xref: /netbsd/sys/netinet/tcp_input.c (revision 6550d01e)
1 /*	$NetBSD: tcp_input.c,v 1.306 2010/12/02 19:07:27 plunky Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
74  * All rights reserved.
75  *
76  * This code is derived from software contributed to The NetBSD Foundation
77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78  * Facility, NASA Ames Research Center.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Charles M. Hannum.
81  * This code is derived from software contributed to The NetBSD Foundation
82  * by Rui Paulo.
83  *
84  * Redistribution and use in source and binary forms, with or without
85  * modification, are permitted provided that the following conditions
86  * are met:
87  * 1. Redistributions of source code must retain the above copyright
88  *    notice, this list of conditions and the following disclaimer.
89  * 2. Redistributions in binary form must reproduce the above copyright
90  *    notice, this list of conditions and the following disclaimer in the
91  *    documentation and/or other materials provided with the distribution.
92  *
93  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
94  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
95  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
96  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
97  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
98  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
99  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
100  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
101  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
103  * POSSIBILITY OF SUCH DAMAGE.
104  */
105 
106 /*
107  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
108  *	The Regents of the University of California.  All rights reserved.
109  *
110  * Redistribution and use in source and binary forms, with or without
111  * modification, are permitted provided that the following conditions
112  * are met:
113  * 1. Redistributions of source code must retain the above copyright
114  *    notice, this list of conditions and the following disclaimer.
115  * 2. Redistributions in binary form must reproduce the above copyright
116  *    notice, this list of conditions and the following disclaimer in the
117  *    documentation and/or other materials provided with the distribution.
118  * 3. Neither the name of the University nor the names of its contributors
119  *    may be used to endorse or promote products derived from this software
120  *    without specific prior written permission.
121  *
122  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
123  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
124  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
125  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
126  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
127  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
128  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
129  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
130  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
131  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
132  * SUCH DAMAGE.
133  *
134  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
135  */
136 
137 /*
138  *	TODO list for SYN cache stuff:
139  *
140  *	Find room for a "state" field, which is needed to keep a
141  *	compressed state for TIME_WAIT TCBs.  It's been noted already
142  *	that this is fairly important for very high-volume web and
143  *	mail servers, which use a large number of short-lived
144  *	connections.
145  */
146 
147 #include <sys/cdefs.h>
148 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.306 2010/12/02 19:07:27 plunky Exp $");
149 
150 #include "opt_inet.h"
151 #include "opt_ipsec.h"
152 #include "opt_inet_csum.h"
153 #include "opt_tcp_debug.h"
154 
155 #include <sys/param.h>
156 #include <sys/systm.h>
157 #include <sys/malloc.h>
158 #include <sys/mbuf.h>
159 #include <sys/protosw.h>
160 #include <sys/socket.h>
161 #include <sys/socketvar.h>
162 #include <sys/errno.h>
163 #include <sys/syslog.h>
164 #include <sys/pool.h>
165 #include <sys/domain.h>
166 #include <sys/kernel.h>
167 #ifdef TCP_SIGNATURE
168 #include <sys/md5.h>
169 #endif
170 #include <sys/lwp.h> /* for lwp0 */
171 
172 #include <net/if.h>
173 #include <net/route.h>
174 #include <net/if_types.h>
175 
176 #include <netinet/in.h>
177 #include <netinet/in_systm.h>
178 #include <netinet/ip.h>
179 #include <netinet/in_pcb.h>
180 #include <netinet/in_var.h>
181 #include <netinet/ip_var.h>
182 #include <netinet/in_offload.h>
183 
184 #ifdef INET6
185 #ifndef INET
186 #include <netinet/in.h>
187 #endif
188 #include <netinet/ip6.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_pcb.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_var.h>
193 #include <netinet/icmp6.h>
194 #include <netinet6/nd6.h>
195 #ifdef TCP_SIGNATURE
196 #include <netinet6/scope6_var.h>
197 #endif
198 #endif
199 
200 #ifndef INET6
201 /* always need ip6.h for IP6_EXTHDR_GET */
202 #include <netinet/ip6.h>
203 #endif
204 
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcp_private.h>
211 #include <netinet/tcpip.h>
212 #include <netinet/tcp_congctl.h>
213 #include <netinet/tcp_debug.h>
214 
215 #include <machine/stdarg.h>
216 
217 #ifdef IPSEC
218 #include <netinet6/ipsec.h>
219 #include <netinet6/ipsec_private.h>
220 #include <netkey/key.h>
221 #endif /*IPSEC*/
222 #ifdef INET6
223 #include "faith.h"
224 #if defined(NFAITH) && NFAITH > 0
225 #include <net/if_faith.h>
226 #endif
227 #endif	/* IPSEC */
228 
229 #ifdef FAST_IPSEC
230 #include <netipsec/ipsec.h>
231 #include <netipsec/ipsec_var.h>
232 #include <netipsec/ipsec_private.h>
233 #include <netipsec/key.h>
234 #ifdef INET6
235 #include <netipsec/ipsec6.h>
236 #endif
237 #endif	/* FAST_IPSEC*/
238 
239 int	tcprexmtthresh = 3;
240 int	tcp_log_refused;
241 
242 int	tcp_do_autorcvbuf = 1;
243 int	tcp_autorcvbuf_inc = 16 * 1024;
244 int	tcp_autorcvbuf_max = 256 * 1024;
245 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
246 
247 static int tcp_rst_ppslim_count = 0;
248 static struct timeval tcp_rst_ppslim_last;
249 static int tcp_ackdrop_ppslim_count = 0;
250 static struct timeval tcp_ackdrop_ppslim_last;
251 
252 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
253 
254 /* for modulo comparisons of timestamps */
255 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
256 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
257 
258 /*
259  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
260  */
261 #ifdef INET6
262 static inline void
263 nd6_hint(struct tcpcb *tp)
264 {
265 	struct rtentry *rt;
266 
267 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
268 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
269 		nd6_nud_hint(rt, NULL, 0);
270 }
271 #else
272 static inline void
273 nd6_hint(struct tcpcb *tp)
274 {
275 }
276 #endif
277 
278 /*
279  * Compute ACK transmission behavior.  Delay the ACK unless
280  * we have already delayed an ACK (must send an ACK every two segments).
281  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
282  * option is enabled.
283  */
284 static void
285 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
286 {
287 
288 	if (tp->t_flags & TF_DELACK ||
289 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
290 		tp->t_flags |= TF_ACKNOW;
291 	else
292 		TCP_SET_DELACK(tp);
293 }
294 
295 static void
296 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
297 {
298 
299 	/*
300 	 * If we had a pending ICMP message that refers to data that have
301 	 * just been acknowledged, disregard the recorded ICMP message.
302 	 */
303 	if ((tp->t_flags & TF_PMTUD_PEND) &&
304 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
305 		tp->t_flags &= ~TF_PMTUD_PEND;
306 
307 	/*
308 	 * Keep track of the largest chunk of data
309 	 * acknowledged since last PMTU update
310 	 */
311 	if (tp->t_pmtud_mss_acked < acked)
312 		tp->t_pmtud_mss_acked = acked;
313 }
314 
315 /*
316  * Convert TCP protocol fields to host order for easier processing.
317  */
318 static void
319 tcp_fields_to_host(struct tcphdr *th)
320 {
321 
322 	NTOHL(th->th_seq);
323 	NTOHL(th->th_ack);
324 	NTOHS(th->th_win);
325 	NTOHS(th->th_urp);
326 }
327 
328 /*
329  * ... and reverse the above.
330  */
331 static void
332 tcp_fields_to_net(struct tcphdr *th)
333 {
334 
335 	HTONL(th->th_seq);
336 	HTONL(th->th_ack);
337 	HTONS(th->th_win);
338 	HTONS(th->th_urp);
339 }
340 
341 #ifdef TCP_CSUM_COUNTERS
342 #include <sys/device.h>
343 
344 #if defined(INET)
345 extern struct evcnt tcp_hwcsum_ok;
346 extern struct evcnt tcp_hwcsum_bad;
347 extern struct evcnt tcp_hwcsum_data;
348 extern struct evcnt tcp_swcsum;
349 #endif /* defined(INET) */
350 #if defined(INET6)
351 extern struct evcnt tcp6_hwcsum_ok;
352 extern struct evcnt tcp6_hwcsum_bad;
353 extern struct evcnt tcp6_hwcsum_data;
354 extern struct evcnt tcp6_swcsum;
355 #endif /* defined(INET6) */
356 
357 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
358 
359 #else
360 
361 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
362 
363 #endif /* TCP_CSUM_COUNTERS */
364 
365 #ifdef TCP_REASS_COUNTERS
366 #include <sys/device.h>
367 
368 extern struct evcnt tcp_reass_;
369 extern struct evcnt tcp_reass_empty;
370 extern struct evcnt tcp_reass_iteration[8];
371 extern struct evcnt tcp_reass_prependfirst;
372 extern struct evcnt tcp_reass_prepend;
373 extern struct evcnt tcp_reass_insert;
374 extern struct evcnt tcp_reass_inserttail;
375 extern struct evcnt tcp_reass_append;
376 extern struct evcnt tcp_reass_appendtail;
377 extern struct evcnt tcp_reass_overlaptail;
378 extern struct evcnt tcp_reass_overlapfront;
379 extern struct evcnt tcp_reass_segdup;
380 extern struct evcnt tcp_reass_fragdup;
381 
382 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
383 
384 #else
385 
386 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
387 
388 #endif /* TCP_REASS_COUNTERS */
389 
390 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
391     int *);
392 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
393     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
394 
395 #ifdef INET
396 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
397 #endif
398 #ifdef INET6
399 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
400 #endif
401 
402 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
403 
404 #if defined(MBUFTRACE)
405 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
406 #endif /* defined(MBUFTRACE) */
407 
408 static struct pool tcpipqent_pool;
409 
410 void
411 tcpipqent_init(void)
412 {
413 
414 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
415 	    NULL, IPL_VM);
416 }
417 
418 struct ipqent *
419 tcpipqent_alloc(void)
420 {
421 	struct ipqent *ipqe;
422 	int s;
423 
424 	s = splvm();
425 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
426 	splx(s);
427 
428 	return ipqe;
429 }
430 
431 void
432 tcpipqent_free(struct ipqent *ipqe)
433 {
434 	int s;
435 
436 	s = splvm();
437 	pool_put(&tcpipqent_pool, ipqe);
438 	splx(s);
439 }
440 
441 static int
442 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
443 {
444 	struct ipqent *p, *q, *nq, *tiqe = NULL;
445 	struct socket *so = NULL;
446 	int pkt_flags;
447 	tcp_seq pkt_seq;
448 	unsigned pkt_len;
449 	u_long rcvpartdupbyte = 0;
450 	u_long rcvoobyte;
451 #ifdef TCP_REASS_COUNTERS
452 	u_int count = 0;
453 #endif
454 	uint64_t *tcps;
455 
456 	if (tp->t_inpcb)
457 		so = tp->t_inpcb->inp_socket;
458 #ifdef INET6
459 	else if (tp->t_in6pcb)
460 		so = tp->t_in6pcb->in6p_socket;
461 #endif
462 
463 	TCP_REASS_LOCK_CHECK(tp);
464 
465 	/*
466 	 * Call with th==0 after become established to
467 	 * force pre-ESTABLISHED data up to user socket.
468 	 */
469 	if (th == 0)
470 		goto present;
471 
472 	m_claimm(m, &tcp_reass_mowner);
473 
474 	rcvoobyte = *tlen;
475 	/*
476 	 * Copy these to local variables because the tcpiphdr
477 	 * gets munged while we are collapsing mbufs.
478 	 */
479 	pkt_seq = th->th_seq;
480 	pkt_len = *tlen;
481 	pkt_flags = th->th_flags;
482 
483 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
484 
485 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
486 		/*
487 		 * When we miss a packet, the vast majority of time we get
488 		 * packets that follow it in order.  So optimize for that.
489 		 */
490 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
491 			p->ipqe_len += pkt_len;
492 			p->ipqe_flags |= pkt_flags;
493 			m_cat(p->ipre_mlast, m);
494 			TRAVERSE(p->ipre_mlast);
495 			m = NULL;
496 			tiqe = p;
497 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
498 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
499 			goto skip_replacement;
500 		}
501 		/*
502 		 * While we're here, if the pkt is completely beyond
503 		 * anything we have, just insert it at the tail.
504 		 */
505 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
506 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
507 			goto insert_it;
508 		}
509 	}
510 
511 	q = TAILQ_FIRST(&tp->segq);
512 
513 	if (q != NULL) {
514 		/*
515 		 * If this segment immediately precedes the first out-of-order
516 		 * block, simply slap the segment in front of it and (mostly)
517 		 * skip the complicated logic.
518 		 */
519 		if (pkt_seq + pkt_len == q->ipqe_seq) {
520 			q->ipqe_seq = pkt_seq;
521 			q->ipqe_len += pkt_len;
522 			q->ipqe_flags |= pkt_flags;
523 			m_cat(m, q->ipqe_m);
524 			q->ipqe_m = m;
525 			q->ipre_mlast = m; /* last mbuf may have changed */
526 			TRAVERSE(q->ipre_mlast);
527 			tiqe = q;
528 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
529 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
530 			goto skip_replacement;
531 		}
532 	} else {
533 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
534 	}
535 
536 	/*
537 	 * Find a segment which begins after this one does.
538 	 */
539 	for (p = NULL; q != NULL; q = nq) {
540 		nq = TAILQ_NEXT(q, ipqe_q);
541 #ifdef TCP_REASS_COUNTERS
542 		count++;
543 #endif
544 		/*
545 		 * If the received segment is just right after this
546 		 * fragment, merge the two together and then check
547 		 * for further overlaps.
548 		 */
549 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
550 #ifdef TCPREASS_DEBUG
551 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
552 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
553 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
554 #endif
555 			pkt_len += q->ipqe_len;
556 			pkt_flags |= q->ipqe_flags;
557 			pkt_seq = q->ipqe_seq;
558 			m_cat(q->ipre_mlast, m);
559 			TRAVERSE(q->ipre_mlast);
560 			m = q->ipqe_m;
561 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
562 			goto free_ipqe;
563 		}
564 		/*
565 		 * If the received segment is completely past this
566 		 * fragment, we need to go the next fragment.
567 		 */
568 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
569 			p = q;
570 			continue;
571 		}
572 		/*
573 		 * If the fragment is past the received segment,
574 		 * it (or any following) can't be concatenated.
575 		 */
576 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
577 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
578 			break;
579 		}
580 
581 		/*
582 		 * We've received all the data in this segment before.
583 		 * mark it as a duplicate and return.
584 		 */
585 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
586 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
587 			tcps = TCP_STAT_GETREF();
588 			tcps[TCP_STAT_RCVDUPPACK]++;
589 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
590 			TCP_STAT_PUTREF();
591 			tcp_new_dsack(tp, pkt_seq, pkt_len);
592 			m_freem(m);
593 			if (tiqe != NULL) {
594 				tcpipqent_free(tiqe);
595 			}
596 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
597 			return (0);
598 		}
599 		/*
600 		 * Received segment completely overlaps this fragment
601 		 * so we drop the fragment (this keeps the temporal
602 		 * ordering of segments correct).
603 		 */
604 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
605 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
606 			rcvpartdupbyte += q->ipqe_len;
607 			m_freem(q->ipqe_m);
608 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
609 			goto free_ipqe;
610 		}
611 		/*
612 		 * RX'ed segment extends past the end of the
613 		 * fragment.  Drop the overlapping bytes.  Then
614 		 * merge the fragment and segment then treat as
615 		 * a longer received packet.
616 		 */
617 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
618 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
619 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
620 #ifdef TCPREASS_DEBUG
621 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
622 			       tp, overlap,
623 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
624 #endif
625 			m_adj(m, overlap);
626 			rcvpartdupbyte += overlap;
627 			m_cat(q->ipre_mlast, m);
628 			TRAVERSE(q->ipre_mlast);
629 			m = q->ipqe_m;
630 			pkt_seq = q->ipqe_seq;
631 			pkt_len += q->ipqe_len - overlap;
632 			rcvoobyte -= overlap;
633 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
634 			goto free_ipqe;
635 		}
636 		/*
637 		 * RX'ed segment extends past the front of the
638 		 * fragment.  Drop the overlapping bytes on the
639 		 * received packet.  The packet will then be
640 		 * contatentated with this fragment a bit later.
641 		 */
642 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
643 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
644 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
645 #ifdef TCPREASS_DEBUG
646 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
647 			       tp, overlap,
648 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
649 #endif
650 			m_adj(m, -overlap);
651 			pkt_len -= overlap;
652 			rcvpartdupbyte += overlap;
653 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
654 			rcvoobyte -= overlap;
655 		}
656 		/*
657 		 * If the received segment immediates precedes this
658 		 * fragment then tack the fragment onto this segment
659 		 * and reinsert the data.
660 		 */
661 		if (q->ipqe_seq == pkt_seq + pkt_len) {
662 #ifdef TCPREASS_DEBUG
663 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
664 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
665 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
666 #endif
667 			pkt_len += q->ipqe_len;
668 			pkt_flags |= q->ipqe_flags;
669 			m_cat(m, q->ipqe_m);
670 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
671 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
672 			tp->t_segqlen--;
673 			KASSERT(tp->t_segqlen >= 0);
674 			KASSERT(tp->t_segqlen != 0 ||
675 			    (TAILQ_EMPTY(&tp->segq) &&
676 			    TAILQ_EMPTY(&tp->timeq)));
677 			if (tiqe == NULL) {
678 				tiqe = q;
679 			} else {
680 				tcpipqent_free(q);
681 			}
682 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
683 			break;
684 		}
685 		/*
686 		 * If the fragment is before the segment, remember it.
687 		 * When this loop is terminated, p will contain the
688 		 * pointer to fragment that is right before the received
689 		 * segment.
690 		 */
691 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
692 			p = q;
693 
694 		continue;
695 
696 		/*
697 		 * This is a common operation.  It also will allow
698 		 * to save doing a malloc/free in most instances.
699 		 */
700 	  free_ipqe:
701 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
702 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
703 		tp->t_segqlen--;
704 		KASSERT(tp->t_segqlen >= 0);
705 		KASSERT(tp->t_segqlen != 0 ||
706 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
707 		if (tiqe == NULL) {
708 			tiqe = q;
709 		} else {
710 			tcpipqent_free(q);
711 		}
712 	}
713 
714 #ifdef TCP_REASS_COUNTERS
715 	if (count > 7)
716 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
717 	else if (count > 0)
718 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
719 #endif
720 
721     insert_it:
722 
723 	/*
724 	 * Allocate a new queue entry since the received segment did not
725 	 * collapse onto any other out-of-order block; thus we are allocating
726 	 * a new block.  If it had collapsed, tiqe would not be NULL and
727 	 * we would be reusing it.
728 	 * XXX If we can't, just drop the packet.  XXX
729 	 */
730 	if (tiqe == NULL) {
731 		tiqe = tcpipqent_alloc();
732 		if (tiqe == NULL) {
733 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
734 			m_freem(m);
735 			return (0);
736 		}
737 	}
738 
739 	/*
740 	 * Update the counters.
741 	 */
742 	tcps = TCP_STAT_GETREF();
743 	tcps[TCP_STAT_RCVOOPACK]++;
744 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
745 	if (rcvpartdupbyte) {
746 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
747 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
748 	}
749 	TCP_STAT_PUTREF();
750 
751 	/*
752 	 * Insert the new fragment queue entry into both queues.
753 	 */
754 	tiqe->ipqe_m = m;
755 	tiqe->ipre_mlast = m;
756 	tiqe->ipqe_seq = pkt_seq;
757 	tiqe->ipqe_len = pkt_len;
758 	tiqe->ipqe_flags = pkt_flags;
759 	if (p == NULL) {
760 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
761 #ifdef TCPREASS_DEBUG
762 		if (tiqe->ipqe_seq != tp->rcv_nxt)
763 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
764 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
765 #endif
766 	} else {
767 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
768 #ifdef TCPREASS_DEBUG
769 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
770 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
771 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
772 #endif
773 	}
774 	tp->t_segqlen++;
775 
776 skip_replacement:
777 
778 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
779 
780 present:
781 	/*
782 	 * Present data to user, advancing rcv_nxt through
783 	 * completed sequence space.
784 	 */
785 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
786 		return (0);
787 	q = TAILQ_FIRST(&tp->segq);
788 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
789 		return (0);
790 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
791 		return (0);
792 
793 	tp->rcv_nxt += q->ipqe_len;
794 	pkt_flags = q->ipqe_flags & TH_FIN;
795 	nd6_hint(tp);
796 
797 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
798 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
799 	tp->t_segqlen--;
800 	KASSERT(tp->t_segqlen >= 0);
801 	KASSERT(tp->t_segqlen != 0 ||
802 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
803 	if (so->so_state & SS_CANTRCVMORE)
804 		m_freem(q->ipqe_m);
805 	else
806 		sbappendstream(&so->so_rcv, q->ipqe_m);
807 	tcpipqent_free(q);
808 	sorwakeup(so);
809 	return (pkt_flags);
810 }
811 
812 #ifdef INET6
813 int
814 tcp6_input(struct mbuf **mp, int *offp, int proto)
815 {
816 	struct mbuf *m = *mp;
817 
818 	/*
819 	 * draft-itojun-ipv6-tcp-to-anycast
820 	 * better place to put this in?
821 	 */
822 	if (m->m_flags & M_ANYCAST6) {
823 		struct ip6_hdr *ip6;
824 		if (m->m_len < sizeof(struct ip6_hdr)) {
825 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
826 				TCP_STATINC(TCP_STAT_RCVSHORT);
827 				return IPPROTO_DONE;
828 			}
829 		}
830 		ip6 = mtod(m, struct ip6_hdr *);
831 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
832 		    (char *)&ip6->ip6_dst - (char *)ip6);
833 		return IPPROTO_DONE;
834 	}
835 
836 	tcp_input(m, *offp, proto);
837 	return IPPROTO_DONE;
838 }
839 #endif
840 
841 #ifdef INET
842 static void
843 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
844 {
845 	char src[4*sizeof "123"];
846 	char dst[4*sizeof "123"];
847 
848 	if (ip) {
849 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
850 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
851 	}
852 	else {
853 		strlcpy(src, "(unknown)", sizeof(src));
854 		strlcpy(dst, "(unknown)", sizeof(dst));
855 	}
856 	log(LOG_INFO,
857 	    "Connection attempt to TCP %s:%d from %s:%d\n",
858 	    dst, ntohs(th->th_dport),
859 	    src, ntohs(th->th_sport));
860 }
861 #endif
862 
863 #ifdef INET6
864 static void
865 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
866 {
867 	char src[INET6_ADDRSTRLEN];
868 	char dst[INET6_ADDRSTRLEN];
869 
870 	if (ip6) {
871 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
872 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
873 	}
874 	else {
875 		strlcpy(src, "(unknown v6)", sizeof(src));
876 		strlcpy(dst, "(unknown v6)", sizeof(dst));
877 	}
878 	log(LOG_INFO,
879 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
880 	    dst, ntohs(th->th_dport),
881 	    src, ntohs(th->th_sport));
882 }
883 #endif
884 
885 /*
886  * Checksum extended TCP header and data.
887  */
888 int
889 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
890     int toff, int off, int tlen)
891 {
892 
893 	/*
894 	 * XXX it's better to record and check if this mbuf is
895 	 * already checked.
896 	 */
897 
898 	switch (af) {
899 #ifdef INET
900 	case AF_INET:
901 		switch (m->m_pkthdr.csum_flags &
902 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
903 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
904 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
905 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
906 			goto badcsum;
907 
908 		case M_CSUM_TCPv4|M_CSUM_DATA: {
909 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
910 
911 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
912 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
913 				const struct ip *ip =
914 				    mtod(m, const struct ip *);
915 
916 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
917 				    ip->ip_dst.s_addr,
918 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
919 			}
920 			if ((hw_csum ^ 0xffff) != 0)
921 				goto badcsum;
922 			break;
923 		}
924 
925 		case M_CSUM_TCPv4:
926 			/* Checksum was okay. */
927 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
928 			break;
929 
930 		default:
931 			/*
932 			 * Must compute it ourselves.  Maybe skip checksum
933 			 * on loopback interfaces.
934 			 */
935 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
936 					     IFF_LOOPBACK) ||
937 					   tcp_do_loopback_cksum)) {
938 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
939 				if (in4_cksum(m, IPPROTO_TCP, toff,
940 					      tlen + off) != 0)
941 					goto badcsum;
942 			}
943 			break;
944 		}
945 		break;
946 #endif /* INET4 */
947 
948 #ifdef INET6
949 	case AF_INET6:
950 		switch (m->m_pkthdr.csum_flags &
951 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
952 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
953 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
954 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
955 			goto badcsum;
956 
957 #if 0 /* notyet */
958 		case M_CSUM_TCPv6|M_CSUM_DATA:
959 #endif
960 
961 		case M_CSUM_TCPv6:
962 			/* Checksum was okay. */
963 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
964 			break;
965 
966 		default:
967 			/*
968 			 * Must compute it ourselves.  Maybe skip checksum
969 			 * on loopback interfaces.
970 			 */
971 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
972 			    tcp_do_loopback_cksum)) {
973 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
974 				if (in6_cksum(m, IPPROTO_TCP, toff,
975 				    tlen + off) != 0)
976 					goto badcsum;
977 			}
978 		}
979 		break;
980 #endif /* INET6 */
981 	}
982 
983 	return 0;
984 
985 badcsum:
986 	TCP_STATINC(TCP_STAT_RCVBADSUM);
987 	return -1;
988 }
989 
990 /*
991  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
992  */
993 void
994 tcp_input(struct mbuf *m, ...)
995 {
996 	struct tcphdr *th;
997 	struct ip *ip;
998 	struct inpcb *inp;
999 #ifdef INET6
1000 	struct ip6_hdr *ip6;
1001 	struct in6pcb *in6p;
1002 #endif
1003 	u_int8_t *optp = NULL;
1004 	int optlen = 0;
1005 	int len, tlen, toff, hdroptlen = 0;
1006 	struct tcpcb *tp = 0;
1007 	int tiflags;
1008 	struct socket *so = NULL;
1009 	int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
1010 #ifdef TCP_DEBUG
1011 	short ostate = 0;
1012 #endif
1013 	u_long tiwin;
1014 	struct tcp_opt_info opti;
1015 	int off, iphlen;
1016 	va_list ap;
1017 	int af;		/* af on the wire */
1018 	struct mbuf *tcp_saveti = NULL;
1019 	uint32_t ts_rtt;
1020 	uint8_t iptos;
1021 	uint64_t *tcps;
1022 
1023 	MCLAIM(m, &tcp_rx_mowner);
1024 	va_start(ap, m);
1025 	toff = va_arg(ap, int);
1026 	(void)va_arg(ap, int);		/* ignore value, advance ap */
1027 	va_end(ap);
1028 
1029 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1030 
1031 	memset(&opti, 0, sizeof(opti));
1032 	opti.ts_present = 0;
1033 	opti.maxseg = 0;
1034 
1035 	/*
1036 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1037 	 *
1038 	 * TCP is, by definition, unicast, so we reject all
1039 	 * multicast outright.
1040 	 *
1041 	 * Note, there are additional src/dst address checks in
1042 	 * the AF-specific code below.
1043 	 */
1044 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1045 		/* XXX stat */
1046 		goto drop;
1047 	}
1048 #ifdef INET6
1049 	if (m->m_flags & M_ANYCAST6) {
1050 		/* XXX stat */
1051 		goto drop;
1052 	}
1053 #endif
1054 
1055 	/*
1056 	 * Get IP and TCP header.
1057 	 * Note: IP leaves IP header in first mbuf.
1058 	 */
1059 	ip = mtod(m, struct ip *);
1060 #ifdef INET6
1061 	ip6 = NULL;
1062 #endif
1063 	switch (ip->ip_v) {
1064 #ifdef INET
1065 	case 4:
1066 		af = AF_INET;
1067 		iphlen = sizeof(struct ip);
1068 		ip = mtod(m, struct ip *);
1069 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1070 			sizeof(struct tcphdr));
1071 		if (th == NULL) {
1072 			TCP_STATINC(TCP_STAT_RCVSHORT);
1073 			return;
1074 		}
1075 		/* We do the checksum after PCB lookup... */
1076 		len = ntohs(ip->ip_len);
1077 		tlen = len - toff;
1078 		iptos = ip->ip_tos;
1079 		break;
1080 #endif
1081 #ifdef INET6
1082 	case 6:
1083 		ip = NULL;
1084 		iphlen = sizeof(struct ip6_hdr);
1085 		af = AF_INET6;
1086 		ip6 = mtod(m, struct ip6_hdr *);
1087 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1088 			sizeof(struct tcphdr));
1089 		if (th == NULL) {
1090 			TCP_STATINC(TCP_STAT_RCVSHORT);
1091 			return;
1092 		}
1093 
1094 		/* Be proactive about malicious use of IPv4 mapped address */
1095 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1096 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1097 			/* XXX stat */
1098 			goto drop;
1099 		}
1100 
1101 		/*
1102 		 * Be proactive about unspecified IPv6 address in source.
1103 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1104 		 * unspecified IPv6 address can be used to confuse us.
1105 		 *
1106 		 * Note that packets with unspecified IPv6 destination is
1107 		 * already dropped in ip6_input.
1108 		 */
1109 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1110 			/* XXX stat */
1111 			goto drop;
1112 		}
1113 
1114 		/*
1115 		 * Make sure destination address is not multicast.
1116 		 * Source address checked in ip6_input().
1117 		 */
1118 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1119 			/* XXX stat */
1120 			goto drop;
1121 		}
1122 
1123 		/* We do the checksum after PCB lookup... */
1124 		len = m->m_pkthdr.len;
1125 		tlen = len - toff;
1126 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1127 		break;
1128 #endif
1129 	default:
1130 		m_freem(m);
1131 		return;
1132 	}
1133 
1134 	KASSERT(TCP_HDR_ALIGNED_P(th));
1135 
1136 	/*
1137 	 * Check that TCP offset makes sense,
1138 	 * pull out TCP options and adjust length.		XXX
1139 	 */
1140 	off = th->th_off << 2;
1141 	if (off < sizeof (struct tcphdr) || off > tlen) {
1142 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1143 		goto drop;
1144 	}
1145 	tlen -= off;
1146 
1147 	/*
1148 	 * tcp_input() has been modified to use tlen to mean the TCP data
1149 	 * length throughout the function.  Other functions can use
1150 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1151 	 * rja
1152 	 */
1153 
1154 	if (off > sizeof (struct tcphdr)) {
1155 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1156 		if (th == NULL) {
1157 			TCP_STATINC(TCP_STAT_RCVSHORT);
1158 			return;
1159 		}
1160 		/*
1161 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
1162 		 * (as they're before toff) and we don't need to update those.
1163 		 */
1164 		KASSERT(TCP_HDR_ALIGNED_P(th));
1165 		optlen = off - sizeof (struct tcphdr);
1166 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1167 		/*
1168 		 * Do quick retrieval of timestamp options ("options
1169 		 * prediction?").  If timestamp is the only option and it's
1170 		 * formatted as recommended in RFC 1323 appendix A, we
1171 		 * quickly get the values now and not bother calling
1172 		 * tcp_dooptions(), etc.
1173 		 */
1174 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1175 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1176 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1177 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1178 		     (th->th_flags & TH_SYN) == 0) {
1179 			opti.ts_present = 1;
1180 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1181 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1182 			optp = NULL;	/* we've parsed the options */
1183 		}
1184 	}
1185 	tiflags = th->th_flags;
1186 
1187 	/*
1188 	 * Locate pcb for segment.
1189 	 */
1190 findpcb:
1191 	inp = NULL;
1192 #ifdef INET6
1193 	in6p = NULL;
1194 #endif
1195 	switch (af) {
1196 #ifdef INET
1197 	case AF_INET:
1198 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1199 		    ip->ip_dst, th->th_dport);
1200 		if (inp == 0) {
1201 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1202 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1203 		}
1204 #ifdef INET6
1205 		if (inp == 0) {
1206 			struct in6_addr s, d;
1207 
1208 			/* mapped addr case */
1209 			memset(&s, 0, sizeof(s));
1210 			s.s6_addr16[5] = htons(0xffff);
1211 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1212 			memset(&d, 0, sizeof(d));
1213 			d.s6_addr16[5] = htons(0xffff);
1214 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1215 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1216 			    th->th_sport, &d, th->th_dport, 0);
1217 			if (in6p == 0) {
1218 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1219 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1220 				    th->th_dport, 0);
1221 			}
1222 		}
1223 #endif
1224 #ifndef INET6
1225 		if (inp == 0)
1226 #else
1227 		if (inp == 0 && in6p == 0)
1228 #endif
1229 		{
1230 			TCP_STATINC(TCP_STAT_NOPORT);
1231 			if (tcp_log_refused &&
1232 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1233 				tcp4_log_refused(ip, th);
1234 			}
1235 			tcp_fields_to_host(th);
1236 			goto dropwithreset_ratelim;
1237 		}
1238 #if defined(IPSEC) || defined(FAST_IPSEC)
1239 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1240 		    ipsec4_in_reject(m, inp)) {
1241 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1242 			goto drop;
1243 		}
1244 #ifdef INET6
1245 		else if (in6p &&
1246 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1247 		    ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1248 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1249 			goto drop;
1250 		}
1251 #endif
1252 #endif /*IPSEC*/
1253 		break;
1254 #endif /*INET*/
1255 #ifdef INET6
1256 	case AF_INET6:
1257 	    {
1258 		int faith;
1259 
1260 #if defined(NFAITH) && NFAITH > 0
1261 		faith = faithprefix(&ip6->ip6_dst);
1262 #else
1263 		faith = 0;
1264 #endif
1265 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1266 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1267 		if (in6p == NULL) {
1268 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1269 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1270 				th->th_dport, faith);
1271 		}
1272 		if (in6p == NULL) {
1273 			TCP_STATINC(TCP_STAT_NOPORT);
1274 			if (tcp_log_refused &&
1275 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1276 				tcp6_log_refused(ip6, th);
1277 			}
1278 			tcp_fields_to_host(th);
1279 			goto dropwithreset_ratelim;
1280 		}
1281 #if defined(IPSEC) || defined(FAST_IPSEC)
1282 		if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1283 		    ipsec6_in_reject(m, in6p)) {
1284 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1285 			goto drop;
1286 		}
1287 #endif /*IPSEC*/
1288 		break;
1289 	    }
1290 #endif
1291 	}
1292 
1293 	/*
1294 	 * If the state is CLOSED (i.e., TCB does not exist) then
1295 	 * all data in the incoming segment is discarded.
1296 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1297 	 * but should either do a listen or a connect soon.
1298 	 */
1299 	tp = NULL;
1300 	so = NULL;
1301 	if (inp) {
1302 		/* Check the minimum TTL for socket. */
1303 		if (ip->ip_ttl < inp->inp_ip_minttl)
1304 			goto drop;
1305 
1306 		tp = intotcpcb(inp);
1307 		so = inp->inp_socket;
1308 	}
1309 #ifdef INET6
1310 	else if (in6p) {
1311 		tp = in6totcpcb(in6p);
1312 		so = in6p->in6p_socket;
1313 	}
1314 #endif
1315 	if (tp == 0) {
1316 		tcp_fields_to_host(th);
1317 		goto dropwithreset_ratelim;
1318 	}
1319 	if (tp->t_state == TCPS_CLOSED)
1320 		goto drop;
1321 
1322 	KASSERT(so->so_lock == softnet_lock);
1323 	KASSERT(solocked(so));
1324 
1325 	/*
1326 	 * Checksum extended TCP header and data.
1327 	 */
1328 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
1329 		goto badcsum;
1330 
1331 	tcp_fields_to_host(th);
1332 
1333 	/* Unscale the window into a 32-bit value. */
1334 	if ((tiflags & TH_SYN) == 0)
1335 		tiwin = th->th_win << tp->snd_scale;
1336 	else
1337 		tiwin = th->th_win;
1338 
1339 #ifdef INET6
1340 	/* save packet options if user wanted */
1341 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1342 		if (in6p->in6p_options) {
1343 			m_freem(in6p->in6p_options);
1344 			in6p->in6p_options = 0;
1345 		}
1346 		KASSERT(ip6 != NULL);
1347 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1348 	}
1349 #endif
1350 
1351 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1352 		union syn_cache_sa src;
1353 		union syn_cache_sa dst;
1354 
1355 		memset(&src, 0, sizeof(src));
1356 		memset(&dst, 0, sizeof(dst));
1357 		switch (af) {
1358 #ifdef INET
1359 		case AF_INET:
1360 			src.sin.sin_len = sizeof(struct sockaddr_in);
1361 			src.sin.sin_family = AF_INET;
1362 			src.sin.sin_addr = ip->ip_src;
1363 			src.sin.sin_port = th->th_sport;
1364 
1365 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1366 			dst.sin.sin_family = AF_INET;
1367 			dst.sin.sin_addr = ip->ip_dst;
1368 			dst.sin.sin_port = th->th_dport;
1369 			break;
1370 #endif
1371 #ifdef INET6
1372 		case AF_INET6:
1373 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1374 			src.sin6.sin6_family = AF_INET6;
1375 			src.sin6.sin6_addr = ip6->ip6_src;
1376 			src.sin6.sin6_port = th->th_sport;
1377 
1378 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1379 			dst.sin6.sin6_family = AF_INET6;
1380 			dst.sin6.sin6_addr = ip6->ip6_dst;
1381 			dst.sin6.sin6_port = th->th_dport;
1382 			break;
1383 #endif /* INET6 */
1384 		default:
1385 			goto badsyn;	/*sanity*/
1386 		}
1387 
1388 		if (so->so_options & SO_DEBUG) {
1389 #ifdef TCP_DEBUG
1390 			ostate = tp->t_state;
1391 #endif
1392 
1393 			tcp_saveti = NULL;
1394 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1395 				goto nosave;
1396 
1397 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1398 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1399 				if (!tcp_saveti)
1400 					goto nosave;
1401 			} else {
1402 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1403 				if (!tcp_saveti)
1404 					goto nosave;
1405 				MCLAIM(m, &tcp_mowner);
1406 				tcp_saveti->m_len = iphlen;
1407 				m_copydata(m, 0, iphlen,
1408 				    mtod(tcp_saveti, void *));
1409 			}
1410 
1411 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1412 				m_freem(tcp_saveti);
1413 				tcp_saveti = NULL;
1414 			} else {
1415 				tcp_saveti->m_len += sizeof(struct tcphdr);
1416 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1417 				    sizeof(struct tcphdr));
1418 			}
1419 	nosave:;
1420 		}
1421 		if (so->so_options & SO_ACCEPTCONN) {
1422 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1423 				if (tiflags & TH_RST) {
1424 					syn_cache_reset(&src.sa, &dst.sa, th);
1425 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1426 				    (TH_ACK|TH_SYN)) {
1427 					/*
1428 					 * Received a SYN,ACK.  This should
1429 					 * never happen while we are in
1430 					 * LISTEN.  Send an RST.
1431 					 */
1432 					goto badsyn;
1433 				} else if (tiflags & TH_ACK) {
1434 					so = syn_cache_get(&src.sa, &dst.sa,
1435 						th, toff, tlen, so, m);
1436 					if (so == NULL) {
1437 						/*
1438 						 * We don't have a SYN for
1439 						 * this ACK; send an RST.
1440 						 */
1441 						goto badsyn;
1442 					} else if (so ==
1443 					    (struct socket *)(-1)) {
1444 						/*
1445 						 * We were unable to create
1446 						 * the connection.  If the
1447 						 * 3-way handshake was
1448 						 * completed, and RST has
1449 						 * been sent to the peer.
1450 						 * Since the mbuf might be
1451 						 * in use for the reply,
1452 						 * do not free it.
1453 						 */
1454 						m = NULL;
1455 					} else {
1456 						/*
1457 						 * We have created a
1458 						 * full-blown connection.
1459 						 */
1460 						tp = NULL;
1461 						inp = NULL;
1462 #ifdef INET6
1463 						in6p = NULL;
1464 #endif
1465 						switch (so->so_proto->pr_domain->dom_family) {
1466 #ifdef INET
1467 						case AF_INET:
1468 							inp = sotoinpcb(so);
1469 							tp = intotcpcb(inp);
1470 							break;
1471 #endif
1472 #ifdef INET6
1473 						case AF_INET6:
1474 							in6p = sotoin6pcb(so);
1475 							tp = in6totcpcb(in6p);
1476 							break;
1477 #endif
1478 						}
1479 						if (tp == NULL)
1480 							goto badsyn;	/*XXX*/
1481 						tiwin <<= tp->snd_scale;
1482 						goto after_listen;
1483 					}
1484 				} else {
1485 					/*
1486 					 * None of RST, SYN or ACK was set.
1487 					 * This is an invalid packet for a
1488 					 * TCB in LISTEN state.  Send a RST.
1489 					 */
1490 					goto badsyn;
1491 				}
1492 			} else {
1493 				/*
1494 				 * Received a SYN.
1495 				 *
1496 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1497 				 */
1498 				if (m->m_flags & (M_BCAST|M_MCAST))
1499 					goto drop;
1500 
1501 				switch (af) {
1502 #ifdef INET6
1503 				case AF_INET6:
1504 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1505 						goto drop;
1506 					break;
1507 #endif /* INET6 */
1508 				case AF_INET:
1509 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1510 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1511 						goto drop;
1512 				break;
1513 				}
1514 
1515 #ifdef INET6
1516 				/*
1517 				 * If deprecated address is forbidden, we do
1518 				 * not accept SYN to deprecated interface
1519 				 * address to prevent any new inbound
1520 				 * connection from getting established.
1521 				 * When we do not accept SYN, we send a TCP
1522 				 * RST, with deprecated source address (instead
1523 				 * of dropping it).  We compromise it as it is
1524 				 * much better for peer to send a RST, and
1525 				 * RST will be the final packet for the
1526 				 * exchange.
1527 				 *
1528 				 * If we do not forbid deprecated addresses, we
1529 				 * accept the SYN packet.  RFC2462 does not
1530 				 * suggest dropping SYN in this case.
1531 				 * If we decipher RFC2462 5.5.4, it says like
1532 				 * this:
1533 				 * 1. use of deprecated addr with existing
1534 				 *    communication is okay - "SHOULD continue
1535 				 *    to be used"
1536 				 * 2. use of it with new communication:
1537 				 *   (2a) "SHOULD NOT be used if alternate
1538 				 *        address with sufficient scope is
1539 				 *        available"
1540 				 *   (2b) nothing mentioned otherwise.
1541 				 * Here we fall into (2b) case as we have no
1542 				 * choice in our source address selection - we
1543 				 * must obey the peer.
1544 				 *
1545 				 * The wording in RFC2462 is confusing, and
1546 				 * there are multiple description text for
1547 				 * deprecated address handling - worse, they
1548 				 * are not exactly the same.  I believe 5.5.4
1549 				 * is the best one, so we follow 5.5.4.
1550 				 */
1551 				if (af == AF_INET6 && !ip6_use_deprecated) {
1552 					struct in6_ifaddr *ia6;
1553 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1554 					    &ip6->ip6_dst)) &&
1555 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1556 						tp = NULL;
1557 						goto dropwithreset;
1558 					}
1559 				}
1560 #endif
1561 
1562 #if defined(IPSEC) || defined(FAST_IPSEC)
1563 				switch (af) {
1564 #ifdef INET
1565 				case AF_INET:
1566 					if (ipsec4_in_reject_so(m, so)) {
1567 						IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1568 						tp = NULL;
1569 						goto dropwithreset;
1570 					}
1571 					break;
1572 #endif
1573 #ifdef INET6
1574 				case AF_INET6:
1575 					if (ipsec6_in_reject_so(m, so)) {
1576 						IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1577 						tp = NULL;
1578 						goto dropwithreset;
1579 					}
1580 					break;
1581 #endif /*INET6*/
1582 				}
1583 #endif /*IPSEC*/
1584 
1585 				/*
1586 				 * LISTEN socket received a SYN
1587 				 * from itself?  This can't possibly
1588 				 * be valid; drop the packet.
1589 				 */
1590 				if (th->th_sport == th->th_dport) {
1591 					int i;
1592 
1593 					switch (af) {
1594 #ifdef INET
1595 					case AF_INET:
1596 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1597 						break;
1598 #endif
1599 #ifdef INET6
1600 					case AF_INET6:
1601 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1602 						break;
1603 #endif
1604 					default:
1605 						i = 1;
1606 					}
1607 					if (i) {
1608 						TCP_STATINC(TCP_STAT_BADSYN);
1609 						goto drop;
1610 					}
1611 				}
1612 
1613 				/*
1614 				 * SYN looks ok; create compressed TCP
1615 				 * state for it.
1616 				 */
1617 				if (so->so_qlen <= so->so_qlimit &&
1618 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1619 						so, m, optp, optlen, &opti))
1620 					m = NULL;
1621 			}
1622 			goto drop;
1623 		}
1624 	}
1625 
1626 after_listen:
1627 #ifdef DIAGNOSTIC
1628 	/*
1629 	 * Should not happen now that all embryonic connections
1630 	 * are handled with compressed state.
1631 	 */
1632 	if (tp->t_state == TCPS_LISTEN)
1633 		panic("tcp_input: TCPS_LISTEN");
1634 #endif
1635 
1636 	/*
1637 	 * Segment received on connection.
1638 	 * Reset idle time and keep-alive timer.
1639 	 */
1640 	tp->t_rcvtime = tcp_now;
1641 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1642 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1643 
1644 	/*
1645 	 * Process options.
1646 	 */
1647 #ifdef TCP_SIGNATURE
1648 	if (optp || (tp->t_flags & TF_SIGNATURE))
1649 #else
1650 	if (optp)
1651 #endif
1652 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1653 			goto drop;
1654 
1655 	if (TCP_SACK_ENABLED(tp)) {
1656 		tcp_del_sackholes(tp, th);
1657 	}
1658 
1659 	if (TCP_ECN_ALLOWED(tp)) {
1660 		if (tiflags & TH_CWR) {
1661 			tp->t_flags &= ~TF_ECN_SND_ECE;
1662 		}
1663 		switch (iptos & IPTOS_ECN_MASK) {
1664 		case IPTOS_ECN_CE:
1665 			tp->t_flags |= TF_ECN_SND_ECE;
1666 			TCP_STATINC(TCP_STAT_ECN_CE);
1667 			break;
1668 		case IPTOS_ECN_ECT0:
1669 			TCP_STATINC(TCP_STAT_ECN_ECT);
1670 			break;
1671 		case IPTOS_ECN_ECT1:
1672 			/* XXX: ignore for now -- rpaulo */
1673 			break;
1674 		}
1675 		/*
1676 		 * Congestion experienced.
1677 		 * Ignore if we are already trying to recover.
1678 		 */
1679 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1680 			tp->t_congctl->cong_exp(tp);
1681 	}
1682 
1683 	if (opti.ts_present && opti.ts_ecr) {
1684 		/*
1685 		 * Calculate the RTT from the returned time stamp and the
1686 		 * connection's time base.  If the time stamp is later than
1687 		 * the current time, or is extremely old, fall back to non-1323
1688 		 * RTT calculation.  Since ts_ecr is unsigned, we can test both
1689 		 * at the same time.
1690 		 */
1691 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1692 		if (ts_rtt > TCP_PAWS_IDLE)
1693 			ts_rtt = 0;
1694 	} else {
1695 		ts_rtt = 0;
1696 	}
1697 
1698 	/*
1699 	 * Header prediction: check for the two common cases
1700 	 * of a uni-directional data xfer.  If the packet has
1701 	 * no control flags, is in-sequence, the window didn't
1702 	 * change and we're not retransmitting, it's a
1703 	 * candidate.  If the length is zero and the ack moved
1704 	 * forward, we're the sender side of the xfer.  Just
1705 	 * free the data acked & wake any higher level process
1706 	 * that was blocked waiting for space.  If the length
1707 	 * is non-zero and the ack didn't move, we're the
1708 	 * receiver side.  If we're getting packets in-order
1709 	 * (the reassembly queue is empty), add the data to
1710 	 * the socket buffer and note that we need a delayed ack.
1711 	 */
1712 	if (tp->t_state == TCPS_ESTABLISHED &&
1713 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1714 	        == TH_ACK &&
1715 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1716 	    th->th_seq == tp->rcv_nxt &&
1717 	    tiwin && tiwin == tp->snd_wnd &&
1718 	    tp->snd_nxt == tp->snd_max) {
1719 
1720 		/*
1721 		 * If last ACK falls within this segment's sequence numbers,
1722 		 * record the timestamp.
1723 		 * NOTE that the test is modified according to the latest
1724 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1725 		 *
1726 		 * note that we already know
1727 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1728 		 */
1729 		if (opti.ts_present &&
1730 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1731 			tp->ts_recent_age = tcp_now;
1732 			tp->ts_recent = opti.ts_val;
1733 		}
1734 
1735 		if (tlen == 0) {
1736 			/* Ack prediction. */
1737 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1738 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1739 			    tp->snd_cwnd >= tp->snd_wnd &&
1740 			    tp->t_partialacks < 0) {
1741 				/*
1742 				 * this is a pure ack for outstanding data.
1743 				 */
1744 				if (ts_rtt)
1745 					tcp_xmit_timer(tp, ts_rtt);
1746 				else if (tp->t_rtttime &&
1747 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1748 					tcp_xmit_timer(tp,
1749 					  tcp_now - tp->t_rtttime);
1750 				acked = th->th_ack - tp->snd_una;
1751 				tcps = TCP_STAT_GETREF();
1752 				tcps[TCP_STAT_PREDACK]++;
1753 				tcps[TCP_STAT_RCVACKPACK]++;
1754 				tcps[TCP_STAT_RCVACKBYTE] += acked;
1755 				TCP_STAT_PUTREF();
1756 				nd6_hint(tp);
1757 
1758 				if (acked > (tp->t_lastoff - tp->t_inoff))
1759 					tp->t_lastm = NULL;
1760 				sbdrop(&so->so_snd, acked);
1761 				tp->t_lastoff -= acked;
1762 
1763 				icmp_check(tp, th, acked);
1764 
1765 				tp->snd_una = th->th_ack;
1766 				tp->snd_fack = tp->snd_una;
1767 				if (SEQ_LT(tp->snd_high, tp->snd_una))
1768 					tp->snd_high = tp->snd_una;
1769 				m_freem(m);
1770 
1771 				/*
1772 				 * If all outstanding data are acked, stop
1773 				 * retransmit timer, otherwise restart timer
1774 				 * using current (possibly backed-off) value.
1775 				 * If process is waiting for space,
1776 				 * wakeup/selnotify/signal.  If data
1777 				 * are ready to send, let tcp_output
1778 				 * decide between more output or persist.
1779 				 */
1780 				if (tp->snd_una == tp->snd_max)
1781 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1782 				else if (TCP_TIMER_ISARMED(tp,
1783 				    TCPT_PERSIST) == 0)
1784 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1785 					    tp->t_rxtcur);
1786 
1787 				sowwakeup(so);
1788 				if (so->so_snd.sb_cc) {
1789 					KERNEL_LOCK(1, NULL);
1790 					(void) tcp_output(tp);
1791 					KERNEL_UNLOCK_ONE(NULL);
1792 				}
1793 				if (tcp_saveti)
1794 					m_freem(tcp_saveti);
1795 				return;
1796 			}
1797 		} else if (th->th_ack == tp->snd_una &&
1798 		    TAILQ_FIRST(&tp->segq) == NULL &&
1799 		    tlen <= sbspace(&so->so_rcv)) {
1800 			int newsize = 0;	/* automatic sockbuf scaling */
1801 
1802 			/*
1803 			 * this is a pure, in-sequence data packet
1804 			 * with nothing on the reassembly queue and
1805 			 * we have enough buffer space to take it.
1806 			 */
1807 			tp->rcv_nxt += tlen;
1808 			tcps = TCP_STAT_GETREF();
1809 			tcps[TCP_STAT_PREDDAT]++;
1810 			tcps[TCP_STAT_RCVPACK]++;
1811 			tcps[TCP_STAT_RCVBYTE] += tlen;
1812 			TCP_STAT_PUTREF();
1813 			nd6_hint(tp);
1814 
1815 		/*
1816 		 * Automatic sizing enables the performance of large buffers
1817 		 * and most of the efficiency of small ones by only allocating
1818 		 * space when it is needed.
1819 		 *
1820 		 * On the receive side the socket buffer memory is only rarely
1821 		 * used to any significant extent.  This allows us to be much
1822 		 * more aggressive in scaling the receive socket buffer.  For
1823 		 * the case that the buffer space is actually used to a large
1824 		 * extent and we run out of kernel memory we can simply drop
1825 		 * the new segments; TCP on the sender will just retransmit it
1826 		 * later.  Setting the buffer size too big may only consume too
1827 		 * much kernel memory if the application doesn't read() from
1828 		 * the socket or packet loss or reordering makes use of the
1829 		 * reassembly queue.
1830 		 *
1831 		 * The criteria to step up the receive buffer one notch are:
1832 		 *  1. the number of bytes received during the time it takes
1833 		 *     one timestamp to be reflected back to us (the RTT);
1834 		 *  2. received bytes per RTT is within seven eighth of the
1835 		 *     current socket buffer size;
1836 		 *  3. receive buffer size has not hit maximal automatic size;
1837 		 *
1838 		 * This algorithm does one step per RTT at most and only if
1839 		 * we receive a bulk stream w/o packet losses or reorderings.
1840 		 * Shrinking the buffer during idle times is not necessary as
1841 		 * it doesn't consume any memory when idle.
1842 		 *
1843 		 * TODO: Only step up if the application is actually serving
1844 		 * the buffer to better manage the socket buffer resources.
1845 		 */
1846 			if (tcp_do_autorcvbuf &&
1847 			    opti.ts_ecr &&
1848 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1849 				if (opti.ts_ecr > tp->rfbuf_ts &&
1850 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1851 					if (tp->rfbuf_cnt >
1852 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1853 					    so->so_rcv.sb_hiwat <
1854 					    tcp_autorcvbuf_max) {
1855 						newsize =
1856 						    min(so->so_rcv.sb_hiwat +
1857 						    tcp_autorcvbuf_inc,
1858 						    tcp_autorcvbuf_max);
1859 					}
1860 					/* Start over with next RTT. */
1861 					tp->rfbuf_ts = 0;
1862 					tp->rfbuf_cnt = 0;
1863 				} else
1864 					tp->rfbuf_cnt += tlen;	/* add up */
1865 			}
1866 
1867 			/*
1868 			 * Drop TCP, IP headers and TCP options then add data
1869 			 * to socket buffer.
1870 			 */
1871 			if (so->so_state & SS_CANTRCVMORE)
1872 				m_freem(m);
1873 			else {
1874 				/*
1875 				 * Set new socket buffer size.
1876 				 * Give up when limit is reached.
1877 				 */
1878 				if (newsize)
1879 					if (!sbreserve(&so->so_rcv,
1880 					    newsize, so))
1881 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1882 				m_adj(m, toff + off);
1883 				sbappendstream(&so->so_rcv, m);
1884 			}
1885 			sorwakeup(so);
1886 			tcp_setup_ack(tp, th);
1887 			if (tp->t_flags & TF_ACKNOW) {
1888 				KERNEL_LOCK(1, NULL);
1889 				(void) tcp_output(tp);
1890 				KERNEL_UNLOCK_ONE(NULL);
1891 			}
1892 			if (tcp_saveti)
1893 				m_freem(tcp_saveti);
1894 			return;
1895 		}
1896 	}
1897 
1898 	/*
1899 	 * Compute mbuf offset to TCP data segment.
1900 	 */
1901 	hdroptlen = toff + off;
1902 
1903 	/*
1904 	 * Calculate amount of space in receive window,
1905 	 * and then do TCP input processing.
1906 	 * Receive window is amount of space in rcv queue,
1907 	 * but not less than advertised window.
1908 	 */
1909 	{ int win;
1910 
1911 	win = sbspace(&so->so_rcv);
1912 	if (win < 0)
1913 		win = 0;
1914 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1915 	}
1916 
1917 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1918 	tp->rfbuf_ts = 0;
1919 	tp->rfbuf_cnt = 0;
1920 
1921 	switch (tp->t_state) {
1922 	/*
1923 	 * If the state is SYN_SENT:
1924 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1925 	 *	if seg contains a RST, then drop the connection.
1926 	 *	if seg does not contain SYN, then drop it.
1927 	 * Otherwise this is an acceptable SYN segment
1928 	 *	initialize tp->rcv_nxt and tp->irs
1929 	 *	if seg contains ack then advance tp->snd_una
1930 	 *	if seg contains a ECE and ECN support is enabled, the stream
1931 	 *	    is ECN capable.
1932 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1933 	 *	arrange for segment to be acked (eventually)
1934 	 *	continue processing rest of data/controls, beginning with URG
1935 	 */
1936 	case TCPS_SYN_SENT:
1937 		if ((tiflags & TH_ACK) &&
1938 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1939 		     SEQ_GT(th->th_ack, tp->snd_max)))
1940 			goto dropwithreset;
1941 		if (tiflags & TH_RST) {
1942 			if (tiflags & TH_ACK)
1943 				tp = tcp_drop(tp, ECONNREFUSED);
1944 			goto drop;
1945 		}
1946 		if ((tiflags & TH_SYN) == 0)
1947 			goto drop;
1948 		if (tiflags & TH_ACK) {
1949 			tp->snd_una = th->th_ack;
1950 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1951 				tp->snd_nxt = tp->snd_una;
1952 			if (SEQ_LT(tp->snd_high, tp->snd_una))
1953 				tp->snd_high = tp->snd_una;
1954 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1955 
1956 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
1957 				tp->t_flags |= TF_ECN_PERMIT;
1958 				TCP_STATINC(TCP_STAT_ECN_SHS);
1959 			}
1960 
1961 		}
1962 		tp->irs = th->th_seq;
1963 		tcp_rcvseqinit(tp);
1964 		tp->t_flags |= TF_ACKNOW;
1965 		tcp_mss_from_peer(tp, opti.maxseg);
1966 
1967 		/*
1968 		 * Initialize the initial congestion window.  If we
1969 		 * had to retransmit the SYN, we must initialize cwnd
1970 		 * to 1 segment (i.e. the Loss Window).
1971 		 */
1972 		if (tp->t_flags & TF_SYN_REXMT)
1973 			tp->snd_cwnd = tp->t_peermss;
1974 		else {
1975 			int ss = tcp_init_win;
1976 #ifdef INET
1977 			if (inp != NULL && in_localaddr(inp->inp_faddr))
1978 				ss = tcp_init_win_local;
1979 #endif
1980 #ifdef INET6
1981 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1982 				ss = tcp_init_win_local;
1983 #endif
1984 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1985 		}
1986 
1987 		tcp_rmx_rtt(tp);
1988 		if (tiflags & TH_ACK) {
1989 			TCP_STATINC(TCP_STAT_CONNECTS);
1990 			soisconnected(so);
1991 			tcp_established(tp);
1992 			/* Do window scaling on this connection? */
1993 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1994 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1995 				tp->snd_scale = tp->requested_s_scale;
1996 				tp->rcv_scale = tp->request_r_scale;
1997 			}
1998 			TCP_REASS_LOCK(tp);
1999 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2000 			TCP_REASS_UNLOCK(tp);
2001 			/*
2002 			 * if we didn't have to retransmit the SYN,
2003 			 * use its rtt as our initial srtt & rtt var.
2004 			 */
2005 			if (tp->t_rtttime)
2006 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2007 		} else
2008 			tp->t_state = TCPS_SYN_RECEIVED;
2009 
2010 		/*
2011 		 * Advance th->th_seq to correspond to first data byte.
2012 		 * If data, trim to stay within window,
2013 		 * dropping FIN if necessary.
2014 		 */
2015 		th->th_seq++;
2016 		if (tlen > tp->rcv_wnd) {
2017 			todrop = tlen - tp->rcv_wnd;
2018 			m_adj(m, -todrop);
2019 			tlen = tp->rcv_wnd;
2020 			tiflags &= ~TH_FIN;
2021 			tcps = TCP_STAT_GETREF();
2022 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2023 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2024 			TCP_STAT_PUTREF();
2025 		}
2026 		tp->snd_wl1 = th->th_seq - 1;
2027 		tp->rcv_up = th->th_seq;
2028 		goto step6;
2029 
2030 	/*
2031 	 * If the state is SYN_RECEIVED:
2032 	 *	If seg contains an ACK, but not for our SYN, drop the input
2033 	 *	and generate an RST.  See page 36, rfc793
2034 	 */
2035 	case TCPS_SYN_RECEIVED:
2036 		if ((tiflags & TH_ACK) &&
2037 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2038 		     SEQ_GT(th->th_ack, tp->snd_max)))
2039 			goto dropwithreset;
2040 		break;
2041 	}
2042 
2043 	/*
2044 	 * States other than LISTEN or SYN_SENT.
2045 	 * First check timestamp, if present.
2046 	 * Then check that at least some bytes of segment are within
2047 	 * receive window.  If segment begins before rcv_nxt,
2048 	 * drop leading data (and SYN); if nothing left, just ack.
2049 	 *
2050 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2051 	 * and it's less than ts_recent, drop it.
2052 	 */
2053 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2054 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2055 
2056 		/* Check to see if ts_recent is over 24 days old.  */
2057 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2058 			/*
2059 			 * Invalidate ts_recent.  If this segment updates
2060 			 * ts_recent, the age will be reset later and ts_recent
2061 			 * will get a valid value.  If it does not, setting
2062 			 * ts_recent to zero will at least satisfy the
2063 			 * requirement that zero be placed in the timestamp
2064 			 * echo reply when ts_recent isn't valid.  The
2065 			 * age isn't reset until we get a valid ts_recent
2066 			 * because we don't want out-of-order segments to be
2067 			 * dropped when ts_recent is old.
2068 			 */
2069 			tp->ts_recent = 0;
2070 		} else {
2071 			tcps = TCP_STAT_GETREF();
2072 			tcps[TCP_STAT_RCVDUPPACK]++;
2073 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2074 			tcps[TCP_STAT_PAWSDROP]++;
2075 			TCP_STAT_PUTREF();
2076 			tcp_new_dsack(tp, th->th_seq, tlen);
2077 			goto dropafterack;
2078 		}
2079 	}
2080 
2081 	todrop = tp->rcv_nxt - th->th_seq;
2082 	dupseg = false;
2083 	if (todrop > 0) {
2084 		if (tiflags & TH_SYN) {
2085 			tiflags &= ~TH_SYN;
2086 			th->th_seq++;
2087 			if (th->th_urp > 1)
2088 				th->th_urp--;
2089 			else {
2090 				tiflags &= ~TH_URG;
2091 				th->th_urp = 0;
2092 			}
2093 			todrop--;
2094 		}
2095 		if (todrop > tlen ||
2096 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2097 			/*
2098 			 * Any valid FIN or RST must be to the left of the
2099 			 * window.  At this point the FIN or RST must be a
2100 			 * duplicate or out of sequence; drop it.
2101 			 */
2102 			if (tiflags & TH_RST)
2103 				goto drop;
2104 			tiflags &= ~(TH_FIN|TH_RST);
2105 			/*
2106 			 * Send an ACK to resynchronize and drop any data.
2107 			 * But keep on processing for RST or ACK.
2108 			 */
2109 			tp->t_flags |= TF_ACKNOW;
2110 			todrop = tlen;
2111 			dupseg = true;
2112 			tcps = TCP_STAT_GETREF();
2113 			tcps[TCP_STAT_RCVDUPPACK]++;
2114 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2115 			TCP_STAT_PUTREF();
2116 		} else if ((tiflags & TH_RST) &&
2117 			   th->th_seq != tp->rcv_nxt) {
2118 			/*
2119 			 * Test for reset before adjusting the sequence
2120 			 * number for overlapping data.
2121 			 */
2122 			goto dropafterack_ratelim;
2123 		} else {
2124 			tcps = TCP_STAT_GETREF();
2125 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
2126 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2127 			TCP_STAT_PUTREF();
2128 		}
2129 		tcp_new_dsack(tp, th->th_seq, todrop);
2130 		hdroptlen += todrop;	/*drop from head afterwards*/
2131 		th->th_seq += todrop;
2132 		tlen -= todrop;
2133 		if (th->th_urp > todrop)
2134 			th->th_urp -= todrop;
2135 		else {
2136 			tiflags &= ~TH_URG;
2137 			th->th_urp = 0;
2138 		}
2139 	}
2140 
2141 	/*
2142 	 * If new data are received on a connection after the
2143 	 * user processes are gone, then RST the other end.
2144 	 */
2145 	if ((so->so_state & SS_NOFDREF) &&
2146 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2147 		tp = tcp_close(tp);
2148 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2149 		goto dropwithreset;
2150 	}
2151 
2152 	/*
2153 	 * If segment ends after window, drop trailing data
2154 	 * (and PUSH and FIN); if nothing left, just ACK.
2155 	 */
2156 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2157 	if (todrop > 0) {
2158 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2159 		if (todrop >= tlen) {
2160 			/*
2161 			 * The segment actually starts after the window.
2162 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2163 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2164 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2165 			 */
2166 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2167 			/*
2168 			 * If a new connection request is received
2169 			 * while in TIME_WAIT, drop the old connection
2170 			 * and start over if the sequence numbers
2171 			 * are above the previous ones.
2172 			 *
2173 			 * NOTE: We will checksum the packet again, and
2174 			 * so we need to put the header fields back into
2175 			 * network order!
2176 			 * XXX This kind of sucks, but we don't expect
2177 			 * XXX this to happen very often, so maybe it
2178 			 * XXX doesn't matter so much.
2179 			 */
2180 			if (tiflags & TH_SYN &&
2181 			    tp->t_state == TCPS_TIME_WAIT &&
2182 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2183 				tp = tcp_close(tp);
2184 				tcp_fields_to_net(th);
2185 				goto findpcb;
2186 			}
2187 			/*
2188 			 * If window is closed can only take segments at
2189 			 * window edge, and have to drop data and PUSH from
2190 			 * incoming segments.  Continue processing, but
2191 			 * remember to ack.  Otherwise, drop segment
2192 			 * and (if not RST) ack.
2193 			 */
2194 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2195 				tp->t_flags |= TF_ACKNOW;
2196 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2197 			} else
2198 				goto dropafterack;
2199 		} else
2200 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2201 		m_adj(m, -todrop);
2202 		tlen -= todrop;
2203 		tiflags &= ~(TH_PUSH|TH_FIN);
2204 	}
2205 
2206 	/*
2207 	 * If last ACK falls within this segment's sequence numbers,
2208 	 *  record the timestamp.
2209 	 * NOTE:
2210 	 * 1) That the test incorporates suggestions from the latest
2211 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2212 	 * 2) That updating only on newer timestamps interferes with
2213 	 *    our earlier PAWS tests, so this check should be solely
2214 	 *    predicated on the sequence space of this segment.
2215 	 * 3) That we modify the segment boundary check to be
2216 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2217 	 *    instead of RFC1323's
2218 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2219 	 *    This modified check allows us to overcome RFC1323's
2220 	 *    limitations as described in Stevens TCP/IP Illustrated
2221 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2222 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2223 	 */
2224 	if (opti.ts_present &&
2225 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2226 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2227 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2228 		tp->ts_recent_age = tcp_now;
2229 		tp->ts_recent = opti.ts_val;
2230 	}
2231 
2232 	/*
2233 	 * If the RST bit is set examine the state:
2234 	 *    SYN_RECEIVED STATE:
2235 	 *	If passive open, return to LISTEN state.
2236 	 *	If active open, inform user that connection was refused.
2237 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2238 	 *	Inform user that connection was reset, and close tcb.
2239 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
2240 	 *	Close the tcb.
2241 	 */
2242 	if (tiflags & TH_RST) {
2243 		if (th->th_seq != tp->rcv_nxt)
2244 			goto dropafterack_ratelim;
2245 
2246 		switch (tp->t_state) {
2247 		case TCPS_SYN_RECEIVED:
2248 			so->so_error = ECONNREFUSED;
2249 			goto close;
2250 
2251 		case TCPS_ESTABLISHED:
2252 		case TCPS_FIN_WAIT_1:
2253 		case TCPS_FIN_WAIT_2:
2254 		case TCPS_CLOSE_WAIT:
2255 			so->so_error = ECONNRESET;
2256 		close:
2257 			tp->t_state = TCPS_CLOSED;
2258 			TCP_STATINC(TCP_STAT_DROPS);
2259 			tp = tcp_close(tp);
2260 			goto drop;
2261 
2262 		case TCPS_CLOSING:
2263 		case TCPS_LAST_ACK:
2264 		case TCPS_TIME_WAIT:
2265 			tp = tcp_close(tp);
2266 			goto drop;
2267 		}
2268 	}
2269 
2270 	/*
2271 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2272 	 * we must be in a synchronized state.  RFC791 states (under RST
2273 	 * generation) that any unacceptable segment (an out-of-order SYN
2274 	 * qualifies) received in a synchronized state must elicit only an
2275 	 * empty acknowledgment segment ... and the connection remains in
2276 	 * the same state.
2277 	 */
2278 	if (tiflags & TH_SYN) {
2279 		if (tp->rcv_nxt == th->th_seq) {
2280 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2281 			    TH_ACK);
2282 			if (tcp_saveti)
2283 				m_freem(tcp_saveti);
2284 			return;
2285 		}
2286 
2287 		goto dropafterack_ratelim;
2288 	}
2289 
2290 	/*
2291 	 * If the ACK bit is off we drop the segment and return.
2292 	 */
2293 	if ((tiflags & TH_ACK) == 0) {
2294 		if (tp->t_flags & TF_ACKNOW)
2295 			goto dropafterack;
2296 		else
2297 			goto drop;
2298 	}
2299 
2300 	/*
2301 	 * Ack processing.
2302 	 */
2303 	switch (tp->t_state) {
2304 
2305 	/*
2306 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2307 	 * ESTABLISHED state and continue processing, otherwise
2308 	 * send an RST.
2309 	 */
2310 	case TCPS_SYN_RECEIVED:
2311 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2312 		    SEQ_GT(th->th_ack, tp->snd_max))
2313 			goto dropwithreset;
2314 		TCP_STATINC(TCP_STAT_CONNECTS);
2315 		soisconnected(so);
2316 		tcp_established(tp);
2317 		/* Do window scaling? */
2318 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2319 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2320 			tp->snd_scale = tp->requested_s_scale;
2321 			tp->rcv_scale = tp->request_r_scale;
2322 		}
2323 		TCP_REASS_LOCK(tp);
2324 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2325 		TCP_REASS_UNLOCK(tp);
2326 		tp->snd_wl1 = th->th_seq - 1;
2327 		/* fall into ... */
2328 
2329 	/*
2330 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2331 	 * ACKs.  If the ack is in the range
2332 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2333 	 * then advance tp->snd_una to th->th_ack and drop
2334 	 * data from the retransmission queue.  If this ACK reflects
2335 	 * more up to date window information we update our window information.
2336 	 */
2337 	case TCPS_ESTABLISHED:
2338 	case TCPS_FIN_WAIT_1:
2339 	case TCPS_FIN_WAIT_2:
2340 	case TCPS_CLOSE_WAIT:
2341 	case TCPS_CLOSING:
2342 	case TCPS_LAST_ACK:
2343 	case TCPS_TIME_WAIT:
2344 
2345 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2346 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2347 				TCP_STATINC(TCP_STAT_RCVDUPPACK);
2348 				/*
2349 				 * If we have outstanding data (other than
2350 				 * a window probe), this is a completely
2351 				 * duplicate ack (ie, window info didn't
2352 				 * change), the ack is the biggest we've
2353 				 * seen and we've seen exactly our rexmt
2354 				 * threshhold of them, assume a packet
2355 				 * has been dropped and retransmit it.
2356 				 * Kludge snd_nxt & the congestion
2357 				 * window so we send only this one
2358 				 * packet.
2359 				 */
2360 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2361 				    th->th_ack != tp->snd_una)
2362 					tp->t_dupacks = 0;
2363 				else if (tp->t_partialacks < 0 &&
2364 					 (++tp->t_dupacks == tcprexmtthresh ||
2365 					 TCP_FACK_FASTRECOV(tp))) {
2366 					/*
2367 					 * Do the fast retransmit, and adjust
2368 					 * congestion control paramenters.
2369 					 */
2370 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2371 						/* False fast retransmit */
2372 						break;
2373 					} else
2374 						goto drop;
2375 				} else if (tp->t_dupacks > tcprexmtthresh) {
2376 					tp->snd_cwnd += tp->t_segsz;
2377 					KERNEL_LOCK(1, NULL);
2378 					(void) tcp_output(tp);
2379 					KERNEL_UNLOCK_ONE(NULL);
2380 					goto drop;
2381 				}
2382 			} else {
2383 				/*
2384 				 * If the ack appears to be very old, only
2385 				 * allow data that is in-sequence.  This
2386 				 * makes it somewhat more difficult to insert
2387 				 * forged data by guessing sequence numbers.
2388 				 * Sent an ack to try to update the send
2389 				 * sequence number on the other side.
2390 				 */
2391 				if (tlen && th->th_seq != tp->rcv_nxt &&
2392 				    SEQ_LT(th->th_ack,
2393 				    tp->snd_una - tp->max_sndwnd))
2394 					goto dropafterack;
2395 			}
2396 			break;
2397 		}
2398 		/*
2399 		 * If the congestion window was inflated to account
2400 		 * for the other side's cached packets, retract it.
2401 		 */
2402 		/* XXX: make SACK have his own congestion control
2403 		 * struct -- rpaulo */
2404 		if (TCP_SACK_ENABLED(tp))
2405 			tcp_sack_newack(tp, th);
2406 		else
2407 			tp->t_congctl->fast_retransmit_newack(tp, th);
2408 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2409 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2410 			goto dropafterack;
2411 		}
2412 		acked = th->th_ack - tp->snd_una;
2413 		tcps = TCP_STAT_GETREF();
2414 		tcps[TCP_STAT_RCVACKPACK]++;
2415 		tcps[TCP_STAT_RCVACKBYTE] += acked;
2416 		TCP_STAT_PUTREF();
2417 
2418 		/*
2419 		 * If we have a timestamp reply, update smoothed
2420 		 * round trip time.  If no timestamp is present but
2421 		 * transmit timer is running and timed sequence
2422 		 * number was acked, update smoothed round trip time.
2423 		 * Since we now have an rtt measurement, cancel the
2424 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2425 		 * Recompute the initial retransmit timer.
2426 		 */
2427 		if (ts_rtt)
2428 			tcp_xmit_timer(tp, ts_rtt);
2429 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2430 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2431 
2432 		/*
2433 		 * If all outstanding data is acked, stop retransmit
2434 		 * timer and remember to restart (more output or persist).
2435 		 * If there is more data to be acked, restart retransmit
2436 		 * timer, using current (possibly backed-off) value.
2437 		 */
2438 		if (th->th_ack == tp->snd_max) {
2439 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2440 			needoutput = 1;
2441 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2442 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2443 
2444 		/*
2445 		 * New data has been acked, adjust the congestion window.
2446 		 */
2447 		tp->t_congctl->newack(tp, th);
2448 
2449 		nd6_hint(tp);
2450 		if (acked > so->so_snd.sb_cc) {
2451 			tp->snd_wnd -= so->so_snd.sb_cc;
2452 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2453 			ourfinisacked = 1;
2454 		} else {
2455 			if (acked > (tp->t_lastoff - tp->t_inoff))
2456 				tp->t_lastm = NULL;
2457 			sbdrop(&so->so_snd, acked);
2458 			tp->t_lastoff -= acked;
2459 			tp->snd_wnd -= acked;
2460 			ourfinisacked = 0;
2461 		}
2462 		sowwakeup(so);
2463 
2464 		icmp_check(tp, th, acked);
2465 
2466 		tp->snd_una = th->th_ack;
2467 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2468 			tp->snd_fack = tp->snd_una;
2469 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2470 			tp->snd_nxt = tp->snd_una;
2471 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2472 			tp->snd_high = tp->snd_una;
2473 
2474 		switch (tp->t_state) {
2475 
2476 		/*
2477 		 * In FIN_WAIT_1 STATE in addition to the processing
2478 		 * for the ESTABLISHED state if our FIN is now acknowledged
2479 		 * then enter FIN_WAIT_2.
2480 		 */
2481 		case TCPS_FIN_WAIT_1:
2482 			if (ourfinisacked) {
2483 				/*
2484 				 * If we can't receive any more
2485 				 * data, then closing user can proceed.
2486 				 * Starting the timer is contrary to the
2487 				 * specification, but if we don't get a FIN
2488 				 * we'll hang forever.
2489 				 */
2490 				if (so->so_state & SS_CANTRCVMORE) {
2491 					soisdisconnected(so);
2492 					if (tp->t_maxidle > 0)
2493 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2494 						    tp->t_maxidle);
2495 				}
2496 				tp->t_state = TCPS_FIN_WAIT_2;
2497 			}
2498 			break;
2499 
2500 	 	/*
2501 		 * In CLOSING STATE in addition to the processing for
2502 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2503 		 * then enter the TIME-WAIT state, otherwise ignore
2504 		 * the segment.
2505 		 */
2506 		case TCPS_CLOSING:
2507 			if (ourfinisacked) {
2508 				tp->t_state = TCPS_TIME_WAIT;
2509 				tcp_canceltimers(tp);
2510 				TCP_TIMER_ARM(tp, TCPT_2MSL,
2511 						2 * PR_SLOWHZ * tcp_msl);
2512 				soisdisconnected(so);
2513 			}
2514 			break;
2515 
2516 		/*
2517 		 * In LAST_ACK, we may still be waiting for data to drain
2518 		 * and/or to be acked, as well as for the ack of our FIN.
2519 		 * If our FIN is now acknowledged, delete the TCB,
2520 		 * enter the closed state and return.
2521 		 */
2522 		case TCPS_LAST_ACK:
2523 			if (ourfinisacked) {
2524 				tp = tcp_close(tp);
2525 				goto drop;
2526 			}
2527 			break;
2528 
2529 		/*
2530 		 * In TIME_WAIT state the only thing that should arrive
2531 		 * is a retransmission of the remote FIN.  Acknowledge
2532 		 * it and restart the finack timer.
2533 		 */
2534 		case TCPS_TIME_WAIT:
2535 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
2536 			goto dropafterack;
2537 		}
2538 	}
2539 
2540 step6:
2541 	/*
2542 	 * Update window information.
2543 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2544 	 */
2545 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2546 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2547 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2548 		/* keep track of pure window updates */
2549 		if (tlen == 0 &&
2550 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2551 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2552 		tp->snd_wnd = tiwin;
2553 		tp->snd_wl1 = th->th_seq;
2554 		tp->snd_wl2 = th->th_ack;
2555 		if (tp->snd_wnd > tp->max_sndwnd)
2556 			tp->max_sndwnd = tp->snd_wnd;
2557 		needoutput = 1;
2558 	}
2559 
2560 	/*
2561 	 * Process segments with URG.
2562 	 */
2563 	if ((tiflags & TH_URG) && th->th_urp &&
2564 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2565 		/*
2566 		 * This is a kludge, but if we receive and accept
2567 		 * random urgent pointers, we'll crash in
2568 		 * soreceive.  It's hard to imagine someone
2569 		 * actually wanting to send this much urgent data.
2570 		 */
2571 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2572 			th->th_urp = 0;			/* XXX */
2573 			tiflags &= ~TH_URG;		/* XXX */
2574 			goto dodata;			/* XXX */
2575 		}
2576 		/*
2577 		 * If this segment advances the known urgent pointer,
2578 		 * then mark the data stream.  This should not happen
2579 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2580 		 * a FIN has been received from the remote side.
2581 		 * In these states we ignore the URG.
2582 		 *
2583 		 * According to RFC961 (Assigned Protocols),
2584 		 * the urgent pointer points to the last octet
2585 		 * of urgent data.  We continue, however,
2586 		 * to consider it to indicate the first octet
2587 		 * of data past the urgent section as the original
2588 		 * spec states (in one of two places).
2589 		 */
2590 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2591 			tp->rcv_up = th->th_seq + th->th_urp;
2592 			so->so_oobmark = so->so_rcv.sb_cc +
2593 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2594 			if (so->so_oobmark == 0)
2595 				so->so_state |= SS_RCVATMARK;
2596 			sohasoutofband(so);
2597 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2598 		}
2599 		/*
2600 		 * Remove out of band data so doesn't get presented to user.
2601 		 * This can happen independent of advancing the URG pointer,
2602 		 * but if two URG's are pending at once, some out-of-band
2603 		 * data may creep in... ick.
2604 		 */
2605 		if (th->th_urp <= (u_int16_t) tlen
2606 #ifdef SO_OOBINLINE
2607 		     && (so->so_options & SO_OOBINLINE) == 0
2608 #endif
2609 		     )
2610 			tcp_pulloutofband(so, th, m, hdroptlen);
2611 	} else
2612 		/*
2613 		 * If no out of band data is expected,
2614 		 * pull receive urgent pointer along
2615 		 * with the receive window.
2616 		 */
2617 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2618 			tp->rcv_up = tp->rcv_nxt;
2619 dodata:							/* XXX */
2620 
2621 	/*
2622 	 * Process the segment text, merging it into the TCP sequencing queue,
2623 	 * and arranging for acknowledgement of receipt if necessary.
2624 	 * This process logically involves adjusting tp->rcv_wnd as data
2625 	 * is presented to the user (this happens in tcp_usrreq.c,
2626 	 * case PRU_RCVD).  If a FIN has already been received on this
2627 	 * connection then we just ignore the text.
2628 	 */
2629 	if ((tlen || (tiflags & TH_FIN)) &&
2630 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2631 		/*
2632 		 * Insert segment ti into reassembly queue of tcp with
2633 		 * control block tp.  Return TH_FIN if reassembly now includes
2634 		 * a segment with FIN.  The macro form does the common case
2635 		 * inline (segment is the next to be received on an
2636 		 * established connection, and the queue is empty),
2637 		 * avoiding linkage into and removal from the queue and
2638 		 * repetition of various conversions.
2639 		 * Set DELACK for segments received in order, but ack
2640 		 * immediately when segments are out of order
2641 		 * (so fast retransmit can work).
2642 		 */
2643 		/* NOTE: this was TCP_REASS() macro, but used only once */
2644 		TCP_REASS_LOCK(tp);
2645 		if (th->th_seq == tp->rcv_nxt &&
2646 		    TAILQ_FIRST(&tp->segq) == NULL &&
2647 		    tp->t_state == TCPS_ESTABLISHED) {
2648 			tcp_setup_ack(tp, th);
2649 			tp->rcv_nxt += tlen;
2650 			tiflags = th->th_flags & TH_FIN;
2651 			tcps = TCP_STAT_GETREF();
2652 			tcps[TCP_STAT_RCVPACK]++;
2653 			tcps[TCP_STAT_RCVBYTE] += tlen;
2654 			TCP_STAT_PUTREF();
2655 			nd6_hint(tp);
2656 			if (so->so_state & SS_CANTRCVMORE)
2657 				m_freem(m);
2658 			else {
2659 				m_adj(m, hdroptlen);
2660 				sbappendstream(&(so)->so_rcv, m);
2661 			}
2662 			TCP_REASS_UNLOCK(tp);
2663 			sorwakeup(so);
2664 		} else {
2665 			m_adj(m, hdroptlen);
2666 			tiflags = tcp_reass(tp, th, m, &tlen);
2667 			tp->t_flags |= TF_ACKNOW;
2668 			TCP_REASS_UNLOCK(tp);
2669 		}
2670 
2671 		/*
2672 		 * Note the amount of data that peer has sent into
2673 		 * our window, in order to estimate the sender's
2674 		 * buffer size.
2675 		 */
2676 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2677 	} else {
2678 		m_freem(m);
2679 		m = NULL;
2680 		tiflags &= ~TH_FIN;
2681 	}
2682 
2683 	/*
2684 	 * If FIN is received ACK the FIN and let the user know
2685 	 * that the connection is closing.  Ignore a FIN received before
2686 	 * the connection is fully established.
2687 	 */
2688 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2689 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2690 			socantrcvmore(so);
2691 			tp->t_flags |= TF_ACKNOW;
2692 			tp->rcv_nxt++;
2693 		}
2694 		switch (tp->t_state) {
2695 
2696 	 	/*
2697 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2698 		 */
2699 		case TCPS_ESTABLISHED:
2700 			tp->t_state = TCPS_CLOSE_WAIT;
2701 			break;
2702 
2703 	 	/*
2704 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2705 		 * enter the CLOSING state.
2706 		 */
2707 		case TCPS_FIN_WAIT_1:
2708 			tp->t_state = TCPS_CLOSING;
2709 			break;
2710 
2711 	 	/*
2712 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2713 		 * starting the time-wait timer, turning off the other
2714 		 * standard timers.
2715 		 */
2716 		case TCPS_FIN_WAIT_2:
2717 			tp->t_state = TCPS_TIME_WAIT;
2718 			tcp_canceltimers(tp);
2719 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
2720 			soisdisconnected(so);
2721 			break;
2722 
2723 		/*
2724 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2725 		 */
2726 		case TCPS_TIME_WAIT:
2727 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
2728 			break;
2729 		}
2730 	}
2731 #ifdef TCP_DEBUG
2732 	if (so->so_options & SO_DEBUG)
2733 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2734 #endif
2735 
2736 	/*
2737 	 * Return any desired output.
2738 	 */
2739 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2740 		KERNEL_LOCK(1, NULL);
2741 		(void) tcp_output(tp);
2742 		KERNEL_UNLOCK_ONE(NULL);
2743 	}
2744 	if (tcp_saveti)
2745 		m_freem(tcp_saveti);
2746 	return;
2747 
2748 badsyn:
2749 	/*
2750 	 * Received a bad SYN.  Increment counters and dropwithreset.
2751 	 */
2752 	TCP_STATINC(TCP_STAT_BADSYN);
2753 	tp = NULL;
2754 	goto dropwithreset;
2755 
2756 dropafterack:
2757 	/*
2758 	 * Generate an ACK dropping incoming segment if it occupies
2759 	 * sequence space, where the ACK reflects our state.
2760 	 */
2761 	if (tiflags & TH_RST)
2762 		goto drop;
2763 	goto dropafterack2;
2764 
2765 dropafterack_ratelim:
2766 	/*
2767 	 * We may want to rate-limit ACKs against SYN/RST attack.
2768 	 */
2769 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2770 	    tcp_ackdrop_ppslim) == 0) {
2771 		/* XXX stat */
2772 		goto drop;
2773 	}
2774 	/* ...fall into dropafterack2... */
2775 
2776 dropafterack2:
2777 	m_freem(m);
2778 	tp->t_flags |= TF_ACKNOW;
2779 	KERNEL_LOCK(1, NULL);
2780 	(void) tcp_output(tp);
2781 	KERNEL_UNLOCK_ONE(NULL);
2782 	if (tcp_saveti)
2783 		m_freem(tcp_saveti);
2784 	return;
2785 
2786 dropwithreset_ratelim:
2787 	/*
2788 	 * We may want to rate-limit RSTs in certain situations,
2789 	 * particularly if we are sending an RST in response to
2790 	 * an attempt to connect to or otherwise communicate with
2791 	 * a port for which we have no socket.
2792 	 */
2793 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2794 	    tcp_rst_ppslim) == 0) {
2795 		/* XXX stat */
2796 		goto drop;
2797 	}
2798 	/* ...fall into dropwithreset... */
2799 
2800 dropwithreset:
2801 	/*
2802 	 * Generate a RST, dropping incoming segment.
2803 	 * Make ACK acceptable to originator of segment.
2804 	 */
2805 	if (tiflags & TH_RST)
2806 		goto drop;
2807 
2808 	switch (af) {
2809 #ifdef INET6
2810 	case AF_INET6:
2811 		/* For following calls to tcp_respond */
2812 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2813 			goto drop;
2814 		break;
2815 #endif /* INET6 */
2816 	case AF_INET:
2817 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2818 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2819 			goto drop;
2820 	}
2821 
2822 	if (tiflags & TH_ACK)
2823 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2824 	else {
2825 		if (tiflags & TH_SYN)
2826 			tlen++;
2827 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2828 		    TH_RST|TH_ACK);
2829 	}
2830 	if (tcp_saveti)
2831 		m_freem(tcp_saveti);
2832 	return;
2833 
2834 badcsum:
2835 drop:
2836 	/*
2837 	 * Drop space held by incoming segment and return.
2838 	 */
2839 	if (tp) {
2840 		if (tp->t_inpcb)
2841 			so = tp->t_inpcb->inp_socket;
2842 #ifdef INET6
2843 		else if (tp->t_in6pcb)
2844 			so = tp->t_in6pcb->in6p_socket;
2845 #endif
2846 		else
2847 			so = NULL;
2848 #ifdef TCP_DEBUG
2849 		if (so && (so->so_options & SO_DEBUG) != 0)
2850 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2851 #endif
2852 	}
2853 	if (tcp_saveti)
2854 		m_freem(tcp_saveti);
2855 	m_freem(m);
2856 	return;
2857 }
2858 
2859 #ifdef TCP_SIGNATURE
2860 int
2861 tcp_signature_apply(void *fstate, void *data, u_int len)
2862 {
2863 
2864 	MD5Update(fstate, (u_char *)data, len);
2865 	return (0);
2866 }
2867 
2868 struct secasvar *
2869 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2870 {
2871 	struct secasvar *sav;
2872 #ifdef FAST_IPSEC
2873 	union sockaddr_union dst;
2874 #endif
2875 	struct ip *ip;
2876 	struct ip6_hdr *ip6;
2877 
2878 	ip = mtod(m, struct ip *);
2879 	switch (ip->ip_v) {
2880 	case 4:
2881 		ip = mtod(m, struct ip *);
2882 		ip6 = NULL;
2883 		break;
2884 	case 6:
2885 		ip = NULL;
2886 		ip6 = mtod(m, struct ip6_hdr *);
2887 		break;
2888 	default:
2889 		return (NULL);
2890 	}
2891 
2892 #ifdef FAST_IPSEC
2893 	/* Extract the destination from the IP header in the mbuf. */
2894 	memset(&dst, 0, sizeof(union sockaddr_union));
2895 	if (ip !=NULL) {
2896 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2897 		dst.sa.sa_family = AF_INET;
2898 		dst.sin.sin_addr = ip->ip_dst;
2899 	} else {
2900 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2901 		dst.sa.sa_family = AF_INET6;
2902 		dst.sin6.sin6_addr = ip6->ip6_dst;
2903 	}
2904 
2905 	/*
2906 	 * Look up an SADB entry which matches the address of the peer.
2907 	 */
2908 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2909 #else
2910 	if (ip)
2911 		sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
2912 		    (void *)&ip->ip_dst, IPPROTO_TCP,
2913 		    htonl(TCP_SIG_SPI), 0, 0);
2914 	else
2915 		sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
2916 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
2917 		    htonl(TCP_SIG_SPI), 0, 0);
2918 #endif
2919 
2920 	return (sav);	/* freesav must be performed by caller */
2921 }
2922 
2923 int
2924 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2925     struct secasvar *sav, char *sig)
2926 {
2927 	MD5_CTX ctx;
2928 	struct ip *ip;
2929 	struct ipovly *ipovly;
2930 	struct ip6_hdr *ip6;
2931 	struct ippseudo ippseudo;
2932 	struct ip6_hdr_pseudo ip6pseudo;
2933 	struct tcphdr th0;
2934 	int l, tcphdrlen;
2935 
2936 	if (sav == NULL)
2937 		return (-1);
2938 
2939 	tcphdrlen = th->th_off * 4;
2940 
2941 	switch (mtod(m, struct ip *)->ip_v) {
2942 	case 4:
2943 		ip = mtod(m, struct ip *);
2944 		ip6 = NULL;
2945 		break;
2946 	case 6:
2947 		ip = NULL;
2948 		ip6 = mtod(m, struct ip6_hdr *);
2949 		break;
2950 	default:
2951 		return (-1);
2952 	}
2953 
2954 	MD5Init(&ctx);
2955 
2956 	if (ip) {
2957 		memset(&ippseudo, 0, sizeof(ippseudo));
2958 		ipovly = (struct ipovly *)ip;
2959 		ippseudo.ippseudo_src = ipovly->ih_src;
2960 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2961 		ippseudo.ippseudo_pad = 0;
2962 		ippseudo.ippseudo_p = IPPROTO_TCP;
2963 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2964 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2965 	} else {
2966 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2967 		ip6pseudo.ip6ph_src = ip6->ip6_src;
2968 		in6_clearscope(&ip6pseudo.ip6ph_src);
2969 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2970 		in6_clearscope(&ip6pseudo.ip6ph_dst);
2971 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2972 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2973 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2974 	}
2975 
2976 	th0 = *th;
2977 	th0.th_sum = 0;
2978 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
2979 
2980 	l = m->m_pkthdr.len - thoff - tcphdrlen;
2981 	if (l > 0)
2982 		m_apply(m, thoff + tcphdrlen,
2983 		    m->m_pkthdr.len - thoff - tcphdrlen,
2984 		    tcp_signature_apply, &ctx);
2985 
2986 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2987 	MD5Final(sig, &ctx);
2988 
2989 	return (0);
2990 }
2991 #endif
2992 
2993 static int
2994 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
2995     struct tcphdr *th,
2996     struct mbuf *m, int toff, struct tcp_opt_info *oi)
2997 {
2998 	u_int16_t mss;
2999 	int opt, optlen = 0;
3000 #ifdef TCP_SIGNATURE
3001 	void *sigp = NULL;
3002 	char sigbuf[TCP_SIGLEN];
3003 	struct secasvar *sav = NULL;
3004 #endif
3005 
3006 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3007 		opt = cp[0];
3008 		if (opt == TCPOPT_EOL)
3009 			break;
3010 		if (opt == TCPOPT_NOP)
3011 			optlen = 1;
3012 		else {
3013 			if (cnt < 2)
3014 				break;
3015 			optlen = cp[1];
3016 			if (optlen < 2 || optlen > cnt)
3017 				break;
3018 		}
3019 		switch (opt) {
3020 
3021 		default:
3022 			continue;
3023 
3024 		case TCPOPT_MAXSEG:
3025 			if (optlen != TCPOLEN_MAXSEG)
3026 				continue;
3027 			if (!(th->th_flags & TH_SYN))
3028 				continue;
3029 			if (TCPS_HAVERCVDSYN(tp->t_state))
3030 				continue;
3031 			bcopy(cp + 2, &mss, sizeof(mss));
3032 			oi->maxseg = ntohs(mss);
3033 			break;
3034 
3035 		case TCPOPT_WINDOW:
3036 			if (optlen != TCPOLEN_WINDOW)
3037 				continue;
3038 			if (!(th->th_flags & TH_SYN))
3039 				continue;
3040 			if (TCPS_HAVERCVDSYN(tp->t_state))
3041 				continue;
3042 			tp->t_flags |= TF_RCVD_SCALE;
3043 			tp->requested_s_scale = cp[2];
3044 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3045 #if 0	/*XXX*/
3046 				char *p;
3047 
3048 				if (ip)
3049 					p = ntohl(ip->ip_src);
3050 #ifdef INET6
3051 				else if (ip6)
3052 					p = ip6_sprintf(&ip6->ip6_src);
3053 #endif
3054 				else
3055 					p = "(unknown)";
3056 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3057 				    "assuming %d\n",
3058 				    tp->requested_s_scale, p,
3059 				    TCP_MAX_WINSHIFT);
3060 #else
3061 				log(LOG_ERR, "TCP: invalid wscale %d, "
3062 				    "assuming %d\n",
3063 				    tp->requested_s_scale,
3064 				    TCP_MAX_WINSHIFT);
3065 #endif
3066 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3067 			}
3068 			break;
3069 
3070 		case TCPOPT_TIMESTAMP:
3071 			if (optlen != TCPOLEN_TIMESTAMP)
3072 				continue;
3073 			oi->ts_present = 1;
3074 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3075 			NTOHL(oi->ts_val);
3076 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3077 			NTOHL(oi->ts_ecr);
3078 
3079 			if (!(th->th_flags & TH_SYN))
3080 				continue;
3081 			if (TCPS_HAVERCVDSYN(tp->t_state))
3082 				continue;
3083 			/*
3084 			 * A timestamp received in a SYN makes
3085 			 * it ok to send timestamp requests and replies.
3086 			 */
3087 			tp->t_flags |= TF_RCVD_TSTMP;
3088 			tp->ts_recent = oi->ts_val;
3089 			tp->ts_recent_age = tcp_now;
3090                         break;
3091 
3092 		case TCPOPT_SACK_PERMITTED:
3093 			if (optlen != TCPOLEN_SACK_PERMITTED)
3094 				continue;
3095 			if (!(th->th_flags & TH_SYN))
3096 				continue;
3097 			if (TCPS_HAVERCVDSYN(tp->t_state))
3098 				continue;
3099 			if (tcp_do_sack) {
3100 				tp->t_flags |= TF_SACK_PERMIT;
3101 				tp->t_flags |= TF_WILL_SACK;
3102 			}
3103 			break;
3104 
3105 		case TCPOPT_SACK:
3106 			tcp_sack_option(tp, th, cp, optlen);
3107 			break;
3108 #ifdef TCP_SIGNATURE
3109 		case TCPOPT_SIGNATURE:
3110 			if (optlen != TCPOLEN_SIGNATURE)
3111 				continue;
3112 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3113 				return (-1);
3114 
3115 			sigp = sigbuf;
3116 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3117 			tp->t_flags |= TF_SIGNATURE;
3118 			break;
3119 #endif
3120 		}
3121 	}
3122 
3123 #ifdef TCP_SIGNATURE
3124 	if (tp->t_flags & TF_SIGNATURE) {
3125 
3126 		sav = tcp_signature_getsav(m, th);
3127 
3128 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3129 			return (-1);
3130 	}
3131 
3132 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3133 		if (sav == NULL)
3134 			return (-1);
3135 #ifdef FAST_IPSEC
3136 		KEY_FREESAV(&sav);
3137 #else
3138 		key_freesav(sav);
3139 #endif
3140 		return (-1);
3141 	}
3142 
3143 	if (sigp) {
3144 		char sig[TCP_SIGLEN];
3145 
3146 		tcp_fields_to_net(th);
3147 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3148 			tcp_fields_to_host(th);
3149 			if (sav == NULL)
3150 				return (-1);
3151 #ifdef FAST_IPSEC
3152 			KEY_FREESAV(&sav);
3153 #else
3154 			key_freesav(sav);
3155 #endif
3156 			return (-1);
3157 		}
3158 		tcp_fields_to_host(th);
3159 
3160 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
3161 			TCP_STATINC(TCP_STAT_BADSIG);
3162 			if (sav == NULL)
3163 				return (-1);
3164 #ifdef FAST_IPSEC
3165 			KEY_FREESAV(&sav);
3166 #else
3167 			key_freesav(sav);
3168 #endif
3169 			return (-1);
3170 		} else
3171 			TCP_STATINC(TCP_STAT_GOODSIG);
3172 
3173 		key_sa_recordxfer(sav, m);
3174 #ifdef FAST_IPSEC
3175 		KEY_FREESAV(&sav);
3176 #else
3177 		key_freesav(sav);
3178 #endif
3179 	}
3180 #endif
3181 
3182 	return (0);
3183 }
3184 
3185 /*
3186  * Pull out of band byte out of a segment so
3187  * it doesn't appear in the user's data queue.
3188  * It is still reflected in the segment length for
3189  * sequencing purposes.
3190  */
3191 void
3192 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3193     struct mbuf *m, int off)
3194 {
3195 	int cnt = off + th->th_urp - 1;
3196 
3197 	while (cnt >= 0) {
3198 		if (m->m_len > cnt) {
3199 			char *cp = mtod(m, char *) + cnt;
3200 			struct tcpcb *tp = sototcpcb(so);
3201 
3202 			tp->t_iobc = *cp;
3203 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3204 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3205 			m->m_len--;
3206 			return;
3207 		}
3208 		cnt -= m->m_len;
3209 		m = m->m_next;
3210 		if (m == 0)
3211 			break;
3212 	}
3213 	panic("tcp_pulloutofband");
3214 }
3215 
3216 /*
3217  * Collect new round-trip time estimate
3218  * and update averages and current timeout.
3219  */
3220 void
3221 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3222 {
3223 	int32_t delta;
3224 
3225 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3226 	if (tp->t_srtt != 0) {
3227 		/*
3228 		 * srtt is stored as fixed point with 3 bits after the
3229 		 * binary point (i.e., scaled by 8).  The following magic
3230 		 * is equivalent to the smoothing algorithm in rfc793 with
3231 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3232 		 * point).  Adjust rtt to origin 0.
3233 		 */
3234 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3235 		if ((tp->t_srtt += delta) <= 0)
3236 			tp->t_srtt = 1 << 2;
3237 		/*
3238 		 * We accumulate a smoothed rtt variance (actually, a
3239 		 * smoothed mean difference), then set the retransmit
3240 		 * timer to smoothed rtt + 4 times the smoothed variance.
3241 		 * rttvar is stored as fixed point with 2 bits after the
3242 		 * binary point (scaled by 4).  The following is
3243 		 * equivalent to rfc793 smoothing with an alpha of .75
3244 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3245 		 * rfc793's wired-in beta.
3246 		 */
3247 		if (delta < 0)
3248 			delta = -delta;
3249 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3250 		if ((tp->t_rttvar += delta) <= 0)
3251 			tp->t_rttvar = 1 << 2;
3252 	} else {
3253 		/*
3254 		 * No rtt measurement yet - use the unsmoothed rtt.
3255 		 * Set the variance to half the rtt (so our first
3256 		 * retransmit happens at 3*rtt).
3257 		 */
3258 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3259 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3260 	}
3261 	tp->t_rtttime = 0;
3262 	tp->t_rxtshift = 0;
3263 
3264 	/*
3265 	 * the retransmit should happen at rtt + 4 * rttvar.
3266 	 * Because of the way we do the smoothing, srtt and rttvar
3267 	 * will each average +1/2 tick of bias.  When we compute
3268 	 * the retransmit timer, we want 1/2 tick of rounding and
3269 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3270 	 * firing of the timer.  The bias will give us exactly the
3271 	 * 1.5 tick we need.  But, because the bias is
3272 	 * statistical, we have to test that we don't drop below
3273 	 * the minimum feasible timer (which is 2 ticks).
3274 	 */
3275 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3276 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3277 
3278 	/*
3279 	 * We received an ack for a packet that wasn't retransmitted;
3280 	 * it is probably safe to discard any error indications we've
3281 	 * received recently.  This isn't quite right, but close enough
3282 	 * for now (a route might have failed after we sent a segment,
3283 	 * and the return path might not be symmetrical).
3284 	 */
3285 	tp->t_softerror = 0;
3286 }
3287 
3288 
3289 /*
3290  * TCP compressed state engine.  Currently used to hold compressed
3291  * state for SYN_RECEIVED.
3292  */
3293 
3294 u_long	syn_cache_count;
3295 u_int32_t syn_hash1, syn_hash2;
3296 
3297 #define SYN_HASH(sa, sp, dp) \
3298 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3299 				     ((u_int32_t)(sp)))^syn_hash2)))
3300 #ifndef INET6
3301 #define	SYN_HASHALL(hash, src, dst) \
3302 do {									\
3303 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
3304 		((const struct sockaddr_in *)(src))->sin_port,		\
3305 		((const struct sockaddr_in *)(dst))->sin_port);		\
3306 } while (/*CONSTCOND*/ 0)
3307 #else
3308 #define SYN_HASH6(sa, sp, dp) \
3309 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3310 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3311 	 & 0x7fffffff)
3312 
3313 #define SYN_HASHALL(hash, src, dst) \
3314 do {									\
3315 	switch ((src)->sa_family) {					\
3316 	case AF_INET:							\
3317 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3318 			((const struct sockaddr_in *)(src))->sin_port,	\
3319 			((const struct sockaddr_in *)(dst))->sin_port);	\
3320 		break;							\
3321 	case AF_INET6:							\
3322 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3323 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
3324 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
3325 		break;							\
3326 	default:							\
3327 		hash = 0;						\
3328 	}								\
3329 } while (/*CONSTCOND*/0)
3330 #endif /* INET6 */
3331 
3332 static struct pool syn_cache_pool;
3333 
3334 /*
3335  * We don't estimate RTT with SYNs, so each packet starts with the default
3336  * RTT and each timer step has a fixed timeout value.
3337  */
3338 #define	SYN_CACHE_TIMER_ARM(sc)						\
3339 do {									\
3340 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3341 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3342 	    TCPTV_REXMTMAX);						\
3343 	callout_reset(&(sc)->sc_timer,					\
3344 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
3345 } while (/*CONSTCOND*/0)
3346 
3347 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3348 
3349 static inline void
3350 syn_cache_rm(struct syn_cache *sc)
3351 {
3352 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3353 	    sc, sc_bucketq);
3354 	sc->sc_tp = NULL;
3355 	LIST_REMOVE(sc, sc_tpq);
3356 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3357 	callout_stop(&sc->sc_timer);
3358 	syn_cache_count--;
3359 }
3360 
3361 static inline void
3362 syn_cache_put(struct syn_cache *sc)
3363 {
3364 	if (sc->sc_ipopts)
3365 		(void) m_free(sc->sc_ipopts);
3366 	rtcache_free(&sc->sc_route);
3367 	sc->sc_flags |= SCF_DEAD;
3368 	if (!callout_invoking(&sc->sc_timer))
3369 		callout_schedule(&(sc)->sc_timer, 1);
3370 }
3371 
3372 void
3373 syn_cache_init(void)
3374 {
3375 	int i;
3376 
3377 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3378 	    "synpl", NULL, IPL_SOFTNET);
3379 
3380 	/* Initialize the hash buckets. */
3381 	for (i = 0; i < tcp_syn_cache_size; i++)
3382 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3383 }
3384 
3385 void
3386 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3387 {
3388 	struct syn_cache_head *scp;
3389 	struct syn_cache *sc2;
3390 	int s;
3391 
3392 	/*
3393 	 * If there are no entries in the hash table, reinitialize
3394 	 * the hash secrets.
3395 	 */
3396 	if (syn_cache_count == 0) {
3397 		syn_hash1 = arc4random();
3398 		syn_hash2 = arc4random();
3399 	}
3400 
3401 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3402 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3403 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3404 
3405 	/*
3406 	 * Make sure that we don't overflow the per-bucket
3407 	 * limit or the total cache size limit.
3408 	 */
3409 	s = splsoftnet();
3410 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3411 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3412 		/*
3413 		 * The bucket is full.  Toss the oldest element in the
3414 		 * bucket.  This will be the first entry in the bucket.
3415 		 */
3416 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3417 #ifdef DIAGNOSTIC
3418 		/*
3419 		 * This should never happen; we should always find an
3420 		 * entry in our bucket.
3421 		 */
3422 		if (sc2 == NULL)
3423 			panic("syn_cache_insert: bucketoverflow: impossible");
3424 #endif
3425 		syn_cache_rm(sc2);
3426 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3427 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3428 		struct syn_cache_head *scp2, *sce;
3429 
3430 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3431 		/*
3432 		 * The cache is full.  Toss the oldest entry in the
3433 		 * first non-empty bucket we can find.
3434 		 *
3435 		 * XXX We would really like to toss the oldest
3436 		 * entry in the cache, but we hope that this
3437 		 * condition doesn't happen very often.
3438 		 */
3439 		scp2 = scp;
3440 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3441 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3442 			for (++scp2; scp2 != scp; scp2++) {
3443 				if (scp2 >= sce)
3444 					scp2 = &tcp_syn_cache[0];
3445 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3446 					break;
3447 			}
3448 #ifdef DIAGNOSTIC
3449 			/*
3450 			 * This should never happen; we should always find a
3451 			 * non-empty bucket.
3452 			 */
3453 			if (scp2 == scp)
3454 				panic("syn_cache_insert: cacheoverflow: "
3455 				    "impossible");
3456 #endif
3457 		}
3458 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3459 		syn_cache_rm(sc2);
3460 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3461 	}
3462 
3463 	/*
3464 	 * Initialize the entry's timer.
3465 	 */
3466 	sc->sc_rxttot = 0;
3467 	sc->sc_rxtshift = 0;
3468 	SYN_CACHE_TIMER_ARM(sc);
3469 
3470 	/* Link it from tcpcb entry */
3471 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3472 
3473 	/* Put it into the bucket. */
3474 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3475 	scp->sch_length++;
3476 	syn_cache_count++;
3477 
3478 	TCP_STATINC(TCP_STAT_SC_ADDED);
3479 	splx(s);
3480 }
3481 
3482 /*
3483  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3484  * If we have retransmitted an entry the maximum number of times, expire
3485  * that entry.
3486  */
3487 void
3488 syn_cache_timer(void *arg)
3489 {
3490 	struct syn_cache *sc = arg;
3491 
3492 	mutex_enter(softnet_lock);
3493 	KERNEL_LOCK(1, NULL);
3494 	callout_ack(&sc->sc_timer);
3495 
3496 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3497 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3498 		callout_destroy(&sc->sc_timer);
3499 		pool_put(&syn_cache_pool, sc);
3500 		KERNEL_UNLOCK_ONE(NULL);
3501 		mutex_exit(softnet_lock);
3502 		return;
3503 	}
3504 
3505 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3506 		/* Drop it -- too many retransmissions. */
3507 		goto dropit;
3508 	}
3509 
3510 	/*
3511 	 * Compute the total amount of time this entry has
3512 	 * been on a queue.  If this entry has been on longer
3513 	 * than the keep alive timer would allow, expire it.
3514 	 */
3515 	sc->sc_rxttot += sc->sc_rxtcur;
3516 	if (sc->sc_rxttot >= tcp_keepinit)
3517 		goto dropit;
3518 
3519 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3520 	(void) syn_cache_respond(sc, NULL);
3521 
3522 	/* Advance the timer back-off. */
3523 	sc->sc_rxtshift++;
3524 	SYN_CACHE_TIMER_ARM(sc);
3525 
3526 	KERNEL_UNLOCK_ONE(NULL);
3527 	mutex_exit(softnet_lock);
3528 	return;
3529 
3530  dropit:
3531 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3532 	syn_cache_rm(sc);
3533 	if (sc->sc_ipopts)
3534 		(void) m_free(sc->sc_ipopts);
3535 	rtcache_free(&sc->sc_route);
3536 	callout_destroy(&sc->sc_timer);
3537 	pool_put(&syn_cache_pool, sc);
3538 	KERNEL_UNLOCK_ONE(NULL);
3539 	mutex_exit(softnet_lock);
3540 }
3541 
3542 /*
3543  * Remove syn cache created by the specified tcb entry,
3544  * because this does not make sense to keep them
3545  * (if there's no tcb entry, syn cache entry will never be used)
3546  */
3547 void
3548 syn_cache_cleanup(struct tcpcb *tp)
3549 {
3550 	struct syn_cache *sc, *nsc;
3551 	int s;
3552 
3553 	s = splsoftnet();
3554 
3555 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3556 		nsc = LIST_NEXT(sc, sc_tpq);
3557 
3558 #ifdef DIAGNOSTIC
3559 		if (sc->sc_tp != tp)
3560 			panic("invalid sc_tp in syn_cache_cleanup");
3561 #endif
3562 		syn_cache_rm(sc);
3563 		syn_cache_put(sc);	/* calls pool_put but see spl above */
3564 	}
3565 	/* just for safety */
3566 	LIST_INIT(&tp->t_sc);
3567 
3568 	splx(s);
3569 }
3570 
3571 /*
3572  * Find an entry in the syn cache.
3573  */
3574 struct syn_cache *
3575 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3576     struct syn_cache_head **headp)
3577 {
3578 	struct syn_cache *sc;
3579 	struct syn_cache_head *scp;
3580 	u_int32_t hash;
3581 	int s;
3582 
3583 	SYN_HASHALL(hash, src, dst);
3584 
3585 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3586 	*headp = scp;
3587 	s = splsoftnet();
3588 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3589 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3590 		if (sc->sc_hash != hash)
3591 			continue;
3592 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3593 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3594 			splx(s);
3595 			return (sc);
3596 		}
3597 	}
3598 	splx(s);
3599 	return (NULL);
3600 }
3601 
3602 /*
3603  * This function gets called when we receive an ACK for a
3604  * socket in the LISTEN state.  We look up the connection
3605  * in the syn cache, and if its there, we pull it out of
3606  * the cache and turn it into a full-blown connection in
3607  * the SYN-RECEIVED state.
3608  *
3609  * The return values may not be immediately obvious, and their effects
3610  * can be subtle, so here they are:
3611  *
3612  *	NULL	SYN was not found in cache; caller should drop the
3613  *		packet and send an RST.
3614  *
3615  *	-1	We were unable to create the new connection, and are
3616  *		aborting it.  An ACK,RST is being sent to the peer
3617  *		(unless we got screwey sequence numbners; see below),
3618  *		because the 3-way handshake has been completed.  Caller
3619  *		should not free the mbuf, since we may be using it.  If
3620  *		we are not, we will free it.
3621  *
3622  *	Otherwise, the return value is a pointer to the new socket
3623  *	associated with the connection.
3624  */
3625 struct socket *
3626 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3627     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3628     struct socket *so, struct mbuf *m)
3629 {
3630 	struct syn_cache *sc;
3631 	struct syn_cache_head *scp;
3632 	struct inpcb *inp = NULL;
3633 #ifdef INET6
3634 	struct in6pcb *in6p = NULL;
3635 #endif
3636 	struct tcpcb *tp = 0;
3637 	struct mbuf *am;
3638 	int s;
3639 	struct socket *oso;
3640 
3641 	s = splsoftnet();
3642 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3643 		splx(s);
3644 		return (NULL);
3645 	}
3646 
3647 	/*
3648 	 * Verify the sequence and ack numbers.  Try getting the correct
3649 	 * response again.
3650 	 */
3651 	if ((th->th_ack != sc->sc_iss + 1) ||
3652 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3653 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3654 		(void) syn_cache_respond(sc, m);
3655 		splx(s);
3656 		return ((struct socket *)(-1));
3657 	}
3658 
3659 	/* Remove this cache entry */
3660 	syn_cache_rm(sc);
3661 	splx(s);
3662 
3663 	/*
3664 	 * Ok, create the full blown connection, and set things up
3665 	 * as they would have been set up if we had created the
3666 	 * connection when the SYN arrived.  If we can't create
3667 	 * the connection, abort it.
3668 	 */
3669 	/*
3670 	 * inp still has the OLD in_pcb stuff, set the
3671 	 * v6-related flags on the new guy, too.   This is
3672 	 * done particularly for the case where an AF_INET6
3673 	 * socket is bound only to a port, and a v4 connection
3674 	 * comes in on that port.
3675 	 * we also copy the flowinfo from the original pcb
3676 	 * to the new one.
3677 	 */
3678 	oso = so;
3679 	so = sonewconn(so, SS_ISCONNECTED);
3680 	if (so == NULL)
3681 		goto resetandabort;
3682 
3683 	switch (so->so_proto->pr_domain->dom_family) {
3684 #ifdef INET
3685 	case AF_INET:
3686 		inp = sotoinpcb(so);
3687 		break;
3688 #endif
3689 #ifdef INET6
3690 	case AF_INET6:
3691 		in6p = sotoin6pcb(so);
3692 		break;
3693 #endif
3694 	}
3695 	switch (src->sa_family) {
3696 #ifdef INET
3697 	case AF_INET:
3698 		if (inp) {
3699 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3700 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3701 			inp->inp_options = ip_srcroute();
3702 			in_pcbstate(inp, INP_BOUND);
3703 			if (inp->inp_options == NULL) {
3704 				inp->inp_options = sc->sc_ipopts;
3705 				sc->sc_ipopts = NULL;
3706 			}
3707 		}
3708 #ifdef INET6
3709 		else if (in6p) {
3710 			/* IPv4 packet to AF_INET6 socket */
3711 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3712 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3713 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3714 				&in6p->in6p_laddr.s6_addr32[3],
3715 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
3716 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3717 			in6totcpcb(in6p)->t_family = AF_INET;
3718 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3719 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3720 			else
3721 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3722 			in6_pcbstate(in6p, IN6P_BOUND);
3723 		}
3724 #endif
3725 		break;
3726 #endif
3727 #ifdef INET6
3728 	case AF_INET6:
3729 		if (in6p) {
3730 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3731 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3732 			in6_pcbstate(in6p, IN6P_BOUND);
3733 		}
3734 		break;
3735 #endif
3736 	}
3737 #ifdef INET6
3738 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3739 		struct in6pcb *oin6p = sotoin6pcb(oso);
3740 		/* inherit socket options from the listening socket */
3741 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3742 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3743 			m_freem(in6p->in6p_options);
3744 			in6p->in6p_options = 0;
3745 		}
3746 		ip6_savecontrol(in6p, &in6p->in6p_options,
3747 			mtod(m, struct ip6_hdr *), m);
3748 	}
3749 #endif
3750 
3751 #if defined(IPSEC) || defined(FAST_IPSEC)
3752 	/*
3753 	 * we make a copy of policy, instead of sharing the policy,
3754 	 * for better behavior in terms of SA lookup and dead SA removal.
3755 	 */
3756 	if (inp) {
3757 		/* copy old policy into new socket's */
3758 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3759 			printf("tcp_input: could not copy policy\n");
3760 	}
3761 #ifdef INET6
3762 	else if (in6p) {
3763 		/* copy old policy into new socket's */
3764 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3765 		    in6p->in6p_sp))
3766 			printf("tcp_input: could not copy policy\n");
3767 	}
3768 #endif
3769 #endif
3770 
3771 	/*
3772 	 * Give the new socket our cached route reference.
3773 	 */
3774 	if (inp) {
3775 		rtcache_copy(&inp->inp_route, &sc->sc_route);
3776 		rtcache_free(&sc->sc_route);
3777 	}
3778 #ifdef INET6
3779 	else {
3780 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3781 		rtcache_free(&sc->sc_route);
3782 	}
3783 #endif
3784 
3785 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3786 	if (am == NULL)
3787 		goto resetandabort;
3788 	MCLAIM(am, &tcp_mowner);
3789 	am->m_len = src->sa_len;
3790 	bcopy(src, mtod(am, void *), src->sa_len);
3791 	if (inp) {
3792 		if (in_pcbconnect(inp, am, &lwp0)) {
3793 			(void) m_free(am);
3794 			goto resetandabort;
3795 		}
3796 	}
3797 #ifdef INET6
3798 	else if (in6p) {
3799 		if (src->sa_family == AF_INET) {
3800 			/* IPv4 packet to AF_INET6 socket */
3801 			struct sockaddr_in6 *sin6;
3802 			sin6 = mtod(am, struct sockaddr_in6 *);
3803 			am->m_len = sizeof(*sin6);
3804 			memset(sin6, 0, sizeof(*sin6));
3805 			sin6->sin6_family = AF_INET6;
3806 			sin6->sin6_len = sizeof(*sin6);
3807 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3808 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3809 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3810 				&sin6->sin6_addr.s6_addr32[3],
3811 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3812 		}
3813 		if (in6_pcbconnect(in6p, am, NULL)) {
3814 			(void) m_free(am);
3815 			goto resetandabort;
3816 		}
3817 	}
3818 #endif
3819 	else {
3820 		(void) m_free(am);
3821 		goto resetandabort;
3822 	}
3823 	(void) m_free(am);
3824 
3825 	if (inp)
3826 		tp = intotcpcb(inp);
3827 #ifdef INET6
3828 	else if (in6p)
3829 		tp = in6totcpcb(in6p);
3830 #endif
3831 	else
3832 		tp = NULL;
3833 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3834 	if (sc->sc_request_r_scale != 15) {
3835 		tp->requested_s_scale = sc->sc_requested_s_scale;
3836 		tp->request_r_scale = sc->sc_request_r_scale;
3837 		tp->snd_scale = sc->sc_requested_s_scale;
3838 		tp->rcv_scale = sc->sc_request_r_scale;
3839 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3840 	}
3841 	if (sc->sc_flags & SCF_TIMESTAMP)
3842 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3843 	tp->ts_timebase = sc->sc_timebase;
3844 
3845 	tp->t_template = tcp_template(tp);
3846 	if (tp->t_template == 0) {
3847 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3848 		so = NULL;
3849 		m_freem(m);
3850 		goto abort;
3851 	}
3852 
3853 	tp->iss = sc->sc_iss;
3854 	tp->irs = sc->sc_irs;
3855 	tcp_sendseqinit(tp);
3856 	tcp_rcvseqinit(tp);
3857 	tp->t_state = TCPS_SYN_RECEIVED;
3858 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3859 	TCP_STATINC(TCP_STAT_ACCEPTS);
3860 
3861 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3862 		tp->t_flags |= TF_WILL_SACK;
3863 
3864 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3865 		tp->t_flags |= TF_ECN_PERMIT;
3866 
3867 #ifdef TCP_SIGNATURE
3868 	if (sc->sc_flags & SCF_SIGNATURE)
3869 		tp->t_flags |= TF_SIGNATURE;
3870 #endif
3871 
3872 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3873 	tp->t_ourmss = sc->sc_ourmaxseg;
3874 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3875 
3876 	/*
3877 	 * Initialize the initial congestion window.  If we
3878 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3879 	 * to 1 segment (i.e. the Loss Window).
3880 	 */
3881 	if (sc->sc_rxtshift)
3882 		tp->snd_cwnd = tp->t_peermss;
3883 	else {
3884 		int ss = tcp_init_win;
3885 #ifdef INET
3886 		if (inp != NULL && in_localaddr(inp->inp_faddr))
3887 			ss = tcp_init_win_local;
3888 #endif
3889 #ifdef INET6
3890 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3891 			ss = tcp_init_win_local;
3892 #endif
3893 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3894 	}
3895 
3896 	tcp_rmx_rtt(tp);
3897 	tp->snd_wl1 = sc->sc_irs;
3898 	tp->rcv_up = sc->sc_irs + 1;
3899 
3900 	/*
3901 	 * This is what whould have happened in tcp_output() when
3902 	 * the SYN,ACK was sent.
3903 	 */
3904 	tp->snd_up = tp->snd_una;
3905 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3906 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3907 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3908 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3909 	tp->last_ack_sent = tp->rcv_nxt;
3910 	tp->t_partialacks = -1;
3911 	tp->t_dupacks = 0;
3912 
3913 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
3914 	s = splsoftnet();
3915 	syn_cache_put(sc);
3916 	splx(s);
3917 	return (so);
3918 
3919 resetandabort:
3920 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3921 abort:
3922 	if (so != NULL) {
3923 		(void) soqremque(so, 1);
3924 		(void) soabort(so);
3925 		mutex_enter(softnet_lock);
3926 	}
3927 	s = splsoftnet();
3928 	syn_cache_put(sc);
3929 	splx(s);
3930 	TCP_STATINC(TCP_STAT_SC_ABORTED);
3931 	return ((struct socket *)(-1));
3932 }
3933 
3934 /*
3935  * This function is called when we get a RST for a
3936  * non-existent connection, so that we can see if the
3937  * connection is in the syn cache.  If it is, zap it.
3938  */
3939 
3940 void
3941 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3942 {
3943 	struct syn_cache *sc;
3944 	struct syn_cache_head *scp;
3945 	int s = splsoftnet();
3946 
3947 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3948 		splx(s);
3949 		return;
3950 	}
3951 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3952 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3953 		splx(s);
3954 		return;
3955 	}
3956 	syn_cache_rm(sc);
3957 	TCP_STATINC(TCP_STAT_SC_RESET);
3958 	syn_cache_put(sc);	/* calls pool_put but see spl above */
3959 	splx(s);
3960 }
3961 
3962 void
3963 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3964     struct tcphdr *th)
3965 {
3966 	struct syn_cache *sc;
3967 	struct syn_cache_head *scp;
3968 	int s;
3969 
3970 	s = splsoftnet();
3971 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3972 		splx(s);
3973 		return;
3974 	}
3975 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3976 	if (ntohl (th->th_seq) != sc->sc_iss) {
3977 		splx(s);
3978 		return;
3979 	}
3980 
3981 	/*
3982 	 * If we've retransmitted 3 times and this is our second error,
3983 	 * we remove the entry.  Otherwise, we allow it to continue on.
3984 	 * This prevents us from incorrectly nuking an entry during a
3985 	 * spurious network outage.
3986 	 *
3987 	 * See tcp_notify().
3988 	 */
3989 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3990 		sc->sc_flags |= SCF_UNREACH;
3991 		splx(s);
3992 		return;
3993 	}
3994 
3995 	syn_cache_rm(sc);
3996 	TCP_STATINC(TCP_STAT_SC_UNREACH);
3997 	syn_cache_put(sc);	/* calls pool_put but see spl above */
3998 	splx(s);
3999 }
4000 
4001 /*
4002  * Given a LISTEN socket and an inbound SYN request, add
4003  * this to the syn cache, and send back a segment:
4004  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4005  * to the source.
4006  *
4007  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4008  * Doing so would require that we hold onto the data and deliver it
4009  * to the application.  However, if we are the target of a SYN-flood
4010  * DoS attack, an attacker could send data which would eventually
4011  * consume all available buffer space if it were ACKed.  By not ACKing
4012  * the data, we avoid this DoS scenario.
4013  */
4014 
4015 int
4016 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4017     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4018     int optlen, struct tcp_opt_info *oi)
4019 {
4020 	struct tcpcb tb, *tp;
4021 	long win;
4022 	struct syn_cache *sc;
4023 	struct syn_cache_head *scp;
4024 	struct mbuf *ipopts;
4025 	struct tcp_opt_info opti;
4026 	int s;
4027 
4028 	tp = sototcpcb(so);
4029 
4030 	memset(&opti, 0, sizeof(opti));
4031 
4032 	/*
4033 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4034 	 *
4035 	 * Note this check is performed in tcp_input() very early on.
4036 	 */
4037 
4038 	/*
4039 	 * Initialize some local state.
4040 	 */
4041 	win = sbspace(&so->so_rcv);
4042 	if (win > TCP_MAXWIN)
4043 		win = TCP_MAXWIN;
4044 
4045 	switch (src->sa_family) {
4046 #ifdef INET
4047 	case AF_INET:
4048 		/*
4049 		 * Remember the IP options, if any.
4050 		 */
4051 		ipopts = ip_srcroute();
4052 		break;
4053 #endif
4054 	default:
4055 		ipopts = NULL;
4056 	}
4057 
4058 #ifdef TCP_SIGNATURE
4059 	if (optp || (tp->t_flags & TF_SIGNATURE))
4060 #else
4061 	if (optp)
4062 #endif
4063 	{
4064 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4065 #ifdef TCP_SIGNATURE
4066 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4067 #endif
4068 		tb.t_state = TCPS_LISTEN;
4069 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4070 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4071 			return (0);
4072 	} else
4073 		tb.t_flags = 0;
4074 
4075 	/*
4076 	 * See if we already have an entry for this connection.
4077 	 * If we do, resend the SYN,ACK.  We do not count this
4078 	 * as a retransmission (XXX though maybe we should).
4079 	 */
4080 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4081 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
4082 		if (ipopts) {
4083 			/*
4084 			 * If we were remembering a previous source route,
4085 			 * forget it and use the new one we've been given.
4086 			 */
4087 			if (sc->sc_ipopts)
4088 				(void) m_free(sc->sc_ipopts);
4089 			sc->sc_ipopts = ipopts;
4090 		}
4091 		sc->sc_timestamp = tb.ts_recent;
4092 		if (syn_cache_respond(sc, m) == 0) {
4093 			uint64_t *tcps = TCP_STAT_GETREF();
4094 			tcps[TCP_STAT_SNDACKS]++;
4095 			tcps[TCP_STAT_SNDTOTAL]++;
4096 			TCP_STAT_PUTREF();
4097 		}
4098 		return (1);
4099 	}
4100 
4101 	s = splsoftnet();
4102 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4103 	splx(s);
4104 	if (sc == NULL) {
4105 		if (ipopts)
4106 			(void) m_free(ipopts);
4107 		return (0);
4108 	}
4109 
4110 	/*
4111 	 * Fill in the cache, and put the necessary IP and TCP
4112 	 * options into the reply.
4113 	 */
4114 	memset(sc, 0, sizeof(struct syn_cache));
4115 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4116 	bcopy(src, &sc->sc_src, src->sa_len);
4117 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4118 	sc->sc_flags = 0;
4119 	sc->sc_ipopts = ipopts;
4120 	sc->sc_irs = th->th_seq;
4121 	switch (src->sa_family) {
4122 #ifdef INET
4123 	case AF_INET:
4124 	    {
4125 		struct sockaddr_in *srcin = (void *) src;
4126 		struct sockaddr_in *dstin = (void *) dst;
4127 
4128 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4129 		    &srcin->sin_addr, dstin->sin_port,
4130 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
4131 		break;
4132 	    }
4133 #endif /* INET */
4134 #ifdef INET6
4135 	case AF_INET6:
4136 	    {
4137 		struct sockaddr_in6 *srcin6 = (void *) src;
4138 		struct sockaddr_in6 *dstin6 = (void *) dst;
4139 
4140 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4141 		    &srcin6->sin6_addr, dstin6->sin6_port,
4142 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4143 		break;
4144 	    }
4145 #endif /* INET6 */
4146 	}
4147 	sc->sc_peermaxseg = oi->maxseg;
4148 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4149 						m->m_pkthdr.rcvif : NULL,
4150 						sc->sc_src.sa.sa_family);
4151 	sc->sc_win = win;
4152 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
4153 	sc->sc_timestamp = tb.ts_recent;
4154 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4155 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4156 		sc->sc_flags |= SCF_TIMESTAMP;
4157 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4158 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4159 		sc->sc_requested_s_scale = tb.requested_s_scale;
4160 		sc->sc_request_r_scale = 0;
4161 		/*
4162 		 * Pick the smallest possible scaling factor that
4163 		 * will still allow us to scale up to sb_max.
4164 		 *
4165 		 * We do this because there are broken firewalls that
4166 		 * will corrupt the window scale option, leading to
4167 		 * the other endpoint believing that our advertised
4168 		 * window is unscaled.  At scale factors larger than
4169 		 * 5 the unscaled window will drop below 1500 bytes,
4170 		 * leading to serious problems when traversing these
4171 		 * broken firewalls.
4172 		 *
4173 		 * With the default sbmax of 256K, a scale factor
4174 		 * of 3 will be chosen by this algorithm.  Those who
4175 		 * choose a larger sbmax should watch out
4176 		 * for the compatiblity problems mentioned above.
4177 		 *
4178 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4179 		 * or <SYN,ACK>) segment itself is never scaled.
4180 		 */
4181 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4182 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4183 			sc->sc_request_r_scale++;
4184 	} else {
4185 		sc->sc_requested_s_scale = 15;
4186 		sc->sc_request_r_scale = 15;
4187 	}
4188 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4189 		sc->sc_flags |= SCF_SACK_PERMIT;
4190 
4191 	/*
4192 	 * ECN setup packet recieved.
4193 	 */
4194 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4195 		sc->sc_flags |= SCF_ECN_PERMIT;
4196 
4197 #ifdef TCP_SIGNATURE
4198 	if (tb.t_flags & TF_SIGNATURE)
4199 		sc->sc_flags |= SCF_SIGNATURE;
4200 #endif
4201 	sc->sc_tp = tp;
4202 	if (syn_cache_respond(sc, m) == 0) {
4203 		uint64_t *tcps = TCP_STAT_GETREF();
4204 		tcps[TCP_STAT_SNDACKS]++;
4205 		tcps[TCP_STAT_SNDTOTAL]++;
4206 		TCP_STAT_PUTREF();
4207 		syn_cache_insert(sc, tp);
4208 	} else {
4209 		s = splsoftnet();
4210 		/*
4211 		 * syn_cache_put() will try to schedule the timer, so
4212 		 * we need to initialize it
4213 		 */
4214 		SYN_CACHE_TIMER_ARM(sc);
4215 		syn_cache_put(sc);
4216 		splx(s);
4217 		TCP_STATINC(TCP_STAT_SC_DROPPED);
4218 	}
4219 	return (1);
4220 }
4221 
4222 int
4223 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4224 {
4225 #ifdef INET6
4226 	struct rtentry *rt;
4227 #endif
4228 	struct route *ro;
4229 	u_int8_t *optp;
4230 	int optlen, error;
4231 	u_int16_t tlen;
4232 	struct ip *ip = NULL;
4233 #ifdef INET6
4234 	struct ip6_hdr *ip6 = NULL;
4235 #endif
4236 	struct tcpcb *tp = NULL;
4237 	struct tcphdr *th;
4238 	u_int hlen;
4239 	struct socket *so;
4240 
4241 	ro = &sc->sc_route;
4242 	switch (sc->sc_src.sa.sa_family) {
4243 	case AF_INET:
4244 		hlen = sizeof(struct ip);
4245 		break;
4246 #ifdef INET6
4247 	case AF_INET6:
4248 		hlen = sizeof(struct ip6_hdr);
4249 		break;
4250 #endif
4251 	default:
4252 		if (m)
4253 			m_freem(m);
4254 		return (EAFNOSUPPORT);
4255 	}
4256 
4257 	/* Compute the size of the TCP options. */
4258 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4259 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4260 #ifdef TCP_SIGNATURE
4261 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4262 #endif
4263 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4264 
4265 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4266 
4267 	/*
4268 	 * Create the IP+TCP header from scratch.
4269 	 */
4270 	if (m)
4271 		m_freem(m);
4272 #ifdef DIAGNOSTIC
4273 	if (max_linkhdr + tlen > MCLBYTES)
4274 		return (ENOBUFS);
4275 #endif
4276 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4277 	if (m && (max_linkhdr + tlen) > MHLEN) {
4278 		MCLGET(m, M_DONTWAIT);
4279 		if ((m->m_flags & M_EXT) == 0) {
4280 			m_freem(m);
4281 			m = NULL;
4282 		}
4283 	}
4284 	if (m == NULL)
4285 		return (ENOBUFS);
4286 	MCLAIM(m, &tcp_tx_mowner);
4287 
4288 	/* Fixup the mbuf. */
4289 	m->m_data += max_linkhdr;
4290 	m->m_len = m->m_pkthdr.len = tlen;
4291 	if (sc->sc_tp) {
4292 		tp = sc->sc_tp;
4293 		if (tp->t_inpcb)
4294 			so = tp->t_inpcb->inp_socket;
4295 #ifdef INET6
4296 		else if (tp->t_in6pcb)
4297 			so = tp->t_in6pcb->in6p_socket;
4298 #endif
4299 		else
4300 			so = NULL;
4301 	} else
4302 		so = NULL;
4303 	m->m_pkthdr.rcvif = NULL;
4304 	memset(mtod(m, u_char *), 0, tlen);
4305 
4306 	switch (sc->sc_src.sa.sa_family) {
4307 	case AF_INET:
4308 		ip = mtod(m, struct ip *);
4309 		ip->ip_v = 4;
4310 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4311 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4312 		ip->ip_p = IPPROTO_TCP;
4313 		th = (struct tcphdr *)(ip + 1);
4314 		th->th_dport = sc->sc_src.sin.sin_port;
4315 		th->th_sport = sc->sc_dst.sin.sin_port;
4316 		break;
4317 #ifdef INET6
4318 	case AF_INET6:
4319 		ip6 = mtod(m, struct ip6_hdr *);
4320 		ip6->ip6_vfc = IPV6_VERSION;
4321 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4322 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4323 		ip6->ip6_nxt = IPPROTO_TCP;
4324 		/* ip6_plen will be updated in ip6_output() */
4325 		th = (struct tcphdr *)(ip6 + 1);
4326 		th->th_dport = sc->sc_src.sin6.sin6_port;
4327 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4328 		break;
4329 #endif
4330 	default:
4331 		th = NULL;
4332 	}
4333 
4334 	th->th_seq = htonl(sc->sc_iss);
4335 	th->th_ack = htonl(sc->sc_irs + 1);
4336 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4337 	th->th_flags = TH_SYN|TH_ACK;
4338 	th->th_win = htons(sc->sc_win);
4339 	/* th_sum already 0 */
4340 	/* th_urp already 0 */
4341 
4342 	/* Tack on the TCP options. */
4343 	optp = (u_int8_t *)(th + 1);
4344 	*optp++ = TCPOPT_MAXSEG;
4345 	*optp++ = 4;
4346 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4347 	*optp++ = sc->sc_ourmaxseg & 0xff;
4348 
4349 	if (sc->sc_request_r_scale != 15) {
4350 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4351 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4352 		    sc->sc_request_r_scale);
4353 		optp += 4;
4354 	}
4355 
4356 	if (sc->sc_flags & SCF_TIMESTAMP) {
4357 		u_int32_t *lp = (u_int32_t *)(optp);
4358 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4359 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4360 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4361 		*lp   = htonl(sc->sc_timestamp);
4362 		optp += TCPOLEN_TSTAMP_APPA;
4363 	}
4364 
4365 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4366 		u_int8_t *p = optp;
4367 
4368 		/* Let the peer know that we will SACK. */
4369 		p[0] = TCPOPT_SACK_PERMITTED;
4370 		p[1] = 2;
4371 		p[2] = TCPOPT_NOP;
4372 		p[3] = TCPOPT_NOP;
4373 		optp += 4;
4374 	}
4375 
4376 	/*
4377 	 * Send ECN SYN-ACK setup packet.
4378 	 * Routes can be asymetric, so, even if we receive a packet
4379 	 * with ECE and CWR set, we must not assume no one will block
4380 	 * the ECE packet we are about to send.
4381 	 */
4382 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4383 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4384 		th->th_flags |= TH_ECE;
4385 		TCP_STATINC(TCP_STAT_ECN_SHS);
4386 
4387 		/*
4388 		 * draft-ietf-tcpm-ecnsyn-00.txt
4389 		 *
4390 		 * "[...] a TCP node MAY respond to an ECN-setup
4391 		 * SYN packet by setting ECT in the responding
4392 		 * ECN-setup SYN/ACK packet, indicating to routers
4393 		 * that the SYN/ACK packet is ECN-Capable.
4394 		 * This allows a congested router along the path
4395 		 * to mark the packet instead of dropping the
4396 		 * packet as an indication of congestion."
4397 		 *
4398 		 * "[...] There can be a great benefit in setting
4399 		 * an ECN-capable codepoint in SYN/ACK packets [...]
4400 		 * Congestion is  most likely to occur in
4401 		 * the server-to-client direction.  As a result,
4402 		 * setting an ECN-capable codepoint in SYN/ACK
4403 		 * packets can reduce the occurence of three-second
4404 		 * retransmit timeouts resulting from the drop
4405 		 * of SYN/ACK packets."
4406 		 *
4407 		 * Page 4 and 6, January 2006.
4408 		 */
4409 
4410 		switch (sc->sc_src.sa.sa_family) {
4411 #ifdef INET
4412 		case AF_INET:
4413 			ip->ip_tos |= IPTOS_ECN_ECT0;
4414 			break;
4415 #endif
4416 #ifdef INET6
4417 		case AF_INET6:
4418 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4419 			break;
4420 #endif
4421 		}
4422 		TCP_STATINC(TCP_STAT_ECN_ECT);
4423 	}
4424 
4425 #ifdef TCP_SIGNATURE
4426 	if (sc->sc_flags & SCF_SIGNATURE) {
4427 		struct secasvar *sav;
4428 		u_int8_t *sigp;
4429 
4430 		sav = tcp_signature_getsav(m, th);
4431 
4432 		if (sav == NULL) {
4433 			if (m)
4434 				m_freem(m);
4435 			return (EPERM);
4436 		}
4437 
4438 		*optp++ = TCPOPT_SIGNATURE;
4439 		*optp++ = TCPOLEN_SIGNATURE;
4440 		sigp = optp;
4441 		memset(optp, 0, TCP_SIGLEN);
4442 		optp += TCP_SIGLEN;
4443 		*optp++ = TCPOPT_NOP;
4444 		*optp++ = TCPOPT_EOL;
4445 
4446 		(void)tcp_signature(m, th, hlen, sav, sigp);
4447 
4448 		key_sa_recordxfer(sav, m);
4449 #ifdef FAST_IPSEC
4450 		KEY_FREESAV(&sav);
4451 #else
4452 		key_freesav(sav);
4453 #endif
4454 	}
4455 #endif
4456 
4457 	/* Compute the packet's checksum. */
4458 	switch (sc->sc_src.sa.sa_family) {
4459 	case AF_INET:
4460 		ip->ip_len = htons(tlen - hlen);
4461 		th->th_sum = 0;
4462 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4463 		break;
4464 #ifdef INET6
4465 	case AF_INET6:
4466 		ip6->ip6_plen = htons(tlen - hlen);
4467 		th->th_sum = 0;
4468 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4469 		break;
4470 #endif
4471 	}
4472 
4473 	/*
4474 	 * Fill in some straggling IP bits.  Note the stack expects
4475 	 * ip_len to be in host order, for convenience.
4476 	 */
4477 	switch (sc->sc_src.sa.sa_family) {
4478 #ifdef INET
4479 	case AF_INET:
4480 		ip->ip_len = htons(tlen);
4481 		ip->ip_ttl = ip_defttl;
4482 		/* XXX tos? */
4483 		break;
4484 #endif
4485 #ifdef INET6
4486 	case AF_INET6:
4487 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4488 		ip6->ip6_vfc |= IPV6_VERSION;
4489 		ip6->ip6_plen = htons(tlen - hlen);
4490 		/* ip6_hlim will be initialized afterwards */
4491 		/* XXX flowlabel? */
4492 		break;
4493 #endif
4494 	}
4495 
4496 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4497 	tp = sc->sc_tp;
4498 
4499 	switch (sc->sc_src.sa.sa_family) {
4500 #ifdef INET
4501 	case AF_INET:
4502 		error = ip_output(m, sc->sc_ipopts, ro,
4503 		    (ip_mtudisc ? IP_MTUDISC : 0),
4504 		    (struct ip_moptions *)NULL, so);
4505 		break;
4506 #endif
4507 #ifdef INET6
4508 	case AF_INET6:
4509 		ip6->ip6_hlim = in6_selecthlim(NULL,
4510 				(rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4511 				                                    : NULL);
4512 
4513 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4514 		break;
4515 #endif
4516 	default:
4517 		error = EAFNOSUPPORT;
4518 		break;
4519 	}
4520 	return (error);
4521 }
4522