streamp strm;
1310     Bytef *buf;
1311     unsigned size;
1312 {
1313     unsigned len = strm->avail_in;
1314 
1315     if (len > size) len = size;
1316     if (len == 0) return 0;
1317 
1318     strm->avail_in  -= len;
1319 
1320     if (!((deflate_state *)(strm->state))->noheader) {
1321         strm->adler = adler32(strm->adler, strm->next_in, len);
1322     }
1323     zmemcpy(buf, strm->next_in, len);
1324     strm->next_in  += len;
1325     strm->total_in += len;
1326 
1327     return (int)len;
1328 }
1329 
1330 /* ===========================================================================
1331  * Initialize the "longest match" routines for a new zlib stream
1332  */
1333 local void lm_init (s)
1334     deflate_state *s;
1335 {
1336     s->window_size = (ulg)2L*s->w_size;
1337 
1338     CLEAR_HASH(s);
1339 
1340     /* Set the default configuration parameters:
1341      */
1342     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1343     s->good_match       = configuration_table[s->level].good_length;
1344     s->nice_match       = configuration_table[s->level].nice_length;
1345     s->max_chain_length = configuration_table[s->level].max_chain;
1346 
1347     s->strstart = 0;
1348     s->block_start = 0L;
1349     s->lookahead = 0;
1350     s->match_length = s->prev_length = MIN_MATCH-1;
1351     s->match_available = 0;
1352     s->ins_h = 0;
1353 #ifdef ASMV
1354     match_init(); /* initialize the asm code */
1355 #endif
1356 }
1357 
1358 /* ===========================================================================
1359  * Set match_start to the longest match starting at the given string and
1360  * return its length. Matches shorter or equal to prev_length are discarded,
1361  * in which case the result is equal to prev_length and match_start is
1362  * garbage.
1363  * IN assertions: cur_match is the head of the hash chain for the current
1364  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1365  * OUT assertion: the match length is not greater than s->lookahead.
1366  */
1367 #ifndef ASMV
1368 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1369  * match.S. The code will be functionally equivalent.
1370  */
1371 #ifndef FASTEST
1372 local uInt longest_match(s, cur_match)
1373     deflate_state *s;
1374     IPos cur_match;                             /* current match */
1375 {
1376     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1377     Bytef *scan = s->window + s->strstart; /* current string */
1378     Bytef *match;                       /* matched string */
1379     int len;                           /* length of current match */
1380     int best_len = s->prev_length;              /* best match length so far */
1381     int nice_match = s->nice_match;             /* stop if match long enough */
1382     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1383         s->strstart - (IPos)MAX_DIST(s) : NIL;
1384     /* Stop when cur_match becomes <= limit. To simplify the code,
1385      * we prevent matches with the string of window index 0.
1386      */
1387     Posf *prev = s->prev;
1388     uInt wmask = s->w_mask;
1389 
1390 #ifdef UNALIGNED_OK
1391     /* Compare two bytes at a time. Note: this is not always beneficial.
1392      * Try with and without -DUNALIGNED_OK to check.
1393      */
1394     Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1395     ush scan_start = *(ushf*)scan;
1396     ush scan_end   = *(ushf*)(scan+best_len-1);
1397 #else
1398     Bytef *strend = s->window + s->strstart + MAX_MATCH;
1399     Byte scan_end1  = scan[best_len-1];
1400     Byte scan_end   = scan[best_len];
1401 #endif
1402 
1403     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1404      * It is easy to get rid of this optimization if necessary.
1405      */
1406     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1407 
1408     /* Do not waste too much time if we already have a good match: */
1409     if (s->prev_length >= s->good_match) {
1410         chain_length >>= 2;
1411     }
1412     /* Do not look for matches beyond the end of the input. This is necessary
1413      * to make deflate deterministic.
1414      */
1415     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1416 
1417     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1418 
1419     do {
1420         Assert(cur_match < s->strstart, "no future");
1421         match = s->window + cur_match;
1422 
1423         /* Skip to next match if the match length cannot increase
1424          * or if the match length is less than 2:
1425          */
1426 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1427         /* This code assumes sizeof(unsigned short) == 2. Do not use
1428          * UNALIGNED_OK if your compiler uses a different size.
1429          */
1430         if (*(ushf*)(match+best_len-1) != scan_end ||
1431             *(ushf*)match != scan_start) continue;
1432 
1433         /* It is not necessary to compare scan[2] and match[2] since they are
1434          * always equal when the other bytes match, given that the hash keys
1435          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1436          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1437          * lookahead only every 4th comparison; the 128th check will be made
1438          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1439          * necessary to put more guard bytes at the end of the window, or
1440          * to check more often for insufficient lookahead.
1441          */
1442         Assert(scan[2] == match[2], "scan[2]?");
1443         scan++, match++;
1444         do {
1445         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1446                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1447                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1448                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1449                  scan < strend);
1450         /* The funny "do {}" generates better code on most compilers */
1451 
1452         /* Here, scan <= window+strstart+257 */
1453         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1454         if (*scan == *match) scan++;
1455 
1456         len = (MAX_MATCH - 1) - (int)(strend-scan);
1457         scan = strend - (MAX_MATCH-1);
1458 
1459 #else /* UNALIGNED_OK */
1460 
1461         if (match[best_len]   != scan_end  ||
1462             match[best_len-1] != scan_end1 ||
1463             *match            != *scan     ||
1464             *++match          != scan[1])      continue;
1465 
1466         /* The check at best_len-1 can be removed because it will be made
1467          * again later. (This heuristic is not always a win.)
1468          * It is not necessary to compare scan[2] and match[2] since they
1469          * are always equal when the other bytes match, given that
1470          * the hash keys are equal and that HASH_BITS >= 8.
1471          */
1472         scan += 2, match++;
1473         Assert(*scan == *match, "match[2]?");
1474 
1475         /* We check for insufficient lookahead only every 8th comparison;
1476          * the 256th check will be made at strstart+258.
1477          */
1478         do {
1479         } while (*++scan == *++match && *++scan == *++match &&
1480                  *++scan == *++match && *++scan == *++match &&
1481                  *++scan == *++match && *++scan == *++match &&
1482                  *++scan == *++match && *++scan == *++match &&
1483                  scan < strend);
1484 
1485         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1486 
1487         len = MAX_MATCH - (int)(strend - scan);
1488         scan = strend - MAX_MATCH;
1489 
1490 #endif /* UNALIGNED_OK */
1491 
1492         if (len > best_len) {
1493             s->match_start = cur_match;
1494             best_len = len;
1495             if (len >= nice_match) break;
1496 #ifdef UNALIGNED_OK
1497             scan_end = *(ushf*)(scan+best_len-1);
1498 #else
1499             scan_end1  = scan[best_len-1];
1500             scan_end   = scan[best_len];
1501 #endif
1502         }
1503     } while ((cur_match = prev[cur_match & wmask]) > limit
1504              && --chain_length != 0);
1505 
1506     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1507     return s->lookahead;
1508 }
1509 
1510 #else /* FASTEST */
1511 /* ---------------------------------------------------------------------------
1512  * Optimized version for level == 1 only
1513  */
1514 local uInt longest_match(s, cur_match)
1515     deflate_state *s;
1516     IPos cur_match;                             /* current match */
1517 {
1518     register Bytef *scan = s->window + s->strstart; /* current string */
1519     register Bytef *match;                       /* matched string */
1520     register int len;                           /* length of current match */
1521     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1522 
1523     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1524      * It is easy to get rid of this optimization if necessary.
1525      */
1526     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1527 
1528     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1529 
1530     Assert(cur_match < s->strstart, "no future");
1531 
1532     match = s->window + cur_match;
1533 
1534     /* Return failure if the match length is less than 2:
1535      */
1536     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1537 
1538     /* The check at best_len-1 can be removed because it will be made
1539      * again later. (This heuristic is not always a win.)
1540      * It is not necessary to compare scan[2] and match[2] since they
1541      * are always equal when the other bytes match, given that
1542      * the hash keys are equal and that HASH_BITS >= 8.
1543      */
1544     scan += 2, match += 2;
1545     Assert(*scan == *match, "match[2]?");
1546 
1547     /* We check for insufficient lookahead only every 8th comparison;
1548      * the 256th check will be made at strstart+258.
1549      */
1550     do {
1551     } while (*++scan == *++match && *++scan == *++match &&
1552 	     *++scan == *++match && *++scan == *++match &&
1553 	     *++scan == *++match && *++scan == *++match &&
1554 	     *++scan == *++match && *++scan == *++match &&
1555 	     scan < strend);
1556 
1557     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1558 
1559     len = MAX_MATCH - (int)(strend - scan);
1560 
1561     if (len < MIN_MATCH) return MIN_MATCH - 1;
1562 
1563     s->match_start = cur_match;
1564     return len <= s->lookahead ? len : s->lookahead;
1565 }
1566 #endif /* FASTEST */
1567 #endif /* ASMV */
1568 
1569 #ifdef DEBUG_ZLIB
1570 /* ===========================================================================
1571  * Check that the match at match_start is indeed a match.
1572  */
1573 local void check_match(s, start, match, length)
1574     deflate_state *s;
1575     IPos start, match;
1576     int length;
1577 {
1578     /* check that the match is indeed a match */
1579     if (zmemcmp(s->window + match,
1580                 s->window + start, length) != EQUAL) {
1581         fprintf(stderr, " start %u, match %u, length %d\n",
1582 		start, match, length);
1583         do {
1584 	    fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1585 	} while (--length != 0);
1586         z_error("invalid match");
1587     }
1588     if (z_verbose > 1) {
1589         fprintf(stderr,"\\[%d,%d]", start-match, length);
1590         do { putc(s->window[start++], stderr); } while (--length != 0);
1591     }
1592 }
1593 #else
1594 #  define check_match(s, start, match, length)
1595 #endif
1596 
1597 /* ===========================================================================
1598  * Fill the window when the lookahead becomes insufficient.
1599  * Updates strstart and lookahead.
1600  *
1601  * IN assertion: lookahead < MIN_LOOKAHEAD
1602  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1603  *    At least one byte has been read, or avail_in == 0; reads are
1604  *    performed for at least two bytes (required for the zip translate_eol
1605  *    option -- not supported here).
1606  */
1607 local void fill_window(s)
1608     deflate_state *s;
1609 {
1610     unsigned n, m;
1611     Posf *p;
1612     unsigned more;    /* Amount of free space at the end of the window. */
1613     uInt wsize = s->w_size;
1614 
1615     do {
1616         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1617 
1618         /* Deal with !@#$% 64K limit: */
1619         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1620             more = wsize;
1621 
1622         } else if (more == (unsigned)(-1)) {
1623             /* Very unlikely, but possible on 16 bit machine if strstart == 0
1624              * and lookahead == 1 (input done one byte at time)
1625              */
1626             more--;
1627 
1628         /* If the window is almost full and there is insufficient lookahead,
1629          * move the upper half to the lower one to make room in the upper half.
1630          */
1631         } else if (s->strstart >= wsize+MAX_DIST(s)) {
1632 
1633             zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1634             s->match_start -= wsize;
1635             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1636             s->block_start -= (long) wsize;
1637 
1638             /* Slide the hash table (could be avoided with 32 bit values
1639                at the expense of memory usage). We slide even when level == 0
1640                to keep the hash table consistent if we switch back to level > 0
1641                later. (Using level 0 permanently is not an optimal usage of
1642                zlib, so we don't care about this pathological case.)
1643              */
1644 	    n = s->hash_size;
1645 	    p = &s->head[n];
1646 	    do {
1647 		m = *--p;
1648 		*p = (Pos)(m >= wsize ? m-wsize : NIL);
1649 	    } while (--n);
1650 
1651 	    n = wsize;
1652 #ifndef FASTEST
1653 	    p = &s->prev[n];
1654 	    do {
1655 		m = *--p;
1656 		*p = (Pos)(m >= wsize ? m-wsize : NIL);
1657 		/* If n is not on any hash chain, prev[n] is garbage but
1658 		 * its value will never be used.
1659 		 */
1660 	    } while (--n);
1661 #endif
1662             more += wsize;
1663         }
1664         if (s->strm->avail_in == 0) return;
1665 
1666         /* If there was no sliding:
1667          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1668          *    more == window_size - lookahead - strstart
1669          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1670          * => more >= window_size - 2*WSIZE + 2
1671          * In the BIG_MEM or MMAP case (not yet supported),
1672          *   window_size == input_size + MIN_LOOKAHEAD  &&
1673          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1674          * Otherwise, window_size == 2*WSIZE so more >= 2.
1675          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1676          */
1677         Assert(more >= 2, "more < 2");
1678 
1679         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1680         s->lookahead += n;
1681 
1682         /* Initialize the hash value now that we have some input: */
1683         if (s->lookahead >= MIN_MATCH) {
1684             s->ins_h = s->window[s->strstart];
1685             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1686 #if MIN_MATCH != 3
1687             Call UPDATE_HASH() MIN_MATCH-3 more times
1688 #endif
1689         }
1690         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1691          * but this is not important since only literal bytes will be emitted.
1692          */
1693 
1694     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1695 }
1696 
1697 /* ===========================================================================
1698  * Flush the current block, with given end-of-file flag.
1699  * IN assertion: strstart is set to the end of the current match.
1700  */
1701 #define FLUSH_BLOCK_ONLY(s, eof) { \
1702    _tr_flush_block(s, (s->block_start >= 0L ? \
1703                    (charf *)&s->window[(unsigned)s->block_start] : \
1704                    (charf *)Z_NULL), \
1705 		(ulg)((long)s->strstart - s->block_start), \
1706 		(eof)); \
1707    s->block_start = s->strstart; \
1708    flush_pending(s->strm); \
1709    Tracev((stderr,"[FLUSH]")); \
1710 }
1711 
1712 /* Same but force premature exit if necessary. */
1713 #define FLUSH_BLOCK(s, eof) { \
1714    FLUSH_BLOCK_ONLY(s, eof); \
1715    if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1716 }
1717 
1718 /* ===========================================================================
1719  * Copy without compression as much as possible from the input stream, return
1720  * the current block state.
1721  * This function does not insert new strings in the dictionary since
1722  * uncompressible data is probably not useful. This function is used
1723  * only for the level=0 compression option.
1724  * NOTE: this function should be optimized to avoid extra copying from
1725  * window to pending_buf.
1726  */
1727 local block_state deflate_stored(s, flush)
1728     deflate_state *s;
1729     int flush;
1730 {
1731     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1732      * to pending_buf_size, and each stored block has a 5 byte header:
1733      */
1734     ulg max_block_size = 0xffff;
1735     ulg max_start;
1736 
1737     if (max_block_size > s->pending_buf_size - 5) {
1738         max_block_size = s->pending_buf_size - 5;
1739     }
1740 
1741     /* Copy as much as possible from input to output: */
1742     for (;;) {
1743         /* Fill the window as much as possible: */
1744         if (s->lookahead <= 1) {
1745 
1746             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1747 		   s->block_start >= (long)s->w_size, "slide too late");
1748 
1749             fill_window(s);
1750             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1751 
1752             if (s->lookahead == 0) break; /* flush the current block */
1753         }
1754 	Assert(s->block_start >= 0L, "block gone");
1755 
1756 	s->strstart += s->lookahead;
1757 	s->lookahead = 0;
1758 
1759 	/* Emit a stored block if pending_buf will be full: */
1760  	max_start = s->block_start + max_block_size;
1761         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1762 	    /* strstart == 0 is possible when wraparound on 16-bit machine */
1763 	    s->lookahead = (uInt)(s->strstart - max_start);
1764 	    s->strstart = (uInt)max_start;
1765             FLUSH_BLOCK(s, 0);
1766 	}
1767 	/* Flush if we may have to slide, otherwise block_start may become
1768          * negative and the data will be gone:
1769          */
1770         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1771             FLUSH_BLOCK(s, 0);
1772 	}
1773     }
1774     FLUSH_BLOCK(s, flush == Z_FINISH);
1775     return flush == Z_FINISH ? finish_done : block_done;
1776 }
1777 
1778 /* ===========================================================================
1779  * Compress as much as possible from the input stream, return the current
1780  * block state.
1781  * This function does not perform lazy evaluation of matches and inserts
1782  * new strings in the dictionary only for unmatched strings or for short
1783  * matches. It is used only for the fast compression options.
1784  */
1785 local block_state deflate_fast(s, flush)
1786     deflate_state *s;
1787     int flush;
1788 {
1789     IPos hash_head = NIL; /* head of the hash chain */
1790     int bflush;           /* set if current block must be flushed */
1791 
1792     for (;;) {
1793         /* Make sure that we always have enough lookahead, except
1794          * at the end of the input file. We need MAX_MATCH bytes
1795          * for the next match, plus MIN_MATCH bytes to insert the
1796          * string following the next match.
1797          */
1798         if (s->lookahead < MIN_LOOKAHEAD) {
1799             fill_window(s);
1800             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1801 	        return need_more;
1802 	    }
1803             if (s->lookahead == 0) break; /* flush the current block */
1804         }
1805 
1806         /* Insert the string window[strstart .. strstart+2] in the
1807          * dictionary, and set hash_head to the head of the hash chain:
1808          */
1809         if (s->lookahead >= MIN_MATCH) {
1810             INSERT_STRING(s, s->strstart, hash_head);
1811         }
1812 
1813         /* Find the longest match, discarding those <= prev_length.
1814          * At this point we have always match_length < MIN_MATCH
1815          */
1816         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1817             /* To simplify the code, we prevent matches with the string
1818              * of window index 0 (in particular we have to avoid a match
1819              * of the string with itself at the start of the input file).
1820              */
1821             if (s->strategy != Z_HUFFMAN_ONLY) {
1822                 s->match_length = longest_match (s, hash_head);
1823             }
1824             /* longest_match() sets match_start */
1825         }
1826         if (s->match_length >= MIN_MATCH) {
1827             check_match(s, s->strstart, s->match_start, s->match_length);
1828 
1829             _tr_tally_dist(s, s->strstart - s->match_start,
1830                            s->match_length - MIN_MATCH, bflush);
1831 
1832             s->lookahead -= s->match_length;
1833 
1834             /* Insert new strings in the hash table only if the match length
1835              * is not too large. This saves time but degrades compression.
1836              */
1837 #ifndef FASTEST
1838             if (s->match_length <= s->max_insert_length &&
1839                 s->lookahead >= MIN_MATCH) {
1840                 s->match_length--; /* string at strstart already in hash table */
1841                 do {
1842                     s->strstart++;
1843                     INSERT_STRING(s, s->strstart, hash_head);
1844                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1845                      * always MIN_MATCH bytes ahead.
1846                      */
1847                 } while (--s->match_length != 0);
1848                 s->strstart++;
1849             } else
1850 #endif
1851 	    {
1852                 s->strstart += s->match_length;
1853                 s->match_length = 0;
1854                 s->ins_h = s->window[s->strstart];
1855                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1856 #if MIN_MATCH != 3
1857                 Call UPDATE_HASH() MIN_MATCH-3 more times
1858 #endif
1859                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1860                  * matter since it will be recomputed at next deflate call.
1861                  */
1862             }
1863         } else {
1864             /* No match, output a literal byte */
1865             Tracevv((stderr,"%c", s->window[s->strstart]));
1866             _tr_tally_lit (s, s->window[s->strstart], bflush);
1867             s->lookahead--;
1868             s->strstart++;
1869         }
1870         if (bflush) FLUSH_BLOCK(s, 0);
1871     }
1872     FLUSH_BLOCK(s, flush == Z_FINISH);
1873     return flush == Z_FINISH ? finish_done : block_done;
1874 }
1875 
1876 /* ===========================================================================
1877  * Same as above, but achieves better compression. We use a lazy
1878  * evaluation for matches: a match is finally adopted only if there is
1879  * no better match at the next window position.
1880  */
1881 local block_state deflate_slow(s, flush)
1882     deflate_state *s;
1883     int flush;
1884 {
1885     IPos hash_head = NIL;    /* head of hash chain */
1886     int bflush;              /* set if current block must be flushed */
1887 
1888     /* Process the input block. */
1889     for (;;) {
1890         /* Make sure that we always have enough lookahead, except
1891          * at the end of the input file. We need MAX_MATCH bytes
1892          * for the next match, plus MIN_MATCH bytes to insert the
1893          * string following the next match.
1894          */
1895         if (s->lookahead < MIN_LOOKAHEAD) {
1896             fill_window(s);
1897             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1898 	        return need_more;
1899 	    }
1900             if (s->lookahead == 0) break; /* flush the current block */
1901         }
1902 
1903         /* Insert the string window[strstart .. strstart+2] in the
1904          * dictionary, and set hash_head to the head of the hash chain:
1905          */
1906         if (s->lookahead >= MIN_MATCH) {
1907             INSERT_STRING(s, s->strstart, hash_head);
1908         }
1909 
1910         /* Find the longest match, discarding those <= prev_length.
1911          */
1912         s->prev_length = s->match_length, s->prev_match = s->match_start;
1913         s->match_length = MIN_MATCH-1;
1914 
1915         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1916             s->strstart - hash_head <= MAX_DIST(s)) {
1917             /* To simplify the code, we prevent matches with the string
1918              * of window index 0 (in particular we have to avoid a match
1919              * of the string with itself at the start of the input file).
1920              */
1921             if (s->strategy != Z_HUFFMAN_ONLY) {
1922                 s->match_length = longest_match (s, hash_head);
1923             }
1924             /* longest_match() sets match_start */
1925 
1926             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1927                  (s->match_length == MIN_MATCH &&
1928                   s->strstart - s->match_start > TOO_FAR))) {
1929 
1930                 /* If prev_match is also MIN_MATCH, match_start is garbage
1931                  * but we will ignore the current match anyway.
1932                  */
1933                 s->match_length = MIN_MATCH-1;
1934             }
1935         }
1936         /* If there was a match at the previous step and the current
1937          * match is not better, output the previous match:
1938          */
1939         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1940             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1941             /* Do not insert strings in hash table beyond this. */
1942 
1943             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1944 
1945             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1946 			   s->prev_length - MIN_MATCH, bflush);
1947 
1948             /* Insert in hash table all strings up to the end of the match.
1949              * strstart-1 and strstart are already inserted. If there is not
1950              * enough lookahead, the last two strings are not inserted in
1951              * the hash table.
1952              */
1953             s->lookahead -= s->prev_length-1;
1954             s->prev_length -= 2;
1955             do {
1956                 if (++s->strstart <= max_insert) {
1957                     INSERT_STRING(s, s->strstart, hash_head);
1958                 }
1959             } while (--s->prev_length != 0);
1960             s->match_available = 0;
1961             s->match_length = MIN_MATCH-1;
1962             s->strstart++;
1963 
1964             if (bflush) FLUSH_BLOCK(s, 0);
1965 
1966         } else if (s->match_available) {
1967             /* If there was no match at the previous position, output a
1968              * single literal. If there was a match but the current match
1969              * is longer, truncate the previous match to a single literal.
1970              */
1971             Tracevv((stderr,"%c", s->window[s->strstart-1]));
1972 	    _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1973 	    if (bflush) {
1974                 FLUSH_BLOCK_ONLY(s, 0);
1975             }
1976             s->strstart++;
1977             s->lookahead--;
1978             if (s->strm->avail_out == 0) return need_more;
1979         } else {
1980             /* There is no previous match to compare with, wait for
1981              * the next step to decide.
1982              */
1983             s->match_available = 1;
1984             s->strstart++;
1985             s->lookahead--;
1986         }
1987     }
1988     Assert (flush != Z_NO_FLUSH, "no flush?");
1989     if (s->match_available) {
1990         Tracevv((stderr,"%c", s->window[s->strstart-1]));
1991         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1992         s->match_available = 0;
1993     }
1994     FLUSH_BLOCK(s, flush == Z_FINISH);
1995     return flush == Z_FINISH ? finish_done : block_done;
1996 }
1997 /* --- deflate.c */
1998 
1999 /* +++ trees.c */
2000 
2001 /* trees.c -- output deflated data using Huffman coding
2002  * Copyright (C) 1995-2002 Jean-loup Gailly
2003  * For conditions of distribution and use, see copyright notice in zlib.h
2004  */
2005 
2006 /*
2007  *  ALGORITHM
2008  *
2009  *      The "deflation" process uses several Huffman trees. The more
2010  *      common source values are represented by shorter bit sequences.
2011  *
2012  *      Each code tree is stored in a compressed form which is itself
2013  * a Huffman encoding of the lengths of all the code strings (in
2014  * ascending order by source values).  The actual code strings are
2015  * reconstructed from the lengths in the inflate process, as described
2016  * in the deflate specification.
2017  *
2018  *  REFERENCES
2019  *
2020  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
2021  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
2022  *
2023  *      Storer, James A.
2024  *          Data Compression:  Methods and Theory, pp. 49-50.
2025  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
2026  *
2027  *      Sedgewick, R.
2028  *          Algorithms, p290.
2029  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
2030  */
2031 
2032 /* @(#) $Id: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $ */
2033 
2034 /* #define GEN_TREES_H */
2035 
2036 /* #include "deflate.h" */
2037 
2038 #ifdef DEBUG_ZLIB
2039 #  include <ctype.h>
2040 #endif
2041 
2042 /* ===========================================================================
2043  * Constants
2044  */
2045 
2046 #define MAX_BL_BITS 7
2047 /* Bit length codes must not exceed MAX_BL_BITS bits */
2048 
2049 #define END_BLOCK 256
2050 /* end of block literal code */
2051 
2052 #define REP_3_6      16
2053 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
2054 
2055 #define REPZ_3_10    17
2056 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
2057 
2058 #define REPZ_11_138  18
2059 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
2060 
2061 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
2062    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
2063 
2064 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
2065    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
2066 
2067 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
2068    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
2069 
2070 local const uch bl_order[BL_CODES]
2071    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
2072 /* The lengths of the bit length codes are sent in order of decreasing
2073  * probability, to avoid transmitting the lengths for unused bit length codes.
2074  */
2075 
2076 #define Buf_size (8 * 2*sizeof(char))
2077 /* Number of bits used within bi_buf. (bi_buf might be implemented on
2078  * more than 16 bits on some systems.)
2079  */
2080 
2081 /* ===========================================================================
2082  * Local data. These are initialized only once.
2083  */
2084 
2085 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
2086 
2087 #if defined(GEN_TREES_H) || !defined(STDC)
2088 /* non ANSI compilers may not accept trees.h */
2089 
2090 local ct_data static_ltree[L_CODES+2];
2091 /* The static literal tree. Since the bit lengths are imposed, there is no
2092  * need for the L_CODES extra codes used during heap construction. However
2093  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
2094  * below).
2095  */
2096 
2097 local ct_data static_dtree[D_CODES];
2098 /* The static distance tree. (Actually a trivial tree since all codes use
2099  * 5 bits.)
2100  */
2101 
2102 uch _dist_code[DIST_CODE_LEN];
2103 /* Distance codes. The first 256 values correspond to the distances
2104  * 3 .. 258, the last 256 values correspond to the top 8 bits of
2105  * the 15 bit distances.
2106  */
2107 
2108 uch _length_code[MAX_MATCH-MIN_MATCH+1];
2109 /* length code for each normalized match length (0 == MIN_MATCH) */
2110 
2111 local int base_length[LENGTH_CODES];
2112 /* First normalized length for each code (0 = MIN_MATCH) */
2113 
2114 local int base_dist[D_CODES];
2115 /* First normalized distance for each code (0 = distance of 1) */
2116 
2117 #else
2118 /* +++ trees.h */
2119 
2120 /* header created automatically with -DGEN_TREES_H */
2121 
2122 local const ct_data static_ltree[L_CODES+2] = {
2123 {{ 12},{  8}}, {{140},{  8}}, {{ 76},{  8}}, {{204},{  8}}, {{ 44},{  8}},
2124 {{172},{  8}}, {{108},{  8}}, {{236},{  8}}, {{ 28},{  8}}, {{156},{  8}},
2125 {{ 92},{  8}}, {{220},{  8}}, {{ 60},{  8}}, {{188},{  8}}, {{124},{  8}},
2126 {{252},{  8}}, {{  2},{  8}}, {{130},{  8}}, {{ 66},{  8}}, {{194},{  8}},
2127 {{ 34},{  8}}, {{162},{  8}}, {{ 98},{  8}}, {{226},{  8}}, {{ 18},{  8}},
2128 {{146},{  8}}, {{ 82},{  8}}, {{210},{  8}}, {{ 50},{  8}}, {{178},{  8}},
2129 {{114},{  8}}, {{242},{  8}}, {{ 10},{  8}}, {{138},{  8}}, {{ 74},{  8}},
2130 {{202},{  8}}, {{ 42},{  8}}, {{170},{  8}}, {{106},{  8}}, {{234},{  8}},
2131 {{ 26},{  8}}, {{154},{  8}}, {{ 90},{  8}}, {{218},{  8}}, {{ 58},{  8}},
2132 {{186},{  8}}, {{122},{  8}}, {{250},{  8}}, {{  6},{  8}}, {{134},{  8}},
2133 {{ 70},{  8}}, {{198},{  8}}, {{ 38},{  8}}, {{166},{  8}}, {{102},{  8}},
2134 {{230},{  8}}, {{ 22},{  8}}, {{150},{  8}}, {{ 86},{  8}}, {{214},{  8}},
2135 {{ 54},{  8}}, {{182},{  8}}, {{118},{  8}}, {{246},{  8}}, {{ 14},{  8}},
2136 {{142},{  8}}, {{ 78},{  8}}, {{206},{  8}}, {{ 46},{  8}}, {{174},{  8}},
2137 {{110},{  8}}, {{238},{  8}}, {{ 30},{  8}}, {{158},{  8}}, {{ 94},{  8}},
2138 {{222},{  8}}, {{ 62},{  8}}, {{190},{  8}}, {{126},{  8}}, {{254},{  8}},
2139 {{  1},{  8}}, {{129},{  8}}, {{ 65},{  8}}, {{193},{  8}}, {{ 33},{  8}},
2140 {{161},{  8}}, {{ 97},{  8}}, {{225},{  8}}, {{ 17},{  8}}, {{145},{  8}},
2141 {{ 81},{  8}}, {{209},{  8}}, {{ 49},{  8}}, {{177},{  8}}, {{113},{  8}},
2142 {{241},{  8}}, {{  9},{  8}}, {{137},{  8}}, {{ 73},{  8}}, {{201},{  8}},
2143 {{ 41},{  8}}, {{169},{  8}}, {{105},{  8}}, {{233},{  8}}, {{ 25},{  8}},
2144 {{153},{  8}}, {{ 89},{  8}}, {{217},{  8}}, {{ 57},{  8}}, {{185},{  8}},
2145 {{121},{  8}}, {{249},{  8}}, {{  5},{  8}}, {{133},{  8}}, {{ 69},{  8}},
2146 {{197},{  8}}, {{ 37},{  8}}, {{165},{  8}}, {{101},{  8}}, {{229},{  8}},
2147 {{ 21},{  8}}, {{149},{  8}}, {{ 85},{  8}}, {{213},{  8}}, {{ 53},{  8}},
2148 {{181},{  8}}, {{117},{  8}}, {{245},{  8}}, {{ 13},{  8}}, {{141},{  8}},
2149 {{ 77},{  8}}, {{205},{  8}}, {{ 45},{  8}}, {{173},{  8}}, {{109},{  8}},
2150 {{237},{  8}}, {{ 29},{  8}}, {{157},{  8}}, {{ 93},{  8}}, {{221},{  8}},
2151 {{ 61},{  8}}, {{189},{  8}}, {{125},{  8}}, {{253},{  8}}, {{ 19},{  9}},
2152 {{275},{  9}}, {{147},{  9}}, {{403},{  9}}, {{ 83},{  9}}, {{339},{  9}},
2153 {{211},{  9}}, {{467},{  9}}, {{ 51},{  9}}, {{307},{  9}}, {{179},{  9}},
2154 {{435},{  9}}, {{115},{  9}}, {{371},{  9}}, {{243},{  9}}, {{499},{  9}},
2155 {{ 11},{  9}}, {{267},{  9}}, {{139},{  9}}, {{395},{  9}}, {{ 75},{  9}},
2156 {{331},{  9}}, {{203},{  9}}, {{459},{  9}}, {{ 43},{  9}}, {{299},{  9}},
2157 {{171},{  9}}, {{427},{  9}}, {{107},{  9}}, {{363},{  9}}, {{235},{  9}},
2158 {{491},{  9}}, {{ 27},{  9}}, {{283},{  9}}, {{155},{  9}}, {{411},{  9}},
2159 {{ 91},{  9}}, {{347},{  9}}, {{219},{  9}}, {{475},{  9}}, {{ 59},{  9}},
2160 {{315},{  9}}, {{187},{  9}}, {{443},{  9}}, {{123},{  9}}, {{379},{  9}},
2161 {{251},{  9}}, {{507},{  9}}, {{  7},{  9}}, {{263},{  9}}, {{135},{  9}},
2162 {{391},{  9}}, {{ 71},{  9}}, {{327},{  9}}, {{199},{  9}}, {{455},{  9}},
2163 {{ 39},{  9}}, {{295},{  9}}, {{167},{  9}}, {{423},{  9}}, {{103},{  9}},
2164 {{359},{  9}}, {{231},{  9}}, {{487},{  9}}, {{ 23},{  9}}, {{279},{  9}},
2165 {{151},{  9}}, {{407},{  9}}, {{ 87},{  9}}, {{343},{  9}}, {{215},{  9}},
2166 {{471},{  9}}, {{ 55},{  9}}, {{311},{  9}}, {{183},{  9}}, {{439},{  9}},
2167 {{119},{  9}}, {{375},{  9}}, {{247},{  9}}, {{503},{  9}}, {{ 15},{  9}},
2168 {{271},{  9}}, {{143},{  9}}, {{399},{  9}}, {{ 79},{  9}}, {{335},{  9}},
2169 {{207},{  9}}, {{463},{  9}}, {{ 47},{  9}}, {{303},{  9}}, {{175},{  9}},
2170 {{431},{  9}}, {{111},{  9}}, {{367},{  9}}, {{239},{  9}}, {{495},{  9}},
2171 {{ 31},{  9}}, {{287},{  9}}, {{159},{  9}}, {{415},{  9}}, {{ 95},{  9}},
2172 {{351},{  9}}, {{223},{  9}}, {{479},{  9}}, {{ 63},{  9}}, {{319},{  9}},
2173 {{191},{  9}}, {{447},{  9}}, {{127},{  9}}, {{383},{  9}}, {{255},{  9}},
2174 {{511},{  9}}, {{  0},{  7}}, {{ 64},{  7}}, {{ 32},{  7}}, {{ 96},{  7}},
2175 {{ 16},{  7}}, {{ 80},{  7}}, {{ 48},{  7}}, {{112},{  7}}, {{  8},{  7}},
2176 {{ 72},{  7}}, {{ 40},{  7}}, {{104},{  7}}, {{ 24},{  7}}, {{ 88},{  7}},
2177 {{ 56},{  7}}, {{120},{  7}}, {{  4},{  7}}, {{ 68},{  7}}, {{ 36},{  7}},
2178 {{100},{  7}}, {{ 20},{  7}}, {{ 84},{  7}}, {{ 52},{  7}}, {{116},{  7}},
2179 {{  3},{  8}}, {{131},{  8}}, {{ 67},{  8}}, {{195},{  8}}, {{ 35},{  8}},
2180 {{163},{  8}}, {{ 99},{  8}}, {{227},{  8}}
2181 };
2182 
2183 local const ct_data static_dtree[D_CODES] = {
2184 {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}},
2185 {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}},
2186 {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}},
2187 {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}},
2188 {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}},
2189 {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}}
2190 };
2191 
2192 const uch _dist_code[DIST_CODE_LEN] = {
2193  0,  1,  2,  3,  4,  4,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  8,
2194  8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9, 10, 10, 10, 10, 10, 10, 10, 10,
2195 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
2196 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
2197 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
2198 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
2199 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
2200 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
2201 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
2202 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
2203 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
2204 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
2205 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,  0,  0, 16, 17,
2206 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
2207 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
2208 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
2209 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
2210 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
2211 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
2212 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
2213 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
2214 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
2215 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
2216 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
2217 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
2218 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
2219 };
2220 
2221 const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {
2222  0,  1,  2,  3,  4,  5,  6,  7,  8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 12, 12,
2223 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
2224 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
2225 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
2226 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
2227 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
2228 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
2229 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
2230 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
2231 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
2232 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
2233 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
2234 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
2235 };
2236 
2237 local const int base_length[LENGTH_CODES] = {
2238 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
2239 64, 80, 96, 112, 128, 160, 192, 224, 0
2240 };
2241 
2242 local const int base_dist[D_CODES] = {
2243     0,     1,     2,     3,     4,     6,     8,    12,    16,    24,
2244    32,    48,    64,    96,   128,   192,   256,   384,   512,   768,
2245  1024,  1536,  2048,  3072,  4096,  6144,  8192, 12288, 16384, 24576
2246 };
2247 /* --- trees.h */
2248 
2249 #endif /* GEN_TREES_H */
2250 
2251 struct static_tree_desc_s {
2252     const ct_data *static_tree;  /* static tree or NULL */
2253     const intf *extra_bits;      /* extra bits for each code or NULL */
2254     int     extra_base;          /* base index for extra_bits */
2255     int     elems;               /* max number of elements in the tree */
2256     int     max_length;          /* max bit length for the codes */
2257 };
2258 
2259 local static_tree_desc  static_l_desc =
2260 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
2261 
2262 local static_tree_desc  static_d_desc =
2263 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
2264 
2265 local static_tree_desc  static_bl_desc =
2266 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
2267 
2268 /* ===========================================================================
2269  * Local (static) routines in this file.
2270  */
2271 
2272 local void tr_static_init __P((void));
2273 local void init_block     __P((deflate_state *s));
2274 local void pqdownheap     __P((deflate_state *s, ct_data *tree, int k));
2275 local void gen_bitlen     __P((deflate_state *s, tree_desc *desc));
2276 local void gen_codes      __P((ct_data *tree, int max_code, ushf *bl_count));
2277 local void build_tree     __P((deflate_state *s, tree_desc *desc));
2278 local void scan_tree      __P((deflate_state *s, ct_data *tree, int max_code));
2279 local void send_tree      __P((deflate_state *s, ct_data *tree, int max_code));
2280 local int  build_bl_tree  __P((deflate_state *s));
2281 local void send_all_trees __P((deflate_state *s, int lcodes, int dcodes,
2282                               int blcodes));
2283 local void compress_block __P((deflate_state *s, ct_data *ltree,
2284                               ct_data *dtree));
2285 local void set_data_type  __P((deflate_state *s));
2286 local unsigned bi_reverse __P((unsigned value, int length));
2287 local void bi_windup      __P((deflate_state *s));
2288 local void bi_flush       __P((deflate_state *s));
2289 local void copy_block     __P((deflate_state *s, charf *buf, unsigned len,
2290                               int header));
2291 
2292 #ifdef GEN_TREES_H
2293 local void gen_trees_header __P((void));
2294 #endif
2295 
2296 #ifndef DEBUG_ZLIB
2297 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
2298    /* Send a code of the given tree. c and tree must not have side effects */
2299 
2300 #else /* DEBUG_ZLIB */
2301 #  define send_code(s, c, tree) \
2302      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
2303        send_bits(s, tree[c].Code, tree[c].Len); }
2304 #endif
2305 
2306 /* ===========================================================================
2307  * Output a short LSB first on the stream.
2308  * IN assertion: there is enough room in pendingBuf.
2309  */
2310 #define put_short(s, w) { \
2311     put_byte(s, (uch)((w) & 0xff)); \
2312     put_byte(s, (uch)((ush)(w) >> 8)); \
2313 }
2314 
2315 /* ===========================================================================
2316  * Send a value on a given number of bits.
2317  * IN assertion: length <= 16 and value fits in length bits.
2318  */
2319 #ifdef DEBUG_ZLIB
2320 local void send_bits      __P((deflate_state *s, int value, int length));
2321 
2322 local void send_bits(s, value, length)
2323     deflate_state *s;
2324     int value;  /* value to send */
2325     int length; /* number of bits */
2326 {
2327     Tracevv((stderr," l %2d v %4x ", length, value));
2328     Assert(length > 0 && length <= 15, "invalid length");
2329     s->bits_sent += (ulg)length;
2330 
2331     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2332      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2333      * unused bits in value.
2334      */
2335     if (s->bi_valid > (int)Buf_size - length) {
2336         s->bi_buf |= (value << s->bi_valid);
2337         put_short(s, s->bi_buf);
2338         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2339         s->bi_valid += length - Buf_size;
2340     } else {
2341         s->bi_buf |= value << s->bi_valid;
2342         s->bi_valid += length;
2343     }
2344 }
2345 #else /* !DEBUG_ZLIB */
2346 
2347 #define send_bits(s, value, length) \
2348 { int len = length;\
2349   if (s->bi_valid > (int)Buf_size - len) {\
2350     int val = value;\
2351     s->bi_buf |= (val << s->bi_valid);\
2352     put_short(s, s->bi_buf);\
2353     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2354     s->bi_valid += len - Buf_size;\
2355   } else {\
2356     s->bi_buf |= (value) << s->bi_valid;\
2357     s->bi_valid += len;\
2358   }\
2359 }
2360 #endif /* DEBUG_ZLIB */
2361 
2362 
2363 /* ===========================================================================
2364  * Initialize the various 'constant' tables.
2365  */
2366 local void tr_static_init()
2367 {
2368 #if defined(GEN_TREES_H) || !defined(STDC)
2369     static int static_init_done = 0;
2370     int n;        /* iterates over tree elements */
2371     int bits;     /* bit counter */
2372     int length;   /* length value */
2373     int code;     /* code value */
2374     int dist;     /* distance index */
2375     ush bl_count[MAX_BITS+1];
2376     /* number of codes at each bit length for an optimal tree */
2377 
2378     if (static_init_done) return;
2379 
2380     /* For some embedded targets, global variables are not initialized: */
2381     static_l_desc.static_tree = static_ltree;
2382     static_l_desc.extra_bits = extra_lbits;
2383     static_d_desc.static_tree = static_dtree;
2384     static_d_desc.extra_bits = extra_dbits;
2385     static_bl_desc.extra_bits = extra_blbits;
2386 
2387     /* Initialize the mapping length (0..255) -> length code (0..28) */
2388     length = 0;
2389     for (code = 0; code < LENGTH_CODES-1; code++) {
2390         base_length[code] = length;
2391         for (n = 0; n < (1<<extra_lbits[code]); n++) {
2392             _length_code[length++] = (uch)code;
2393         }
2394     }
2395     Assert (length == 256, "tr_static_init: length != 256");
2396     /* Note that the length 255 (match length 258) can be represented
2397      * in two different ways: code 284 + 5 bits or code 285, so we
2398      * overwrite length_code[255] to use the best encoding:
2399      */
2400     _length_code[length-1] = (uch)code;
2401 
2402     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2403     dist = 0;
2404     for (code = 0 ; code < 16; code++) {
2405         base_dist[code] = dist;
2406         for (n = 0; n < (1<<extra_dbits[code]); n++) {
2407             _dist_code[dist++] = (uch)code;
2408         }
2409     }
2410     Assert (dist == 256, "tr_static_init: dist != 256");
2411     dist >>= 7; /* from now on, all distances are divided by 128 */
2412     for ( ; code < D_CODES; code++) {
2413         base_dist[code] = dist << 7;
2414         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2415             _dist_code[256 + dist++] = (uch)code;
2416         }
2417     }
2418     Assert (dist == 256, "tr_static_init: 256+dist != 512");
2419 
2420     /* Construct the codes of the static literal tree */
2421     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2422     n = 0;
2423     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2424     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2425     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2426     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2427     /* Codes 286 and 287 do not exist, but we must include them in the
2428      * tree construction to get a canonical Huffman tree (longest code
2429      * all ones)
2430      */
2431     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2432 
2433     /* The static distance tree is trivial: */
2434     for (n = 0; n < D_CODES; n++) {
2435         static_dtree[n].Len = 5;
2436         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2437     }
2438     static_init_done = 1;
2439 
2440 #  ifdef GEN_TREES_H
2441     gen_trees_header();
2442 #  endif
2443 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
2444 }
2445 
2446 /* ===========================================================================
2447  * Genererate the file trees.h describing the static trees.
2448  */
2449 #ifdef GEN_TREES_H
2450 #  ifndef DEBUG_ZLIB
2451 #    include <stdio.h>
2452 #  endif
2453 
2454 #  define SEPARATOR(i, last, width) \
2455       ((i) == (last)? "\n};\n\n" :    \
2456        ((i) % (width) == (width)-1 ? ",\n" : ", "))
2457 
2458 void gen_trees_header()
2459 {
2460     FILE *header = fopen("trees.h", "w");
2461     int i;
2462 
2463     Assert (header != NULL, "Can't open trees.h");
2464     fprintf(header,
2465 	    "/* header created automatically with -DGEN_TREES_H */\n\n");
2466 
2467     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
2468     for (i = 0; i < L_CODES+2; i++) {
2469 	fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
2470 		static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
2471     }
2472 
2473     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
2474     for (i = 0; i < D_CODES; i++) {
2475 	fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
2476 		static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
2477     }
2478 
2479     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
2480     for (i = 0; i < DIST_CODE_LEN; i++) {
2481 	fprintf(header, "%2u%s", _dist_code[i],
2482 		SEPARATOR(i, DIST_CODE_LEN-1, 20));
2483     }
2484 
2485     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
2486     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
2487 	fprintf(header, "%2u%s", _length_code[i],
2488 		SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
2489     }
2490 
2491     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
2492     for (i = 0; i < LENGTH_CODES; i++) {
2493 	fprintf(header, "%1u%s", base_length[i],
2494 		SEPARATOR(i, LENGTH_CODES-1, 20));
2495     }
2496 
2497     fprintf(header, "local const int base_dist[D_CODES] = {\n");
2498     for (i = 0; i < D_CODES; i++) {
2499 	fprintf(header, "%5u%s", base_dist[i],
2500 		SEPARATOR(i, D_CODES-1, 10));
2501     }
2502 
2503     fclose(header);
2504 }
2505 #endif /* GEN_TREES_H */
2506 
2507 /* ===========================================================================
2508  * Initialize the tree data structures for a new zlib stream.
2509  */
2510 void _tr_init(s)
2511     deflate_state *s;
2512 {
2513     tr_static_init();
2514 
2515     s->l_desc.dyn_tree = s->dyn_ltree;
2516     s->l_desc.stat_desc = &static_l_desc;
2517 
2518     s->d_desc.dyn_tree = s->dyn_dtree;
2519     s->d_desc.stat_desc = &static_d_desc;
2520 
2521     s->bl_desc.dyn_tree = s->bl_tree;
2522     s->bl_desc.stat_desc = &static_bl_desc;
2523 
2524     s->bi_buf = 0;
2525     s->bi_valid = 0;
2526     s->last_eob_len = 8; /* enough lookahead for inflate */
2527 #ifdef DEBUG_ZLIB
2528     s->compressed_len = 0L;
2529     s->bits_sent = 0L;
2530 #endif
2531 
2532     /* Initialize the first block of the first file: */
2533     init_block(s);
2534 }
2535 
2536 /* ===========================================================================
2537  * Initialize a new block.
2538  */
2539 local void init_block(s)
2540     deflate_state *s;
2541 {
2542     int n; /* iterates over tree elements */
2543 
2544     /* Initialize the trees. */
2545     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
2546     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
2547     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2548 
2549     s->dyn_ltree[END_BLOCK].Freq = 1;
2550     s->opt_len = s->static_len = 0L;
2551     s->last_lit = s->matches = 0;
2552 }
2553 
2554 #define SMALLEST 1
2555 /* Index within the heap array of least frequent node in the Huffman tree */
2556 
2557 
2558 /* ===========================================================================
2559  * Remove the smallest element from the heap and recreate the heap with
2560  * one less element. Updates heap and heap_len.
2561  */
2562 #define pqremove(s, tree, top) \
2563 {\
2564     top = s->heap[SMALLEST]; \
2565     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2566     pqdownheap(s, tree, SMALLEST); \
2567 }
2568 
2569 /* ===========================================================================
2570  * Compares to subtrees, using the tree depth as tie breaker when
2571  * the subtrees have equal frequency. This minimizes the worst case length.
2572  */
2573 #define smaller(tree, n, m, depth) \
2574    (tree[n].Freq < tree[m].Freq || \
2575    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2576 
2577 /* ===========================================================================
2578  * Restore the heap property by moving down the tree starting at node k,
2579  * exchanging a node with the smallest of its two sons if necessary, stopping
2580  * when the heap property is re-established (each father smaller than its
2581  * two sons).
2582  */
2583 local void pqdownheap(s, tree, k)
2584     deflate_state *s;
2585     ct_data *tree;  /* the tree to restore */
2586     int k;               /* node to move down */
2587 {
2588     int v = s->heap[k];
2589     int j = k << 1;  /* left son of k */
2590     while (j <= s->heap_len) {
2591         /* Set j to the smallest of the two sons: */
2592         if (j < s->heap_len &&
2593             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2594             j++;
2595         }
2596         /* Exit if v is smaller than both sons */
2597         if (smaller(tree, v, s->heap[j], s->depth)) break;
2598 
2599         /* Exchange v with the smallest son */
2600         s->heap[k] = s->heap[j];  k = j;
2601 
2602         /* And continue down the tree, setting j to the left son of k */
2603         j <<= 1;
2604     }
2605     s->heap[k] = v;
2606 }
2607 
2608 /* ===========================================================================
2609  * Compute the optimal bit lengths for a tree and update the total bit length
2610  * for the current block.
2611  * IN assertion: the fields freq and dad are set, heap[heap_max] and
2612  *    above are the tree nodes sorted by increasing frequency.
2613  * OUT assertions: the field len is set to the optimal bit length, the
2614  *     array bl_count contains the frequencies for each bit length.
2615  *     The length opt_len is updated; static_len is also updated if stree is
2616  *     not null.
2617  */
2618 local void gen_bitlen(s, desc)
2619     deflate_state *s;
2620     tree_desc *desc;    /* the tree descriptor */
2621 {
2622     ct_data *tree        = desc->dyn_tree;
2623     int max_code         = desc->max_code;
2624     const ct_data *stree = desc->stat_desc->static_tree;
2625     const intf *extra    = desc->stat_desc->extra_bits;
2626     int base             = desc->stat_desc->extra_base;
2627     int max_length       = desc->stat_desc->max_length;
2628     int h;              /* heap index */
2629     int n, m;           /* iterate over the tree elements */
2630     int bits;           /* bit length */
2631     int xbits;          /* extra bits */
2632     ush f;              /* frequency */
2633     int overflow = 0;   /* number of elements with bit length too large */
2634 
2635     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2636 
2637     /* In a first pass, compute the optimal bit lengths (which may
2638      * overflow in the case of the bit length tree).
2639      */
2640     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2641 
2642     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2643         n = s->heap[h];
2644         bits = tree[tree[n].Dad].Len + 1;
2645         if (bits > max_length) bits = max_length, overflow++;
2646         tree[n].Len = (ush)bits;
2647         /* We overwrite tree[n].Dad which is no longer needed */
2648 
2649         if (n > max_code) continue; /* not a leaf node */
2650 
2651         s->bl_count[bits]++;
2652         xbits = 0;
2653         if (n >= base) xbits = extra[n-base];
2654         f = tree[n].Freq;
2655         s->opt_len += (ulg)f * (bits + xbits);
2656         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2657     }
2658     if (overflow == 0) return;
2659 
2660     Trace((stderr,"\nbit length overflow\n"));
2661     /* This happens for example on obj2 and pic of the Calgary corpus */
2662 
2663     /* Find the first bit length which could increase: */
2664     do {
2665         bits = max_length-1;
2666         while (s->bl_count[bits] == 0) bits--;
2667         s->bl_count[bits]--;      /* move one leaf down the tree */
2668         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2669         s->bl_count[max_length]--;
2670         /* The brother of the overflow item also moves one step up,
2671          * but this does not affect bl_count[max_length]
2672          */
2673         overflow -= 2;
2674     } while (overflow > 0);
2675 
2676     /* Now recompute all bit lengths, scanning in increasing frequency.
2677      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2678      * lengths instead of fixing only the wrong ones. This idea is taken
2679      * from 'ar' written by Haruhiko Okumura.)
2680      */
2681     for (bits = max_length; bits != 0; bits--) {
2682         n = s->bl_count[bits];
2683         while (n != 0) {
2684             m = s->heap[--h];
2685             if (m > max_code) continue;
2686             if (tree[m].Len != (unsigned) bits) {
2687                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2688                 s->opt_len += ((long)bits - (long)tree[m].Len)
2689                               *(long)tree[m].Freq;
2690                 tree[m].Len = (ush)bits;
2691             }
2692             n--;
2693         }
2694     }
2695 }
2696 
2697 /* ===========================================================================
2698  * Generate the codes for a given tree and bit counts (which need not be
2699  * optimal).
2700  * IN assertion: the array bl_count contains the bit length statistics for
2701  * the given tree and the field len is set for all tree elements.
2702  * OUT assertion: the field code is set for all tree elements of non
2703  *     zero code length.
2704  */
2705 local void gen_codes (tree, max_code, bl_count)
2706     ct_data *tree;             /* the tree to decorate */
2707     int max_code;              /* largest code with non zero frequency */
2708     ushf *bl_count;            /* number of codes at each bit length */
2709 {
2710     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2711     ush code = 0;              /* running code value */
2712     int bits;                  /* bit index */
2713     int n;                     /* code index */
2714 
2715     /* The distribution counts are first used to generate the code values
2716      * without bit reversal.
2717      */
2718     for (bits = 1; bits <= MAX_BITS; bits++) {
2719         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2720     }
2721     /* Check that the bit counts in bl_count are consistent. The last code
2722      * must be all ones.
2723      */
2724     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2725             "inconsistent bit counts");
2726     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2727 
2728     for (n = 0;  n <= max_code; n++) {
2729         int len = tree[n].Len;
2730         if (len == 0) continue;
2731         /* Now reverse the bits */
2732         tree[n].Code = bi_reverse(next_code[len]++, len);
2733 
2734         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2735              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2736     }
2737 }
2738 
2739 /* ===========================================================================
2740  * Construct one Huffman tree and assigns the code bit strings and lengths.
2741  * Update the total bit length for the current block.
2742  * IN assertion: the field freq is set for all tree elements.
2743  * OUT assertions: the fields len and code are set to the optimal bit length
2744  *     and corresponding code. The length opt_len is updated; static_len is
2745  *     also updated if stree is not null. The field max_code is set.
2746  */
2747 local void build_tree(s, desc)
2748     deflate_state *s;
2749     tree_desc *desc; /* the tree descriptor */
2750 {
2751     ct_data *tree         = desc->dyn_tree;
2752     const ct_data *stree  = desc->stat_desc->static_tree;
2753     int elems             = desc->stat_desc->elems;
2754     int n, m;          /* iterate over heap elements */
2755     int max_code = -1; /* largest code with non zero frequency */
2756     int node;          /* new node being created */
2757 
2758     /* Construct the initial heap, with least frequent element in
2759      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2760      * heap[0] is not used.
2761      */
2762     s->heap_len = 0, s->heap_max = HEAP_SIZE;
2763 
2764     for (n = 0; n < elems; n++) {
2765         if (tree[n].Freq != 0) {
2766             s->heap[++(s->heap_len)] = max_code = n;
2767             s->depth[n] = 0;
2768         } else {
2769             tree[n].Len = 0;
2770         }
2771     }
2772 
2773     /* The pkzip format requires that at least one distance code exists,
2774      * and that at least one bit should be sent even if there is only one
2775      * possible code. So to avoid special checks later on we force at least
2776      * two codes of non zero frequency.
2777      */
2778     while (s->heap_len < 2) {
2779         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2780         tree[node].Freq = 1;
2781         s->depth[node] = 0;
2782         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2783         /* node is 0 or 1 so it does not have extra bits */
2784     }
2785     desc->max_code = max_code;
2786 
2787     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2788      * establish sub-heaps of increasing lengths:
2789      */
2790     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2791 
2792     /* Construct the Huffman tree by repeatedly combining the least two
2793      * frequent nodes.
2794      */
2795     node = elems;              /* next internal node of the tree */
2796     do {
2797         pqremove(s, tree, n);  /* n = node of least frequency */
2798         m = s->heap[SMALLEST]; /* m = node of next least frequency */
2799 
2800         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2801         s->heap[--(s->heap_max)] = m;
2802 
2803         /* Create a new node father of n and m */
2804         tree[node].Freq = tree[n].Freq + tree[m].Freq;
2805         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2806         tree[n].Dad = tree[m].Dad = (ush)node;
2807 #ifdef DUMP_BL_TREE
2808         if (tree == s->bl_tree) {
2809             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2810                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2811         }
2812 #endif
2813         /* and insert the new node in the heap */
2814         s->heap[SMALLEST] = node++;
2815         pqdownheap(s, tree, SMALLEST);
2816 
2817     } while (s->heap_len >= 2);
2818 
2819     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2820 
2821     /* At this point, the fields freq and dad are set. We can now
2822      * generate the bit lengths.
2823      */
2824     gen_bitlen(s, (tree_desc *)desc);
2825 
2826     /* The field len is now set, we can generate the bit codes */
2827     gen_codes ((ct_data *)tree, max_code, s->bl_count);
2828 }
2829 
2830 /* ===========================================================================
2831  * Scan a literal or distance tree to determine the frequencies of the codes
2832  * in the bit length tree.
2833  */
2834 local void scan_tree (s, tree, max_code)
2835     deflate_state *s;
2836     ct_data *tree;   /* the tree to be scanned */
2837     int max_code;    /* and its largest code of non zero frequency */
2838 {
2839     int n;                     /* iterates over all tree elements */
2840     int prevlen = -1;          /* last emitted length */
2841     int curlen;                /* length of current code */
2842     int nextlen = tree[0].Len; /* length of next code */
2843     int count = 0;             /* repeat count of the current code */
2844     int max_count = 7;         /* max repeat count */
2845     int min_count = 4;         /* min repeat count */
2846 
2847     if (nextlen == 0) max_count = 138, min_count = 3;
2848     tree[max_code+1].Len = (ush)0xffff; /* guard */
2849 
2850     for (n = 0; n <= max_code; n++) {
2851         curlen = nextlen; nextlen = tree[n+1].Len;
2852         if (++count < max_count && curlen == nextlen) {
2853             continue;
2854         } else if (count < min_count) {
2855             s->bl_tree[curlen].Freq += count;
2856         } else if (curlen != 0) {
2857             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2858             s->bl_tree[REP_3_6].Freq++;
2859         } else if (count <= 10) {
2860             s->bl_tree[REPZ_3_10].Freq++;
2861         } else {
2862             s->bl_tree[REPZ_11_138].Freq++;
2863         }
2864         count = 0; prevlen = curlen;
2865         if (nextlen == 0) {
2866             max_count = 138, min_count = 3;
2867         } else if (curlen == nextlen) {
2868             max_count = 6, min_count = 3;
2869         } else {
2870             max_count = 7, min_count = 4;
2871         }
2872     }
2873 }
2874 
2875 /* ===========================================================================
2876  * Send a literal or distance tree in compressed form, using the codes in
2877  * bl_tree.
2878  */
2879 local void send_tree (s, tree, max_code)
2880     deflate_state *s;
2881     ct_data *tree; /* the tree to be scanned */
2882     int max_code;       /* and its largest code of non zero frequency */
2883 {
2884     int n;                     /* iterates over all tree elements */
2885     int prevlen = -1;          /* last emitted length */
2886     int curlen;                /* length of current code */
2887     int nextlen = tree[0].Len; /* length of next code */
2888     int count = 0;             /* repeat count of the current code */
2889     int max_count = 7;         /* max repeat count */
2890     int min_count = 4;         /* min repeat count */
2891 
2892     /* tree[max_code+1].Len = -1; */  /* guard already set */
2893     if (nextlen == 0) max_count = 138, min_count = 3;
2894 
2895     for (n = 0; n <= max_code; n++) {
2896         curlen = nextlen; nextlen = tree[n+1].Len;
2897         if (++count < max_count && curlen == nextlen) {
2898             continue;
2899         } else if (count < min_count) {
2900             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2901 
2902         } else if (curlen != 0) {
2903             if (curlen != prevlen) {
2904                 send_code(s, curlen, s->bl_tree); count--;
2905             }
2906             Assert(count >= 3 && count <= 6, " 3_6?");
2907             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2908 
2909         } else if (count <= 10) {
2910             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2911 
2912         } else {
2913             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2914         }
2915         count = 0; prevlen = curlen;
2916         if (nextlen == 0) {
2917             max_count = 138, min_count = 3;
2918         } else if (curlen == nextlen) {
2919             max_count = 6, min_count = 3;
2920         } else {
2921             max_count = 7, min_count = 4;
2922         }
2923     }
2924 }
2925 
2926 /* ===========================================================================
2927  * Construct the Huffman tree for the bit lengths and return the index in
2928  * bl_order of the last bit length code to send.
2929  */
2930 local int build_bl_tree(s)
2931     deflate_state *s;
2932 {
2933     int max_blindex;  /* index of last bit length code of non zero freq */
2934 
2935     /* Determine the bit length frequencies for literal and distance trees */
2936     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2937     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2938 
2939     /* Build the bit length tree: */
2940     build_tree(s, (tree_desc *)(&(s->bl_desc)));
2941     /* opt_len now includes the length of the tree representations, except
2942      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2943      */
2944 
2945     /* Determine the number of bit length codes to send. The pkzip format
2946      * requires that at least 4 bit length codes be sent. (appnote.txt says
2947      * 3 but the actual value used is 4.)
2948      */
2949     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2950         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2951     }
2952     /* Update opt_len to include the bit length tree and counts */
2953     s->opt_len += 3*(max_blindex+1) + 5+5+4;
2954     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2955             s->opt_len, s->static_len));
2956 
2957     return max_blindex;
2958 }
2959 
2960 /* ===========================================================================
2961  * Send the header for a block using dynamic Huffman trees: the counts, the
2962  * lengths of the bit length codes, the literal tree and the distance tree.
2963  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2964  */
2965 local void send_all_trees(s, lcodes, dcodes, blcodes)
2966     deflate_state *s;
2967     int lcodes, dcodes, blcodes; /* number of codes for each tree */
2968 {
2969     int rank;                    /* index in bl_order */
2970 
2971     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2972     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2973             "too many codes");
2974     Tracev((stderr, "\nbl counts: "));
2975     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2976     send_bits(s, dcodes-1,   5);
2977     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2978     for (rank = 0; rank < blcodes; rank++) {
2979         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2980         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2981     }
2982     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2983 
2984     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2985     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2986 
2987     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2988     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2989 }
2990 
2991 /* ===========================================================================
2992  * Send a stored block
2993  */
2994 void _tr_stored_block(s, buf, stored_len, eof)
2995     deflate_state *s;
2996     charf *buf;       /* input block */
2997     ulg stored_len;   /* length of input block */
2998     int eof;          /* true if this is the last block for a file */
2999 {
3000     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
3001 #ifdef DEBUG_ZLIB
3002     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
3003     s->compressed_len += (stored_len + 4) << 3;
3004 #endif
3005     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
3006 }
3007 
3008 /* Send just the `stored block' type code without any length bytes or data.
3009  */
3010 void _tr_stored_type_only(s)
3011     deflate_state *s;
3012 {
3013     send_bits(s, (STORED_BLOCK << 1), 3);
3014     bi_windup(s);
3015 #ifdef DEBUG_ZLIB
3016     s->compressed_len = (s->compressed_len + 3) & ~7L;
3017 #endif
3018 }
3019 
3020 /* ===========================================================================
3021  * Send one empty static block to give enough lookahead for inflate.
3022  * This takes 10 bits, of which 7 may remain in the bit buffer.
3023  * The current inflate code requires 9 bits of lookahead. If the
3024  * last two codes for the previous block (real code plus EOB) were coded
3025  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
3026  * the last real code. In this case we send two empty static blocks instead
3027  * of one. (There are no problems if the previous block is stored or fixed.)
3028  * To simplify the code, we assume the worst case of last real code encoded
3029  * on one bit only.
3030  */
3031 void _tr_align(s)
3032     deflate_state *s;
3033 {
3034     send_bits(s, STATIC_TREES<<1, 3);
3035     send_code(s, END_BLOCK, static_ltree);
3036 #ifdef DEBUG_ZLIB
3037     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
3038 #endif
3039     bi_flush(s);
3040     /* Of the 10 bits for the empty block, we have already sent
3041      * (10 - bi_valid) bits. The lookahead for the last real code (before
3042      * the EOB of the previous block) was thus at least one plus the length
3043      * of the EOB plus what we have just sent of the empty static block.
3044      */
3045     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
3046         send_bits(s, STATIC_TREES<<1, 3);
3047         send_code(s, END_BLOCK, static_ltree);
3048 #ifdef DEBUG_ZLIB
3049         s->compressed_len += 10L;
3050 #endif
3051         bi_flush(s);
3052     }
3053     s->last_eob_len = 7;
3054 }
3055 
3056 /* ===========================================================================
3057  * Determine the best encoding for the current block: dynamic trees, static
3058  * trees or store, and output the encoded block to the zip file.
3059  */
3060 void _tr_flush_block(s, buf, stored_len, eof)
3061     deflate_state *s;
3062     charf *buf;       /* input block, or NULL if too old */
3063     ulg stored_len;   /* length of input block */
3064     int eof;          /* true if this is the last block for a file */
3065 {
3066     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
3067     int max_blindex = 0;  /* index of last bit length code of non zero freq */
3068 
3069     /* Build the Huffman trees unless a stored block is forced */
3070     if (s->level > 0) {
3071 
3072 	 /* Check if the file is ascii or binary */
3073 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
3074 
3075 	/* Construct the literal and distance trees */
3076 	build_tree(s, (tree_desc *)(&(s->l_desc)));
3077 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
3078 		s->static_len));
3079 
3080 	build_tree(s, (tree_desc *)(&(s->d_desc)));
3081 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
3082 		s->static_len));
3083 	/* At this point, opt_len and static_len are the total bit lengths of
3084 	 * the compressed block data, excluding the tree representations.
3085 	 */
3086 
3087 	/* Build the bit length tree for the above two trees, and get the index
3088 	 * in bl_order of the last bit length code to send.
3089 	 */
3090 	max_blindex = build_bl_tree(s);
3091 
3092 	/* Determine the best encoding. Compute first the block length in bytes*/
3093 	opt_lenb = (s->opt_len+3+7)>>3;
3094 	static_lenb = (s->static_len+3+7)>>3;
3095 
3096 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
3097 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
3098 		s->last_lit));
3099 
3100 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
3101 
3102     } else {
3103         Assert(buf != (char*)0, "lost buf");
3104 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
3105     }
3106 
3107 #ifdef FORCE_STORED
3108     if (buf != (char*)0) { /* force stored block */
3109 #else
3110     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
3111                        /* 4: two words for the lengths */
3112 #endif
3113         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
3114          * Otherwise we can't have processed more than WSIZE input bytes since
3115          * the last block flush, because compression would have been
3116          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
3117          * transform a block into a stored block.
3118          */
3119         _tr_stored_block(s, buf, stored_len, eof);
3120 
3121 #ifdef FORCE_STATIC
3122     } else if (static_lenb >= 0) { /* force static trees */
3123 #else
3124     } else if (static_lenb == opt_lenb) {
3125 #endif
3126         send_bits(s, (STATIC_TREES<<1)+eof, 3);
3127         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
3128 #ifdef DEBUG_ZLIB
3129         s->compressed_len += 3 + s->static_len;
3130 #endif
3131     } else {
3132         send_bits(s, (DYN_TREES<<1)+eof, 3);
3133         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
3134                        max_blindex+1);
3135         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
3136 #ifdef DEBUG_ZLIB
3137         s->compressed_len += 3 + s->opt_len;
3138 #endif
3139     }
3140     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
3141     /* The above check is made mod 2^32, for files larger than 512 MB
3142      * and uLong implemented on 32 bits.
3143      */
3144     init_block(s);
3145 
3146     if (eof) {
3147         bi_windup(s);
3148 #ifdef DEBUG_ZLIB
3149         s->compressed_len += 7;  /* align on byte boundary */
3150 #endif
3151     }
3152     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
3153            s->compressed_len-7*eof));
3154 }
3155 
3156 /* ===========================================================================
3157  * Save the match info and tally the frequency counts. Return true if
3158  * the current block must be flushed.
3159  */
3160 #if 0
3161 int _tr_tally (s, dist, lc)
3162     deflate_state *s;
3163     unsigned dist;  /* distance of matched string */
3164     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
3165 {
3166     s->d_buf[s->last_lit] = (ush)dist;
3167     s->l_buf[s->last_lit++] = (uch)lc;
3168     if (dist == 0) {
3169         /* lc is the unmatched char */
3170         s->dyn_ltree[lc].Freq++;
3171     } else {
3172         s->matches++;
3173         /* Here, lc is the match length - MIN_MATCH */
3174         dist--;             /* dist = match distance - 1 */
3175         Assert((ush)dist < (ush)MAX_DIST(s) &&
3176                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
3177                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
3178 
3179         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
3180         s->dyn_dtree[d_code(dist)].Freq++;
3181     }
3182 
3183 #ifdef TRUNCATE_BLOCK
3184     /* Try to guess if it is profitable to stop the current block here */
3185     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
3186         /* Compute an upper bound for the compressed length */
3187         ulg out_length = (ulg)s->last_lit*8L;
3188         ulg in_length = (ulg)((long)s->strstart - s->block_start);
3189         int dcode;
3190         for (dcode = 0; dcode < D_CODES; dcode++) {
3191             out_length += (ulg)s->dyn_dtree[dcode].Freq *
3192                 (5L+extra_dbits[dcode]);
3193         }
3194         out_length >>= 3;
3195         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
3196                s->last_lit, in_length, out_length,
3197                100L - out_length*100L/in_length));
3198         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
3199     }
3200 #endif
3201     return (s->last_lit == s->lit_bufsize-1);
3202     /* We avoid equality with lit_bufsize because of wraparound at 64K
3203      * on 16 bit machines and because stored blocks are restricted to
3204      * 64K-1 bytes.
3205      */
3206 }
3207 #endif
3208 
3209 /* ===========================================================================
3210  * Send the block data compressed using the given Huffman trees
3211  */
3212 local void compress_block(s, ltree, dtree)
3213     deflate_state *s;
3214     ct_data *ltree; /* literal tree */
3215     ct_data *dtree; /* distance tree */
3216 {
3217     unsigned dist;      /* distance of matched string */
3218     int lc;             /* match length or unmatched char (if dist == 0) */
3219     unsigned lx = 0;    /* running index in l_buf */
3220     unsigned code;      /* the code to send */
3221     int extra;          /* number of extra bits to send */
3222 
3223     if (s->last_lit != 0) do {
3224         dist = s->d_buf[lx];
3225         lc = s->l_buf[lx++];
3226         if (dist == 0) {
3227             send_code(s, lc, ltree); /* send a literal byte */
3228             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
3229         } else {
3230             /* Here, lc is the match length - MIN_MATCH */
3231             code = _length_code[lc];
3232             send_code(s, code+LITERALS+1, ltree); /* send the length code */
3233             extra = extra_lbits[code];
3234             if (extra != 0) {
3235                 lc -= base_length[code];
3236                 send_bits(s, lc, extra);       /* send the extra length bits */
3237             }
3238             dist--; /* dist is now the match distance - 1 */
3239             code = d_code(dist);
3240             Assert (code < D_CODES, "bad d_code");
3241 
3242             send_code(s, code, dtree);       /* send the distance code */
3243             extra = extra_dbits[code];
3244             if (extra != 0) {
3245                 dist -= base_dist[code];
3246                 send_bits(s, dist, extra);   /* send the extra distance bits */
3247             }
3248         } /* literal or match pair ? */
3249 
3250         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
3251         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
3252 
3253     } while (lx < s->last_lit);
3254 
3255     send_code(s, END_BLOCK, ltree);
3256     s->last_eob_len = ltree[END_BLOCK].Len;
3257 }
3258 
3259 /* ===========================================================================
3260  * Set the data type to ASCII or BINARY, using a crude approximation:
3261  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
3262  * IN assertion: the fields freq of dyn_ltree are set and the total of all
3263  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
3264  */
3265 local void set_data_type(s)
3266     deflate_state *s;
3267 {
3268     int n = 0;
3269     unsigned ascii_freq = 0;
3270     unsigned bin_freq = 0;
3271     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
3272     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
3273     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
3274     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
3275 }
3276 
3277 /* ===========================================================================
3278  * Reverse the first len bits of a code, using straightforward code (a faster
3279  * method would use a table)
3280  * IN assertion: 1 <= len <= 15
3281  */
3282 local unsigned bi_reverse(code, len)
3283     unsigned code; /* the value to invert */
3284     int len;       /* its bit length */
3285 {
3286     unsigned res = 0;
3287     do {
3288         res |= code & 1;
3289         code >>= 1, res <<= 1;
3290     } while (--len > 0);
3291     return res >> 1;
3292 }
3293 
3294 /* ===========================================================================
3295  * Flush the bit buffer, keeping at most 7 bits in it.
3296  */
3297 local void bi_flush(s)
3298     deflate_state *s;
3299 {
3300     if (s->bi_valid == 16) {
3301         put_short(s, s->bi_buf);
3302         s->bi_buf = 0;
3303         s->bi_valid = 0;
3304     } else if (s->bi_valid >= 8) {
3305         put_byte(s, (Byte)s->bi_buf);
3306         s->bi_buf >>= 8;
3307         s->bi_valid -= 8;
3308     }
3309 }
3310 
3311 /* ===========================================================================
3312  * Flush the bit buffer and align the output on a byte boundary
3313  */
3314 local void bi_windup(s)
3315     deflate_state *s;
3316 {
3317     if (s->bi_valid > 8) {
3318         put_short(s, s->bi_buf);
3319     } else if (s->bi_valid > 0) {
3320         put_byte(s, (Byte)s->bi_buf);
3321     }
3322     s->bi_buf = 0;
3323     s->bi_valid = 0;
3324 #ifdef DEBUG_ZLIB
3325     s->bits_sent = (s->bits_sent+7) & ~7;
3326 #endif
3327 }
3328 
3329 /* ===========================================================================
3330  * Copy a stored block, storing first the length and its
3331  * one's complement if requested.
3332  */
3333 local void copy_block(s, buf, len, header)
3334     deflate_state *s;
3335     charf    *buf;    /* the input data */
3336     unsigned len;     /* its length */
3337     int      header;  /* true if block header must be written */
3338 {
3339     bi_windup(s);        /* align on byte boundary */
3340     s->last_eob_len = 8; /* enough lookahead for inflate */
3341 
3342     if (header) {
3343         put_short(s, (ush)len);
3344         put_short(s, (ush)~len);
3345 #ifdef DEBUG_ZLIB
3346         s->bits_sent += 2*16;
3347 #endif
3348     }
3349 #ifdef DEBUG_ZLIB
3350     s->bits_sent += (ulg)len<<3;
3351 #endif
3352     /* bundle up the put_byte(s, *buf++) calls */
3353     zmemcpy(&s->pending_buf[s->pending], buf, len);
3354     s->pending += len;
3355 }
3356 /* --- trees.c */
3357 
3358 /* +++ inflate.c */
3359 
3360 /* inflate.c -- zlib interface to inflate modules
3361  * Copyright (C) 1995-2002 Mark Adler
3362  * For conditions of distribution and use, see copyright notice in zlib.h
3363  */
3364 
3365 /* #include "zutil.h" */
3366 
3367 /* +++ infblock.h */
3368 
3369 /* infblock.h -- header to use infblock.c
3370  * Copyright (C) 1995-2002 Mark Adler
3371  * For conditions of distribution and use, see copyright notice in zlib.h
3372  */
3373 
3374 /* WARNING: this file should *not* be used by applications. It is
3375    part of the implementation of the compression library and is
3376    subject to change. Applications should only use zlib.h.
3377  */
3378 
3379 struct inflate_blocks_state;
3380 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3381 
3382 extern inflate_blocks_statef * inflate_blocks_new __P((
3383     z_streamp z,
3384     check_func c,               /* check function */
3385     uInt w));                   /* window size */
3386 
3387 extern int inflate_blocks __P((
3388     inflate_blocks_statef *,
3389     z_streamp ,
3390     int));                      /* initial return code */
3391 
3392 extern void inflate_blocks_reset __P((
3393     inflate_blocks_statef *,
3394     z_streamp ,
3395     uLongf *));                  /* check value on output */
3396 
3397 extern int inflate_blocks_free __P((
3398     inflate_blocks_statef *,
3399     z_streamp));
3400 
3401 extern void inflate_set_dictionary __P((
3402     inflate_blocks_statef *s,
3403     const Bytef *d,  /* dictionary */
3404     uInt  n));       /* dictionary length */
3405 
3406 extern int inflate_blocks_sync_point __P((
3407     inflate_blocks_statef *s));
3408 extern int inflate_addhistory __P((
3409     inflate_blocks_statef *,
3410     z_streamp));
3411 
3412 extern int inflate_packet_flush __P((
3413     inflate_blocks_statef *));
3414 
3415 /* --- infblock.h */
3416 
3417 #ifndef NO_DUMMY_DECL
3418 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3419 #endif
3420 
3421 typedef enum {
3422       METHOD,   /* waiting for method byte */
3423       FLAG,     /* waiting for flag byte */
3424       DICT4,    /* four dictionary check bytes to go */
3425       DICT3,    /* three dictionary check bytes to go */
3426       DICT2,    /* two dictionary check bytes to go */
3427       DICT1,    /* one dictionary check byte to go */
3428       DICT0,    /* waiting for inflateSetDictionary */
3429       BLOCKS,   /* decompressing blocks */
3430       CHECK4,   /* four check bytes to go */
3431       CHECK3,   /* three check bytes to go */
3432       CHECK2,   /* two check bytes to go */
3433       CHECK1,   /* one check byte to go */
3434       DONE,     /* finished check, done */
3435       BAD}      /* got an error--stay here */
3436 inflate_mode;
3437 
3438 /* inflate private state */
3439 struct internal_state {
3440 
3441   /* mode */
3442   inflate_mode  mode;   /* current inflate mode */
3443 
3444   /* mode dependent information */
3445   union {
3446     uInt method;        /* if FLAGS, method byte */
3447     struct {
3448       uLong was;                /* computed check value */
3449       uLong need;               /* stream check value */
3450     } check;            /* if CHECK, check values to compare */
3451     uInt marker;        /* if BAD, inflateSync's marker bytes count */
3452   } sub;        /* submode */
3453 
3454   /* mode independent information */
3455   int  nowrap;          /* flag for no wrapper */
3456   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
3457   inflate_blocks_statef
3458     *blocks;            /* current inflate_blocks state */
3459 
3460 };
3461 
3462 
3463 int ZEXPORT inflateReset(z)
3464 z_streamp z;
3465 {
3466   if (z == Z_NULL || z->state == Z_NULL)
3467     return Z_STREAM_ERROR;
3468   z->total_in = z->total_out = 0;
3469   z->msg = Z_NULL;
3470   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3471   inflate_blocks_reset(z->state->blocks, z, Z_NULL);
3472   Tracev((stderr, "inflate: reset\n"));
3473   return Z_OK;
3474 }
3475 
3476 
3477 int ZEXPORT inflateEnd(z)
3478 z_streamp z;
3479 {
3480   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3481     return Z_STREAM_ERROR;
3482   if (z->state->blocks != Z_NULL)
3483     inflate_blocks_free(z->state->blocks, z);
3484   ZFREE(z, z->state);
3485   z->state = Z_NULL;
3486   Tracev((stderr, "inflate: end\n"));
3487   return Z_OK;
3488 }
3489 
3490 
3491 int ZEXPORT inflateInit2_(z, w, version, stream_size)
3492 z_streamp z;
3493 int w;
3494 const char *version;
3495 int stream_size;
3496 {
3497   if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3498       stream_size != sizeof(z_stream))
3499       return Z_VERSION_ERROR;
3500 
3501   /* initialize state */
3502   if (z == Z_NULL)
3503     return Z_STREAM_ERROR;
3504   z->msg = Z_NULL;
3505 #ifndef NO_ZCFUNCS
3506   if (z->zalloc == Z_NULL)
3507   {
3508     z->zalloc = zcalloc;
3509     z->opaque = (voidpf)0;
3510   }
3511   if (z->zfree == Z_NULL) z->zfree = zcfree;
3512 #endif
3513   if ((z->state = (struct internal_state FAR *)
3514        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3515     return Z_MEM_ERROR;
3516   z->state->blocks = Z_NULL;
3517 
3518   /* handle undocumented nowrap option (no zlib header or check) */
3519   z->state->nowrap = 0;
3520   if (w < 0)
3521   {
3522     w = - w;
3523     z->state->nowrap = 1;
3524   }
3525 
3526   /* set window size */
3527   if (w < 8 || w > 15)
3528   {
3529     inflateEnd(z);
3530     return Z_STREAM_ERROR;
3531   }
3532   z->state->wbits = (uInt)w;
3533 
3534   /* create inflate_blocks state */
3535   if ((z->state->blocks =
3536       inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3537       == Z_NULL)
3538   {
3539     inflateEnd(z);
3540     return Z_MEM_ERROR;
3541   }
3542   Tracev((stderr, "inflate: allocated\n"));
3543 
3544   /* reset state */
3545   inflateReset(z);
3546   return Z_OK;
3547 }
3548 
3549 
3550 #if 0
3551 int ZEXPORT inflateInit_(z, version, stream_size)
3552 z_streamp z;
3553 const char *version;
3554 int stream_size;
3555 {
3556   return inflateInit2_(z, DEF_WBITS, version, stream_size);
3557 }
3558 #endif
3559 
3560 
3561 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3562 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3563 
3564 int ZEXPORT inflate(z, f)
3565 z_streamp z;
3566 int f;
3567 {
3568   int r, r2;
3569   uInt b;
3570 
3571   if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL)
3572     return Z_STREAM_ERROR;
3573   r2 = f == Z_FINISH ? Z_BUF_ERROR : Z_OK;
3574   r = Z_BUF_ERROR;
3575   while (1) switch (z->state->mode)
3576   {
3577     case METHOD:
3578       NEEDBYTE
3579       if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3580       {
3581         z->state->mode = BAD;
3582         z->msg = (char*)"unknown compression method";
3583         z->state->sub.marker = 5;       /* can't try inflateSync */
3584         break;
3585       }
3586       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3587       {
3588         z->state->mode = BAD;
3589         z->msg = (char*)"invalid window size";
3590         z->state->sub.marker = 5;       /* can't try inflateSync */
3591         break;
3592       }
3593       z->state->mode = FLAG;
3594     case FLAG:
3595       NEEDBYTE
3596       b = NEXTBYTE;
3597       if (((z->state->sub.method << 8) + b) % 31)
3598       {
3599         z->state->mode = BAD;
3600         z->msg = (char*)"incorrect header check";
3601         z->state->sub.marker = 5;       /* can't try inflateSync */
3602         break;
3603       }
3604       Tracev((stderr, "inflate: zlib header ok\n"));
3605       if (!(b & PRESET_DICT))
3606       {
3607         z->state->mode = BLOCKS;
3608         break;
3609       }
3610       z->state->mode = DICT4;
3611     case DICT4:
3612       NEEDBYTE
3613       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3614       z->state->mode = DICT3;
3615     case DICT3:
3616       NEEDBYTE
3617       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3618       z->state->mode = DICT2;
3619     case DICT2:
3620       NEEDBYTE
3621       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3622       z->state->mode = DICT1;
3623     case DICT1:
3624       NEEDBYTE
3625       z->state->sub.check.need += (uLong)NEXTBYTE;
3626       z->adler = z->state->sub.check.need;
3627       z->state->mode = DICT0;
3628       return Z_NEED_DICT;
3629     case DICT0:
3630       z->state->mode = BAD;
3631       z->msg = (char*)"need dictionary";
3632       z->state->sub.marker = 0;       /* can try inflateSync */
3633       return Z_STREAM_ERROR;
3634     case BLOCKS:
3635       r = inflate_blocks(z->state->blocks, z, r);
3636       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3637          r = inflate_packet_flush(z->state->blocks);
3638       if (r == Z_DATA_ERROR)
3639       {
3640         z->state->mode = BAD;
3641         z->state->sub.marker = 0;       /* can try inflateSync */
3642         break;
3643       }
3644       if (r == Z_OK)
3645         r = r2;
3646       if (r != Z_STREAM_END)
3647         return r;
3648       r = r2;
3649       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3650       if (z->state->nowrap)
3651       {
3652         z->state->mode = DONE;
3653         break;
3654       }
3655       z->state->mode = CHECK4;
3656     case CHECK4:
3657       NEEDBYTE
3658       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3659       z->state->mode = CHECK3;
3660     case CHECK3:
3661       NEEDBYTE
3662       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3663       z->state->mode = CHECK2;
3664     case CHECK2:
3665       NEEDBYTE
3666       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3667       z->state->mode = CHECK1;
3668     case CHECK1:
3669       NEEDBYTE
3670       z->state->sub.check.need += (uLong)NEXTBYTE;
3671 
3672       if (z->state->sub.check.was != z->state->sub.check.need)
3673       {
3674         z->state->mode = BAD;
3675         z->msg = (char*)"incorrect data check";
3676         z->state->sub.marker = 5;       /* can't try inflateSync */
3677         break;
3678       }
3679       Tracev((stderr, "inflate: zlib check ok\n"));
3680       z->state->mode = DONE;
3681     case DONE:
3682       return Z_STREAM_END;
3683     case BAD:
3684       return Z_DATA_ERROR;
3685     default:
3686       return Z_STREAM_ERROR;
3687   }
3688  empty:
3689   if (f != Z_PACKET_FLUSH)
3690     return r;
3691   z->state->mode = BAD;
3692   z->msg = (char *)"need more for packet flush";
3693   z->state->sub.marker = 0;
3694   return Z_DATA_ERROR;
3695 }
3696 
3697 
3698 #if 0
3699 int ZEXPORT inflateSetDictionary(z, dictionary, dictLength)
3700 z_streamp z;
3701 const Bytef *dictionary;
3702 uInt  dictLength;
3703 {
3704   uInt length = dictLength;
3705 
3706   if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3707     return Z_STREAM_ERROR;
3708 
3709   if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3710   z->adler = 1L;
3711 
3712   if (length >= ((uInt)1<<z->state->wbits))
3713   {
3714     length = (1<<z->state->wbits)-1;
3715     dictionary += dictLength - length;
3716   }
3717   inflate_set_dictionary(z->state->blocks, dictionary, length);
3718   z->state->mode = BLOCKS;
3719   return Z_OK;
3720 }
3721 #endif
3722 
3723 /*
3724  * This subroutine adds the data at next_in/avail_in to the output history
3725  * without performing any output.  The output buffer must be "caught up";
3726  * i.e. no pending output (hence s->read equals s->write), and the state must
3727  * be BLOCKS (i.e. we should be willing to see the start of a series of
3728  * BLOCKS).  On exit, the output will also be caught up, and the checksum
3729  * will have been updated if need be.
3730  */
3731 
3732 int inflateIncomp(z)
3733 z_stream *z;
3734 {
3735     if (z->state->mode != BLOCKS)
3736 	return Z_DATA_ERROR;
3737     return inflate_addhistory(z->state->blocks, z);
3738 }
3739 
3740 #if 0
3741 int ZEXPORT inflateSync(z)
3742 z_streamp z;
3743 {
3744   uInt n;       /* number of bytes to look at */
3745   Bytef *p;     /* pointer to bytes */
3746   uInt m;       /* number of marker bytes found in a row */
3747   uLong r, w;   /* temporaries to save total_in and total_out */
3748 
3749   /* set up */
3750   if (z == Z_NULL || z->state == Z_NULL)
3751     return Z_STREAM_ERROR;
3752   if (z->state->mode != BAD)
3753   {
3754     z->state->mode = BAD;
3755     z->state->sub.marker = 0;
3756   }
3757   if ((n = z->avail_in) == 0)
3758     return Z_BUF_ERROR;
3759   p = z->next_in;
3760   m = z->state->sub.marker;
3761 
3762   /* search */
3763   while (n && m < 4)
3764   {
3765     static const Byte mark[4] = {0, 0, 0xff, 0xff};
3766     if (*p == mark[m])
3767       m++;
3768     else if (*p)
3769       m = 0;
3770     else
3771       m = 4 - m;
3772     p++, n--;
3773   }
3774 
3775   /* restore */
3776   z->total_in += p - z->next_in;
3777   z->next_in = p;
3778   z->avail_in = n;
3779   z->state->sub.marker = m;
3780 
3781   /* return no joy or set up to restart on a new block */
3782   if (m != 4)
3783     return Z_DATA_ERROR;
3784   r = z->total_in;  w = z->total_out;
3785   inflateReset(z);
3786   z->total_in = r;  z->total_out = w;
3787   z->state->mode = BLOCKS;
3788   return Z_OK;
3789 }
3790 #endif
3791 
3792 
3793 /* Returns true if inflate is currently at the end of a block generated
3794  * by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
3795  * implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH
3796  * but removes the length bytes of the resulting empty stored block. When
3797  * decompressing, PPP checks that at the end of input packet, inflate is
3798  * waiting for these length bytes.
3799  */
3800 #if 0
3801 int ZEXPORT inflateSyncPoint(z)
3802 z_streamp z;
3803 {
3804   if (z == Z_NULL || z->state == Z_NULL || z->state->blocks == Z_NULL)
3805     return Z_STREAM_ERROR;
3806   return inflate_blocks_sync_point(z->state->blocks);
3807 }
3808 #endif
3809 #undef NEEDBYTE
3810 #undef NEXTBYTE
3811 /* --- inflate.c */
3812 
3813 /* +++ infblock.c */
3814 
3815 /* infblock.c -- interpret and process block types to last block
3816  * Copyright (C) 1995-2002 Mark Adler
3817  * For conditions of distribution and use, see copyright notice in zlib.h
3818  */
3819 
3820 /* #include "zutil.h" */
3821 /* #include "infblock.h" */
3822 
3823 /* +++ inftrees.h */
3824 
3825 /* inftrees.h -- header to use inftrees.c
3826  * Copyright (C) 1995-2002 Mark Adler
3827  * For conditions of distribution and use, see copyright notice in zlib.h
3828  */
3829 
3830 /* WARNING: this file should *not* be used by applications. It is
3831    part of the implementation of the compression library and is
3832    subject to change. Applications should only use zlib.h.
3833  */
3834 
3835 /* Huffman code lookup table entry--this entry is four bytes for machines
3836    that have 16-bit pointers (e.g. PC's in the small or medium model). */
3837 
3838 typedef struct inflate_huft_s FAR inflate_huft;
3839 
3840 struct inflate_huft_s {
3841   union {
3842     struct {
3843       Byte Exop;        /* number of extra bits or operation */
3844       Byte Bits;        /* number of bits in this code or subcode */
3845     } what;
3846     uInt pad;           /* pad structure to a power of 2 (4 bytes for */
3847   } word;               /*  16-bit, 8 bytes for 32-bit int's) */
3848   uInt base;            /* literal, length base, distance base,
3849                            or table offset */
3850 };
3851 
3852 /* Maximum size of dynamic tree.  The maximum found in a long but non-
3853    exhaustive search was 1004 huft structures (850 for length/literals
3854    and 154 for distances, the latter actually the result of an
3855    exhaustive search).  The actual maximum is not known, but the
3856    value below is more than safe. */
3857 #define MANY 1440
3858 
3859 extern int inflate_trees_bits __P((
3860     uIntf *,                    /* 19 code lengths */
3861     uIntf *,                    /* bits tree desired/actual depth */
3862     inflate_huft * FAR *,       /* bits tree result */
3863     inflate_huft *,             /* space for trees */
3864     z_streamp));                /* for messages */
3865 
3866 extern int inflate_trees_dynamic __P((
3867     uInt,                       /* number of literal/length codes */
3868     uInt,                       /* number of distance codes */
3869     uIntf *,                    /* that many (total) code lengths */
3870     uIntf *,                    /* literal desired/actual bit depth */
3871     uIntf *,                    /* distance desired/actual bit depth */
3872     inflate_huft * FAR *,       /* literal/length tree result */
3873     inflate_huft * FAR *,       /* distance tree result */
3874     inflate_huft *,             /* space for trees */
3875     z_streamp));                /* for messages */
3876 
3877 extern int inflate_trees_fixed __P((
3878     uIntf *,                    /* literal desired/actual bit depth */
3879     uIntf *,                    /* distance desired/actual bit depth */
3880     inflate_huft * FAR *,       /* literal/length tree result */
3881     inflate_huft * FAR *,       /* distance tree result */
3882     z_streamp));                /* for memory allocation */
3883 /* --- inftrees.h */
3884 
3885 /* +++ infcodes.h */
3886 
3887 /* infcodes.h -- header to use infcodes.c
3888  * Copyright (C) 1995-2002 Mark Adler
3889  * For conditions of distribution and use, see copyright notice in zlib.h
3890  */
3891 
3892 /* WARNING: this file should *not* be used by applications. It is
3893    part of the implementation of the compression library and is
3894    subject to change. Applications should only use zlib.h.
3895  */
3896 
3897 struct inflate_codes_state;
3898 typedef struct inflate_codes_state FAR inflate_codes_statef;
3899 
3900 extern inflate_codes_statef *inflate_codes_new __P((
3901     uInt, uInt,
3902     inflate_huft *, inflate_huft *,
3903     z_streamp ));
3904 
3905 extern int inflate_codes __P((
3906     inflate_blocks_statef *,
3907     z_streamp ,
3908     int));
3909 
3910 extern void inflate_codes_free __P((
3911     inflate_codes_statef *,
3912     z_streamp ));
3913 
3914 /* --- infcodes.h */
3915 
3916 /* +++ infutil.h */
3917 
3918 /* infutil.h -- types and macros common to blocks and codes
3919  * Copyright (C) 1995-2002 Mark Adler
3920  * For conditions of distribution and use, see copyright notice in zlib.h
3921  */
3922 
3923 /* WARNING: this file should *not* be used by applications. It is
3924    part of the implementation of the compression library and is
3925    subject to change. Applications should only use zlib.h.
3926  */
3927 
3928 #ifndef _INFUTIL_H
3929 #define _INFUTIL_H
3930 
3931 typedef enum {
3932       TYPE,     /* get type bits (3, including end bit) */
3933       LENS,     /* get lengths for stored */
3934       STORED,   /* processing stored block */
3935       TABLE,    /* get table lengths */
3936       BTREE,    /* get bit lengths tree for a dynamic block */
3937       DTREE,    /* get length, distance trees for a dynamic block */
3938       CODES,    /* processing fixed or dynamic block */
3939       DRY,      /* output remaining window bytes */
3940       DONEB,    /* finished last block, done */
3941       BADB}     /* got a data error--stuck here */
3942 inflate_block_mode;
3943 
3944 /* inflate blocks semi-private state */
3945 struct inflate_blocks_state {
3946 
3947   /* mode */
3948   inflate_block_mode  mode;     /* current inflate_block mode */
3949 
3950   /* mode dependent information */
3951   union {
3952     uInt left;          /* if STORED, bytes left to copy */
3953     struct {
3954       uInt table;               /* table lengths (14 bits) */
3955       uInt index;               /* index into blens (or border) */
3956       uIntf *blens;             /* bit lengths of codes */
3957       uInt bb;                  /* bit length tree depth */
3958       inflate_huft *tb;         /* bit length decoding tree */
3959     } trees;            /* if DTREE, decoding info for trees */
3960     struct {
3961       inflate_codes_statef
3962          *codes;
3963     } decode;           /* if CODES, current state */
3964   } sub;                /* submode */
3965   uInt last;            /* true if this block is the last block */
3966 
3967   /* mode independent information */
3968   uInt bitk;            /* bits in bit buffer */
3969   uLong bitb;           /* bit buffer */
3970   inflate_huft *hufts;  /* single malloc for tree space */
3971   Bytef *window;        /* sliding window */
3972   Bytef *end;           /* one byte after sliding window */
3973   Bytef *read;          /* window read pointer */
3974   Bytef *write;         /* window write pointer */
3975   check_func checkfn;   /* check function */
3976   uLong check;          /* check on output */
3977 
3978 };
3979 
3980 
3981 /* defines for inflate input/output */
3982 /*   update pointers and return */
3983 #define UPDBITS {s->bitb=b;s->bitk=k;}
3984 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3985 #define UPDOUT {s->write=q;}
3986 #define UPDATE {UPDBITS UPDIN UPDOUT}
3987 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3988 /*   get bytes and bits */
3989 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3990 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3991 #define NEXTBYTE (n--,*p++)
3992 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3993 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3994 /*   output bytes */
3995 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3996 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3997 #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3998 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3999 #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
4000 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
4001 /*   load local pointers */
4002 #define LOAD {LOADIN LOADOUT}
4003 
4004 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
4005 extern uInt inflate_mask[17];
4006 
4007 /* copy as much as possible from the sliding window to the output area */
4008 extern int inflate_flush __P((
4009     inflate_blocks_statef *,
4010     z_streamp ,
4011     int));
4012 
4013 #ifndef NO_DUMMY_DECL
4014 struct internal_state      {int dummy;}; /* for buggy compilers */
4015 #endif
4016 
4017 #endif
4018 /* --- infutil.h */
4019 
4020 #ifndef NO_DUMMY_DECL
4021 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4022 #endif
4023 
4024 /* simplify the use of the inflate_huft type with some defines */
4025 #define exop word.what.Exop
4026 #define bits word.what.Bits
4027 
4028 /* Table for deflate from PKZIP's appnote.txt. */
4029 local const uInt border[] = { /* Order of the bit length code lengths */
4030         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
4031 
4032 /*
4033    Notes beyond the 1.93a appnote.txt:
4034 
4035    1. Distance pointers never point before the beginning of the output
4036       stream.
4037    2. Distance pointers can point back across blocks, up to 32k away.
4038    3. There is an implied maximum of 7 bits for the bit length table and
4039       15 bits for the actual data.
4040    4. If only one code exists, then it is encoded using one bit.  (Zero
4041       would be more efficient, but perhaps a little confusing.)  If two
4042       codes exist, they are coded using one bit each (0 and 1).
4043    5. There is no way of sending zero distance codes--a dummy must be
4044       sent if there are none.  (History: a pre 2.0 version of PKZIP would
4045       store blocks with no distance codes, but this was discovered to be
4046       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
4047       zero distance codes, which is sent as one code of zero bits in
4048       length.
4049    6. There are up to 286 literal/length codes.  Code 256 represents the
4050       end-of-block.  Note however that the static length tree defines
4051       288 codes just to fill out the Huffman codes.  Codes 286 and 287
4052       cannot be used though, since there is no length base or extra bits
4053       defined for them.  Similarily, there are up to 30 distance codes.
4054       However, static trees define 32 codes (all 5 bits) to fill out the
4055       Huffman codes, but the last two had better not show up in the data.
4056    7. Unzip can check dynamic Huffman blocks for complete code sets.
4057       The exception is that a single code would not be complete (see #4).
4058    8. The five bits following the block type is really the number of
4059       literal codes sent minus 257.
4060    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
4061       (1+6+6).  Therefore, to output three times the length, you output
4062       three codes (1+1+1), whereas to output four times the same length,
4063       you only need two codes (1+3).  Hmm.
4064   10. In the tree reconstruction algorithm, Code = Code + Increment
4065       only if BitLength(i) is not zero.  (Pretty obvious.)
4066   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
4067   12. Note: length code 284 can represent 227-258, but length code 285
4068       really is 258.  The last length deserves its own, short code
4069       since it gets used a lot in very redundant files.  The length
4070       258 is special since 258 - 3 (the min match length) is 255.
4071   13. The literal/length and distance code bit lengths are read as a
4072       single stream of lengths.  It is possible (and advantageous) for
4073       a repeat code (16, 17, or 18) to go across the boundary between
4074       the two sets of lengths.
4075  */
4076 
4077 
4078 void inflate_blocks_reset(s, z, c)
4079 inflate_blocks_statef *s;
4080 z_streamp z;
4081 uLongf *c;
4082 {
4083   if (c != Z_NULL)
4084     *c = s->check;
4085   if (s->mode == BTREE || s->mode == DTREE)
4086     ZFREE(z, s->sub.trees.blens);
4087   if (s->mode == CODES)
4088     inflate_codes_free(s->sub.decode.codes, z);
4089   s->mode = TYPE;
4090   s->bitk = 0;
4091   s->bitb = 0;
4092   s->read = s->write = s->window;
4093   if (s->checkfn != Z_NULL)
4094     z->adler = s->check = (*s->checkfn)(0L, (const Bytef *)Z_NULL, 0);
4095   Tracev((stderr, "inflate:   blocks reset\n"));
4096 }
4097 
4098 
4099 inflate_blocks_statef *inflate_blocks_new(z, c, w)
4100 z_streamp z;
4101 check_func c;
4102 uInt w;
4103 {
4104   inflate_blocks_statef *s;
4105 
4106   if ((s = (inflate_blocks_statef *)ZALLOC
4107        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
4108     return s;
4109   if ((s->hufts =
4110        (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL)
4111   {
4112     ZFREE(z, s);
4113     return Z_NULL;
4114   }
4115   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
4116   {
4117     ZFREE(z, s->hufts);
4118     ZFREE(z, s);
4119     return Z_NULL;
4120   }
4121   s->end = s->window + w;
4122   s->checkfn = c;
4123   s->mode = TYPE;
4124   Tracev((stderr, "inflate:   blocks allocated\n"));
4125   inflate_blocks_reset(s, z, Z_NULL);
4126   return s;
4127 }
4128 
4129 
4130 int inflate_blocks(s, z, r)
4131 inflate_blocks_statef *s;
4132 z_streamp z;
4133 int r;
4134 {
4135   uInt t;               /* temporary storage */
4136   uLong b;              /* bit buffer */
4137   uInt k;               /* bits in bit buffer */
4138   Bytef *p;             /* input data pointer */
4139   uInt n;               /* bytes available there */
4140   Bytef *q;             /* output window write pointer */
4141   uInt m;               /* bytes to end of window or read pointer */
4142 
4143   /* copy input/output information to locals (UPDATE macro restores) */
4144   LOAD
4145 
4146   /* process input based on current state */
4147   while (1) switch (s->mode)
4148   {
4149     case TYPE:
4150       NEEDBITS(3)
4151       t = (uInt)b & 7;
4152       s->last = t & 1;
4153       switch (t >> 1)
4154       {
4155         case 0:                         /* stored */
4156           Tracev((stderr, "inflate:     stored block%s\n",
4157                  s->last ? " (last)" : ""));
4158           DUMPBITS(3)
4159           t = k & 7;                    /* go to byte boundary */
4160           DUMPBITS(t)
4161           s->mode = LENS;               /* get length of stored block */
4162           break;
4163         case 1:                         /* fixed */
4164           Tracev((stderr, "inflate:     fixed codes block%s\n",
4165                  s->last ? " (last)" : ""));
4166           {
4167             uInt bl, bd;
4168             inflate_huft *tl, *td;
4169 
4170             inflate_trees_fixed(&bl, &bd, &tl, &td, z);
4171             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
4172             if (s->sub.decode.codes == Z_NULL)
4173             {
4174               r = Z_MEM_ERROR;
4175               LEAVE
4176             }
4177           }
4178           DUMPBITS(3)
4179           s->mode = CODES;
4180           break;
4181         case 2:                         /* dynamic */
4182           Tracev((stderr, "inflate:     dynamic codes block%s\n",
4183                  s->last ? " (last)" : ""));
4184           DUMPBITS(3)
4185           s->mode = TABLE;
4186           break;
4187         case 3:                         /* illegal */
4188           DUMPBITS(3)
4189           s->mode = BADB;
4190           z->msg = (char*)"invalid block type";
4191           r = Z_DATA_ERROR;
4192           LEAVE
4193       }
4194       break;
4195     case LENS:
4196       NEEDBITS(32)
4197       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
4198       {
4199         s->mode = BADB;
4200         z->msg = (char*)"invalid stored block lengths";
4201         r = Z_DATA_ERROR;
4202         LEAVE
4203       }
4204       s->sub.left = (uInt)b & 0xffff;
4205       b = k = 0;                      /* dump bits */
4206       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
4207       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
4208       break;
4209     case STORED:
4210       if (n == 0)
4211         LEAVE
4212       NEEDOUT
4213       t = s->sub.left;
4214       if (t > n) t = n;
4215       if (t > m) t = m;
4216       zmemcpy(q, p, t);
4217       p += t;  n -= t;
4218       q += t;  m -= t;
4219       if ((s->sub.left -= t) != 0)
4220         break;
4221       Tracev((stderr, "inflate:       stored end, %lu total out\n",
4222               z->total_out + (q >= s->read ? q - s->read :
4223               (s->end - s->read) + (q - s->window))));
4224       s->mode = s->last ? DRY : TYPE;
4225       break;
4226     case TABLE:
4227       NEEDBITS(14)
4228       s->sub.trees.table = t = (uInt)b & 0x3fff;
4229 #ifndef PKZIP_BUG_WORKAROUND
4230       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
4231       {
4232         s->mode = BADB;
4233         z->msg = (char*)"too many length or distance symbols";
4234         r = Z_DATA_ERROR;
4235         LEAVE
4236       }
4237 #endif
4238       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
4239       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
4240       {
4241         r = Z_MEM_ERROR;
4242         LEAVE
4243       }
4244       DUMPBITS(14)
4245       s->sub.trees.index = 0;
4246       Tracev((stderr, "inflate:       table sizes ok\n"));
4247       s->mode = BTREE;
4248     case BTREE:
4249       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
4250       {
4251         NEEDBITS(3)
4252         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
4253         DUMPBITS(3)
4254       }
4255       while (s->sub.trees.index < 19)
4256         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
4257       s->sub.trees.bb = 7;
4258       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
4259                              &s->sub.trees.tb, s->hufts, z);
4260       if (t != Z_OK)
4261       {
4262         r = t;
4263         if (r == Z_DATA_ERROR)
4264         {
4265           ZFREE(z, s->sub.trees.blens);
4266           s->mode = BADB;
4267         }
4268         LEAVE
4269       }
4270       s->sub.trees.index = 0;
4271       Tracev((stderr, "inflate:       bits tree ok\n"));
4272       s->mode = DTREE;
4273     case DTREE:
4274       while (t = s->sub.trees.table,
4275              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
4276       {
4277         inflate_huft *h;
4278         uInt i, j, c;
4279 
4280         t = s->sub.trees.bb;
4281         NEEDBITS(t)
4282         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
4283         t = h->bits;
4284         c = h->base;
4285         if (c < 16)
4286         {
4287           DUMPBITS(t)
4288           s->sub.trees.blens[s->sub.trees.index++] = c;
4289         }
4290         else /* c == 16..18 */
4291         {
4292           i = c == 18 ? 7 : c - 14;
4293           j = c == 18 ? 11 : 3;
4294           NEEDBITS(t + i)
4295           DUMPBITS(t)
4296           j += (uInt)b & inflate_mask[i];
4297           DUMPBITS(i)
4298           i = s->sub.trees.index;
4299           t = s->sub.trees.table;
4300           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
4301               (c == 16 && i < 1))
4302           {
4303             ZFREE(z, s->sub.trees.blens);
4304             s->mode = BADB;
4305             z->msg = (char*)"invalid bit length repeat";
4306             r = Z_DATA_ERROR;
4307             LEAVE
4308           }
4309           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
4310           do {
4311             s->sub.trees.blens[i++] = c;
4312           } while (--j);
4313           s->sub.trees.index = i;
4314         }
4315       }
4316       s->sub.trees.tb = Z_NULL;
4317       {
4318         uInt bl, bd;
4319         inflate_huft *tl, *td;
4320         inflate_codes_statef *c;
4321 
4322         bl = 9;         /* must be <= 9 for lookahead assumptions */
4323         bd = 6;         /* must be <= 9 for lookahead assumptions */
4324         t = s->sub.trees.table;
4325         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
4326                                   s->sub.trees.blens, &bl, &bd, &tl, &td,
4327                                   s->hufts, z);
4328         if (t != Z_OK)
4329         {
4330           if (t == (uInt)Z_DATA_ERROR)
4331           {
4332             ZFREE(z, s->sub.trees.blens);
4333             s->mode = BADB;
4334           }
4335           r = t;
4336           LEAVE
4337         }
4338         Tracev((stderr, "inflate:       trees ok\n"));
4339         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
4340         {
4341           r = Z_MEM_ERROR;
4342           LEAVE
4343         }
4344         s->sub.decode.codes = c;
4345       }
4346       ZFREE(z, s->sub.trees.blens);
4347       s->mode = CODES;
4348     case CODES:
4349       UPDATE
4350       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
4351         return inflate_flush(s, z, r);
4352       r = Z_OK;
4353       inflate_codes_free(s->sub.decode.codes, z);
4354       LOAD
4355       Tracev((stderr, "inflate:       codes end, %lu total out\n",
4356               z->total_out + (q >= s->read ? q - s->read :
4357               (s->end - s->read) + (q - s->window))));
4358       if (!s->last)
4359       {
4360         s->mode = TYPE;
4361         break;
4362       }
4363       s->mode = DRY;
4364     case DRY:
4365       FLUSH
4366       if (s->read != s->write)
4367         LEAVE
4368       s->mode = DONEB;
4369     case DONEB:
4370       r = Z_STREAM_END;
4371       LEAVE
4372     case BADB:
4373       r = Z_DATA_ERROR;
4374       LEAVE
4375     default:
4376       r = Z_STREAM_ERROR;
4377       LEAVE
4378   }
4379 }
4380 
4381 
4382 int inflate_blocks_free(s, z)
4383 inflate_blocks_statef *s;
4384 z_streamp z;
4385 {
4386   inflate_blocks_reset(s, z, Z_NULL);
4387   ZFREE(z, s->window);
4388   ZFREE(z, s->hufts);
4389   ZFREE(z, s);
4390   Tracev((stderr, "inflate:   blocks freed\n"));
4391   return Z_OK;
4392 }
4393 
4394 
4395 #if 0
4396 void inflate_set_dictionary(s, d, n)
4397 inflate_blocks_statef *s;
4398 const Bytef *d;
4399 uInt  n;
4400 {
4401   zmemcpy(s->window, d, n);
4402   s->read = s->write = s->window + n;
4403 }
4404 #endif
4405 
4406 /*
4407  * This subroutine adds the data at next_in/avail_in to the output history
4408  * without performing any output.  The output buffer must be "caught up";
4409  * i.e. no pending output (hence s->read equals s->write), and the state must
4410  * be BLOCKS (i.e. we should be willing to see the start of a series of
4411  * BLOCKS).  On exit, the output will also be caught up, and the checksum
4412  * will have been updated if need be.
4413  */
4414 int inflate_addhistory(s, z)
4415 inflate_blocks_statef *s;
4416 z_stream *z;
4417 {
4418     uLong b;              /* bit buffer */  /* NOT USED HERE */
4419     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
4420     uInt t;               /* temporary storage */
4421     Bytef *p;             /* input data pointer */
4422     uInt n;               /* bytes available there */
4423     Bytef *q;             /* output window write pointer */
4424     uInt m;               /* bytes to end of window or read pointer */
4425 
4426     if (s->read != s->write)
4427 	return Z_STREAM_ERROR;
4428     if (s->mode != TYPE)
4429 	return Z_DATA_ERROR;
4430 
4431     /* we're ready to rock */
4432     LOAD
4433     /* while there is input ready, copy to output buffer, moving
4434      * pointers as needed.
4435      */
4436     while (n) {
4437 	t = n;  /* how many to do */
4438 	/* is there room until end of buffer? */
4439 	if (t > m) t = m;
4440 	/* update check information */
4441 	if (s->checkfn != Z_NULL)
4442 	    s->check = (*s->checkfn)(s->check, q, t);
4443 	zmemcpy(q, p, t);
4444 	q += t;
4445 	p += t;
4446 	n -= t;
4447 	z->total_out += t;
4448 	s->read = q;    /* drag read pointer forward */
4449 /*      WWRAP  */ 	/* expand WWRAP macro by hand to handle s->read */
4450 	if (q == s->end) {
4451 	    s->read = q = s->window;
4452 	    m = WAVAIL;
4453 	}
4454     }
4455     UPDATE
4456     return Z_OK;
4457 }
4458 
4459 
4460 /*
4461  * At the end of a Deflate-compressed PPP packet, we expect to have seen
4462  * a `stored' block type value but not the (zero) length bytes.
4463  */
4464 int inflate_packet_flush(s)
4465     inflate_blocks_statef *s;
4466 {
4467     if (s->mode != LENS)
4468 	return Z_DATA_ERROR;
4469     s->mode = TYPE;
4470     return Z_OK;
4471 }
4472 
4473 /* Returns true if inflate is currently at the end of a block generated
4474  * by Z_SYNC_FLUSH or Z_FULL_FLUSH.
4475  * IN assertion: s != Z_NULL
4476  */
4477 #if 0
4478 int inflate_blocks_sync_point(s)
4479 inflate_blocks_statef *s;
4480 {
4481   return s->mode == LENS;
4482 }
4483 #endif
4484 /* --- infblock.c */
4485 
4486 
4487 /* +++ inftrees.c */
4488 
4489 /* inftrees.c -- generate Huffman trees for efficient decoding
4490  * Copyright (C) 1995-2002 Mark Adler
4491  * For conditions of distribution and use, see copyright notice in zlib.h
4492  */
4493 
4494 /* #include "zutil.h" */
4495 /* #include "inftrees.h" */
4496 
4497 #if !defined(BUILDFIXED) && !defined(STDC)
4498 #  define BUILDFIXED   /* non ANSI compilers may not accept inffixed.h */
4499 #endif
4500 
4501 const char inflate_copyright[] =
4502    " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
4503 /*
4504   If you use the zlib library in a product, an acknowledgment is welcome
4505   in the documentation of your product. If for some reason you cannot
4506   include such an acknowledgment, I would appreciate that you keep this
4507   copyright string in the executable of your product.
4508  */
4509 
4510 #ifndef NO_DUMMY_DECL
4511 struct internal_state  {int dummy;}; /* for buggy compilers */
4512 #endif
4513 
4514 /* simplify the use of the inflate_huft type with some defines */
4515 #define exop word.what.Exop
4516 #define bits word.what.Bits
4517 
4518 
4519 local int huft_build __P((
4520     uIntf *,            /* code lengths in bits */
4521     uInt,               /* number of codes */
4522     uInt,               /* number of "simple" codes */
4523     const uIntf *,      /* list of base values for non-simple codes */
4524     const uIntf *,      /* list of extra bits for non-simple codes */
4525     inflate_huft * FAR*,/* result: starting table */
4526     uIntf *,            /* maximum lookup bits (returns actual) */
4527     inflate_huft *,     /* space for trees */
4528     uInt *,             /* hufts used in space */
4529     uIntf * ));         /* space for values */
4530 
4531 /* Tables for deflate from PKZIP's appnote.txt. */
4532 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4533         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4534         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4535         /* see note #13 above about 258 */
4536 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4537         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4538         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4539 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4540         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4541         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4542         8193, 12289, 16385, 24577};
4543 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4544         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4545         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4546         12, 12, 13, 13};
4547 
4548 /*
4549    Huffman code decoding is performed using a multi-level table lookup.
4550    The fastest way to decode is to simply build a lookup table whose
4551    size is determined by the longest code.  However, the time it takes
4552    to build this table can also be a factor if the data being decoded
4553    is not very long.  The most common codes are necessarily the
4554    shortest codes, so those codes dominate the decoding time, and hence
4555    the speed.  The idea is you can have a shorter table that decodes the
4556    shorter, more probable codes, and then point to subsidiary tables for
4557    the longer codes.  The time it costs to decode the longer codes is
4558    then traded against the time it takes to make longer tables.
4559 
4560    This results of this trade are in the variables lbits and dbits
4561    below.  lbits is the number of bits the first level table for literal/
4562    length codes can decode in one step, and dbits is the same thing for
4563    the distance codes.  Subsequent tables are also less than or equal to
4564    those sizes.  These values may be adjusted either when all of the
4565    codes are shorter than that, in which case the longest code length in
4566    bits is used, or when the shortest code is *longer* than the requested
4567    table size, in which case the length of the shortest code in bits is
4568    used.
4569 
4570    There are two different values for the two tables, since they code a
4571    different number of possibilities each.  The literal/length table
4572    codes 286 possible values, or in a flat code, a little over eight
4573    bits.  The distance table codes 30 possible values, or a little less
4574    than five bits, flat.  The optimum values for speed end up being
4575    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4576    The optimum values may differ though from machine to machine, and
4577    possibly even between compilers.  Your mileage may vary.
4578  */
4579 
4580 
4581 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4582 #define BMAX 15         /* maximum bit length of any code */
4583 
4584 local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
4585 uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
4586 uInt n;                 /* number of codes (assumed <= 288) */
4587 uInt s;                 /* number of simple-valued codes (0..s-1) */
4588 const uIntf *d;         /* list of base values for non-simple codes */
4589 const uIntf *e;         /* list of extra bits for non-simple codes */
4590 inflate_huft * FAR *t;  /* result: starting table */
4591 uIntf *m;               /* maximum lookup bits, returns actual */
4592 inflate_huft *hp;       /* space for trees */
4593 uInt *hn;               /* hufts used in space */
4594 uIntf *v;               /* working area: values in order of bit length */
4595 /* Given a list of code lengths and a maximum table size, make a set of
4596    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
4597    if the given code set is incomplete (the tables are still built in this
4598    case), or Z_DATA_ERROR if the input is invalid. */
4599 {
4600 
4601   uInt a;                       /* counter for codes of length k */
4602   uInt c[BMAX+1];               /* bit length count table */
4603   uInt f;                       /* i repeats in table every f entries */
4604   int g;                        /* maximum code length */
4605   int h;                        /* table level */
4606   uInt i;                       /* counter, current code */
4607   uInt j;                       /* counter */
4608   int k;                        /* number of bits in current code */
4609   int l;                        /* bits per table (returned in m) */
4610   uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
4611   uIntf *p;                      /* pointer into c[], b[], or v[] */
4612   inflate_huft *q;              /* points to current table */
4613   struct inflate_huft_s r;      /* table entry for structure assignment */
4614   inflate_huft *u[BMAX];        /* table stack */
4615   int w;               /* bits before this table == (l * h) */
4616   uInt x[BMAX+1];               /* bit offsets, then code stack */
4617   uIntf *xp;                    /* pointer into x */
4618   int y;                        /* number of dummy codes added */
4619   uInt z;                       /* number of entries in current table */
4620 
4621 
4622   /* Generate counts for each bit length */
4623   p = c;
4624 #define C0 *p++ = 0;
4625 #define C2 C0 C0 C0 C0
4626 #define C4 C2 C2 C2 C2
4627   C4                            /* clear c[]--assume BMAX+1 is 16 */
4628   p = b;  i = n;
4629   do {
4630     c[*p++]++;                  /* assume all entries <= BMAX */
4631   } while (--i);
4632   if (c[0] == n)                /* null input--all zero length codes */
4633   {
4634     *t = (inflate_huft *)Z_NULL;
4635     *m = 0;
4636     return Z_OK;
4637   }
4638 
4639 
4640   /* Find minimum and maximum length, bound *m by those */
4641   l = *m;
4642   for (j = 1; j <= BMAX; j++)
4643     if (c[j])
4644       break;
4645   k = j;                        /* minimum code length */
4646   if ((uInt)l < j)
4647     l = j;
4648   for (i = BMAX; i; i--)
4649     if (c[i])
4650       break;
4651   g = i;                        /* maximum code length */
4652   if ((uInt)l > i)
4653     l = i;
4654   *m = l;
4655 
4656 
4657   /* Adjust last length count to fill out codes, if needed */
4658   for (y = 1 << j; j < i; j++, y <<= 1)
4659     if ((y -= c[j]) < 0)
4660       return Z_DATA_ERROR;
4661   if ((y -= c[i]) < 0)
4662     return Z_DATA_ERROR;
4663   c[i] += y;
4664 
4665 
4666   /* Generate starting offsets into the value table for each length */
4667   x[1] = j = 0;
4668   p = c + 1;  xp = x + 2;
4669   while (--i) {                 /* note that i == g from above */
4670     *xp++ = (j += *p++);
4671   }
4672 
4673 
4674   /* Make a table of values in order of bit lengths */
4675   p = b;  i = 0;
4676   do {
4677     if ((j = *p++) != 0)
4678       v[x[j]++] = i;
4679   } while (++i < n);
4680   n = x[g];                     /* set n to length of v */
4681 
4682 
4683   /* Generate the Huffman codes and for each, make the table entries */
4684   x[0] = i = 0;                 /* first Huffman code is zero */
4685   p = v;                        /* grab values in bit order */
4686   h = -1;                       /* no tables yet--level -1 */
4687   w = -l;                       /* bits decoded == (l * h) */
4688   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
4689   q = (inflate_huft *)Z_NULL;   /* ditto */
4690   z = 0;                        /* ditto */
4691 
4692   /* go through the bit lengths (k already is bits in shortest code) */
4693   for (; k <= g; k++)
4694   {
4695     a = c[k];
4696     while (a--)
4697     {
4698       /* here i is the Huffman code of length k bits for value *p */
4699       /* make tables up to required level */
4700       while (k > w + l)
4701       {
4702         h++;
4703         w += l;                 /* previous table always l bits */
4704 
4705         /* compute minimum size table less than or equal to l bits */
4706         z = g - w;
4707         z = z > (uInt)l ? l : z;        /* table size upper limit */
4708         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
4709         {                       /* too few codes for k-w bit table */
4710           f -= a + 1;           /* deduct codes from patterns left */
4711           xp = c + k;
4712           if (j < z)
4713             while (++j < z)     /* try smaller tables up to z bits */
4714             {
4715               if ((f <<= 1) <= *++xp)
4716                 break;          /* enough codes to use up j bits */
4717               f -= *xp;         /* else deduct codes from patterns */
4718             }
4719         }
4720         z = 1 << j;             /* table entries for j-bit table */
4721 
4722         /* allocate new table */
4723         if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
4724           return Z_DATA_ERROR;  /* overflow of MANY */
4725         u[h] = q = hp + *hn;
4726         *hn += z;
4727 
4728         /* connect to last table, if there is one */
4729         if (h)
4730         {
4731           x[h] = i;             /* save pattern for backing up */
4732           r.bits = (Byte)l;     /* bits to dump before this table */
4733           r.exop = (Byte)j;     /* bits in this table */
4734           j = i >> (w - l);
4735           r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
4736           u[h-1][j] = r;        /* connect to last table */
4737         }
4738         else
4739           *t = q;               /* first table is returned result */
4740       }
4741 
4742       /* set up table entry in r */
4743       r.bits = (Byte)(k - w);
4744       if (p >= v + n)
4745         r.exop = 128 + 64;      /* out of values--invalid code */
4746       else if (*p < s)
4747       {
4748         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
4749         r.base = *p++;          /* simple code is just the value */
4750       }
4751       else
4752       {
4753         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4754         r.base = d[*p++ - s];
4755       }
4756 
4757       /* fill code-like entries with r */
4758       f = 1 << (k - w);
4759       for (j = i >> w; j < z; j += f)
4760         q[j] = r;
4761 
4762       /* backwards increment the k-bit code i */
4763       for (j = 1 << (k - 1); i & j; j >>= 1)
4764         i ^= j;
4765       i ^= j;
4766 
4767       /* backup over finished tables */
4768       mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
4769       while ((i & mask) != x[h])
4770       {
4771         h--;                    /* don't need to update q */
4772         w -= l;
4773         mask = (1 << w) - 1;
4774       }
4775     }
4776   }
4777 
4778 
4779   /* Return Z_BUF_ERROR if we were given an incomplete table */
4780   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4781 }
4782 
4783 
4784 int inflate_trees_bits(c, bb, tb, hp, z)
4785 uIntf *c;               /* 19 code lengths */
4786 uIntf *bb;              /* bits tree desired/actual depth */
4787 inflate_huft * FAR *tb; /* bits tree result */
4788 inflate_huft *hp;       /* space for trees */
4789 z_streamp z;            /* for messages */
4790 {
4791   int r;
4792   uInt hn = 0;          /* hufts used in space */
4793   uIntf *v;             /* work area for huft_build */
4794 
4795   if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
4796     return Z_MEM_ERROR;
4797   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
4798                  tb, bb, hp, &hn, v);
4799   if (r == Z_DATA_ERROR)
4800     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4801   else if (r == Z_BUF_ERROR || *bb == 0)
4802   {
4803     z->msg = (char*)"incomplete dynamic bit lengths tree";
4804     r = Z_DATA_ERROR;
4805   }
4806   ZFREE(z, v);
4807   return r;
4808 }
4809 
4810 
4811 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
4812 uInt nl;                /* number of literal/length codes */
4813 uInt nd;                /* number of distance codes */
4814 uIntf *c;               /* that many (total) code lengths */
4815 uIntf *bl;              /* literal desired/actual bit depth */
4816 uIntf *bd;              /* distance desired/actual bit depth */
4817 inflate_huft * FAR *tl; /* literal/length tree result */
4818 inflate_huft * FAR *td; /* distance tree result */
4819 inflate_huft *hp;       /* space for trees */
4820 z_streamp z;            /* for messages */
4821 {
4822   int r;
4823   uInt hn = 0;          /* hufts used in space */
4824   uIntf *v;             /* work area for huft_build */
4825 
4826   /* allocate work area */
4827   if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
4828     return Z_MEM_ERROR;
4829 
4830   /* build literal/length tree */
4831   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
4832   if (r != Z_OK || *bl == 0)
4833   {
4834     if (r == Z_DATA_ERROR)
4835       z->msg = (char*)"oversubscribed literal/length tree";
4836     else if (r != Z_MEM_ERROR)
4837     {
4838       z->msg = (char*)"incomplete literal/length tree";
4839       r = Z_DATA_ERROR;
4840     }
4841     ZFREE(z, v);
4842     return r;
4843   }
4844 
4845   /* build distance tree */
4846   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
4847   if (r != Z_OK || (*bd == 0 && nl > 257))
4848   {
4849     if (r == Z_DATA_ERROR)
4850       z->msg = (char*)"oversubscribed distance tree";
4851     else if (r == Z_BUF_ERROR) {
4852 #ifdef PKZIP_BUG_WORKAROUND
4853       r = Z_OK;
4854     }
4855 #else
4856       z->msg = (char*)"incomplete distance tree";
4857       r = Z_DATA_ERROR;
4858     }
4859     else if (r != Z_MEM_ERROR)
4860     {
4861       z->msg = (char*)"empty distance tree with lengths";
4862       r = Z_DATA_ERROR;
4863     }
4864     ZFREE(z, v);
4865     return r;
4866 #endif
4867   }
4868 
4869   /* done */
4870   ZFREE(z, v);
4871   return Z_OK;
4872 }
4873 
4874 
4875 /* build fixed tables only once--keep them here */
4876 #ifdef BUILDFIXED
4877 local int fixed_built = 0;
4878 #define FIXEDH 544      /* number of hufts used by fixed tables */
4879 local inflate_huft fixed_mem[FIXEDH];
4880 local uInt fixed_bl;
4881 local uInt fixed_bd;
4882 local inflate_huft *fixed_tl;
4883 local inflate_huft *fixed_td;
4884 #else
4885 
4886 /* +++ inffixed.h */
4887 /* inffixed.h -- table for decoding fixed codes
4888  * Generated automatically by the maketree.c program
4889  */
4890 
4891 /* WARNING: this file should *not* be used by applications. It is
4892    part of the implementation of the compression library and is
4893    subject to change. Applications should only use zlib.h.
4894  */
4895 
4896 local uInt fixed_bl = 9;
4897 local uInt fixed_bd = 5;
4898 local inflate_huft fixed_tl[] = {
4899     {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
4900     {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},192},
4901     {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},160},
4902     {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},224},
4903     {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},144},
4904     {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},208},
4905     {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},176},
4906     {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},240},
4907     {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
4908     {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},200},
4909     {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},168},
4910     {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},232},
4911     {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},152},
4912     {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},216},
4913     {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},184},
4914     {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},248},
4915     {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
4916     {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},196},
4917     {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},164},
4918     {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},228},
4919     {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},148},
4920     {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},212},
4921     {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},180},
4922     {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},244},
4923     {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
4924     {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},204},
4925     {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},172},
4926     {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},236},
4927     {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},156},
4928     {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},220},
4929     {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},188},
4930     {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},252},
4931     {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
4932     {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},194},
4933     {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},162},
4934     {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},226},
4935     {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},146},
4936     {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},210},
4937     {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},178},
4938     {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},242},
4939     {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
4940     {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},202},
4941     {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},170},
4942     {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},234},
4943     {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},154},
4944     {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},218},
4945     {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},186},
4946     {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},250},
4947     {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
4948     {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},198},
4949     {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},166},
4950     {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},230},
4951     {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},150},
4952     {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},214},
4953     {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},182},
4954     {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},246},
4955     {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
4956     {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},206},
4957     {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},174},
4958     {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},238},
4959     {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},158},
4960     {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},222},
4961     {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},190},
4962     {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},254},
4963     {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
4964     {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},193},
4965     {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},161},
4966     {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},225},
4967     {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},145},
4968     {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},209},
4969     {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},177},
4970     {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},241},
4971     {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
4972     {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},201},
4973     {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},169},
4974     {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},233},
4975     {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},153},
4976     {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},217},
4977     {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},185},
4978     {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},249},
4979     {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
4980     {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},197},
4981     {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},165},
4982     {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},229},
4983     {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},149},
4984     {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},213},
4985     {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},181},
4986     {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},245},
4987     {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
4988     {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},205},
4989     {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},173},
4990     {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},237},
4991     {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},157},
4992     {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},221},
4993     {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},189},
4994     {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},253},
4995     {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
4996     {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},195},
4997     {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},163},
4998     {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},227},
4999     {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},147},
5000     {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},211},
5001     {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},179},
5002     {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},243},
5003     {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
5004     {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},203},
5005     {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},171},
5006     {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},235},
5007     {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},155},
5008     {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},219},
5009     {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},187},
5010     {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},251},
5011     {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
5012     {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},199},
5013     {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},167},
5014     {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},231},
5015     {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},151},
5016     {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},215},
5017     {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},183},
5018     {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},247},
5019     {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
5020     {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},207},
5021     {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},175},
5022     {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},239},
5023     {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},159},
5024     {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},223},
5025     {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},191},
5026     {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},255}
5027   };
5028 local inflate_huft fixed_td[] = {
5029     {{{80,5}},1}, {{{87,5}},257}, {{{83,5}},17}, {{{91,5}},4097},
5030     {{{81,5}},5}, {{{89,5}},1025}, {{{85,5}},65}, {{{93,5}},16385},
5031     {{{80,5}},3}, {{{88,5}},513}, {{{84,5}},33}, {{{92,5}},8193},
5032     {{{82,5}},9}, {{{90,5}},2049}, {{{86,5}},129}, {{{192,5}},24577},
5033     {{{80,5}},2}, {{{87,5}},385}, {{{83,5}},25}, {{{91,5}},6145},
5034     {{{81,5}},7}, {{{89,5}},1537}, {{{85,5}},97}, {{{93,5}},24577},
5035     {{{80,5}},4}, {{{88,5}},769}, {{{84,5}},49}, {{{92,5}},12289},
5036     {{{82,5}},13}, {{{90,5}},3073}, {{{86,5}},193}, {{{192,5}},24577}
5037   };
5038 /* --- inffixed.h */
5039 
5040 #endif
5041 
5042 
5043 int inflate_trees_fixed(bl, bd, tl, td, z)
5044 uIntf *bl;               /* literal desired/actual bit depth */
5045 uIntf *bd;               /* distance desired/actual bit depth */
5046 inflate_huft * FAR *tl;  /* literal/length tree result */
5047 inflate_huft * FAR *td;  /* distance tree result */
5048 z_streamp z;             /* for memory allocation */
5049 {
5050 #ifdef BUILDFIXED
5051   /* build fixed tables if not already */
5052   if (!fixed_built)
5053   {
5054     int k;              /* temporary variable */
5055     uInt f = 0;         /* number of hufts used in fixed_mem */
5056     uIntf *c;           /* length list for huft_build */
5057     uIntf *v;           /* work area for huft_build */
5058 
5059     /* allocate memory */
5060     if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
5061       return Z_MEM_ERROR;
5062     if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
5063     {
5064       ZFREE(z, c);
5065       return Z_MEM_ERROR;
5066     }
5067 
5068     /* literal table */
5069     for (k = 0; k < 144; k++)
5070       c[k] = 8;
5071     for (; k < 256; k++)
5072       c[k] = 9;
5073     for (; k < 280; k++)
5074       c[k] = 7;
5075     for (; k < 288; k++)
5076       c[k] = 8;
5077     fixed_bl = 9;
5078     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
5079                fixed_mem, &f, v);
5080 
5081     /* distance table */
5082     for (k = 0; k < 30; k++)
5083       c[k] = 5;
5084     fixed_bd = 5;
5085     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
5086                fixed_mem, &f, v);
5087 
5088     /* done */
5089     ZFREE(z, v);
5090     ZFREE(z, c);
5091     fixed_built = 1;
5092   }
5093 #endif
5094   *bl = fixed_bl;
5095   *bd = fixed_bd;
5096   *tl = fixed_tl;
5097   *td = fixed_td;
5098   return Z_OK;
5099 }
5100 /* --- inftrees.c */
5101 
5102 /* +++ infcodes.c */
5103 
5104 /* infcodes.c -- process literals and length/distance pairs
5105  * Copyright (C) 1995-2002 Mark Adler
5106  * For conditions of distribution and use, see copyright notice in zlib.h
5107  */
5108 
5109 /* #include "zutil.h" */
5110 /* #include "inftrees.h" */
5111 /* #include "infblock.h" */
5112 /* #include "infcodes.h" */
5113 /* #include "infutil.h" */
5114 
5115 /* +++ inffast.h */
5116 
5117 /* inffast.h -- header to use inffast.c
5118  * Copyright (C) 1995-2002 Mark Adler
5119  * For conditions of distribution and use, see copyright notice in zlib.h
5120  */
5121 
5122 /* WARNING: this file should *not* be used by applications. It is
5123    part of the implementation of the compression library and is
5124    subject to change. Applications should only use zlib.h.
5125  */
5126 
5127 extern int inflate_fast __P((
5128     uInt,
5129     uInt,
5130     inflate_huft *,
5131     inflate_huft *,
5132     inflate_blocks_statef *,
5133     z_streamp ));
5134 /* --- inffast.h */
5135 
5136 /* simplify the use of the inflate_huft type with some defines */
5137 #define exop word.what.Exop
5138 #define bits word.what.Bits
5139 
5140 typedef enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5141       START,    /* x: set up for LEN */
5142       LEN,      /* i: get length/literal/eob next */
5143       LENEXT,   /* i: getting length extra (have base) */
5144       DIST,     /* i: get distance next */
5145       DISTEXT,  /* i: getting distance extra */
5146       COPY,     /* o: copying bytes in window, waiting for space */
5147       LIT,      /* o: got literal, waiting for output space */
5148       WASH,     /* o: got eob, possibly still output waiting */
5149       END,      /* x: got eob and all data flushed */
5150       BADCODE}  /* x: got error */
5151 inflate_codes_mode;
5152 
5153 /* inflate codes private state */
5154 struct inflate_codes_state {
5155 
5156   /* mode */
5157   inflate_codes_mode mode;      /* current inflate_codes mode */
5158 
5159   /* mode dependent information */
5160   uInt len;
5161   union {
5162     struct {
5163       inflate_huft *tree;       /* pointer into tree */
5164       uInt need;                /* bits needed */
5165     } code;             /* if LEN or DIST, where in tree */
5166     uInt lit;           /* if LIT, literal */
5167     struct {
5168       uInt get;                 /* bits to get for extra */
5169       uInt dist;                /* distance back to copy from */
5170     } copy;             /* if EXT or COPY, where and how much */
5171   } sub;                /* submode */
5172 
5173   /* mode independent information */
5174   Byte lbits;           /* ltree bits decoded per branch */
5175   Byte dbits;           /* dtree bits decoder per branch */
5176   inflate_huft *ltree;          /* literal/length/eob tree */
5177   inflate_huft *dtree;          /* distance tree */
5178 
5179 };
5180 
5181 
5182 inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
5183 uInt bl, bd;
5184 inflate_huft *tl;
5185 inflate_huft *td; /* need separate declaration for Borland C++ */
5186 z_streamp z;
5187 {
5188   inflate_codes_statef *c;
5189 
5190   if ((c = (inflate_codes_statef *)
5191        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
5192   {
5193     c->mode = START;
5194     c->lbits = (Byte)bl;
5195     c->dbits = (Byte)bd;
5196     c->ltree = tl;
5197     c->dtree = td;
5198     Tracev((stderr, "inflate:       codes new\n"));
5199   }
5200   return c;
5201 }
5202 
5203 
5204 int inflate_codes(s, z, r)
5205 inflate_blocks_statef *s;
5206 z_streamp z;
5207 int r;
5208 {
5209   uInt j;               /* temporary storage */
5210   inflate_huft *t;      /* temporary pointer */
5211   uInt e;               /* extra bits or operation */
5212   uLong b;              /* bit buffer */
5213   uInt k;               /* bits in bit buffer */
5214   Bytef *p;             /* input data pointer */
5215   uInt n;               /* bytes available there */
5216   Bytef *q;             /* output window write pointer */
5217   uInt m;               /* bytes to end of window or read pointer */
5218   Bytef *f;             /* pointer to copy strings from */
5219   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
5220 
5221   /* copy input/output information to locals (UPDATE macro restores) */
5222   LOAD
5223 
5224   /* process input and output based on current state */
5225   while (1) switch (c->mode)
5226   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5227     case START:         /* x: set up for LEN */
5228 #ifndef SLOW
5229       if (m >= 258 && n >= 10)
5230       {
5231         UPDATE
5232         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
5233         LOAD
5234         if (r != Z_OK)
5235         {
5236           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
5237           break;
5238         }
5239       }
5240 #endif /* !SLOW */
5241       c->sub.code.need = c->lbits;
5242       c->sub.code.tree = c->ltree;
5243       c->mode = LEN;
5244     case LEN:           /* i: get length/literal/eob next */
5245       j = c->sub.code.need;
5246       NEEDBITS(j)
5247       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
5248       DUMPBITS(t->bits)
5249       e = (uInt)(t->exop);
5250       if (e == 0)               /* literal */
5251       {
5252         c->sub.lit = t->base;
5253         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5254                  "inflate:         literal '%c'\n" :
5255                  "inflate:         literal 0x%02x\n", t->base));
5256         c->mode = LIT;
5257         break;
5258       }
5259       if (e & 16)               /* length */
5260       {
5261         c->sub.copy.get = e & 15;
5262         c->len = t->base;
5263         c->mode = LENEXT;
5264         break;
5265       }
5266       if ((e & 64) == 0)        /* next table */
5267       {
5268         c->sub.code.need = e;
5269         c->sub.code.tree = t + t->base;
5270         break;
5271       }
5272       if (e & 32)               /* end of block */
5273       {
5274         Tracevv((stderr, "inflate:         end of block\n"));
5275         c->mode = WASH;
5276         break;
5277       }
5278       c->mode = BADCODE;        /* invalid code */
5279       z->msg = (char*)"invalid literal/length code";
5280       r = Z_DATA_ERROR;
5281       LEAVE
5282     case LENEXT:        /* i: getting length extra (have base) */
5283       j = c->sub.copy.get;
5284       NEEDBITS(j)
5285       c->len += (uInt)b & inflate_mask[j];
5286       DUMPBITS(j)
5287       c->sub.code.need = c->dbits;
5288       c->sub.code.tree = c->dtree;
5289       Tracevv((stderr, "inflate:         length %u\n", c->len));
5290       c->mode = DIST;
5291     case DIST:          /* i: get distance next */
5292       j = c->sub.code.need;
5293       NEEDBITS(j)
5294       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
5295       DUMPBITS(t->bits)
5296       e = (uInt)(t->exop);
5297       if (e & 16)               /* distance */
5298       {
5299         c->sub.copy.get = e & 15;
5300         c->sub.copy.dist = t->base;
5301         c->mode = DISTEXT;
5302         break;
5303       }
5304       if ((e & 64) == 0)        /* next table */
5305       {
5306         c->sub.code.need = e;
5307         c->sub.code.tree = t + t->base;
5308         break;
5309       }
5310       c->mode = BADCODE;        /* invalid code */
5311       z->msg = (char*)"invalid distance code";
5312       r = Z_DATA_ERROR;
5313       LEAVE
5314     case DISTEXT:       /* i: getting distance extra */
5315       j = c->sub.copy.get;
5316       NEEDBITS(j)
5317       c->sub.copy.dist += (uInt)b & inflate_mask[j];
5318       DUMPBITS(j)
5319       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
5320       c->mode = COPY;
5321     case COPY:          /* o: copying bytes in window, waiting for space */
5322       f = q - c->sub.copy.dist;
5323       while (f < s->window)             /* modulo window size-"while" instead */
5324         f += s->end - s->window;        /* of "if" handles invalid distances */
5325       while (c->len)
5326       {
5327         NEEDOUT
5328         OUTBYTE(*f++)
5329         if (f == s->end)
5330           f = s->window;
5331         c->len--;
5332       }
5333       c->mode = START;
5334       break;
5335     case LIT:           /* o: got literal, waiting for output space */
5336       NEEDOUT
5337       OUTBYTE(c->sub.lit)
5338       c->mode = START;
5339       break;
5340     case WASH:          /* o: got eob, possibly more output */
5341       if (k > 7)        /* return unused byte, if any */
5342       {
5343         Assert(k < 16, "inflate_codes grabbed too many bytes")
5344         k -= 8;
5345         n++;
5346         p--;            /* can always return one */
5347       }
5348       FLUSH
5349       if (s->read != s->write)
5350         LEAVE
5351       c->mode = END;
5352     case END:
5353       r = Z_STREAM_END;
5354       LEAVE
5355     case BADCODE:       /* x: got error */
5356       r = Z_DATA_ERROR;
5357       LEAVE
5358     default:
5359       r = Z_STREAM_ERROR;
5360       LEAVE
5361   }
5362 #ifdef NEED_DUMMY_RETURN
5363   return Z_STREAM_ERROR;  /* Some dumb compilers complain without this */
5364 #endif
5365 }
5366 
5367 
5368 void inflate_codes_free(c, z)
5369 inflate_codes_statef *c;
5370 z_streamp z;
5371 {
5372   ZFREE(z, c);
5373   Tracev((stderr, "inflate:       codes free\n"));
5374 }
5375 /* --- infcodes.c */
5376 
5377 /* +++ infutil.c */
5378 
5379 /* inflate_util.c -- data and routines common to blocks and codes
5380  * Copyright (C) 1995-2002 Mark Adler
5381  * For conditions of distribution and use, see copyright notice in zlib.h
5382  */
5383 
5384 /* #include "zutil.h" */
5385 /* #include "infblock.h" */
5386 /* #include "inftrees.h" */
5387 /* #include "infcodes.h" */
5388 /* #include "infutil.h" */
5389 
5390 #ifndef NO_DUMMY_DECL
5391 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
5392 #endif
5393 
5394 /* And'ing with mask[n] masks the lower n bits */
5395 uInt inflate_mask[17] = {
5396     0x0000,
5397     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
5398     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
5399 };
5400 
5401 
5402 /* copy as much as possible from the sliding window to the output area */
5403 int inflate_flush(s, z, r)
5404 inflate_blocks_statef *s;
5405 z_streamp z;
5406 int r;
5407 {
5408   uInt n;
5409   Bytef *p;
5410   Bytef *q;
5411 
5412   /* local copies of source and destination pointers */
5413   p = z->next_out;
5414   q = s->read;
5415 
5416   /* compute number of bytes to copy as far as end of window */
5417   n = (uInt)((q <= s->write ? s->write : s->end) - q);
5418   if (n > z->avail_out) n = z->avail_out;
5419   if (n && r == Z_BUF_ERROR) r = Z_OK;
5420 
5421   /* update counters */
5422   z->avail_out -= n;
5423   z->total_out += n;
5424 
5425   /* update check information */
5426   if (s->checkfn != Z_NULL)
5427     z->adler = s->check = (*s->checkfn)(s->check, q, n);
5428 
5429   /* copy as far as end of window */
5430   if (p != Z_NULL) {
5431     zmemcpy(p, q, n);
5432     p += n;
5433   }
5434   q += n;
5435 
5436   /* see if more to copy at beginning of window */
5437   if (q == s->end)
5438   {
5439     /* wrap pointers */
5440     q = s->window;
5441     if (s->write == s->end)
5442       s->write = s->window;
5443 
5444     /* compute bytes to copy */
5445     n = (uInt)(s->write - q);
5446     if (n > z->avail_out) n = z->avail_out;
5447     if (n && r == Z_BUF_ERROR) r = Z_OK;
5448 
5449     /* update counters */
5450     z->avail_out -= n;
5451     z->total_out += n;
5452 
5453     /* update check information */
5454     if (s->checkfn != Z_NULL)
5455       z->adler = s->check = (*s->checkfn)(s->check, q, n);
5456 
5457     /* copy */
5458     if (p != NULL) {
5459       zmemcpy(p, q, n);
5460       p += n;
5461     }
5462     q += n;
5463   }
5464 
5465   /* update pointers */
5466   z->next_out = p;
5467   s->read = q;
5468 
5469   /* done */
5470   return r;
5471 }
5472 /* --- infutil.c */
5473 
5474 /* +++ inffast.c */
5475 
5476 /* inffast.c -- process literals and length/distance pairs fast
5477  * Copyright (C) 1995-2002 Mark Adler
5478  * For conditions of distribution and use, see copyright notice in zlib.h
5479  */
5480 
5481 /* #include "zutil.h" */
5482 /* #include "inftrees.h" */
5483 /* #include "infblock.h" */
5484 /* #include "infcodes.h" */
5485 /* #include "infutil.h" */
5486 /* #include "inffast.h" */
5487 
5488 #ifndef NO_DUMMY_DECL
5489 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
5490 #endif
5491 
5492 /* simplify the use of the inflate_huft type with some defines */
5493 #define exop word.what.Exop
5494 #define bits word.what.Bits
5495 
5496 /* macros for bit input with no checking and for returning unused bytes */
5497 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
5498 #define UNGRAB {c=z->avail_in-n;c=(k>>3)<c?k>>3:c;n+=c;p-=c;k-=c<<3;}
5499 
5500 /* Called with number of bytes left to write in window at least 258
5501    (the maximum string length) and number of input bytes available
5502    at least ten.  The ten bytes are six bytes for the longest length/
5503    distance pair plus four bytes for overloading the bit buffer. */
5504 
5505 int inflate_fast(bl, bd, tl, td, s, z)
5506 uInt bl, bd;
5507 inflate_huft *tl;
5508 inflate_huft *td; /* need separate declaration for Borland C++ */
5509 inflate_blocks_statef *s;
5510 z_streamp z;
5511 {
5512   inflate_huft *t;      /* temporary pointer */
5513   uInt e;               /* extra bits or operation */
5514   uLong b;              /* bit buffer */
5515   uInt k;               /* bits in bit buffer */
5516   Bytef *p;             /* input data pointer */
5517   uInt n;               /* bytes available there */
5518   Bytef *q;             /* output window write pointer */
5519   uInt m;               /* bytes to end of window or read pointer */
5520   uInt ml;              /* mask for literal/length tree */
5521   uInt md;              /* mask for distance tree */
5522   uInt c;               /* bytes to copy */
5523   uInt d;               /* distance back to copy from */
5524   Bytef *r;             /* copy source pointer */
5525 
5526   /* load input, output, bit values */
5527   LOAD
5528 
5529   /* initialize masks */
5530   ml = inflate_mask[bl];
5531   md = inflate_mask[bd];
5532 
5533   /* do until not enough input or output space for fast loop */
5534   do {                          /* assume called with m >= 258 && n >= 10 */
5535     /* get literal/length code */
5536     GRABBITS(20)                /* max bits for literal/length code */
5537     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5538     {
5539       DUMPBITS(t->bits)
5540       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5541                 "inflate:         * literal '%c'\n" :
5542                 "inflate:         * literal 0x%02x\n", t->base));
5543       *q++ = (Byte)t->base;
5544       m--;
5545       continue;
5546     }
5547     do {
5548       DUMPBITS(t->bits)
5549       if (e & 16)
5550       {
5551         /* get extra bits for length */
5552         e &= 15;
5553         c = t->base + ((uInt)b & inflate_mask[e]);
5554         DUMPBITS(e)
5555         Tracevv((stderr, "inflate:         * length %u\n", c));
5556 
5557         /* decode distance base of block to copy */
5558         GRABBITS(15);           /* max bits for distance code */
5559         e = (t = td + ((uInt)b & md))->exop;
5560         do {
5561           DUMPBITS(t->bits)
5562           if (e & 16)
5563           {
5564             /* get extra bits to add to distance base */
5565             e &= 15;
5566             GRABBITS(e)         /* get extra bits (up to 13) */
5567             d = t->base + ((uInt)b & inflate_mask[e]);
5568             DUMPBITS(e)
5569             Tracevv((stderr, "inflate:         * distance %u\n", d));
5570 
5571             /* do the copy */
5572             m -= c;
5573             r = q - d;
5574             if (r < s->window)                  /* wrap if needed */
5575             {
5576               do {
5577                 r += s->end - s->window;        /* force pointer in window */
5578               } while (r < s->window);          /* covers invalid distances */
5579               e = s->end - r;
5580               if (c > e)
5581               {
5582                 c -= e;                         /* wrapped copy */
5583                 do {
5584                     *q++ = *r++;
5585                 } while (--e);
5586                 r = s->window;
5587                 do {
5588                     *q++ = *r++;
5589                 } while (--c);
5590               }
5591               else                              /* normal copy */
5592               {
5593                 *q++ = *r++;  c--;
5594                 *q++ = *r++;  c--;
5595                 do {
5596                     *q++ = *r++;
5597                 } while (--c);
5598               }
5599             }
5600             else                                /* normal copy */
5601             {
5602               *q++ = *r++;  c--;
5603               *q++ = *r++;  c--;
5604               do {
5605                 *q++ = *r++;
5606               } while (--c);
5607             }
5608             break;
5609           }
5610           else if ((e & 64) == 0)
5611           {
5612             t += t->base;
5613             e = (t += ((uInt)b & inflate_mask[e]))->exop;
5614           }
5615           else
5616           {
5617             z->msg = (char*)"invalid distance code";
5618             UNGRAB
5619             UPDATE
5620             return Z_DATA_ERROR;
5621           }
5622         } while (1);
5623         break;
5624       }
5625       if ((e & 64) == 0)
5626       {
5627         t += t->base;
5628         if ((e = (t += ((uInt)b & inflate_mask[e]))->exop) == 0)
5629         {
5630           DUMPBITS(t->bits)
5631           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5632                     "inflate:         * literal '%c'\n" :
5633                     "inflate:         * literal 0x%02x\n", t->base));
5634           *q++ = (Byte)t->base;
5635           m--;
5636           break;
5637         }
5638       }
5639       else if (e & 32)
5640       {
5641         Tracevv((stderr, "inflate:         * end of block\n"));
5642         UNGRAB
5643         UPDATE
5644         return Z_STREAM_END;
5645       }
5646       else
5647       {
5648         z->msg = (char*)"invalid literal/length code";
5649         UNGRAB
5650         UPDATE
5651         return Z_DATA_ERROR;
5652       }
5653     } while (1);
5654   } while (m >= 258 && n >= 10);
5655 
5656   /* not enough input or output--restore pointers and return */
5657   UNGRAB
5658   UPDATE
5659   return Z_OK;
5660 }
5661 /* --- inffast.c */
5662 
5663 /* +++ zutil.c */
5664 
5665 /* zutil.c -- target dependent utility functions for the compression library
5666  * Copyright (C) 1995-2002 Jean-loup Gailly.
5667  * For conditions of distribution and use, see copyright notice in zlib.h
5668  */
5669 
5670 /* @(#) Id */
5671 
5672 #ifdef DEBUG_ZLIB
5673 #include <stdio.h>
5674 #endif
5675 
5676 /* #include "zutil.h" */
5677 
5678 #ifndef NO_DUMMY_DECL
5679 struct internal_state      {int dummy;}; /* for buggy compilers */
5680 #endif
5681 
5682 #ifndef STDC
5683 extern void exit __P((int));
5684 #endif
5685 
5686 const char *z_errmsg[10] = {
5687 "need dictionary",     /* Z_NEED_DICT       2  */
5688 "stream end",          /* Z_STREAM_END      1  */
5689 "",                    /* Z_OK              0  */
5690 "file error",          /* Z_ERRNO         (-1) */
5691 "stream error",        /* Z_STREAM_ERROR  (-2) */
5692 "data error",          /* Z_DATA_ERROR    (-3) */
5693 "insufficient memory", /* Z_MEM_ERROR     (-4) */
5694 "buffer error",        /* Z_BUF_ERROR     (-5) */
5695 "incompatible version",/* Z_VERSION_ERROR (-6) */
5696 ""};
5697 
5698 
5699 #if 0
5700 const char * ZEXPORT zlibVersion()
5701 {
5702     return ZLIB_VERSION;
5703 }
5704 #endif
5705 
5706 #ifdef DEBUG_ZLIB
5707 
5708 #  ifndef verbose
5709 #    define verbose 0
5710 #  endif
5711 int z_verbose = verbose;
5712 
5713 void z_error (m)
5714     char *m;
5715 {
5716     fprintf(stderr, "%s\n", m);
5717     exit(1);
5718 }
5719 #endif
5720 
5721 /* exported to allow conversion of error code to string for compress() and
5722  * uncompress()
5723  */
5724 #if 0
5725 const char * ZEXPORT zError(err)
5726     int err;
5727 {
5728     return ERR_MSG(err);
5729 }
5730 #endif
5731 
5732 
5733 #ifndef HAVE_MEMCPY
5734 
5735 void zmemcpy(dest, source, len)
5736     Bytef* dest;
5737     const Bytef* source;
5738     uInt  len;
5739 {
5740     if (len == 0) return;
5741     do {
5742         *dest++ = *source++; /* ??? to be unrolled */
5743     } while (--len != 0);
5744 }
5745 
5746 int zmemcmp(s1, s2, len)
5747     const Bytef* s1;
5748     const Bytef* s2;
5749     uInt  len;
5750 {
5751     uInt j;
5752 
5753     for (j = 0; j < len; j++) {
5754         if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5755     }
5756     return 0;
5757 }
5758 
5759 void zmemzero(dest, len)
5760     Bytef* dest;
5761     uInt  len;
5762 {
5763     if (len == 0) return;
5764     do {
5765         *dest++ = 0;  /* ??? to be unrolled */
5766     } while (--len != 0);
5767 }
5768 #endif
5769 
5770 #ifdef __TURBOC__
5771 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5772 /* Small and medium model in Turbo C are for now limited to near allocation
5773  * with reduced MAX_WBITS and MAX_MEM_LEVEL
5774  */
5775 #  define MY_ZCALLOC
5776 
5777 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5778  * and farmalloc(64K) returns a pointer with an offset of 8, so we
5779  * must fix the pointer. Warning: the pointer must be put back to its
5780  * original form in order to free it, use zcfree().
5781  */
5782 
5783 #define MAX_PTR 10
5784 /* 10*64K = 640K */
5785 
5786 local int next_ptr = 0;
5787 
5788 typedef struct ptr_table_s {
5789     voidpf org_ptr;
5790     voidpf new_ptr;
5791 } ptr_table;
5792 
5793 local ptr_table table[MAX_PTR];
5794 /* This table is used to remember the original form of pointers
5795  * to large buffers (64K). Such pointers are normalized with a zero offset.
5796  * Since MSDOS is not a preemptive multitasking OS, this table is not
5797  * protected from concurrent access. This hack doesn't work anyway on
5798  * a protected system like OS/2. Use Microsoft C instead.
5799  */
5800 
5801 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5802 {
5803     voidpf buf = opaque; /* just to make some compilers happy */
5804     ulg bsize = (ulg)items*size;
5805 
5806     /* If we allocate less than 65520 bytes, we assume that farmalloc
5807      * will return a usable pointer which doesn't have to be normalized.
5808      */
5809     if (bsize < 65520L) {
5810         buf = farmalloc(bsize);
5811         if (*(ush*)&buf != 0) return buf;
5812     } else {
5813         buf = farmalloc(bsize + 16L);
5814     }
5815     if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5816     table[next_ptr].org_ptr = buf;
5817 
5818     /* Normalize the pointer to seg:0 */
5819     *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5820     *(ush*)&buf = 0;
5821     table[next_ptr++].new_ptr = buf;
5822     return buf;
5823 }
5824 
5825 void  zcfree (voidpf opaque, voidpf ptr)
5826 {
5827     int n;
5828     if (*(ush*)&ptr != 0) { /* object < 64K */
5829         farfree(ptr);
5830         return;
5831     }
5832     /* Find the original pointer */
5833     for (n = 0; n < next_ptr; n++) {
5834         if (ptr != table[n].new_ptr) continue;
5835 
5836         farfree(table[n].org_ptr);
5837         while (++n < next_ptr) {
5838             table[n-1] = table[n];
5839         }
5840         next_ptr--;
5841         return;
5842     }
5843     ptr = opaque; /* just to make some compilers happy */
5844     Assert(0, "zcfree: ptr not found");
5845 }
5846 #endif
5847 #endif /* __TURBOC__ */
5848 
5849 
5850 #if defined(M_I86) && !defined(__32BIT__)
5851 /* Microsoft C in 16-bit mode */
5852 
5853 #  define MY_ZCALLOC
5854 
5855 #if (!defined(_MSC_VER) || (_MSC_VER <= 600))
5856 #  define _halloc  halloc
5857 #  define _hfree   hfree
5858 #endif
5859 
5860 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5861 {
5862     if (opaque) opaque = 0; /* to make compiler happy */
5863     return _halloc((long)items, size);
5864 }
5865 
5866 void  zcfree (voidpf opaque, voidpf ptr)
5867 {
5868     if (opaque) opaque = 0; /* to make compiler happy */
5869     _hfree(ptr);
5870 }
5871 
5872 #endif /* MSC */
5873 
5874 
5875 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5876 
5877 #ifndef STDC
5878 extern voidp  calloc __P((uInt items, uInt size));
5879 extern void   free   __P((voidpf ptr));
5880 #endif
5881 
5882 voidpf zcalloc (opaque, items, size)
5883     voidpf opaque;
5884     unsigned items;
5885     unsigned size;
5886 {
5887     if (opaque) items += size - size; /* make compiler happy */
5888     return (voidpf)calloc(items, size);
5889 }
5890 
5891 void  zcfree (opaque, ptr)
5892     voidpf opaque;
5893     voidpf ptr;
5894 {
5895     free(ptr);
5896     if (opaque) return; /* make compiler happy */
5897 }
5898 
5899 #endif /* MY_ZCALLOC */
5900 /* --- zutil.c */
5901 
5902 /* +++ adler32.c */
5903 /* adler32.c -- compute the Adler-32 checksum of a data stream
5904  * Copyright (C) 1995-2002 Mark Adler
5905  * For conditions of distribution and use, see copyright notice in zlib.h
5906  */
5907 
5908 /* @(#) $Id: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $ */
5909 
5910 /* #include "zlib.h" */
5911 
5912 #define BASE 65521L /* largest prime smaller than 65536 */
5913 #define NMAX 5552
5914 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5915 
5916 #define DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
5917 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
5918 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
5919 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
5920 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
5921 
5922 /* ========================================================================= */
5923 uLong ZEXPORT adler32(adler, buf, len)
5924     uLong adler;
5925     const Bytef *buf;
5926     uInt len;
5927 {
5928     unsigned long s1 = adler & 0xffff;
5929     unsigned long s2 = (adler >> 16) & 0xffff;
5930     int k;
5931 
5932     if (buf == Z_NULL) return 1L;
5933 
5934     while (len > 0) {
5935         k = len < NMAX ? len : NMAX;
5936         len -= k;
5937         while (k >= 16) {
5938             DO16(buf);
5939 	    buf += 16;
5940             k -= 16;
5941         }
5942         if (k != 0) do {
5943             s1 += *buf++;
5944 	    s2 += s1;
5945         } while (--k);
5946         s1 %= BASE;
5947         s2 %= BASE;
5948     }
5949     return (s2 << 16) | s1;
5950 }
5951 /* --- adler32.c */
5952 
5953