1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * Alternatively, this software may be distributed under the terms of the
17  * GNU General Public License ("GPL") version 2 as published by the Free
18  * Software Foundation.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #ifdef __FreeBSD__
34 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_crypto_tkip.c,v 1.10 2005/08/08 18:46:35 sam Exp $");
35 #endif
36 #ifdef __NetBSD__
37 __KERNEL_RCSID(0, "$NetBSD: ieee80211_crypto_tkip.c,v 1.10 2008/12/17 20:51:37 cegger Exp $");
38 #endif
39 
40 /*
41  * IEEE 802.11i TKIP crypto support.
42  *
43  * Part of this module is derived from similar code in the Host
44  * AP driver. The code is used with the consent of the author and
45  * it's license is included below.
46  */
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/mbuf.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/endian.h>
53 
54 #include <sys/socket.h>
55 
56 #include <net/if.h>
57 #include <net/if_ether.h>
58 #include <net/if_media.h>
59 
60 #include <net80211/ieee80211_var.h>
61 
62 static	void *tkip_attach(struct ieee80211com *, struct ieee80211_key *);
63 static	void tkip_detach(struct ieee80211_key *);
64 static	int tkip_setkey(struct ieee80211_key *);
65 static	int tkip_encap(struct ieee80211_key *, struct mbuf *m, u_int8_t keyid);
66 static	int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
67 static	int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
68 static	int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
69 
70 const struct ieee80211_cipher ieee80211_cipher_tkip  = {
71 	.ic_name	= "TKIP",
72 	.ic_cipher	= IEEE80211_CIPHER_TKIP,
73 	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
74 			  IEEE80211_WEP_EXTIVLEN,
75 	.ic_trailer	= IEEE80211_WEP_CRCLEN,
76 	.ic_miclen	= IEEE80211_WEP_MICLEN,
77 	.ic_attach	= tkip_attach,
78 	.ic_detach	= tkip_detach,
79 	.ic_setkey	= tkip_setkey,
80 	.ic_encap	= tkip_encap,
81 	.ic_decap	= tkip_decap,
82 	.ic_enmic	= tkip_enmic,
83 	.ic_demic	= tkip_demic,
84 };
85 
86 #define	tkip	ieee80211_cipher_tkip
87 
88 typedef	uint8_t u8;
89 typedef	uint16_t u16;
90 typedef	uint32_t __u32;
91 typedef	uint32_t u32;
92 
93 struct tkip_ctx {
94 	struct ieee80211com *tc_ic;	/* for diagnostics */
95 
96 	u16	tx_ttak[5];
97 	int	tx_phase1_done;
98 	u8	tx_rc4key[16];		/* XXX for test module; make locals? */
99 
100 	u16	rx_ttak[5];
101 	int	rx_phase1_done;
102 	u8	rx_rc4key[16];		/* XXX for test module; make locals? */
103 	uint64_t rx_rsc;		/* held until MIC verified */
104 };
105 
106 static	void michael_mic(struct tkip_ctx *, const u8 *key,
107 		struct mbuf *m, u_int off, size_t data_len,
108 		u8 mic[IEEE80211_WEP_MICLEN]);
109 static	int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
110 		struct mbuf *, int hdr_len);
111 static	int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
112 		struct mbuf *, int hdr_len);
113 
114 static void *
115 tkip_attach(struct ieee80211com *ic, struct ieee80211_key *k)
116 {
117 	struct tkip_ctx *ctx;
118 
119 	ctx = malloc(sizeof(struct tkip_ctx), M_DEVBUF, M_NOWAIT | M_ZERO);
120 	if (ctx == NULL) {
121 		ic->ic_stats.is_crypto_nomem++;
122 		return NULL;
123 	}
124 
125 	ctx->tc_ic = ic;
126 	return ctx;
127 }
128 
129 static void
130 tkip_detach(struct ieee80211_key *k)
131 {
132 	struct tkip_ctx *ctx = k->wk_private;
133 
134 	free(ctx, M_DEVBUF);
135 }
136 
137 static int
138 tkip_setkey(struct ieee80211_key *k)
139 {
140 	struct tkip_ctx *ctx = k->wk_private;
141 
142 	if (k->wk_keylen != (128/NBBY)) {
143 		(void) ctx;		/* XXX */
144 		IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
145 			"%s: Invalid key length %u, expecting %u\n",
146 			__func__, k->wk_keylen, 128/NBBY);
147 		return 0;
148 	}
149 	k->wk_keytsc = 1;		/* TSC starts at 1 */
150 	return 1;
151 }
152 
153 /*
154  * Add privacy headers and do any s/w encryption required.
155  */
156 static int
157 tkip_encap(struct ieee80211_key *k, struct mbuf *m, u_int8_t keyid)
158 {
159 	struct tkip_ctx *ctx = k->wk_private;
160 	struct ieee80211com *ic = ctx->tc_ic;
161 	u_int8_t *ivp;
162 	int hdrlen;
163 
164 	/*
165 	 * Handle TKIP counter measures requirement.
166 	 */
167 	if (ic->ic_flags & IEEE80211_F_COUNTERM) {
168 #ifdef IEEE80211_DEBUG
169 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
170 #endif
171 
172 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
173 			"[%s] Discard frame due to countermeasures (%s)\n",
174 			ether_sprintf(wh->i_addr2), __func__);
175 		ic->ic_stats.is_crypto_tkipcm++;
176 		return 0;
177 	}
178 	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
179 
180 	/*
181 	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
182 	 */
183 	M_PREPEND(m, tkip.ic_header, M_NOWAIT);
184 	if (m == NULL)
185 		return 0;
186 	ivp = mtod(m, u_int8_t *);
187 	memmove(ivp, ivp + tkip.ic_header, hdrlen);
188 	ivp += hdrlen;
189 
190 	ivp[0] = k->wk_keytsc >> 8;		/* TSC1 */
191 	ivp[1] = (ivp[0] | 0x20) & 0x7f;	/* WEP seed */
192 	ivp[2] = k->wk_keytsc >> 0;		/* TSC0 */
193 	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
194 	ivp[4] = k->wk_keytsc >> 16;		/* TSC2 */
195 	ivp[5] = k->wk_keytsc >> 24;		/* TSC3 */
196 	ivp[6] = k->wk_keytsc >> 32;		/* TSC4 */
197 	ivp[7] = k->wk_keytsc >> 40;		/* TSC5 */
198 
199 	/*
200 	 * Finally, do software encrypt if neeed.
201 	 */
202 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
203 		if (!tkip_encrypt(ctx, k, m, hdrlen))
204 			return 0;
205 		/* NB: tkip_encrypt handles wk_keytsc */
206 	} else
207 		k->wk_keytsc++;
208 
209 	return 1;
210 }
211 
212 /*
213  * Add MIC to the frame as needed.
214  */
215 static int
216 tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
217 {
218 	struct tkip_ctx *ctx = k->wk_private;
219 
220 	if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
221 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
222 		struct ieee80211com *ic = ctx->tc_ic;
223 		int hdrlen;
224 		uint8_t mic[IEEE80211_WEP_MICLEN];
225 
226 		ic->ic_stats.is_crypto_tkipenmic++;
227 
228 		hdrlen = ieee80211_hdrspace(ic, wh);
229 
230 		michael_mic(ctx, k->wk_txmic,
231 			m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
232 		return m_append(m, tkip.ic_miclen, mic);
233 	}
234 	return 1;
235 }
236 
237 static __inline uint64_t
238 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
239 {
240 	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
241 	uint16_t iv16 = (b4 << 0) | (b5 << 8);
242 	return (((uint64_t)iv16) << 32) | iv32;
243 }
244 
245 /*
246  * Validate and strip privacy headers (and trailer) for a
247  * received frame.  If necessary, decrypt the frame using
248  * the specified key.
249  */
250 static int
251 tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
252 {
253 	struct tkip_ctx *ctx = k->wk_private;
254 	struct ieee80211com *ic = ctx->tc_ic;
255 	struct ieee80211_frame *wh;
256 	uint8_t *ivp;
257 
258 	/*
259 	 * Header should have extended IV and sequence number;
260 	 * verify the former and validate the latter.
261 	 */
262 	wh = mtod(m, struct ieee80211_frame *);
263 	ivp = mtod(m, uint8_t *) + hdrlen;
264 	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
265 		/*
266 		 * No extended IV; discard frame.
267 		 */
268 		IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
269 			"[%s] missing ExtIV for TKIP cipher\n",
270 			ether_sprintf(wh->i_addr2));
271 		ctx->tc_ic->ic_stats.is_rx_tkipformat++;
272 		return 0;
273 	}
274 	/*
275 	 * Handle TKIP counter measures requirement.
276 	 */
277 	if (ic->ic_flags & IEEE80211_F_COUNTERM) {
278 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
279 			"[%s] discard frame due to countermeasures (%s)\n",
280 			ether_sprintf(wh->i_addr2), __func__);
281 		ic->ic_stats.is_crypto_tkipcm++;
282 		return 0;
283 	}
284 
285 	ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
286 	if (ctx->rx_rsc <= k->wk_keyrsc) {
287 		/*
288 		 * Replay violation; notify upper layer.
289 		 */
290 		ieee80211_notify_replay_failure(ctx->tc_ic, wh, k, ctx->rx_rsc);
291 		ctx->tc_ic->ic_stats.is_rx_tkipreplay++;
292 		return 0;
293 	}
294 	/*
295 	 * NB: We can't update the rsc in the key until MIC is verified.
296 	 *
297 	 * We assume we are not preempted between doing the check above
298 	 * and updating wk_keyrsc when stripping the MIC in tkip_demic.
299 	 * Otherwise we might process another packet and discard it as
300 	 * a replay.
301 	 */
302 
303 	/*
304 	 * Check if the device handled the decrypt in hardware.
305 	 * If so we just strip the header; otherwise we need to
306 	 * handle the decrypt in software.
307 	 */
308 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
309 	    !tkip_decrypt(ctx, k, m, hdrlen))
310 		return 0;
311 
312 	/*
313 	 * Copy up 802.11 header and strip crypto bits.
314 	 */
315 	memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
316 	m_adj(m, tkip.ic_header);
317 	m_adj(m, -tkip.ic_trailer);
318 
319 	return 1;
320 }
321 
322 /*
323  * Verify and strip MIC from the frame.
324  */
325 static int
326 tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
327 {
328 	struct tkip_ctx *ctx = k->wk_private;
329 
330 	if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
331 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
332 		struct ieee80211com *ic = ctx->tc_ic;
333 		int hdrlen = ieee80211_hdrspace(ic, wh);
334 		u8 mic[IEEE80211_WEP_MICLEN];
335 		u8 mic0[IEEE80211_WEP_MICLEN];
336 
337 		ic->ic_stats.is_crypto_tkipdemic++;
338 
339 		michael_mic(ctx, k->wk_rxmic,
340 			m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
341 			mic);
342 		m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
343 			tkip.ic_miclen, mic0);
344 		if (memcmp(mic, mic0, tkip.ic_miclen)) {
345 			/* NB: 802.11 layer handles statistic and debug msg */
346 			ieee80211_notify_michael_failure(ic, wh,
347 				k->wk_rxkeyix != IEEE80211_KEYIX_NONE ?
348 					k->wk_rxkeyix : k->wk_keyix);
349 			return 0;
350 		}
351 	}
352 	/*
353 	 * Strip MIC from the tail.
354 	 */
355 	m_adj(m, -tkip.ic_miclen);
356 
357 	/*
358 	 * Ok to update rsc now that MIC has been verified.
359 	 */
360 	k->wk_keyrsc = ctx->rx_rsc;
361 
362 	return 1;
363 }
364 
365 /*
366  * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
367  *
368  * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
369  *
370  * This program is free software; you can redistribute it and/or modify
371  * it under the terms of the GNU General Public License version 2 as
372  * published by the Free Software Foundation. See README and COPYING for
373  * more details.
374  *
375  * Alternatively, this software may be distributed under the terms of BSD
376  * license.
377  */
378 
379 static const __u32 crc32_table[256] = {
380 	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
381 	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
382 	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
383 	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
384 	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
385 	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
386 	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
387 	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
388 	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
389 	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
390 	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
391 	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
392 	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
393 	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
394 	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
395 	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
396 	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
397 	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
398 	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
399 	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
400 	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
401 	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
402 	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
403 	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
404 	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
405 	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
406 	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
407 	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
408 	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
409 	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
410 	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
411 	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
412 	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
413 	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
414 	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
415 	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
416 	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
417 	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
418 	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
419 	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
420 	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
421 	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
422 	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
423 	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
424 	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
425 	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
426 	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
427 	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
428 	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
429 	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
430 	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
431 	0x2d02ef8dL
432 };
433 
434 static __inline u16 RotR1(u16 val)
435 {
436 	return (val >> 1) | (val << 15);
437 }
438 
439 static __inline u8 Lo8(u16 val)
440 {
441 	return val & 0xff;
442 }
443 
444 static __inline u8 Hi8(u16 val)
445 {
446 	return val >> 8;
447 }
448 
449 static __inline u16 Lo16(u32 val)
450 {
451 	return val & 0xffff;
452 }
453 
454 static __inline u16 Hi16(u32 val)
455 {
456 	return val >> 16;
457 }
458 
459 static __inline u16 Mk16(u8 hi, u8 lo)
460 {
461 	return lo | (((u16) hi) << 8);
462 }
463 
464 static __inline u16 Mk16_le(const u16 *v)
465 {
466 	return le16toh(*v);
467 }
468 
469 static const u16 Sbox[256] = {
470 	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
471 	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
472 	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
473 	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
474 	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
475 	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
476 	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
477 	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
478 	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
479 	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
480 	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
481 	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
482 	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
483 	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
484 	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
485 	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
486 	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
487 	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
488 	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
489 	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
490 	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
491 	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
492 	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
493 	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
494 	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
495 	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
496 	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
497 	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
498 	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
499 	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
500 	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
501 	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
502 };
503 
504 static __inline u16 _S_(u16 v)
505 {
506 	u16 t = Sbox[Hi8(v)];
507 	return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
508 }
509 
510 #define PHASE1_LOOP_COUNT 8
511 
512 static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
513 {
514 	int i, j;
515 
516 	/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
517 	TTAK[0] = Lo16(IV32);
518 	TTAK[1] = Hi16(IV32);
519 	TTAK[2] = Mk16(TA[1], TA[0]);
520 	TTAK[3] = Mk16(TA[3], TA[2]);
521 	TTAK[4] = Mk16(TA[5], TA[4]);
522 
523 	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
524 		j = 2 * (i & 1);
525 		TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
526 		TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
527 		TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
528 		TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
529 		TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
530 	}
531 }
532 
533 #ifndef _BYTE_ORDER
534 #error "Don't know native byte order"
535 #endif
536 
537 static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
538 			       u16 IV16)
539 {
540 	/* Make temporary area overlap WEP seed so that the final copy can be
541 	 * avoided on little endian hosts. */
542 	u16 *PPK = (u16 *) &WEPSeed[4];
543 
544 	/* Step 1 - make copy of TTAK and bring in TSC */
545 	PPK[0] = TTAK[0];
546 	PPK[1] = TTAK[1];
547 	PPK[2] = TTAK[2];
548 	PPK[3] = TTAK[3];
549 	PPK[4] = TTAK[4];
550 	PPK[5] = TTAK[4] + IV16;
551 
552 	/* Step 2 - 96-bit bijective mixing using S-box */
553 	PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
554 	PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
555 	PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
556 	PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
557 	PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
558 	PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
559 
560 	PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
561 	PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
562 	PPK[2] += RotR1(PPK[1]);
563 	PPK[3] += RotR1(PPK[2]);
564 	PPK[4] += RotR1(PPK[3]);
565 	PPK[5] += RotR1(PPK[4]);
566 
567 	/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
568 	 * WEPSeed[0..2] is transmitted as WEP IV */
569 	WEPSeed[0] = Hi8(IV16);
570 	WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
571 	WEPSeed[2] = Lo8(IV16);
572 	WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
573 
574 #if _BYTE_ORDER == _BIG_ENDIAN
575 	{
576 		int i;
577 		for (i = 0; i < 6; i++)
578 			PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
579 	}
580 #endif
581 }
582 
583 static void
584 wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
585 	uint8_t icv[IEEE80211_WEP_CRCLEN])
586 {
587 	u32 i, j, k, crc;
588 	size_t buflen;
589 	u8 S[256];
590 	u8 *pos;
591 	struct mbuf *m;
592 #define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
593 
594 	/* Setup RC4 state */
595 	for (i = 0; i < 256; i++)
596 		S[i] = i;
597 	j = 0;
598 	for (i = 0; i < 256; i++) {
599 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
600 		S_SWAP(i, j);
601 	}
602 
603 	/* Compute CRC32 over unencrypted data and apply RC4 to data */
604 	crc = ~0;
605 	i = j = 0;
606 	m = m0;
607 	pos = mtod(m, uint8_t *) + off;
608 	buflen = m->m_len - off;
609 	for (;;) {
610 		if (buflen > data_len)
611 			buflen = data_len;
612 		data_len -= buflen;
613 		for (k = 0; k < buflen; k++) {
614 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
615 			i = (i + 1) & 0xff;
616 			j = (j + S[i]) & 0xff;
617 			S_SWAP(i, j);
618 			*pos++ ^= S[(S[i] + S[j]) & 0xff];
619 		}
620 		m = m->m_next;
621 		if (m == NULL) {
622 			IASSERT(data_len == 0,
623 			    ("out of buffers with data_len %zu\n", data_len));
624 			break;
625 		}
626 		pos = mtod(m, uint8_t *);
627 		buflen = m->m_len;
628 	}
629 	crc = ~crc;
630 
631 	/* Append little-endian CRC32 and encrypt it to produce ICV */
632 	icv[0] = crc;
633 	icv[1] = crc >> 8;
634 	icv[2] = crc >> 16;
635 	icv[3] = crc >> 24;
636 	for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
637 		i = (i + 1) & 0xff;
638 		j = (j + S[i]) & 0xff;
639 		S_SWAP(i, j);
640 		icv[k] ^= S[(S[i] + S[j]) & 0xff];
641 	}
642 }
643 
644 static int
645 wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
646 {
647 	u32 i, j, k, crc;
648 	u8 S[256];
649 	u8 *pos, icv[4];
650 	size_t buflen;
651 
652 	/* Setup RC4 state */
653 	for (i = 0; i < 256; i++)
654 		S[i] = i;
655 	j = 0;
656 	for (i = 0; i < 256; i++) {
657 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
658 		S_SWAP(i, j);
659 	}
660 
661 	/* Apply RC4 to data and compute CRC32 over decrypted data */
662 	crc = ~0;
663 	i = j = 0;
664 	pos = mtod(m, uint8_t *) + off;
665 	buflen = m->m_len - off;
666 	for (;;) {
667 		if (buflen > data_len)
668 			buflen = data_len;
669 		data_len -= buflen;
670 		for (k = 0; k < buflen; k++) {
671 			i = (i + 1) & 0xff;
672 			j = (j + S[i]) & 0xff;
673 			S_SWAP(i, j);
674 			*pos ^= S[(S[i] + S[j]) & 0xff];
675 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
676 			pos++;
677 		}
678 		m = m->m_next;
679 		if (m == NULL) {
680 			IASSERT(data_len == 0,
681 			    ("out of buffers with data_len %zu\n", data_len));
682 			break;
683 		}
684 		pos = mtod(m, uint8_t *);
685 		buflen = m->m_len;
686 	}
687 	crc = ~crc;
688 
689 	/* Encrypt little-endian CRC32 and verify that it matches with the
690 	 * received ICV */
691 	icv[0] = crc;
692 	icv[1] = crc >> 8;
693 	icv[2] = crc >> 16;
694 	icv[3] = crc >> 24;
695 	for (k = 0; k < 4; k++) {
696 		i = (i + 1) & 0xff;
697 		j = (j + S[i]) & 0xff;
698 		S_SWAP(i, j);
699 		if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
700 			/* ICV mismatch - drop frame */
701 			return -1;
702 		}
703 	}
704 
705 	return 0;
706 }
707 
708 
709 static __inline u32 rotl(u32 val, int bits)
710 {
711 	return (val << bits) | (val >> (32 - bits));
712 }
713 
714 
715 static __inline u32 rotr(u32 val, int bits)
716 {
717 	return (val >> bits) | (val << (32 - bits));
718 }
719 
720 
721 static __inline u32 xswap(u32 val)
722 {
723 	return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
724 }
725 
726 
727 #define michael_block(l, r)	\
728 do {				\
729 	r ^= rotl(l, 17);	\
730 	l += r;			\
731 	r ^= xswap(l);		\
732 	l += r;			\
733 	r ^= rotl(l, 3);	\
734 	l += r;			\
735 	r ^= rotr(l, 2);	\
736 	l += r;			\
737 } while (0)
738 
739 
740 static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
741 {
742 	return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
743 }
744 
745 static __inline u32 get_le32(const u8 *p)
746 {
747 	return get_le32_split(p[0], p[1], p[2], p[3]);
748 }
749 
750 
751 static __inline void put_le32(u8 *p, u32 v)
752 {
753 	p[0] = v;
754 	p[1] = v >> 8;
755 	p[2] = v >> 16;
756 	p[3] = v >> 24;
757 }
758 
759 /*
760  * Craft pseudo header used to calculate the MIC.
761  */
762 static void
763 michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
764 {
765 	const struct ieee80211_frame_addr4 *wh =
766 		(const struct ieee80211_frame_addr4 *) wh0;
767 
768 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
769 	case IEEE80211_FC1_DIR_NODS:
770 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
771 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
772 		break;
773 	case IEEE80211_FC1_DIR_TODS:
774 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
775 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
776 		break;
777 	case IEEE80211_FC1_DIR_FROMDS:
778 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
779 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
780 		break;
781 	case IEEE80211_FC1_DIR_DSTODS:
782 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
783 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
784 		break;
785 	}
786 
787 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
788 		const struct ieee80211_qosframe *qwh =
789 			(const struct ieee80211_qosframe *) wh;
790 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
791 	} else
792 		hdr[12] = 0;
793 	hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
794 }
795 
796 static void
797 michael_mic(struct tkip_ctx *ctx, const u8 *key,
798 	struct mbuf *m, u_int off, size_t data_len,
799 	u8 mic[IEEE80211_WEP_MICLEN])
800 {
801 	uint8_t hdr[16];
802 	u32 l, r;
803 	const uint8_t *data;
804 	u_int space;
805 
806 	michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
807 
808 	l = get_le32(key);
809 	r = get_le32(key + 4);
810 
811 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
812 	l ^= get_le32(hdr);
813 	michael_block(l, r);
814 	l ^= get_le32(&hdr[4]);
815 	michael_block(l, r);
816 	l ^= get_le32(&hdr[8]);
817 	michael_block(l, r);
818 	l ^= get_le32(&hdr[12]);
819 	michael_block(l, r);
820 
821 	/* first buffer has special handling */
822 	data = mtod(m, const uint8_t *) + off;
823 	space = m->m_len - off;
824 	for (;;) {
825 		if (space > data_len)
826 			space = data_len;
827 		/* collect 32-bit blocks from current buffer */
828 		while (space >= sizeof(uint32_t)) {
829 			l ^= get_le32(data);
830 			michael_block(l, r);
831 			data += sizeof(uint32_t);
832 			space -= sizeof(uint32_t);
833 			data_len -= sizeof(uint32_t);
834 		}
835 		/*
836 		 * NB: when space is zero we make one more trip around
837 		 * the loop to advance to the next mbuf where there is
838 		 * data.  This handles the case where there are 4*n
839 		 * bytes in an mbuf followed by <4 bytes in a later mbuf.
840 		 * By making an extra trip we'll drop out of the loop
841 		 * with m pointing at the mbuf with 3 bytes and space
842 		 * set as required by the remainder handling below.
843 		 */
844 		if (!data_len || (data_len < sizeof(uint32_t) && space != 0))
845 			break;
846 		m = m->m_next;
847 		if (m == NULL) {
848 			IASSERT(0, ("out of data, data_len %zu\n", data_len));
849 			break;
850 		}
851 		if (space != 0) {
852 			const uint8_t *data_next;
853 			/*
854 			 * Block straddles buffers, split references.
855 			 */
856 			data_next = mtod(m, const uint8_t *);
857 			IASSERT(m->m_len >= sizeof(uint32_t) - space,
858 				("not enough data in following buffer, "
859 				"m_len %u need %zu\n", m->m_len,
860 				sizeof(uint32_t) - space));
861 			switch (space) {
862 			case 1:
863 				l ^= get_le32_split(data[0], data_next[0],
864 					data_next[1], data_next[2]);
865 				data = data_next + 3;
866 				space = m->m_len - 3;
867 				break;
868 			case 2:
869 				l ^= get_le32_split(data[0], data[1],
870 					data_next[0], data_next[1]);
871 				data = data_next + 2;
872 				space = m->m_len - 2;
873 				break;
874 			case 3:
875 				l ^= get_le32_split(data[0], data[1],
876 					data[2], data_next[0]);
877 				data = data_next + 1;
878 				space = m->m_len - 1;
879 				break;
880 			}
881 			michael_block(l, r);
882 			data_len -= sizeof(uint32_t);
883 		} else {
884 			/*
885 			 * Setup for next buffer.
886 			 */
887 			data = mtod(m, const uint8_t *);
888 			space = m->m_len;
889 		}
890 	}
891 	/*
892 	 * Catch degenerate cases like mbuf[4*n+1 bytes] followed by
893 	 * mbuf[2 bytes].  I don't believe these should happen; if they
894 	 * do then we'll need more involved logic.
895 	 */
896 	KASSERT(data_len <= space);
897 
898 	/* Last block and padding (0x5a, 4..7 x 0) */
899 	switch (data_len) {
900 	case 0:
901 		l ^= get_le32_split(0x5a, 0, 0, 0);
902 		break;
903 	case 1:
904 		l ^= get_le32_split(data[0], 0x5a, 0, 0);
905 		break;
906 	case 2:
907 		l ^= get_le32_split(data[0], data[1], 0x5a, 0);
908 		break;
909 	case 3:
910 		l ^= get_le32_split(data[0], data[1], data[2], 0x5a);
911 		break;
912 	}
913 	michael_block(l, r);
914 	/* l ^= 0; */
915 	michael_block(l, r);
916 
917 	put_le32(mic, l);
918 	put_le32(mic + 4, r);
919 }
920 
921 static int
922 tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
923 	struct mbuf *m, int hdrlen)
924 {
925 	struct ieee80211_frame *wh;
926 	uint8_t icv[IEEE80211_WEP_CRCLEN];
927 
928 	ctx->tc_ic->ic_stats.is_crypto_tkip++;
929 
930 	wh = mtod(m, struct ieee80211_frame *);
931 	if (!ctx->tx_phase1_done) {
932 		tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
933 				   (u32)(key->wk_keytsc >> 16));
934 		ctx->tx_phase1_done = 1;
935 	}
936 	tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
937 		(u16) key->wk_keytsc);
938 
939 	wep_encrypt(ctx->tx_rc4key,
940 		m, hdrlen + tkip.ic_header,
941 		m->m_pkthdr.len - (hdrlen + tkip.ic_header),
942 		icv);
943 	(void) m_append(m, IEEE80211_WEP_CRCLEN, icv);	/* XXX check return */
944 
945 	key->wk_keytsc++;
946 	if ((u16)(key->wk_keytsc) == 0)
947 		ctx->tx_phase1_done = 0;
948 	return 1;
949 }
950 
951 static int
952 tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
953 	struct mbuf *m, int hdrlen)
954 {
955 	struct ieee80211_frame *wh;
956 	u32 iv32;
957 	u16 iv16;
958 
959 	ctx->tc_ic->ic_stats.is_crypto_tkip++;
960 
961 	wh = mtod(m, struct ieee80211_frame *);
962 	/* NB: tkip_decap already verified header and left seq in rx_rsc */
963 	iv16 = (u16) ctx->rx_rsc;
964 	iv32 = (u32) (ctx->rx_rsc >> 16);
965 
966 	if (iv32 != (u32)(key->wk_keyrsc >> 16) || !ctx->rx_phase1_done) {
967 		tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
968 			wh->i_addr2, iv32);
969 		ctx->rx_phase1_done = 1;
970 	}
971 	tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
972 
973 	/* NB: m is unstripped; deduct headers + ICV to get payload */
974 	if (wep_decrypt(ctx->rx_rc4key,
975 		m, hdrlen + tkip.ic_header,
976 	        m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
977 		if (iv32 != (u32)(key->wk_keyrsc >> 16)) {
978 			/* Previously cached Phase1 result was already lost, so
979 			 * it needs to be recalculated for the next packet. */
980 			ctx->rx_phase1_done = 0;
981 		}
982 		IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
983 		    "[%s] TKIP ICV mismatch on decrypt\n",
984 		    ether_sprintf(wh->i_addr2));
985 		ctx->tc_ic->ic_stats.is_rx_tkipicv++;
986 		return 0;
987 	}
988 	return 1;
989 }
990 
991 IEEE80211_CRYPTO_SETUP(tkip_register)
992 {
993 	ieee80211_crypto_register(&tkip);
994 }
995