xref: /netbsd/sys/netinet/ip_mroute.c (revision c4a72b64)
1 /*	$NetBSD: ip_mroute.c,v 1.64 2002/11/05 02:07:25 fair Exp $	*/
2 
3 /*
4  * Copyright (c) 1989 Stephen Deering
5  * Copyright (c) 1992, 1993
6  *      The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Stephen Deering of Stanford University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *      This product includes software developed by the University of
22  *      California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
40  */
41 
42 /*
43  * IP multicast forwarding procedures
44  *
45  * Written by David Waitzman, BBN Labs, August 1988.
46  * Modified by Steve Deering, Stanford, February 1989.
47  * Modified by Mark J. Steiglitz, Stanford, May, 1991
48  * Modified by Van Jacobson, LBL, January 1993
49  * Modified by Ajit Thyagarajan, PARC, August 1993
50  * Modified by Bill Fenner, PARC, April 1994
51  * Modified by Charles M. Hannum, NetBSD, May 1995.
52  *
53  * MROUTING Revision: 1.2
54  */
55 
56 #include <sys/cdefs.h>
57 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.64 2002/11/05 02:07:25 fair Exp $");
58 
59 #include "opt_ipsec.h"
60 
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/callout.h>
64 #include <sys/mbuf.h>
65 #include <sys/socket.h>
66 #include <sys/socketvar.h>
67 #include <sys/protosw.h>
68 #include <sys/errno.h>
69 #include <sys/time.h>
70 #include <sys/kernel.h>
71 #include <sys/ioctl.h>
72 #include <sys/syslog.h>
73 #include <net/if.h>
74 #include <net/route.h>
75 #include <net/raw_cb.h>
76 #include <netinet/in.h>
77 #include <netinet/in_var.h>
78 #include <netinet/in_systm.h>
79 #include <netinet/ip.h>
80 #include <netinet/ip_var.h>
81 #include <netinet/in_pcb.h>
82 #include <netinet/udp.h>
83 #include <netinet/igmp.h>
84 #include <netinet/igmp_var.h>
85 #include <netinet/ip_mroute.h>
86 #include <netinet/ip_encap.h>
87 
88 #ifdef IPSEC
89 #include <netinet6/ipsec.h>
90 #include <netkey/key.h>
91 #endif
92 
93 #include <machine/stdarg.h>
94 
95 #define IP_MULTICASTOPTS 0
96 #define	M_PULLUP(m, len) \
97 	do { \
98 		if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
99 			(m) = m_pullup((m), (len)); \
100 	} while (/*CONSTCOND*/ 0)
101 
102 /*
103  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
104  * except for netstat or debugging purposes.
105  */
106 struct socket  *ip_mrouter  = 0;
107 int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
108 
109 #define NO_RTE_FOUND 	0x1
110 #define RTE_FOUND	0x2
111 
112 #define	MFCHASH(a, g) \
113 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
114 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
115 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
116 u_long	mfchash;
117 
118 u_char		nexpire[MFCTBLSIZ];
119 struct vif	viftable[MAXVIFS];
120 struct mrtstat	mrtstat;
121 u_int		mrtdebug = 0;	  /* debug level 	*/
122 #define		DEBUG_MFC	0x02
123 #define		DEBUG_FORWARD	0x04
124 #define		DEBUG_EXPIRE	0x08
125 #define		DEBUG_XMIT	0x10
126 u_int       	tbfdebug = 0;     /* tbf debug level 	*/
127 #ifdef RSVP_ISI
128 u_int		rsvpdebug = 0;	  /* rsvp debug level   */
129 extern struct socket *ip_rsvpd;
130 extern int rsvp_on;
131 #endif /* RSVP_ISI */
132 
133 /* vif attachment using sys/netinet/ip_encap.c */
134 extern struct domain inetdomain;
135 static void vif_input __P((struct mbuf *, ...));
136 static int vif_encapcheck __P((const struct mbuf *, int, int, void *));
137 static struct protosw vif_protosw =
138 { SOCK_RAW,	&inetdomain,	IPPROTO_IPV4,	PR_ATOMIC|PR_ADDR,
139   vif_input,	rip_output,	0,		rip_ctloutput,
140   rip_usrreq,
141   0,            0,              0,              0,
142 };
143 
144 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second */
145 #define		UPCALL_EXPIRE	6		/* number of timeouts */
146 
147 /*
148  * Define the token bucket filter structures
149  */
150 
151 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
152 
153 static int get_sg_cnt __P((struct sioc_sg_req *));
154 static int get_vif_cnt __P((struct sioc_vif_req *));
155 static int ip_mrouter_init __P((struct socket *, struct mbuf *));
156 static int get_version __P((struct mbuf *));
157 static int set_assert __P((struct mbuf *));
158 static int get_assert __P((struct mbuf *));
159 static int add_vif __P((struct mbuf *));
160 static int del_vif __P((struct mbuf *));
161 static void update_mfc __P((struct mfcctl *, struct mfc *));
162 static void expire_mfc __P((struct mfc *));
163 static int add_mfc __P((struct mbuf *));
164 #ifdef UPCALL_TIMING
165 static void collate __P((struct timeval *));
166 #endif
167 static int del_mfc __P((struct mbuf *));
168 static int socket_send __P((struct socket *, struct mbuf *,
169 			    struct sockaddr_in *));
170 static void expire_upcalls __P((void *));
171 #ifdef RSVP_ISI
172 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *, vifi_t));
173 #else
174 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *));
175 #endif
176 static void phyint_send __P((struct ip *, struct vif *, struct mbuf *));
177 static void encap_send __P((struct ip *, struct vif *, struct mbuf *));
178 static void tbf_control __P((struct vif *, struct mbuf *, struct ip *,
179 			     u_int32_t));
180 static void tbf_queue __P((struct vif *, struct mbuf *));
181 static void tbf_process_q __P((struct vif *));
182 static void tbf_reprocess_q __P((void *));
183 static int tbf_dq_sel __P((struct vif *, struct ip *));
184 static void tbf_send_packet __P((struct vif *, struct mbuf *));
185 static void tbf_update_tokens __P((struct vif *));
186 static int priority __P((struct vif *, struct ip *));
187 
188 /*
189  * 'Interfaces' associated with decapsulator (so we can tell
190  * packets that went through it from ones that get reflected
191  * by a broken gateway).  These interfaces are never linked into
192  * the system ifnet list & no routes point to them.  I.e., packets
193  * can't be sent this way.  They only exist as a placeholder for
194  * multicast source verification.
195  */
196 #if 0
197 struct ifnet multicast_decap_if[MAXVIFS];
198 #endif
199 
200 #define	ENCAP_TTL	64
201 #define	ENCAP_PROTO	IPPROTO_IPIP	/* 4 */
202 
203 /* prototype IP hdr for encapsulated packets */
204 struct ip multicast_encap_iphdr = {
205 #if BYTE_ORDER == LITTLE_ENDIAN
206 	sizeof(struct ip) >> 2, IPVERSION,
207 #else
208 	IPVERSION, sizeof(struct ip) >> 2,
209 #endif
210 	0,				/* tos */
211 	sizeof(struct ip),		/* total length */
212 	0,				/* id */
213 	0,				/* frag offset */
214 	ENCAP_TTL, ENCAP_PROTO,
215 	0,				/* checksum */
216 };
217 
218 /*
219  * Private variables.
220  */
221 static vifi_t	   numvifs = 0;
222 
223 static struct callout expire_upcalls_ch;
224 
225 /*
226  * one-back cache used by vif_encapcheck to locate a tunnel's vif
227  * given a datagram's src ip address.
228  */
229 static struct in_addr last_encap_src;
230 static struct vif *last_encap_vif;
231 
232 /*
233  * whether or not special PIM assert processing is enabled.
234  */
235 static int pim_assert;
236 /*
237  * Rate limit for assert notification messages, in usec
238  */
239 #define ASSERT_MSG_TIME		3000000
240 
241 /*
242  * Find a route for a given origin IP address and Multicast group address
243  * Type of service parameter to be added in the future!!!
244  */
245 
246 #define MFCFIND(o, g, rt) { \
247 	struct mfc *_rt; \
248 	(rt) = 0; \
249 	++mrtstat.mrts_mfc_lookups; \
250 	LIST_FOREACH(_rt, &mfchashtbl[MFCHASH(o, g)], mfc_hash) { \
251 		if (in_hosteq(_rt->mfc_origin, (o)) && \
252 		    in_hosteq(_rt->mfc_mcastgrp, (g)) && \
253 		    _rt->mfc_stall == 0) { \
254 			(rt) = _rt; \
255 			break; \
256 		} \
257 	} \
258 	if ((rt) == 0) \
259 		++mrtstat.mrts_mfc_misses; \
260 }
261 
262 /*
263  * Macros to compute elapsed time efficiently
264  * Borrowed from Van Jacobson's scheduling code
265  */
266 #define TV_DELTA(a, b, delta) { \
267 	int xxs; \
268 	delta = (a).tv_usec - (b).tv_usec; \
269 	xxs = (a).tv_sec - (b).tv_sec; \
270 	switch (xxs) { \
271 	case 2: \
272 		delta += 1000000; \
273 		/* fall through */ \
274 	case 1: \
275 		delta += 1000000; \
276 		/* fall through */ \
277 	case 0: \
278 		break; \
279 	default: \
280 		delta += (1000000 * xxs); \
281 		break; \
282 	} \
283 }
284 
285 #ifdef UPCALL_TIMING
286 u_int32_t upcall_data[51];
287 #endif /* UPCALL_TIMING */
288 
289 /*
290  * Handle MRT setsockopt commands to modify the multicast routing tables.
291  */
292 int
293 ip_mrouter_set(so, optname, m)
294 	struct socket *so;
295 	int optname;
296 	struct mbuf **m;
297 {
298 	int error;
299 
300 	if (optname != MRT_INIT && so != ip_mrouter)
301 		error = ENOPROTOOPT;
302 	else
303 		switch (optname) {
304 		case MRT_INIT:
305 			error = ip_mrouter_init(so, *m);
306 			break;
307 		case MRT_DONE:
308 			error = ip_mrouter_done();
309 			break;
310 		case MRT_ADD_VIF:
311 			error = add_vif(*m);
312 			break;
313 		case MRT_DEL_VIF:
314 			error = del_vif(*m);
315 			break;
316 		case MRT_ADD_MFC:
317 			error = add_mfc(*m);
318 			break;
319 		case MRT_DEL_MFC:
320 			error = del_mfc(*m);
321 			break;
322 		case MRT_ASSERT:
323 			error = set_assert(*m);
324 			break;
325 		default:
326 			error = ENOPROTOOPT;
327 			break;
328 		}
329 
330 	if (*m)
331 		m_free(*m);
332 	return (error);
333 }
334 
335 /*
336  * Handle MRT getsockopt commands
337  */
338 int
339 ip_mrouter_get(so, optname, m)
340 	struct socket *so;
341 	int optname;
342 	struct mbuf **m;
343 {
344 	int error;
345 
346 	if (so != ip_mrouter)
347 		error = ENOPROTOOPT;
348 	else {
349 		*m = m_get(M_WAIT, MT_SOOPTS);
350 
351 		switch (optname) {
352 		case MRT_VERSION:
353 			error = get_version(*m);
354 			break;
355 		case MRT_ASSERT:
356 			error = get_assert(*m);
357 			break;
358 		default:
359 			error = ENOPROTOOPT;
360 			break;
361 		}
362 
363 		if (error)
364 			m_free(*m);
365 	}
366 
367 	return (error);
368 }
369 
370 /*
371  * Handle ioctl commands to obtain information from the cache
372  */
373 int
374 mrt_ioctl(so, cmd, data)
375 	struct socket *so;
376 	u_long cmd;
377 	caddr_t data;
378 {
379 	int error;
380 
381 	if (so != ip_mrouter)
382 		error = EINVAL;
383 	else
384 		switch (cmd) {
385 		case SIOCGETVIFCNT:
386 			error = get_vif_cnt((struct sioc_vif_req *)data);
387 			break;
388 		case SIOCGETSGCNT:
389 			error = get_sg_cnt((struct sioc_sg_req *)data);
390 			break;
391 		default:
392 			error = EINVAL;
393 			break;
394 		}
395 
396 	return (error);
397 }
398 
399 /*
400  * returns the packet, byte, rpf-failure count for the source group provided
401  */
402 static int
403 get_sg_cnt(req)
404 	struct sioc_sg_req *req;
405 {
406 	struct mfc *rt;
407 	int s;
408 
409 	s = splsoftnet();
410 	MFCFIND(req->src, req->grp, rt);
411 	splx(s);
412 	if (rt != 0) {
413 		req->pktcnt = rt->mfc_pkt_cnt;
414 		req->bytecnt = rt->mfc_byte_cnt;
415 		req->wrong_if = rt->mfc_wrong_if;
416 	} else
417 		req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
418 
419 	return (0);
420 }
421 
422 /*
423  * returns the input and output packet and byte counts on the vif provided
424  */
425 static int
426 get_vif_cnt(req)
427 	struct sioc_vif_req *req;
428 {
429 	vifi_t vifi = req->vifi;
430 
431 	if (vifi >= numvifs)
432 		return (EINVAL);
433 
434 	req->icount = viftable[vifi].v_pkt_in;
435 	req->ocount = viftable[vifi].v_pkt_out;
436 	req->ibytes = viftable[vifi].v_bytes_in;
437 	req->obytes = viftable[vifi].v_bytes_out;
438 
439 	return (0);
440 }
441 
442 /*
443  * Enable multicast routing
444  */
445 static int
446 ip_mrouter_init(so, m)
447 	struct socket *so;
448 	struct mbuf *m;
449 {
450 	int *v;
451 
452 	if (mrtdebug)
453 		log(LOG_DEBUG,
454 		    "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
455 		    so->so_type, so->so_proto->pr_protocol);
456 
457 	if (so->so_type != SOCK_RAW ||
458 	    so->so_proto->pr_protocol != IPPROTO_IGMP)
459 		return (EOPNOTSUPP);
460 
461 	if (m == 0 || m->m_len < sizeof(int))
462 		return (EINVAL);
463 
464 	v = mtod(m, int *);
465 	if (*v != 1)
466 		return (EINVAL);
467 
468 	if (ip_mrouter != 0)
469 		return (EADDRINUSE);
470 
471 	ip_mrouter = so;
472 
473 	mfchashtbl =
474 	    hashinit(MFCTBLSIZ, HASH_LIST, M_MRTABLE, M_WAITOK, &mfchash);
475 	bzero((caddr_t)nexpire, sizeof(nexpire));
476 
477 	pim_assert = 0;
478 
479 	callout_init(&expire_upcalls_ch);
480 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
481 	    expire_upcalls, NULL);
482 
483 	if (mrtdebug)
484 		log(LOG_DEBUG, "ip_mrouter_init\n");
485 
486 	return (0);
487 }
488 
489 /*
490  * Disable multicast routing
491  */
492 int
493 ip_mrouter_done()
494 {
495 	vifi_t vifi;
496 	struct vif *vifp;
497 	int i;
498 	int s;
499 
500 	s = splsoftnet();
501 
502 	/* Clear out all the vifs currently in use. */
503 	for (vifi = 0; vifi < numvifs; vifi++) {
504 		vifp = &viftable[vifi];
505 		if (!in_nullhost(vifp->v_lcl_addr))
506 			reset_vif(vifp);
507 	}
508 
509 	numvifs = 0;
510 	pim_assert = 0;
511 
512 	callout_stop(&expire_upcalls_ch);
513 
514 	/*
515 	 * Free all multicast forwarding cache entries.
516 	 */
517 	for (i = 0; i < MFCTBLSIZ; i++) {
518 		struct mfc *rt, *nrt;
519 
520 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
521 			nrt = LIST_NEXT(rt, mfc_hash);
522 
523 			expire_mfc(rt);
524 		}
525 	}
526 
527 	free(mfchashtbl, M_MRTABLE);
528 	mfchashtbl = 0;
529 
530 	/* Reset de-encapsulation cache. */
531 
532 	ip_mrouter = 0;
533 
534 	splx(s);
535 
536 	if (mrtdebug)
537 		log(LOG_DEBUG, "ip_mrouter_done\n");
538 
539 	return (0);
540 }
541 
542 static int
543 get_version(m)
544 	struct mbuf *m;
545 {
546 	int *v = mtod(m, int *);
547 
548 	*v = 0x0305;	/* XXX !!!! */
549 	m->m_len = sizeof(int);
550 	return (0);
551 }
552 
553 /*
554  * Set PIM assert processing global
555  */
556 static int
557 set_assert(m)
558 	struct mbuf *m;
559 {
560 	int *i;
561 
562 	if (m == 0 || m->m_len < sizeof(int))
563 		return (EINVAL);
564 
565 	i = mtod(m, int *);
566 	pim_assert = !!*i;
567 	return (0);
568 }
569 
570 /*
571  * Get PIM assert processing global
572  */
573 static int
574 get_assert(m)
575 	struct mbuf *m;
576 {
577 	int *i = mtod(m, int *);
578 
579 	*i = pim_assert;
580 	m->m_len = sizeof(int);
581 	return (0);
582 }
583 
584 static struct sockaddr_in sin = { sizeof(sin), AF_INET };
585 
586 /*
587  * Add a vif to the vif table
588  */
589 static int
590 add_vif(m)
591 	struct mbuf *m;
592 {
593 	struct vifctl *vifcp;
594 	struct vif *vifp;
595 	struct ifaddr *ifa;
596 	struct ifnet *ifp;
597 	struct ifreq ifr;
598 	int error, s;
599 
600 	if (m == 0 || m->m_len < sizeof(struct vifctl))
601 		return (EINVAL);
602 
603 	vifcp = mtod(m, struct vifctl *);
604 	if (vifcp->vifc_vifi >= MAXVIFS)
605 		return (EINVAL);
606 
607 	vifp = &viftable[vifcp->vifc_vifi];
608 	if (!in_nullhost(vifp->v_lcl_addr))
609 		return (EADDRINUSE);
610 
611 	/* Find the interface with an address in AF_INET family. */
612 	sin.sin_addr = vifcp->vifc_lcl_addr;
613 	ifa = ifa_ifwithaddr(sintosa(&sin));
614 	if (ifa == 0)
615 		return (EADDRNOTAVAIL);
616 
617 	if (vifcp->vifc_flags & VIFF_TUNNEL) {
618 		if (vifcp->vifc_flags & VIFF_SRCRT) {
619 			log(LOG_ERR, "Source routed tunnels not supported\n");
620 			return (EOPNOTSUPP);
621 		}
622 
623 		/* attach this vif to decapsulator dispatch table */
624 		vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
625 		    vif_encapcheck, &vif_protosw, vifp);
626 		if (!vifp->v_encap_cookie)
627 			return (EINVAL);
628 
629 		/* Create a fake encapsulation interface. */
630 		ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK);
631 		bzero(ifp, sizeof(*ifp));
632 		sprintf(ifp->if_xname, "mdecap%d", vifcp->vifc_vifi);
633 
634 		/* Prepare cached route entry. */
635 		bzero(&vifp->v_route, sizeof(vifp->v_route));
636 	} else {
637 		/* Use the physical interface associated with the address. */
638 		ifp = ifa->ifa_ifp;
639 
640 		/* Make sure the interface supports multicast. */
641 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
642 			return (EOPNOTSUPP);
643 
644 		/* Enable promiscuous reception of all IP multicasts. */
645 		satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
646 		satosin(&ifr.ifr_addr)->sin_family = AF_INET;
647 		satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
648 		error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
649 		if (error)
650 			return (error);
651 	}
652 
653 	s = splsoftnet();
654 
655 	/* Define parameters for the tbf structure. */
656 	vifp->tbf_q = 0;
657 	vifp->tbf_t = &vifp->tbf_q;
658 	microtime(&vifp->tbf_last_pkt_t);
659 	vifp->tbf_n_tok = 0;
660 	vifp->tbf_q_len = 0;
661 	vifp->tbf_max_q_len = MAXQSIZE;
662 
663 	vifp->v_flags = vifcp->vifc_flags;
664 	vifp->v_threshold = vifcp->vifc_threshold;
665 	/* scaling up here allows division by 1024 in critical code */
666 	vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
667 	vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
668 	vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
669 	vifp->v_ifp = ifp;
670 	/* Initialize per vif pkt counters. */
671 	vifp->v_pkt_in = 0;
672 	vifp->v_pkt_out = 0;
673 	vifp->v_bytes_in = 0;
674 	vifp->v_bytes_out = 0;
675 
676 	callout_init(&vifp->v_repq_ch);
677 
678 #ifdef RSVP_ISI
679 	vifp->v_rsvp_on = 0;
680 	vifp->v_rsvpd = 0;
681 #endif /* RSVP_ISI */
682 
683 	splx(s);
684 
685 	/* Adjust numvifs up if the vifi is higher than numvifs. */
686 	if (numvifs <= vifcp->vifc_vifi)
687 		numvifs = vifcp->vifc_vifi + 1;
688 
689 	if (mrtdebug)
690 		log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
691 		    vifcp->vifc_vifi,
692 		    ntohl(vifcp->vifc_lcl_addr.s_addr),
693 		    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
694 		    ntohl(vifcp->vifc_rmt_addr.s_addr),
695 		    vifcp->vifc_threshold,
696 		    vifcp->vifc_rate_limit);
697 
698 	return (0);
699 }
700 
701 void
702 reset_vif(vifp)
703 	struct vif *vifp;
704 {
705 	struct mbuf *m, *n;
706 	struct ifnet *ifp;
707 	struct ifreq ifr;
708 
709 	callout_stop(&vifp->v_repq_ch);
710 
711 	/* detach this vif from decapsulator dispatch table */
712 	encap_detach(vifp->v_encap_cookie);
713 	vifp->v_encap_cookie = NULL;
714 
715 	for (m = vifp->tbf_q; m != 0; m = n) {
716 		n = m->m_nextpkt;
717 		m_freem(m);
718 	}
719 
720 	if (vifp->v_flags & VIFF_TUNNEL) {
721 		free(vifp->v_ifp, M_MRTABLE);
722 		if (vifp == last_encap_vif) {
723 			last_encap_vif = 0;
724 			last_encap_src = zeroin_addr;
725 		}
726 	} else {
727 		satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
728 		satosin(&ifr.ifr_addr)->sin_family = AF_INET;
729 		satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
730 		ifp = vifp->v_ifp;
731 		(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
732 	}
733 	bzero((caddr_t)vifp, sizeof(*vifp));
734 }
735 
736 /*
737  * Delete a vif from the vif table
738  */
739 static int
740 del_vif(m)
741 	struct mbuf *m;
742 {
743 	vifi_t *vifip;
744 	struct vif *vifp;
745 	vifi_t vifi;
746 	int s;
747 
748 	if (m == 0 || m->m_len < sizeof(vifi_t))
749 		return (EINVAL);
750 
751 	vifip = mtod(m, vifi_t *);
752 	if (*vifip >= numvifs)
753 		return (EINVAL);
754 
755 	vifp = &viftable[*vifip];
756 	if (in_nullhost(vifp->v_lcl_addr))
757 		return (EADDRNOTAVAIL);
758 
759 	s = splsoftnet();
760 
761 	reset_vif(vifp);
762 
763 	/* Adjust numvifs down */
764 	for (vifi = numvifs; vifi > 0; vifi--)
765 		if (!in_nullhost(viftable[vifi-1].v_lcl_addr))
766 			break;
767 	numvifs = vifi;
768 
769 	splx(s);
770 
771 	if (mrtdebug)
772 		log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
773 
774 	return (0);
775 }
776 
777 static void
778 update_mfc(mfccp, rt)
779 	struct mfcctl *mfccp;
780 	struct mfc *rt;
781 {
782 	vifi_t vifi;
783 
784 	rt->mfc_parent = mfccp->mfcc_parent;
785 	for (vifi = 0; vifi < numvifs; vifi++)
786 		rt->mfc_ttls[vifi] = mfccp->mfcc_ttls[vifi];
787 	rt->mfc_expire = 0;
788 	rt->mfc_stall = 0;
789 }
790 
791 static void
792 expire_mfc(rt)
793 	struct mfc *rt;
794 {
795 	struct rtdetq *rte, *nrte;
796 
797 	for (rte = rt->mfc_stall; rte != 0; rte = nrte) {
798 		nrte = rte->next;
799 		m_freem(rte->m);
800 		free(rte, M_MRTABLE);
801 	}
802 
803 	LIST_REMOVE(rt, mfc_hash);
804 	free(rt, M_MRTABLE);
805 }
806 
807 /*
808  * Add an mfc entry
809  */
810 static int
811 add_mfc(m)
812 	struct mbuf *m;
813 {
814 	struct mfcctl *mfccp;
815 	struct mfc *rt;
816 	u_int32_t hash = 0;
817 	struct rtdetq *rte, *nrte;
818 	u_short nstl;
819 	int s;
820 
821 	if (m == 0 || m->m_len < sizeof(struct mfcctl))
822 		return (EINVAL);
823 
824 	mfccp = mtod(m, struct mfcctl *);
825 
826 	s = splsoftnet();
827 	MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt);
828 
829 	/* If an entry already exists, just update the fields */
830 	if (rt) {
831 		if (mrtdebug & DEBUG_MFC)
832 			log(LOG_DEBUG,"add_mfc update o %x g %x p %x\n",
833 			    ntohl(mfccp->mfcc_origin.s_addr),
834 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
835 			    mfccp->mfcc_parent);
836 
837 		if (rt->mfc_expire)
838 			nexpire[hash]--;
839 
840 		update_mfc(mfccp, rt);
841 
842 		splx(s);
843 		return (0);
844 	}
845 
846 	/*
847 	 * Find the entry for which the upcall was made and update
848 	 */
849 	nstl = 0;
850 	hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
851 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
852 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
853 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
854 		    rt->mfc_stall != 0) {
855 			if (nstl++)
856 				log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
857 				    "multiple kernel entries",
858 				    ntohl(mfccp->mfcc_origin.s_addr),
859 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
860 				    mfccp->mfcc_parent, rt->mfc_stall);
861 
862 			if (mrtdebug & DEBUG_MFC)
863 				log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %p\n",
864 				    ntohl(mfccp->mfcc_origin.s_addr),
865 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
866 				    mfccp->mfcc_parent, rt->mfc_stall);
867 
868 			if (rt->mfc_expire)
869 				nexpire[hash]--;
870 
871 			rte = rt->mfc_stall;
872 			update_mfc(mfccp, rt);
873 
874 			/* free packets Qed at the end of this entry */
875 			for (; rte != 0; rte = nrte) {
876 				nrte = rte->next;
877 #ifdef RSVP_ISI
878 				ip_mdq(rte->m, rte->ifp, rt, -1);
879 #else
880 				ip_mdq(rte->m, rte->ifp, rt);
881 #endif /* RSVP_ISI */
882 				m_freem(rte->m);
883 #ifdef UPCALL_TIMING
884 				collate(&rte->t);
885 #endif /* UPCALL_TIMING */
886 				free(rte, M_MRTABLE);
887 			}
888 		}
889 	}
890 
891 	if (nstl == 0) {
892 		/*
893 		 * No mfc; make a new one
894 		 */
895 		if (mrtdebug & DEBUG_MFC)
896 			log(LOG_DEBUG,"add_mfc no upcall o %x g %x p %x\n",
897 			    ntohl(mfccp->mfcc_origin.s_addr),
898 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
899 			    mfccp->mfcc_parent);
900 
901 		rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
902 		if (rt == 0) {
903 			splx(s);
904 			return (ENOBUFS);
905 		}
906 
907 		rt->mfc_origin = mfccp->mfcc_origin;
908 		rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
909 		/* initialize pkt counters per src-grp */
910 		rt->mfc_pkt_cnt = 0;
911 		rt->mfc_byte_cnt = 0;
912 		rt->mfc_wrong_if = 0;
913 		timerclear(&rt->mfc_last_assert);
914 		update_mfc(mfccp, rt);
915 
916 		/* insert new entry at head of hash chain */
917 		LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
918 	}
919 
920 	splx(s);
921 	return (0);
922 }
923 
924 #ifdef UPCALL_TIMING
925 /*
926  * collect delay statistics on the upcalls
927  */
928 static void collate(t)
929 struct timeval *t;
930 {
931     u_int32_t d;
932     struct timeval tp;
933     u_int32_t delta;
934 
935     microtime(&tp);
936 
937     if (timercmp(t, &tp, <)) {
938 	TV_DELTA(tp, *t, delta);
939 
940 	d = delta >> 10;
941 	if (d > 50)
942 	    d = 50;
943 
944 	++upcall_data[d];
945     }
946 }
947 #endif /* UPCALL_TIMING */
948 
949 /*
950  * Delete an mfc entry
951  */
952 static int
953 del_mfc(m)
954 	struct mbuf *m;
955 {
956 	struct mfcctl *mfccp;
957 	struct mfc *rt;
958 	int s;
959 
960 	if (m == 0 || m->m_len < sizeof(struct mfcctl))
961 		return (EINVAL);
962 
963 	mfccp = mtod(m, struct mfcctl *);
964 
965 	if (mrtdebug & DEBUG_MFC)
966 		log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
967 		    ntohl(mfccp->mfcc_origin.s_addr),
968 		    ntohl(mfccp->mfcc_mcastgrp.s_addr));
969 
970 	s = splsoftnet();
971 
972 	MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt);
973 	if (rt == 0) {
974 		splx(s);
975 		return (EADDRNOTAVAIL);
976 	}
977 
978 	LIST_REMOVE(rt, mfc_hash);
979 	free(rt, M_MRTABLE);
980 
981 	splx(s);
982 	return (0);
983 }
984 
985 static int
986 socket_send(s, mm, src)
987     struct socket *s;
988     struct mbuf *mm;
989     struct sockaddr_in *src;
990 {
991     if (s) {
992 	if (sbappendaddr(&s->so_rcv, sintosa(src), mm, (struct mbuf *)0) != 0) {
993 	    sorwakeup(s);
994 	    return (0);
995 	}
996     }
997     m_freem(mm);
998     return (-1);
999 }
1000 
1001 /*
1002  * IP multicast forwarding function. This function assumes that the packet
1003  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1004  * pointed to by "ifp", and the packet is to be relayed to other networks
1005  * that have members of the packet's destination IP multicast group.
1006  *
1007  * The packet is returned unscathed to the caller, unless it is
1008  * erroneous, in which case a non-zero return value tells the caller to
1009  * discard it.
1010  */
1011 
1012 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
1013 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1014 
1015 int
1016 #ifdef RSVP_ISI
1017 ip_mforward(m, ifp, imo)
1018 #else
1019 ip_mforward(m, ifp)
1020 #endif /* RSVP_ISI */
1021     struct mbuf *m;
1022     struct ifnet *ifp;
1023 #ifdef RSVP_ISI
1024     struct ip_moptions *imo;
1025 #endif /* RSVP_ISI */
1026 {
1027     struct ip *ip = mtod(m, struct ip *);
1028     struct mfc *rt;
1029     u_char *ipoptions;
1030     static int srctun = 0;
1031     struct mbuf *mm;
1032     int s;
1033 #ifdef RSVP_ISI
1034     struct vif *vifp;
1035     vifi_t vifi;
1036 #endif /* RSVP_ISI */
1037 
1038     /*
1039      * Clear any in-bound checksum flags for this packet.
1040      */
1041     m->m_pkthdr.csum_flags = 0;
1042 
1043     if (mrtdebug & DEBUG_FORWARD)
1044 	log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
1045 	    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1046 
1047     if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1048 	(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1049 	/*
1050 	 * Packet arrived via a physical interface or
1051 	 * an encapuslated tunnel.
1052 	 */
1053     } else {
1054 	/*
1055 	 * Packet arrived through a source-route tunnel.
1056 	 * Source-route tunnels are no longer supported.
1057 	 */
1058 	if ((srctun++ % 1000) == 0)
1059 	    log(LOG_ERR, "ip_mforward: received source-routed packet from %x\n",
1060 		ntohl(ip->ip_src.s_addr));
1061 
1062 	return (1);
1063     }
1064 
1065 #ifdef RSVP_ISI
1066     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1067 	if (ip->ip_ttl < 255)
1068 	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1069 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1070 	    vifp = viftable + vifi;
1071 	    printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
1072 		ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
1073 		(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1074 		vifp->v_ifp->if_xname);
1075 	}
1076 	return (ip_mdq(m, ifp, (struct mfc *)0, vifi));
1077     }
1078     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1079 	printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
1080 	    ntohl(ip->ip_src), ntohl(ip->ip_dst));
1081     }
1082 #endif /* RSVP_ISI */
1083 
1084     /*
1085      * Don't forward a packet with time-to-live of zero or one,
1086      * or a packet destined to a local-only group.
1087      */
1088     if (ip->ip_ttl <= 1 ||
1089 	IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1090 	return (0);
1091 
1092     /*
1093      * Determine forwarding vifs from the forwarding cache table
1094      */
1095     s = splsoftnet();
1096     MFCFIND(ip->ip_src, ip->ip_dst, rt);
1097 
1098     /* Entry exists, so forward if necessary */
1099     if (rt != 0) {
1100 	splx(s);
1101 #ifdef RSVP_ISI
1102 	return (ip_mdq(m, ifp, rt, -1));
1103 #else
1104 	return (ip_mdq(m, ifp, rt));
1105 #endif /* RSVP_ISI */
1106     } else {
1107 	/*
1108 	 * If we don't have a route for packet's origin,
1109 	 * Make a copy of the packet &
1110 	 * send message to routing daemon
1111 	 */
1112 
1113 	struct mbuf *mb0;
1114 	struct rtdetq *rte;
1115 	u_int32_t hash;
1116 	int hlen = ip->ip_hl << 2;
1117 #ifdef UPCALL_TIMING
1118 	struct timeval tp;
1119 
1120 	microtime(&tp);
1121 #endif /* UPCALL_TIMING */
1122 
1123 	mrtstat.mrts_no_route++;
1124 	if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1125 	    log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1126 		ntohl(ip->ip_src.s_addr),
1127 		ntohl(ip->ip_dst.s_addr));
1128 
1129 	/*
1130 	 * Allocate mbufs early so that we don't do extra work if we are
1131 	 * just going to fail anyway.  Make sure to pullup the header so
1132 	 * that other people can't step on it.
1133 	 */
1134 	rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT);
1135 	if (rte == 0) {
1136 	    splx(s);
1137 	    return (ENOBUFS);
1138 	}
1139 	mb0 = m_copy(m, 0, M_COPYALL);
1140 	M_PULLUP(mb0, hlen);
1141 	if (mb0 == 0) {
1142 	    free(rte, M_MRTABLE);
1143 	    splx(s);
1144 	    return (ENOBUFS);
1145 	}
1146 
1147 	/* is there an upcall waiting for this packet? */
1148 	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1149 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1150 	    if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1151 		in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1152 		rt->mfc_stall != 0)
1153 		break;
1154 	}
1155 
1156 	if (rt == 0) {
1157 	    int i;
1158 	    struct igmpmsg *im;
1159 
1160 	    /* no upcall, so make a new entry */
1161 	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1162 	    if (rt == 0) {
1163 		free(rte, M_MRTABLE);
1164 		m_freem(mb0);
1165 		splx(s);
1166 		return (ENOBUFS);
1167 	    }
1168 	    /* Make a copy of the header to send to the user level process */
1169 	    mm = m_copy(m, 0, hlen);
1170 	    M_PULLUP(mm, hlen);
1171 	    if (mm == 0) {
1172 		free(rte, M_MRTABLE);
1173 		m_freem(mb0);
1174 		free(rt, M_MRTABLE);
1175 		splx(s);
1176 		return (ENOBUFS);
1177 	    }
1178 
1179 	    /*
1180 	     * Send message to routing daemon to install
1181 	     * a route into the kernel table
1182 	     */
1183 	    sin.sin_addr = ip->ip_src;
1184 
1185 	    im = mtod(mm, struct igmpmsg *);
1186 	    im->im_msgtype	= IGMPMSG_NOCACHE;
1187 	    im->im_mbz		= 0;
1188 
1189 	    mrtstat.mrts_upcalls++;
1190 
1191 	    if (socket_send(ip_mrouter, mm, &sin) < 0) {
1192 		log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1193 		++mrtstat.mrts_upq_sockfull;
1194 		free(rte, M_MRTABLE);
1195 		m_freem(mb0);
1196 		free(rt, M_MRTABLE);
1197 		splx(s);
1198 		return (ENOBUFS);
1199 	    }
1200 
1201 	    /* insert new entry at head of hash chain */
1202 	    rt->mfc_origin = ip->ip_src;
1203 	    rt->mfc_mcastgrp = ip->ip_dst;
1204 	    rt->mfc_pkt_cnt = 0;
1205 	    rt->mfc_byte_cnt = 0;
1206 	    rt->mfc_wrong_if = 0;
1207 	    rt->mfc_expire = UPCALL_EXPIRE;
1208 	    nexpire[hash]++;
1209 	    for (i = 0; i < numvifs; i++)
1210 		rt->mfc_ttls[i] = 0;
1211 	    rt->mfc_parent = -1;
1212 
1213 	    /* link into table */
1214 	    LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1215 	    /* Add this entry to the end of the queue */
1216 	    rt->mfc_stall = rte;
1217 	} else {
1218 	    /* determine if q has overflowed */
1219 	    struct rtdetq **p;
1220 	    int npkts = 0;
1221 
1222 	    for (p = &rt->mfc_stall; *p != 0; p = &(*p)->next)
1223 		if (++npkts > MAX_UPQ) {
1224 		    mrtstat.mrts_upq_ovflw++;
1225 		    free(rte, M_MRTABLE);
1226 		    m_freem(mb0);
1227 		    splx(s);
1228 		    return (0);
1229 	        }
1230 
1231 	    /* Add this entry to the end of the queue */
1232 	    *p = rte;
1233 	}
1234 
1235 	rte->next		= 0;
1236 	rte->m 			= mb0;
1237 	rte->ifp 		= ifp;
1238 #ifdef UPCALL_TIMING
1239 	rte->t			= tp;
1240 #endif /* UPCALL_TIMING */
1241 
1242 
1243 	splx(s);
1244 
1245 	return (0);
1246     }
1247 }
1248 
1249 
1250 /*ARGSUSED*/
1251 static void
1252 expire_upcalls(v)
1253 	void *v;
1254 {
1255 	int i;
1256 	int s;
1257 
1258 	s = splsoftnet();
1259 
1260 	for (i = 0; i < MFCTBLSIZ; i++) {
1261 		struct mfc *rt, *nrt;
1262 
1263 		if (nexpire[i] == 0)
1264 			continue;
1265 
1266 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1267 			nrt = LIST_NEXT(rt, mfc_hash);
1268 
1269 			if (rt->mfc_expire == 0 ||
1270 			    --rt->mfc_expire > 0)
1271 				continue;
1272 			nexpire[i]--;
1273 
1274 			++mrtstat.mrts_cache_cleanups;
1275 			if (mrtdebug & DEBUG_EXPIRE)
1276 				log(LOG_DEBUG,
1277 				    "expire_upcalls: expiring (%x %x)\n",
1278 				    ntohl(rt->mfc_origin.s_addr),
1279 				    ntohl(rt->mfc_mcastgrp.s_addr));
1280 
1281 			expire_mfc(rt);
1282 		}
1283 	}
1284 
1285 	splx(s);
1286 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
1287 	    expire_upcalls, NULL);
1288 }
1289 
1290 /*
1291  * Packet forwarding routine once entry in the cache is made
1292  */
1293 static int
1294 #ifdef RSVP_ISI
1295 ip_mdq(m, ifp, rt, xmt_vif)
1296 #else
1297 ip_mdq(m, ifp, rt)
1298 #endif /* RSVP_ISI */
1299     struct mbuf *m;
1300     struct ifnet *ifp;
1301     struct mfc *rt;
1302 #ifdef RSVP_ISI
1303     vifi_t xmt_vif;
1304 #endif /* RSVP_ISI */
1305 {
1306     struct ip  *ip = mtod(m, struct ip *);
1307     vifi_t vifi;
1308     struct vif *vifp;
1309     int plen = ntohs(ip->ip_len);
1310 
1311 /*
1312  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1313  * input, they shouldn't get counted on output, so statistics keeping is
1314  * separate.
1315  */
1316 #define MC_SEND(ip,vifp,m) {                             \
1317                 if ((vifp)->v_flags & VIFF_TUNNEL)	 \
1318                     encap_send((ip), (vifp), (m));       \
1319                 else                                     \
1320                     phyint_send((ip), (vifp), (m));      \
1321 }
1322 
1323 #ifdef RSVP_ISI
1324     /*
1325      * If xmt_vif is not -1, send on only the requested vif.
1326      *
1327      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1328      */
1329     if (xmt_vif < numvifs) {
1330         MC_SEND(ip, viftable + xmt_vif, m);
1331 	return (1);
1332     }
1333 #endif /* RSVP_ISI */
1334 
1335     /*
1336      * Don't forward if it didn't arrive from the parent vif for its origin.
1337      */
1338     vifi = rt->mfc_parent;
1339     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1340 	/* came in the wrong interface */
1341 	if (mrtdebug & DEBUG_FORWARD)
1342 	    log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1343 		ifp, vifi, viftable[vifi].v_ifp);
1344 	++mrtstat.mrts_wrong_if;
1345 	++rt->mfc_wrong_if;
1346 	/*
1347 	 * If we are doing PIM assert processing, and we are forwarding
1348 	 * packets on this interface, and it is a broadcast medium
1349 	 * interface (and not a tunnel), send a message to the routing daemon.
1350 	 */
1351 	if (pim_assert && rt->mfc_ttls[vifi] &&
1352 		(ifp->if_flags & IFF_BROADCAST) &&
1353 		!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1354 	    struct mbuf *mm;
1355 	    struct igmpmsg *im;
1356 	    int hlen = ip->ip_hl << 2;
1357 	    struct timeval now;
1358 	    u_int32_t delta;
1359 
1360 	    microtime(&now);
1361 
1362 	    TV_DELTA(rt->mfc_last_assert, now, delta);
1363 
1364 	    if (delta > ASSERT_MSG_TIME) {
1365 		mm = m_copy(m, 0, hlen);
1366 		M_PULLUP(mm, hlen);
1367 		if (mm == 0) {
1368 		    return (ENOBUFS);
1369 		}
1370 
1371 		rt->mfc_last_assert = now;
1372 
1373 		im = mtod(mm, struct igmpmsg *);
1374 		im->im_msgtype	= IGMPMSG_WRONGVIF;
1375 		im->im_mbz	= 0;
1376 		im->im_vif	= vifi;
1377 
1378 		sin.sin_addr = im->im_src;
1379 
1380 		socket_send(ip_mrouter, mm, &sin);
1381 	    }
1382 	}
1383 	return (0);
1384     }
1385 
1386     /* If I sourced this packet, it counts as output, else it was input. */
1387     if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1388 	viftable[vifi].v_pkt_out++;
1389 	viftable[vifi].v_bytes_out += plen;
1390     } else {
1391 	viftable[vifi].v_pkt_in++;
1392 	viftable[vifi].v_bytes_in += plen;
1393     }
1394     rt->mfc_pkt_cnt++;
1395     rt->mfc_byte_cnt += plen;
1396 
1397     /*
1398      * For each vif, decide if a copy of the packet should be forwarded.
1399      * Forward if:
1400      *		- the ttl exceeds the vif's threshold
1401      *		- there are group members downstream on interface
1402      */
1403     for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1404 	if ((rt->mfc_ttls[vifi] > 0) &&
1405 	    (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1406 	    vifp->v_pkt_out++;
1407 	    vifp->v_bytes_out += plen;
1408 	    MC_SEND(ip, vifp, m);
1409 	}
1410 
1411     return (0);
1412 }
1413 
1414 #ifdef RSVP_ISI
1415 /*
1416  * check if a vif number is legal/ok. This is used by ip_output, to export
1417  * numvifs there,
1418  */
1419 int
1420 legal_vif_num(vif)
1421     int vif;
1422 {
1423     if (vif >= 0 && vif < numvifs)
1424        return (1);
1425     else
1426        return (0);
1427 }
1428 #endif /* RSVP_ISI */
1429 
1430 static void
1431 phyint_send(ip, vifp, m)
1432 	struct ip *ip;
1433 	struct vif *vifp;
1434 	struct mbuf *m;
1435 {
1436 	struct mbuf *mb_copy;
1437 	int hlen = ip->ip_hl << 2;
1438 
1439 	/*
1440 	 * Make a new reference to the packet; make sure that
1441 	 * the IP header is actually copied, not just referenced,
1442 	 * so that ip_output() only scribbles on the copy.
1443 	 */
1444 	mb_copy = m_copy(m, 0, M_COPYALL);
1445 	M_PULLUP(mb_copy, hlen);
1446 	if (mb_copy == 0)
1447 		return;
1448 
1449 	if (vifp->v_rate_limit <= 0)
1450 		tbf_send_packet(vifp, mb_copy);
1451 	else
1452 		tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
1453 		    ntohs(ip->ip_len));
1454 }
1455 
1456 static void
1457 encap_send(ip, vifp, m)
1458 	struct ip *ip;
1459 	struct vif *vifp;
1460 	struct mbuf *m;
1461 {
1462 	struct mbuf *mb_copy;
1463 	struct ip *ip_copy;
1464 	int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
1465 
1466 	/*
1467 	 * copy the old packet & pullup it's IP header into the
1468 	 * new mbuf so we can modify it.  Try to fill the new
1469 	 * mbuf since if we don't the ethernet driver will.
1470 	 */
1471 	MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1472 	if (mb_copy == 0)
1473 		return;
1474 	mb_copy->m_data += max_linkhdr;
1475 	mb_copy->m_pkthdr.len = len;
1476 	mb_copy->m_len = sizeof(multicast_encap_iphdr);
1477 
1478 	if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == 0) {
1479 		m_freem(mb_copy);
1480 		return;
1481 	}
1482 	i = MHLEN - max_linkhdr;
1483 	if (i > len)
1484 		i = len;
1485 	mb_copy = m_pullup(mb_copy, i);
1486 	if (mb_copy == 0)
1487 		return;
1488 
1489 	/*
1490 	 * fill in the encapsulating IP header.
1491 	 */
1492 	ip_copy = mtod(mb_copy, struct ip *);
1493 	*ip_copy = multicast_encap_iphdr;
1494 	ip_copy->ip_id = htons(ip_id++);
1495 	ip_copy->ip_len = htons(len);
1496 	ip_copy->ip_src = vifp->v_lcl_addr;
1497 	ip_copy->ip_dst = vifp->v_rmt_addr;
1498 
1499 	/*
1500 	 * turn the encapsulated IP header back into a valid one.
1501 	 */
1502 	ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1503 	--ip->ip_ttl;
1504 	ip->ip_sum = 0;
1505 	mb_copy->m_data += sizeof(multicast_encap_iphdr);
1506 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1507 	mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1508 
1509 	if (vifp->v_rate_limit <= 0)
1510 		tbf_send_packet(vifp, mb_copy);
1511 	else
1512 		tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
1513 }
1514 
1515 /*
1516  * De-encapsulate a packet and feed it back through ip input.
1517  */
1518 static void
1519 #if __STDC__
1520 vif_input(struct mbuf *m, ...)
1521 #else
1522 vif_input(m, va_alist)
1523 	struct mbuf *m;
1524 	va_dcl
1525 #endif
1526 {
1527 	int off, proto;
1528 	va_list ap;
1529 	struct ip *ip;
1530 	struct vif *vifp;
1531 	int s;
1532 	struct ifqueue *ifq;
1533 
1534 	va_start(ap, m);
1535 	off = va_arg(ap, int);
1536 	proto = va_arg(ap, int);
1537 	va_end(ap);
1538 
1539 	vifp = (struct vif *)encap_getarg(m);
1540 	if (!vifp || proto != AF_INET) {
1541 		m_freem(m);
1542 		mrtstat.mrts_bad_tunnel++;
1543 		return;
1544 	}
1545 
1546 	ip = mtod(m, struct ip *);
1547 
1548 	m_adj(m, off);
1549 	m->m_pkthdr.rcvif = vifp->v_ifp;
1550 	ifq = &ipintrq;
1551 	s = splnet();
1552 	if (IF_QFULL(ifq)) {
1553 		IF_DROP(ifq);
1554 		m_freem(m);
1555 	} else {
1556 		IF_ENQUEUE(ifq, m);
1557 		/*
1558 		 * normally we would need a "schednetisr(NETISR_IP)"
1559 		 * here but we were called by ip_input and it is going
1560 		 * to loop back & try to dequeue the packet we just
1561 		 * queued as soon as we return so we avoid the
1562 		 * unnecessary software interrrupt.
1563 		 */
1564 	}
1565 	splx(s);
1566 }
1567 
1568 /*
1569  * Check if the packet should be grabbed by us.
1570  */
1571 static int
1572 vif_encapcheck(m, off, proto, arg)
1573 	const struct mbuf *m;
1574 	int off;
1575 	int proto;
1576 	void *arg;
1577 {
1578 	struct vif *vifp;
1579 	struct ip ip;
1580 
1581 #ifdef DIAGNOSTIC
1582 	if (!arg || proto != IPPROTO_IPV4)
1583 		panic("unexpected arg in vif_encapcheck");
1584 #endif
1585 
1586 	/*
1587 	 * do not grab the packet if it's not to a multicast destination or if
1588 	 * we don't have an encapsulating tunnel with the source.
1589 	 * Note:  This code assumes that the remote site IP address
1590 	 * uniquely identifies the tunnel (i.e., that this site has
1591 	 * at most one tunnel with the remote site).
1592 	 */
1593 
1594 	/* LINTED const cast */
1595 	m_copydata((struct mbuf *)m, off, sizeof(ip), (caddr_t)&ip);
1596 	if (!IN_MULTICAST(ip.ip_dst.s_addr))
1597 		return 0;
1598 
1599 	/* LINTED const cast */
1600 	m_copydata((struct mbuf *)m, 0, sizeof(ip), (caddr_t)&ip);
1601 	if (!in_hosteq(ip.ip_src, last_encap_src)) {
1602 		vifp = (struct vif *)arg;
1603 		if (vifp->v_flags & VIFF_TUNNEL &&
1604 		    in_hosteq(vifp->v_rmt_addr, ip.ip_src))
1605 			;
1606 		else
1607 			return 0;
1608 		last_encap_vif = vifp;
1609 		last_encap_src = ip.ip_src;
1610 	} else
1611 		vifp = last_encap_vif;
1612 
1613 	/* 32bit match, since we have checked ip_src only */
1614 	return 32;
1615 }
1616 
1617 /*
1618  * Token bucket filter module
1619  */
1620 static void
1621 tbf_control(vifp, m, ip, len)
1622 	struct vif *vifp;
1623 	struct mbuf *m;
1624 	struct ip *ip;
1625 	u_int32_t len;
1626 {
1627 
1628 	if (len > MAX_BKT_SIZE) {
1629 		/* drop if packet is too large */
1630 		mrtstat.mrts_pkt2large++;
1631 		m_freem(m);
1632 		return;
1633 	}
1634 
1635 	tbf_update_tokens(vifp);
1636 
1637 	/*
1638 	 * If there are enough tokens, and the queue is empty, send this packet
1639 	 * out immediately.  Otherwise, try to insert it on this vif's queue.
1640 	 */
1641 	if (vifp->tbf_q_len == 0) {
1642 		if (len <= vifp->tbf_n_tok) {
1643 			vifp->tbf_n_tok -= len;
1644 			tbf_send_packet(vifp, m);
1645 		} else {
1646 			/* queue packet and timeout till later */
1647 			tbf_queue(vifp, m);
1648 			callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
1649 			    tbf_reprocess_q, vifp);
1650 		}
1651 	} else {
1652 		if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
1653 		    !tbf_dq_sel(vifp, ip)) {
1654 			/* queue length too much, and couldn't make room */
1655 			mrtstat.mrts_q_overflow++;
1656 			m_freem(m);
1657 		} else {
1658 			/* queue length low enough, or made room */
1659 			tbf_queue(vifp, m);
1660 			tbf_process_q(vifp);
1661 		}
1662 	}
1663 }
1664 
1665 /*
1666  * adds a packet to the queue at the interface
1667  */
1668 static void
1669 tbf_queue(vifp, m)
1670 	struct vif *vifp;
1671 	struct mbuf *m;
1672 {
1673 	int s = splsoftnet();
1674 
1675 	/* insert at tail */
1676 	*vifp->tbf_t = m;
1677 	vifp->tbf_t = &m->m_nextpkt;
1678 	vifp->tbf_q_len++;
1679 
1680 	splx(s);
1681 }
1682 
1683 
1684 /*
1685  * processes the queue at the interface
1686  */
1687 static void
1688 tbf_process_q(vifp)
1689 	struct vif *vifp;
1690 {
1691 	struct mbuf *m;
1692 	int len;
1693 	int s = splsoftnet();
1694 
1695 	/*
1696 	 * Loop through the queue at the interface and send as many packets
1697 	 * as possible.
1698 	 */
1699 	for (m = vifp->tbf_q;
1700 	    m != 0;
1701 	    m = vifp->tbf_q) {
1702 		len = ntohs(mtod(m, struct ip *)->ip_len);
1703 
1704 		/* determine if the packet can be sent */
1705 		if (len <= vifp->tbf_n_tok) {
1706 			/* if so,
1707 			 * reduce no of tokens, dequeue the packet,
1708 			 * send the packet.
1709 			 */
1710 			if ((vifp->tbf_q = m->m_nextpkt) == 0)
1711 				vifp->tbf_t = &vifp->tbf_q;
1712 			--vifp->tbf_q_len;
1713 
1714 			m->m_nextpkt = 0;
1715 			vifp->tbf_n_tok -= len;
1716 			tbf_send_packet(vifp, m);
1717 		} else
1718 			break;
1719 	}
1720 	splx(s);
1721 }
1722 
1723 static void
1724 tbf_reprocess_q(arg)
1725 	void *arg;
1726 {
1727 	struct vif *vifp = arg;
1728 
1729 	if (ip_mrouter == 0)
1730 		return;
1731 
1732 	tbf_update_tokens(vifp);
1733 	tbf_process_q(vifp);
1734 
1735 	if (vifp->tbf_q_len != 0)
1736 		callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
1737 		    tbf_reprocess_q, vifp);
1738 }
1739 
1740 /* function that will selectively discard a member of the queue
1741  * based on the precedence value and the priority
1742  */
1743 static int
1744 tbf_dq_sel(vifp, ip)
1745 	struct vif *vifp;
1746 	struct ip *ip;
1747 {
1748 	u_int p;
1749 	struct mbuf **mp, *m;
1750 	int s = splsoftnet();
1751 
1752 	p = priority(vifp, ip);
1753 
1754 	for (mp = &vifp->tbf_q, m = *mp;
1755 	    m != 0;
1756 	    mp = &m->m_nextpkt, m = *mp) {
1757 		if (p > priority(vifp, mtod(m, struct ip *))) {
1758 			if ((*mp = m->m_nextpkt) == 0)
1759 				vifp->tbf_t = mp;
1760 			--vifp->tbf_q_len;
1761 
1762 			m_freem(m);
1763 			mrtstat.mrts_drop_sel++;
1764 			splx(s);
1765 			return (1);
1766 		}
1767 	}
1768 	splx(s);
1769 	return (0);
1770 }
1771 
1772 static void
1773 tbf_send_packet(vifp, m)
1774 	struct vif *vifp;
1775 	struct mbuf *m;
1776 {
1777 	int error;
1778 	int s = splsoftnet();
1779 
1780 	if (vifp->v_flags & VIFF_TUNNEL) {
1781 		/* If tunnel options */
1782 #ifdef IPSEC
1783 		/* Don't lookup socket in forwading case */
1784 		(void)ipsec_setsocket(m, NULL);
1785 #endif
1786 		ip_output(m, (struct mbuf *)0, &vifp->v_route,
1787 			  IP_FORWARDING, (struct ip_moptions *)0);
1788 	} else {
1789 		/* if physical interface option, extract the options and then send */
1790 		struct ip_moptions imo;
1791 
1792 		imo.imo_multicast_ifp = vifp->v_ifp;
1793 		imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
1794 		imo.imo_multicast_loop = 1;
1795 #ifdef RSVP_ISI
1796 		imo.imo_multicast_vif = -1;
1797 #endif
1798 
1799 #ifdef IPSEC
1800 		/* Don't lookup socket in forwading case */
1801 		(void)ipsec_setsocket(m, NULL);
1802 #endif
1803 		error = ip_output(m, (struct mbuf *)0, (struct route *)0,
1804 				  IP_FORWARDING|IP_MULTICASTOPTS, &imo);
1805 
1806 		if (mrtdebug & DEBUG_XMIT)
1807 			log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
1808 			    (long)(vifp-viftable), error);
1809 	}
1810 	splx(s);
1811 }
1812 
1813 /* determine the current time and then
1814  * the elapsed time (between the last time and time now)
1815  * in milliseconds & update the no. of tokens in the bucket
1816  */
1817 static void
1818 tbf_update_tokens(vifp)
1819 	struct vif *vifp;
1820 {
1821 	struct timeval tp;
1822 	u_int32_t tm;
1823 	int s = splsoftnet();
1824 
1825 	microtime(&tp);
1826 
1827 	TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
1828 
1829 	/*
1830 	 * This formula is actually
1831 	 * "time in seconds" * "bytes/second".
1832 	 *
1833 	 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1834 	 *
1835 	 * The (1000/1024) was introduced in add_vif to optimize
1836 	 * this divide into a shift.
1837 	 */
1838 	vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
1839 	vifp->tbf_last_pkt_t = tp;
1840 
1841 	if (vifp->tbf_n_tok > MAX_BKT_SIZE)
1842 		vifp->tbf_n_tok = MAX_BKT_SIZE;
1843 
1844 	splx(s);
1845 }
1846 
1847 static int
1848 priority(vifp, ip)
1849     struct vif *vifp;
1850     struct ip *ip;
1851 {
1852     int prio;
1853 
1854     /* temporary hack; may add general packet classifier some day */
1855 
1856     /*
1857      * The UDP port space is divided up into four priority ranges:
1858      * [0, 16384)     : unclassified - lowest priority
1859      * [16384, 32768) : audio - highest priority
1860      * [32768, 49152) : whiteboard - medium priority
1861      * [49152, 65536) : video - low priority
1862      */
1863     if (ip->ip_p == IPPROTO_UDP) {
1864 	struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1865 
1866 	switch (ntohs(udp->uh_dport) & 0xc000) {
1867 	    case 0x4000:
1868 		prio = 70;
1869 		break;
1870 	    case 0x8000:
1871 		prio = 60;
1872 		break;
1873 	    case 0xc000:
1874 		prio = 55;
1875 		break;
1876 	    default:
1877 		prio = 50;
1878 		break;
1879 	}
1880 
1881 	if (tbfdebug > 1)
1882 	    log(LOG_DEBUG, "port %x prio %d\n", ntohs(udp->uh_dport), prio);
1883     } else
1884 	prio = 50;
1885 
1886 
1887     return (prio);
1888 }
1889 
1890 /*
1891  * End of token bucket filter modifications
1892  */
1893 
1894 #ifdef RSVP_ISI
1895 
1896 int
1897 ip_rsvp_vif_init(so, m)
1898     struct socket *so;
1899     struct mbuf *m;
1900 {
1901     int i;
1902     int s;
1903 
1904     if (rsvpdebug)
1905 	printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1906 	    so->so_type, so->so_proto->pr_protocol);
1907 
1908     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1909 	return (EOPNOTSUPP);
1910 
1911     /* Check mbuf. */
1912     if (m == 0 || m->m_len != sizeof(int)) {
1913 	return (EINVAL);
1914     }
1915     i = *(mtod(m, int *));
1916 
1917     if (rsvpdebug)
1918 	printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
1919 
1920     s = splsoftnet();
1921 
1922     /* Check vif. */
1923     if (!legal_vif_num(i)) {
1924 	splx(s);
1925 	return (EADDRNOTAVAIL);
1926     }
1927 
1928     /* Check if socket is available. */
1929     if (viftable[i].v_rsvpd != 0) {
1930 	splx(s);
1931 	return (EADDRINUSE);
1932     }
1933 
1934     viftable[i].v_rsvpd = so;
1935     /* This may seem silly, but we need to be sure we don't over-increment
1936      * the RSVP counter, in case something slips up.
1937      */
1938     if (!viftable[i].v_rsvp_on) {
1939 	viftable[i].v_rsvp_on = 1;
1940 	rsvp_on++;
1941     }
1942 
1943     splx(s);
1944     return (0);
1945 }
1946 
1947 int
1948 ip_rsvp_vif_done(so, m)
1949     struct socket *so;
1950     struct mbuf *m;
1951 {
1952     int i;
1953     int s;
1954 
1955     if (rsvpdebug)
1956 	printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
1957 	       so->so_type, so->so_proto->pr_protocol);
1958 
1959     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1960 	return (EOPNOTSUPP);
1961 
1962     /* Check mbuf. */
1963     if (m == 0 || m->m_len != sizeof(int)) {
1964 	return (EINVAL);
1965     }
1966     i = *(mtod(m, int *));
1967 
1968     s = splsoftnet();
1969 
1970     /* Check vif. */
1971     if (!legal_vif_num(i)) {
1972 	splx(s);
1973         return (EADDRNOTAVAIL);
1974     }
1975 
1976     if (rsvpdebug)
1977 	printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
1978 	    viftable[i].v_rsvpd, so);
1979 
1980     viftable[i].v_rsvpd = 0;
1981     /* This may seem silly, but we need to be sure we don't over-decrement
1982      * the RSVP counter, in case something slips up.
1983      */
1984     if (viftable[i].v_rsvp_on) {
1985 	viftable[i].v_rsvp_on = 0;
1986 	rsvp_on--;
1987     }
1988 
1989     splx(s);
1990     return (0);
1991 }
1992 
1993 void
1994 ip_rsvp_force_done(so)
1995     struct socket *so;
1996 {
1997     int vifi;
1998     int s;
1999 
2000     /* Don't bother if it is not the right type of socket. */
2001     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2002 	return;
2003 
2004     s = splsoftnet();
2005 
2006     /* The socket may be attached to more than one vif...this
2007      * is perfectly legal.
2008      */
2009     for (vifi = 0; vifi < numvifs; vifi++) {
2010 	if (viftable[vifi].v_rsvpd == so) {
2011 	    viftable[vifi].v_rsvpd = 0;
2012 	    /* This may seem silly, but we need to be sure we don't
2013 	     * over-decrement the RSVP counter, in case something slips up.
2014 	     */
2015 	    if (viftable[vifi].v_rsvp_on) {
2016 		viftable[vifi].v_rsvp_on = 0;
2017 		rsvp_on--;
2018 	    }
2019 	}
2020     }
2021 
2022     splx(s);
2023     return;
2024 }
2025 
2026 void
2027 rsvp_input(m, ifp)
2028     struct mbuf *m;
2029     struct ifnet *ifp;
2030 {
2031     int vifi;
2032     struct ip *ip = mtod(m, struct ip *);
2033     static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
2034     int s;
2035 
2036     if (rsvpdebug)
2037 	printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2038 
2039     /* Can still get packets with rsvp_on = 0 if there is a local member
2040      * of the group to which the RSVP packet is addressed.  But in this
2041      * case we want to throw the packet away.
2042      */
2043     if (!rsvp_on) {
2044 	m_freem(m);
2045 	return;
2046     }
2047 
2048     /* If the old-style non-vif-associated socket is set, then use
2049      * it and ignore the new ones.
2050      */
2051     if (ip_rsvpd != 0) {
2052 	if (rsvpdebug)
2053 	    printf("rsvp_input: Sending packet up old-style socket\n");
2054 	rip_input(m);	/*XXX*/
2055 	return;
2056     }
2057 
2058     s = splsoftnet();
2059 
2060     if (rsvpdebug)
2061 	printf("rsvp_input: check vifs\n");
2062 
2063     /* Find which vif the packet arrived on. */
2064     for (vifi = 0; vifi < numvifs; vifi++) {
2065 	if (viftable[vifi].v_ifp == ifp)
2066 	    break;
2067     }
2068 
2069     if (vifi == numvifs) {
2070 	/* Can't find vif packet arrived on. Drop packet. */
2071 	if (rsvpdebug)
2072 	    printf("rsvp_input: Can't find vif for packet...dropping it.\n");
2073 	m_freem(m);
2074 	splx(s);
2075 	return;
2076     }
2077 
2078     if (rsvpdebug)
2079 	printf("rsvp_input: check socket\n");
2080 
2081     if (viftable[vifi].v_rsvpd == 0) {
2082 	/* drop packet, since there is no specific socket for this
2083 	 * interface */
2084 	if (rsvpdebug)
2085 	    printf("rsvp_input: No socket defined for vif %d\n",vifi);
2086 	m_freem(m);
2087 	splx(s);
2088 	return;
2089     }
2090 
2091     rsvp_src.sin_addr = ip->ip_src;
2092 
2093     if (rsvpdebug && m)
2094 	printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
2095 	       m->m_len,sbspace(&viftable[vifi].v_rsvpd->so_rcv));
2096 
2097     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2098 	if (rsvpdebug)
2099 	    printf("rsvp_input: Failed to append to socket\n");
2100     else
2101 	if (rsvpdebug)
2102 	    printf("rsvp_input: send packet up\n");
2103 
2104     splx(s);
2105 }
2106 #endif /* RSVP_ISI */
2107