xref: /netbsd/sys/netinet/tcp_input.c (revision c4a72b64)
1 /*	$NetBSD: tcp_input.c,v 1.159 2002/11/02 07:28:14 perry Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74  * All rights reserved.
75  *
76  * This code is derived from software contributed to The NetBSD Foundation
77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78  * Facility, NASA Ames Research Center.
79  *
80  * Redistribution and use in source and binary forms, with or without
81  * modification, are permitted provided that the following conditions
82  * are met:
83  * 1. Redistributions of source code must retain the above copyright
84  *    notice, this list of conditions and the following disclaimer.
85  * 2. Redistributions in binary form must reproduce the above copyright
86  *    notice, this list of conditions and the following disclaimer in the
87  *    documentation and/or other materials provided with the distribution.
88  * 3. All advertising materials mentioning features or use of this software
89  *    must display the following acknowledgement:
90  *	This product includes software developed by the NetBSD
91  *	Foundation, Inc. and its contributors.
92  * 4. Neither the name of The NetBSD Foundation nor the names of its
93  *    contributors may be used to endorse or promote products derived
94  *    from this software without specific prior written permission.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. All advertising materials mentioning features or use of this software
122  *    must display the following acknowledgement:
123  *	This product includes software developed by the University of
124  *	California, Berkeley and its contributors.
125  * 4. Neither the name of the University nor the names of its contributors
126  *    may be used to endorse or promote products derived from this software
127  *    without specific prior written permission.
128  *
129  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139  * SUCH DAMAGE.
140  *
141  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
142  */
143 
144 /*
145  *	TODO list for SYN cache stuff:
146  *
147  *	Find room for a "state" field, which is needed to keep a
148  *	compressed state for TIME_WAIT TCBs.  It's been noted already
149  *	that this is fairly important for very high-volume web and
150  *	mail servers, which use a large number of short-lived
151  *	connections.
152  */
153 
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.159 2002/11/02 07:28:14 perry Exp $");
156 
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161 
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174 
175 #include <net/if.h>
176 #include <net/route.h>
177 #include <net/if_types.h>
178 
179 #include <netinet/in.h>
180 #include <netinet/in_systm.h>
181 #include <netinet/ip.h>
182 #include <netinet/in_pcb.h>
183 #include <netinet/ip_var.h>
184 
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197 
198 #ifdef PULLDOWN_TEST
199 #ifndef INET6
200 /* always need ip6.h for IP6_EXTHDR_GET */
201 #include <netinet/ip6.h>
202 #endif
203 #endif
204 
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcpip.h>
211 #include <netinet/tcp_debug.h>
212 
213 #include <machine/stdarg.h>
214 
215 #ifdef IPSEC
216 #include <netinet6/ipsec.h>
217 #include <netkey/key.h>
218 #endif /*IPSEC*/
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif
225 
226 int	tcprexmtthresh = 3;
227 int	tcp_log_refused;
228 
229 static int tcp_rst_ppslim_count = 0;
230 static struct timeval tcp_rst_ppslim_last;
231 
232 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
233 
234 /* for modulo comparisons of timestamps */
235 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
236 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
237 
238 /*
239  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
240  */
241 #ifdef INET6
242 #define ND6_HINT(tp) \
243 do { \
244 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
245 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
246 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
247 	} \
248 } while (/*CONSTCOND*/ 0)
249 #else
250 #define ND6_HINT(tp)
251 #endif
252 
253 /*
254  * Macro to compute ACK transmission behavior.  Delay the ACK unless
255  * we have already delayed an ACK (must send an ACK every two segments).
256  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
257  * option is enabled.
258  */
259 #define	TCP_SETUP_ACK(tp, th) \
260 do { \
261 	if ((tp)->t_flags & TF_DELACK || \
262 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
263 		tp->t_flags |= TF_ACKNOW; \
264 	else \
265 		TCP_SET_DELACK(tp); \
266 } while (/*CONSTCOND*/ 0)
267 
268 /*
269  * Convert TCP protocol fields to host order for easier processing.
270  */
271 #define	TCP_FIELDS_TO_HOST(th)						\
272 do {									\
273 	NTOHL((th)->th_seq);						\
274 	NTOHL((th)->th_ack);						\
275 	NTOHS((th)->th_win);						\
276 	NTOHS((th)->th_urp);						\
277 } while (/*CONSTCOND*/ 0)
278 
279 /*
280  * ... and reverse the above.
281  */
282 #define	TCP_FIELDS_TO_NET(th)						\
283 do {									\
284 	HTONL((th)->th_seq);						\
285 	HTONL((th)->th_ack);						\
286 	HTONS((th)->th_win);						\
287 	HTONS((th)->th_urp);						\
288 } while (/*CONSTCOND*/ 0)
289 
290 #ifdef TCP_CSUM_COUNTERS
291 #include <sys/device.h>
292 
293 extern struct evcnt tcp_hwcsum_ok;
294 extern struct evcnt tcp_hwcsum_bad;
295 extern struct evcnt tcp_hwcsum_data;
296 extern struct evcnt tcp_swcsum;
297 
298 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
299 
300 #else
301 
302 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
303 
304 #endif /* TCP_CSUM_COUNTERS */
305 
306 #ifdef TCP_REASS_COUNTERS
307 #include <sys/device.h>
308 
309 extern struct evcnt tcp_reass_;
310 extern struct evcnt tcp_reass_empty;
311 extern struct evcnt tcp_reass_iteration[8];
312 extern struct evcnt tcp_reass_prependfirst;
313 extern struct evcnt tcp_reass_prepend;
314 extern struct evcnt tcp_reass_insert;
315 extern struct evcnt tcp_reass_inserttail;
316 extern struct evcnt tcp_reass_append;
317 extern struct evcnt tcp_reass_appendtail;
318 extern struct evcnt tcp_reass_overlaptail;
319 extern struct evcnt tcp_reass_overlapfront;
320 extern struct evcnt tcp_reass_segdup;
321 extern struct evcnt tcp_reass_fragdup;
322 
323 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
324 
325 #else
326 
327 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
328 
329 #endif /* TCP_REASS_COUNTERS */
330 
331 #ifdef INET
332 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
333 #endif
334 #ifdef INET6
335 static void tcp6_log_refused
336     __P((const struct ip6_hdr *, const struct tcphdr *));
337 #endif
338 
339 int
340 tcp_reass(tp, th, m, tlen)
341 	struct tcpcb *tp;
342 	struct tcphdr *th;
343 	struct mbuf *m;
344 	int *tlen;
345 {
346 	struct ipqent *p, *q, *nq, *tiqe = NULL;
347 	struct socket *so = NULL;
348 	int pkt_flags;
349 	tcp_seq pkt_seq;
350 	unsigned pkt_len;
351 	u_long rcvpartdupbyte = 0;
352 	u_long rcvoobyte;
353 #ifdef TCP_REASS_COUNTERS
354 	u_int count = 0;
355 #endif
356 
357 	if (tp->t_inpcb)
358 		so = tp->t_inpcb->inp_socket;
359 #ifdef INET6
360 	else if (tp->t_in6pcb)
361 		so = tp->t_in6pcb->in6p_socket;
362 #endif
363 
364 	TCP_REASS_LOCK_CHECK(tp);
365 
366 	/*
367 	 * Call with th==0 after become established to
368 	 * force pre-ESTABLISHED data up to user socket.
369 	 */
370 	if (th == 0)
371 		goto present;
372 
373 	rcvoobyte = *tlen;
374 	/*
375 	 * Copy these to local variables because the tcpiphdr
376 	 * gets munged while we are collapsing mbufs.
377 	 */
378 	pkt_seq = th->th_seq;
379 	pkt_len = *tlen;
380 	pkt_flags = th->th_flags;
381 
382 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
383 
384 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
385 		/*
386 		 * When we miss a packet, the vast majority of time we get
387 		 * packets that follow it in order.  So optimize for that.
388 		 */
389 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
390 			p->ipqe_len += pkt_len;
391 			p->ipqe_flags |= pkt_flags;
392 			m_cat(p->ipqe_m, m);
393 			tiqe = p;
394 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
395 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
396 			goto skip_replacement;
397 		}
398 		/*
399 		 * While we're here, if the pkt is completely beyond
400 		 * anything we have, just insert it at the tail.
401 		 */
402 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
403 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
404 			goto insert_it;
405 		}
406 	}
407 
408 	q = TAILQ_FIRST(&tp->segq);
409 
410 	if (q != NULL) {
411 		/*
412 		 * If this segment immediately precedes the first out-of-order
413 		 * block, simply slap the segment in front of it and (mostly)
414 		 * skip the complicated logic.
415 		 */
416 		if (pkt_seq + pkt_len == q->ipqe_seq) {
417 			q->ipqe_seq = pkt_seq;
418 			q->ipqe_len += pkt_len;
419 			q->ipqe_flags |= pkt_flags;
420 			m_cat(m, q->ipqe_m);
421 			q->ipqe_m = m;
422 			tiqe = q;
423 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
424 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
425 			goto skip_replacement;
426 		}
427 	} else {
428 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
429 	}
430 
431 	/*
432 	 * Find a segment which begins after this one does.
433 	 */
434 	for (p = NULL; q != NULL; q = nq) {
435 		nq = TAILQ_NEXT(q, ipqe_q);
436 #ifdef TCP_REASS_COUNTERS
437 		count++;
438 #endif
439 		/*
440 		 * If the received segment is just right after this
441 		 * fragment, merge the two together and then check
442 		 * for further overlaps.
443 		 */
444 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
445 #ifdef TCPREASS_DEBUG
446 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
447 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
448 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
449 #endif
450 			pkt_len += q->ipqe_len;
451 			pkt_flags |= q->ipqe_flags;
452 			pkt_seq = q->ipqe_seq;
453 			m_cat(q->ipqe_m, m);
454 			m = q->ipqe_m;
455 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
456 			goto free_ipqe;
457 		}
458 		/*
459 		 * If the received segment is completely past this
460 		 * fragment, we need to go the next fragment.
461 		 */
462 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
463 			p = q;
464 			continue;
465 		}
466 		/*
467 		 * If the fragment is past the received segment,
468 		 * it (or any following) can't be concatenated.
469 		 */
470 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
471 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
472 			break;
473 		}
474 
475 		/*
476 		 * We've received all the data in this segment before.
477 		 * mark it as a duplicate and return.
478 		 */
479 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
480 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
481 			tcpstat.tcps_rcvduppack++;
482 			tcpstat.tcps_rcvdupbyte += pkt_len;
483 			m_freem(m);
484 			if (tiqe != NULL)
485 				pool_put(&ipqent_pool, tiqe);
486 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
487 			return (0);
488 		}
489 		/*
490 		 * Received segment completely overlaps this fragment
491 		 * so we drop the fragment (this keeps the temporal
492 		 * ordering of segments correct).
493 		 */
494 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
495 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
496 			rcvpartdupbyte += q->ipqe_len;
497 			m_freem(q->ipqe_m);
498 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
499 			goto free_ipqe;
500 		}
501 		/*
502 		 * RX'ed segment extends past the end of the
503 		 * fragment.  Drop the overlapping bytes.  Then
504 		 * merge the fragment and segment then treat as
505 		 * a longer received packet.
506 		 */
507 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
508 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
509 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
510 #ifdef TCPREASS_DEBUG
511 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
512 			       tp, overlap,
513 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
514 #endif
515 			m_adj(m, overlap);
516 			rcvpartdupbyte += overlap;
517 			m_cat(q->ipqe_m, m);
518 			m = q->ipqe_m;
519 			pkt_seq = q->ipqe_seq;
520 			pkt_len += q->ipqe_len - overlap;
521 			rcvoobyte -= overlap;
522 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
523 			goto free_ipqe;
524 		}
525 		/*
526 		 * RX'ed segment extends past the front of the
527 		 * fragment.  Drop the overlapping bytes on the
528 		 * received packet.  The packet will then be
529 		 * contatentated with this fragment a bit later.
530 		 */
531 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
532 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
533 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
534 #ifdef TCPREASS_DEBUG
535 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
536 			       tp, overlap,
537 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
538 #endif
539 			m_adj(m, -overlap);
540 			pkt_len -= overlap;
541 			rcvpartdupbyte += overlap;
542 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
543 			rcvoobyte -= overlap;
544 		}
545 		/*
546 		 * If the received segment immediates precedes this
547 		 * fragment then tack the fragment onto this segment
548 		 * and reinsert the data.
549 		 */
550 		if (q->ipqe_seq == pkt_seq + pkt_len) {
551 #ifdef TCPREASS_DEBUG
552 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
553 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
554 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
555 #endif
556 			pkt_len += q->ipqe_len;
557 			pkt_flags |= q->ipqe_flags;
558 			m_cat(m, q->ipqe_m);
559 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
560 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
561 			if (tiqe == NULL) {
562 			    tiqe = q;
563 			} else {
564 			    pool_put(&ipqent_pool, q);
565 			}
566 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
567 			break;
568 		}
569 		/*
570 		 * If the fragment is before the segment, remember it.
571 		 * When this loop is terminated, p will contain the
572 		 * pointer to fragment that is right before the received
573 		 * segment.
574 		 */
575 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
576 			p = q;
577 
578 		continue;
579 
580 		/*
581 		 * This is a common operation.  It also will allow
582 		 * to save doing a malloc/free in most instances.
583 		 */
584 	  free_ipqe:
585 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
586 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
587 		if (tiqe == NULL) {
588 		    tiqe = q;
589 		} else {
590 		    pool_put(&ipqent_pool, q);
591 		}
592 	}
593 
594 #ifdef TCP_REASS_COUNTERS
595 	if (count > 7)
596 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
597 	else if (count > 0)
598 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
599 #endif
600 
601     insert_it:
602 
603 	/*
604 	 * Allocate a new queue entry since the received segment did not
605 	 * collapse onto any other out-of-order block; thus we are allocating
606 	 * a new block.  If it had collapsed, tiqe would not be NULL and
607 	 * we would be reusing it.
608 	 * XXX If we can't, just drop the packet.  XXX
609 	 */
610 	if (tiqe == NULL) {
611 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
612 		if (tiqe == NULL) {
613 			tcpstat.tcps_rcvmemdrop++;
614 			m_freem(m);
615 			return (0);
616 		}
617 	}
618 
619 	/*
620 	 * Update the counters.
621 	 */
622 	tcpstat.tcps_rcvoopack++;
623 	tcpstat.tcps_rcvoobyte += rcvoobyte;
624 	if (rcvpartdupbyte) {
625 	    tcpstat.tcps_rcvpartduppack++;
626 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
627 	}
628 
629 	/*
630 	 * Insert the new fragment queue entry into both queues.
631 	 */
632 	tiqe->ipqe_m = m;
633 	tiqe->ipqe_seq = pkt_seq;
634 	tiqe->ipqe_len = pkt_len;
635 	tiqe->ipqe_flags = pkt_flags;
636 	if (p == NULL) {
637 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
638 #ifdef TCPREASS_DEBUG
639 		if (tiqe->ipqe_seq != tp->rcv_nxt)
640 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
641 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
642 #endif
643 	} else {
644 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
645 #ifdef TCPREASS_DEBUG
646 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
647 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
648 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
649 #endif
650 	}
651 
652 skip_replacement:
653 
654 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
655 
656 present:
657 	/*
658 	 * Present data to user, advancing rcv_nxt through
659 	 * completed sequence space.
660 	 */
661 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
662 		return (0);
663 	q = TAILQ_FIRST(&tp->segq);
664 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
665 		return (0);
666 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
667 		return (0);
668 
669 	tp->rcv_nxt += q->ipqe_len;
670 	pkt_flags = q->ipqe_flags & TH_FIN;
671 	ND6_HINT(tp);
672 
673 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
674 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
675 	if (so->so_state & SS_CANTRCVMORE)
676 		m_freem(q->ipqe_m);
677 	else
678 		sbappendstream(&so->so_rcv, q->ipqe_m);
679 	pool_put(&ipqent_pool, q);
680 	sorwakeup(so);
681 	return (pkt_flags);
682 }
683 
684 #ifdef INET6
685 int
686 tcp6_input(mp, offp, proto)
687 	struct mbuf **mp;
688 	int *offp, proto;
689 {
690 	struct mbuf *m = *mp;
691 
692 	/*
693 	 * draft-itojun-ipv6-tcp-to-anycast
694 	 * better place to put this in?
695 	 */
696 	if (m->m_flags & M_ANYCAST6) {
697 		struct ip6_hdr *ip6;
698 		if (m->m_len < sizeof(struct ip6_hdr)) {
699 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
700 				tcpstat.tcps_rcvshort++;
701 				return IPPROTO_DONE;
702 			}
703 		}
704 		ip6 = mtod(m, struct ip6_hdr *);
705 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
706 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
707 		return IPPROTO_DONE;
708 	}
709 
710 	tcp_input(m, *offp, proto);
711 	return IPPROTO_DONE;
712 }
713 #endif
714 
715 #ifdef INET
716 static void
717 tcp4_log_refused(ip, th)
718 	const struct ip *ip;
719 	const struct tcphdr *th;
720 {
721 	char src[4*sizeof "123"];
722 	char dst[4*sizeof "123"];
723 
724 	if (ip) {
725 		strcpy(src, inet_ntoa(ip->ip_src));
726 		strcpy(dst, inet_ntoa(ip->ip_dst));
727 	}
728 	else {
729 		strcpy(src, "(unknown)");
730 		strcpy(dst, "(unknown)");
731 	}
732 	log(LOG_INFO,
733 	    "Connection attempt to TCP %s:%d from %s:%d\n",
734 	    dst, ntohs(th->th_dport),
735 	    src, ntohs(th->th_sport));
736 }
737 #endif
738 
739 #ifdef INET6
740 static void
741 tcp6_log_refused(ip6, th)
742 	const struct ip6_hdr *ip6;
743 	const struct tcphdr *th;
744 {
745 	char src[INET6_ADDRSTRLEN];
746 	char dst[INET6_ADDRSTRLEN];
747 
748 	if (ip6) {
749 		strcpy(src, ip6_sprintf(&ip6->ip6_src));
750 		strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
751 	}
752 	else {
753 		strcpy(src, "(unknown v6)");
754 		strcpy(dst, "(unknown v6)");
755 	}
756 	log(LOG_INFO,
757 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
758 	    dst, ntohs(th->th_dport),
759 	    src, ntohs(th->th_sport));
760 }
761 #endif
762 
763 /*
764  * TCP input routine, follows pages 65-76 of the
765  * protocol specification dated September, 1981 very closely.
766  */
767 void
768 #if __STDC__
769 tcp_input(struct mbuf *m, ...)
770 #else
771 tcp_input(m, va_alist)
772 	struct mbuf *m;
773 #endif
774 {
775 	struct tcphdr *th;
776 	struct ip *ip;
777 	struct inpcb *inp;
778 #ifdef INET6
779 	struct ip6_hdr *ip6;
780 	struct in6pcb *in6p;
781 #endif
782 	u_int8_t *optp = NULL;
783 	int optlen = 0;
784 	int len, tlen, toff, hdroptlen = 0;
785 	struct tcpcb *tp = 0;
786 	int tiflags;
787 	struct socket *so = NULL;
788 	int todrop, acked, ourfinisacked, needoutput = 0;
789 #ifdef TCP_DEBUG
790 	short ostate = 0;
791 #endif
792 	int iss = 0;
793 	u_long tiwin;
794 	struct tcp_opt_info opti;
795 	int off, iphlen;
796 	va_list ap;
797 	int af;		/* af on the wire */
798 	struct mbuf *tcp_saveti = NULL;
799 
800 	va_start(ap, m);
801 	toff = va_arg(ap, int);
802 	(void)va_arg(ap, int);		/* ignore value, advance ap */
803 	va_end(ap);
804 
805 	tcpstat.tcps_rcvtotal++;
806 
807 	bzero(&opti, sizeof(opti));
808 	opti.ts_present = 0;
809 	opti.maxseg = 0;
810 
811 	/*
812 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
813 	 *
814 	 * TCP is, by definition, unicast, so we reject all
815 	 * multicast outright.
816 	 *
817 	 * Note, there are additional src/dst address checks in
818 	 * the AF-specific code below.
819 	 */
820 	if (m->m_flags & (M_BCAST|M_MCAST)) {
821 		/* XXX stat */
822 		goto drop;
823 	}
824 #ifdef INET6
825 	if (m->m_flags & M_ANYCAST6) {
826 		/* XXX stat */
827 		goto drop;
828 	}
829 #endif
830 
831 	/*
832 	 * Get IP and TCP header together in first mbuf.
833 	 * Note: IP leaves IP header in first mbuf.
834 	 */
835 	ip = mtod(m, struct ip *);
836 #ifdef INET6
837 	ip6 = NULL;
838 #endif
839 	switch (ip->ip_v) {
840 #ifdef INET
841 	case 4:
842 		af = AF_INET;
843 		iphlen = sizeof(struct ip);
844 #ifndef PULLDOWN_TEST
845 		/* would like to get rid of this... */
846 		if (toff > sizeof (struct ip)) {
847 			ip_stripoptions(m, (struct mbuf *)0);
848 			toff = sizeof(struct ip);
849 		}
850 		if (m->m_len < toff + sizeof (struct tcphdr)) {
851 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
852 				tcpstat.tcps_rcvshort++;
853 				return;
854 			}
855 		}
856 		ip = mtod(m, struct ip *);
857 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
858 #else
859 		ip = mtod(m, struct ip *);
860 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
861 			sizeof(struct tcphdr));
862 		if (th == NULL) {
863 			tcpstat.tcps_rcvshort++;
864 			return;
865 		}
866 #endif
867 		/* We do the checksum after PCB lookup... */
868 		len = ntohs(ip->ip_len);
869 		tlen = len - toff;
870 		break;
871 #endif
872 #ifdef INET6
873 	case 6:
874 		ip = NULL;
875 		iphlen = sizeof(struct ip6_hdr);
876 		af = AF_INET6;
877 #ifndef PULLDOWN_TEST
878 		if (m->m_len < toff + sizeof(struct tcphdr)) {
879 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
880 			if (m == NULL) {
881 				tcpstat.tcps_rcvshort++;
882 				return;
883 			}
884 		}
885 		ip6 = mtod(m, struct ip6_hdr *);
886 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
887 #else
888 		ip6 = mtod(m, struct ip6_hdr *);
889 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
890 			sizeof(struct tcphdr));
891 		if (th == NULL) {
892 			tcpstat.tcps_rcvshort++;
893 			return;
894 		}
895 #endif
896 
897 		/* Be proactive about malicious use of IPv4 mapped address */
898 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
899 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
900 			/* XXX stat */
901 			goto drop;
902 		}
903 
904 		/*
905 		 * Be proactive about unspecified IPv6 address in source.
906 		 * As we use all-zero to indicate unbounded/unconnected pcb,
907 		 * unspecified IPv6 address can be used to confuse us.
908 		 *
909 		 * Note that packets with unspecified IPv6 destination is
910 		 * already dropped in ip6_input.
911 		 */
912 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
913 			/* XXX stat */
914 			goto drop;
915 		}
916 
917 		/*
918 		 * Make sure destination address is not multicast.
919 		 * Source address checked in ip6_input().
920 		 */
921 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
922 			/* XXX stat */
923 			goto drop;
924 		}
925 
926 		/* We do the checksum after PCB lookup... */
927 		len = m->m_pkthdr.len;
928 		tlen = len - toff;
929 		break;
930 #endif
931 	default:
932 		m_freem(m);
933 		return;
934 	}
935 
936 	KASSERT(TCP_HDR_ALIGNED_P(th));
937 
938 	/*
939 	 * Check that TCP offset makes sense,
940 	 * pull out TCP options and adjust length.		XXX
941 	 */
942 	off = th->th_off << 2;
943 	if (off < sizeof (struct tcphdr) || off > tlen) {
944 		tcpstat.tcps_rcvbadoff++;
945 		goto drop;
946 	}
947 	tlen -= off;
948 
949 	/*
950 	 * tcp_input() has been modified to use tlen to mean the TCP data
951 	 * length throughout the function.  Other functions can use
952 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
953 	 * rja
954 	 */
955 
956 	if (off > sizeof (struct tcphdr)) {
957 #ifndef PULLDOWN_TEST
958 		if (m->m_len < toff + off) {
959 			if ((m = m_pullup(m, toff + off)) == 0) {
960 				tcpstat.tcps_rcvshort++;
961 				return;
962 			}
963 			switch (af) {
964 #ifdef INET
965 			case AF_INET:
966 				ip = mtod(m, struct ip *);
967 				break;
968 #endif
969 #ifdef INET6
970 			case AF_INET6:
971 				ip6 = mtod(m, struct ip6_hdr *);
972 				break;
973 #endif
974 			}
975 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
976 		}
977 #else
978 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
979 		if (th == NULL) {
980 			tcpstat.tcps_rcvshort++;
981 			return;
982 		}
983 		/*
984 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
985 		 * (as they're before toff) and we don't need to update those.
986 		 */
987 #endif
988 		KASSERT(TCP_HDR_ALIGNED_P(th));
989 		optlen = off - sizeof (struct tcphdr);
990 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
991 		/*
992 		 * Do quick retrieval of timestamp options ("options
993 		 * prediction?").  If timestamp is the only option and it's
994 		 * formatted as recommended in RFC 1323 appendix A, we
995 		 * quickly get the values now and not bother calling
996 		 * tcp_dooptions(), etc.
997 		 */
998 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
999 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1000 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1001 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1002 		     (th->th_flags & TH_SYN) == 0) {
1003 			opti.ts_present = 1;
1004 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1005 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1006 			optp = NULL;	/* we've parsed the options */
1007 		}
1008 	}
1009 	tiflags = th->th_flags;
1010 
1011 	/*
1012 	 * Locate pcb for segment.
1013 	 */
1014 findpcb:
1015 	inp = NULL;
1016 #ifdef INET6
1017 	in6p = NULL;
1018 #endif
1019 	switch (af) {
1020 #ifdef INET
1021 	case AF_INET:
1022 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1023 		    ip->ip_dst, th->th_dport);
1024 		if (inp == 0) {
1025 			++tcpstat.tcps_pcbhashmiss;
1026 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1027 		}
1028 #ifdef INET6
1029 		if (inp == 0) {
1030 			struct in6_addr s, d;
1031 
1032 			/* mapped addr case */
1033 			bzero(&s, sizeof(s));
1034 			s.s6_addr16[5] = htons(0xffff);
1035 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1036 			bzero(&d, sizeof(d));
1037 			d.s6_addr16[5] = htons(0xffff);
1038 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1039 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
1040 				&d, th->th_dport, 0);
1041 			if (in6p == 0) {
1042 				++tcpstat.tcps_pcbhashmiss;
1043 				in6p = in6_pcblookup_bind(&tcb6, &d,
1044 					th->th_dport, 0);
1045 			}
1046 		}
1047 #endif
1048 #ifndef INET6
1049 		if (inp == 0)
1050 #else
1051 		if (inp == 0 && in6p == 0)
1052 #endif
1053 		{
1054 			++tcpstat.tcps_noport;
1055 			if (tcp_log_refused &&
1056 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1057 				tcp4_log_refused(ip, th);
1058 			}
1059 			TCP_FIELDS_TO_HOST(th);
1060 			goto dropwithreset_ratelim;
1061 		}
1062 #ifdef IPSEC
1063 		if (inp && ipsec4_in_reject(m, inp)) {
1064 			ipsecstat.in_polvio++;
1065 			goto drop;
1066 		}
1067 #ifdef INET6
1068 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1069 			ipsecstat.in_polvio++;
1070 			goto drop;
1071 		}
1072 #endif
1073 #endif /*IPSEC*/
1074 		break;
1075 #endif /*INET*/
1076 #ifdef INET6
1077 	case AF_INET6:
1078 	    {
1079 		int faith;
1080 
1081 #if defined(NFAITH) && NFAITH > 0
1082 		faith = faithprefix(&ip6->ip6_dst);
1083 #else
1084 		faith = 0;
1085 #endif
1086 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
1087 			&ip6->ip6_dst, th->th_dport, faith);
1088 		if (in6p == NULL) {
1089 			++tcpstat.tcps_pcbhashmiss;
1090 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
1091 				th->th_dport, faith);
1092 		}
1093 		if (in6p == NULL) {
1094 			++tcpstat.tcps_noport;
1095 			if (tcp_log_refused &&
1096 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1097 				tcp6_log_refused(ip6, th);
1098 			}
1099 			TCP_FIELDS_TO_HOST(th);
1100 			goto dropwithreset_ratelim;
1101 		}
1102 #ifdef IPSEC
1103 		if (ipsec6_in_reject(m, in6p)) {
1104 			ipsec6stat.in_polvio++;
1105 			goto drop;
1106 		}
1107 #endif /*IPSEC*/
1108 		break;
1109 	    }
1110 #endif
1111 	}
1112 
1113 	/*
1114 	 * If the state is CLOSED (i.e., TCB does not exist) then
1115 	 * all data in the incoming segment is discarded.
1116 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1117 	 * but should either do a listen or a connect soon.
1118 	 */
1119 	tp = NULL;
1120 	so = NULL;
1121 	if (inp) {
1122 		tp = intotcpcb(inp);
1123 		so = inp->inp_socket;
1124 	}
1125 #ifdef INET6
1126 	else if (in6p) {
1127 		tp = in6totcpcb(in6p);
1128 		so = in6p->in6p_socket;
1129 	}
1130 #endif
1131 	if (tp == 0) {
1132 		TCP_FIELDS_TO_HOST(th);
1133 		goto dropwithreset_ratelim;
1134 	}
1135 	if (tp->t_state == TCPS_CLOSED)
1136 		goto drop;
1137 
1138 	/*
1139 	 * Checksum extended TCP header and data.
1140 	 */
1141 	switch (af) {
1142 #ifdef INET
1143 	case AF_INET:
1144 		switch (m->m_pkthdr.csum_flags &
1145 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1146 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1147 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1148 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1149 			goto badcsum;
1150 
1151 		case M_CSUM_TCPv4|M_CSUM_DATA:
1152 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1153 			if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
1154 				goto badcsum;
1155 			break;
1156 
1157 		case M_CSUM_TCPv4:
1158 			/* Checksum was okay. */
1159 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1160 			break;
1161 
1162 		default:
1163 			/* Must compute it ourselves. */
1164 			TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1165 #ifndef PULLDOWN_TEST
1166 		    {
1167 			struct ipovly *ipov;
1168 			ipov = (struct ipovly *)ip;
1169 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
1170 			ipov->ih_len = htons(tlen + off);
1171 
1172 			if (in_cksum(m, len) != 0)
1173 				goto badcsum;
1174 		    }
1175 #else
1176 			if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1177 				goto badcsum;
1178 #endif /* ! PULLDOWN_TEST */
1179 			break;
1180 		}
1181 		break;
1182 #endif /* INET4 */
1183 
1184 #ifdef INET6
1185 	case AF_INET6:
1186 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1187 			goto badcsum;
1188 		break;
1189 #endif /* INET6 */
1190 	}
1191 
1192 	TCP_FIELDS_TO_HOST(th);
1193 
1194 	/* Unscale the window into a 32-bit value. */
1195 	if ((tiflags & TH_SYN) == 0)
1196 		tiwin = th->th_win << tp->snd_scale;
1197 	else
1198 		tiwin = th->th_win;
1199 
1200 #ifdef INET6
1201 	/* save packet options if user wanted */
1202 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1203 		if (in6p->in6p_options) {
1204 			m_freem(in6p->in6p_options);
1205 			in6p->in6p_options = 0;
1206 		}
1207 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1208 	}
1209 #endif
1210 
1211 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1212 		union syn_cache_sa src;
1213 		union syn_cache_sa dst;
1214 
1215 		bzero(&src, sizeof(src));
1216 		bzero(&dst, sizeof(dst));
1217 		switch (af) {
1218 #ifdef INET
1219 		case AF_INET:
1220 			src.sin.sin_len = sizeof(struct sockaddr_in);
1221 			src.sin.sin_family = AF_INET;
1222 			src.sin.sin_addr = ip->ip_src;
1223 			src.sin.sin_port = th->th_sport;
1224 
1225 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1226 			dst.sin.sin_family = AF_INET;
1227 			dst.sin.sin_addr = ip->ip_dst;
1228 			dst.sin.sin_port = th->th_dport;
1229 			break;
1230 #endif
1231 #ifdef INET6
1232 		case AF_INET6:
1233 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1234 			src.sin6.sin6_family = AF_INET6;
1235 			src.sin6.sin6_addr = ip6->ip6_src;
1236 			src.sin6.sin6_port = th->th_sport;
1237 
1238 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1239 			dst.sin6.sin6_family = AF_INET6;
1240 			dst.sin6.sin6_addr = ip6->ip6_dst;
1241 			dst.sin6.sin6_port = th->th_dport;
1242 			break;
1243 #endif /* INET6 */
1244 		default:
1245 			goto badsyn;	/*sanity*/
1246 		}
1247 
1248 		if (so->so_options & SO_DEBUG) {
1249 #ifdef TCP_DEBUG
1250 			ostate = tp->t_state;
1251 #endif
1252 
1253 			tcp_saveti = NULL;
1254 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1255 				goto nosave;
1256 
1257 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1258 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1259 				if (!tcp_saveti)
1260 					goto nosave;
1261 			} else {
1262 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1263 				if (!tcp_saveti)
1264 					goto nosave;
1265 				tcp_saveti->m_len = iphlen;
1266 				m_copydata(m, 0, iphlen,
1267 				    mtod(tcp_saveti, caddr_t));
1268 			}
1269 
1270 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1271 				m_freem(tcp_saveti);
1272 				tcp_saveti = NULL;
1273 			} else {
1274 				tcp_saveti->m_len += sizeof(struct tcphdr);
1275 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1276 				    sizeof(struct tcphdr));
1277 			}
1278 			if (tcp_saveti) {
1279 				/*
1280 				 * need to recover version # field, which was
1281 				 * overwritten on ip_cksum computation.
1282 				 */
1283 				struct ip *sip;
1284 				sip = mtod(tcp_saveti, struct ip *);
1285 				switch (af) {
1286 #ifdef INET
1287 				case AF_INET:
1288 					sip->ip_v = 4;
1289 					break;
1290 #endif
1291 #ifdef INET6
1292 				case AF_INET6:
1293 					sip->ip_v = 6;
1294 					break;
1295 #endif
1296 				}
1297 			}
1298 	nosave:;
1299 		}
1300 		if (so->so_options & SO_ACCEPTCONN) {
1301 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1302 				if (tiflags & TH_RST) {
1303 					syn_cache_reset(&src.sa, &dst.sa, th);
1304 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1305 				    (TH_ACK|TH_SYN)) {
1306 					/*
1307 					 * Received a SYN,ACK.  This should
1308 					 * never happen while we are in
1309 					 * LISTEN.  Send an RST.
1310 					 */
1311 					goto badsyn;
1312 				} else if (tiflags & TH_ACK) {
1313 					so = syn_cache_get(&src.sa, &dst.sa,
1314 						th, toff, tlen, so, m);
1315 					if (so == NULL) {
1316 						/*
1317 						 * We don't have a SYN for
1318 						 * this ACK; send an RST.
1319 						 */
1320 						goto badsyn;
1321 					} else if (so ==
1322 					    (struct socket *)(-1)) {
1323 						/*
1324 						 * We were unable to create
1325 						 * the connection.  If the
1326 						 * 3-way handshake was
1327 						 * completed, and RST has
1328 						 * been sent to the peer.
1329 						 * Since the mbuf might be
1330 						 * in use for the reply,
1331 						 * do not free it.
1332 						 */
1333 						m = NULL;
1334 					} else {
1335 						/*
1336 						 * We have created a
1337 						 * full-blown connection.
1338 						 */
1339 						tp = NULL;
1340 						inp = NULL;
1341 #ifdef INET6
1342 						in6p = NULL;
1343 #endif
1344 						switch (so->so_proto->pr_domain->dom_family) {
1345 #ifdef INET
1346 						case AF_INET:
1347 							inp = sotoinpcb(so);
1348 							tp = intotcpcb(inp);
1349 							break;
1350 #endif
1351 #ifdef INET6
1352 						case AF_INET6:
1353 							in6p = sotoin6pcb(so);
1354 							tp = in6totcpcb(in6p);
1355 							break;
1356 #endif
1357 						}
1358 						if (tp == NULL)
1359 							goto badsyn;	/*XXX*/
1360 						tiwin <<= tp->snd_scale;
1361 						goto after_listen;
1362 					}
1363 				} else {
1364 					/*
1365 					 * None of RST, SYN or ACK was set.
1366 					 * This is an invalid packet for a
1367 					 * TCB in LISTEN state.  Send a RST.
1368 					 */
1369 					goto badsyn;
1370 				}
1371 			} else {
1372 				/*
1373 				 * Received a SYN.
1374 				 */
1375 
1376 #ifdef INET6
1377 				/*
1378 				 * If deprecated address is forbidden, we do
1379 				 * not accept SYN to deprecated interface
1380 				 * address to prevent any new inbound
1381 				 * connection from getting established.
1382 				 * When we do not accept SYN, we send a TCP
1383 				 * RST, with deprecated source address (instead
1384 				 * of dropping it).  We compromise it as it is
1385 				 * much better for peer to send a RST, and
1386 				 * RST will be the final packet for the
1387 				 * exchange.
1388 				 *
1389 				 * If we do not forbid deprecated addresses, we
1390 				 * accept the SYN packet.  RFC2462 does not
1391 				 * suggest dropping SYN in this case.
1392 				 * If we decipher RFC2462 5.5.4, it says like
1393 				 * this:
1394 				 * 1. use of deprecated addr with existing
1395 				 *    communication is okay - "SHOULD continue
1396 				 *    to be used"
1397 				 * 2. use of it with new communication:
1398 				 *   (2a) "SHOULD NOT be used if alternate
1399 				 *        address with sufficient scope is
1400 				 *        available"
1401 				 *   (2b) nothing mentioned otherwise.
1402 				 * Here we fall into (2b) case as we have no
1403 				 * choice in our source address selection - we
1404 				 * must obey the peer.
1405 				 *
1406 				 * The wording in RFC2462 is confusing, and
1407 				 * there are multiple description text for
1408 				 * deprecated address handling - worse, they
1409 				 * are not exactly the same.  I believe 5.5.4
1410 				 * is the best one, so we follow 5.5.4.
1411 				 */
1412 				if (af == AF_INET6 && !ip6_use_deprecated) {
1413 					struct in6_ifaddr *ia6;
1414 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1415 					    &ip6->ip6_dst)) &&
1416 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1417 						tp = NULL;
1418 						goto dropwithreset;
1419 					}
1420 				}
1421 #endif
1422 
1423 				/*
1424 				 * LISTEN socket received a SYN
1425 				 * from itself?  This can't possibly
1426 				 * be valid; drop the packet.
1427 				 */
1428 				if (th->th_sport == th->th_dport) {
1429 					int i;
1430 
1431 					switch (af) {
1432 #ifdef INET
1433 					case AF_INET:
1434 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1435 						break;
1436 #endif
1437 #ifdef INET6
1438 					case AF_INET6:
1439 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1440 						break;
1441 #endif
1442 					default:
1443 						i = 1;
1444 					}
1445 					if (i) {
1446 						tcpstat.tcps_badsyn++;
1447 						goto drop;
1448 					}
1449 				}
1450 
1451 				/*
1452 				 * SYN looks ok; create compressed TCP
1453 				 * state for it.
1454 				 */
1455 				if (so->so_qlen <= so->so_qlimit &&
1456 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1457 						so, m, optp, optlen, &opti))
1458 					m = NULL;
1459 			}
1460 			goto drop;
1461 		}
1462 	}
1463 
1464 after_listen:
1465 #ifdef DIAGNOSTIC
1466 	/*
1467 	 * Should not happen now that all embryonic connections
1468 	 * are handled with compressed state.
1469 	 */
1470 	if (tp->t_state == TCPS_LISTEN)
1471 		panic("tcp_input: TCPS_LISTEN");
1472 #endif
1473 
1474 	/*
1475 	 * Segment received on connection.
1476 	 * Reset idle time and keep-alive timer.
1477 	 */
1478 	tp->t_rcvtime = tcp_now;
1479 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1480 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1481 
1482 	/*
1483 	 * Process options.
1484 	 */
1485 	if (optp)
1486 		tcp_dooptions(tp, optp, optlen, th, &opti);
1487 
1488 	/*
1489 	 * Header prediction: check for the two common cases
1490 	 * of a uni-directional data xfer.  If the packet has
1491 	 * no control flags, is in-sequence, the window didn't
1492 	 * change and we're not retransmitting, it's a
1493 	 * candidate.  If the length is zero and the ack moved
1494 	 * forward, we're the sender side of the xfer.  Just
1495 	 * free the data acked & wake any higher level process
1496 	 * that was blocked waiting for space.  If the length
1497 	 * is non-zero and the ack didn't move, we're the
1498 	 * receiver side.  If we're getting packets in-order
1499 	 * (the reassembly queue is empty), add the data to
1500 	 * the socket buffer and note that we need a delayed ack.
1501 	 */
1502 	if (tp->t_state == TCPS_ESTABLISHED &&
1503 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1504 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1505 	    th->th_seq == tp->rcv_nxt &&
1506 	    tiwin && tiwin == tp->snd_wnd &&
1507 	    tp->snd_nxt == tp->snd_max) {
1508 
1509 		/*
1510 		 * If last ACK falls within this segment's sequence numbers,
1511 		 *  record the timestamp.
1512 		 */
1513 		if (opti.ts_present &&
1514 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1515 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1516 			tp->ts_recent_age = TCP_TIMESTAMP(tp);
1517 			tp->ts_recent = opti.ts_val;
1518 		}
1519 
1520 		if (tlen == 0) {
1521 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1522 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1523 			    tp->snd_cwnd >= tp->snd_wnd &&
1524 			    tp->t_dupacks < tcprexmtthresh) {
1525 				/*
1526 				 * this is a pure ack for outstanding data.
1527 				 */
1528 				++tcpstat.tcps_predack;
1529 				if (opti.ts_present && opti.ts_ecr)
1530 					tcp_xmit_timer(tp,
1531 					  TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1532 				else if (tp->t_rtttime &&
1533 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1534 					tcp_xmit_timer(tp,
1535 					tcp_now - tp->t_rtttime);
1536 				acked = th->th_ack - tp->snd_una;
1537 				tcpstat.tcps_rcvackpack++;
1538 				tcpstat.tcps_rcvackbyte += acked;
1539 				ND6_HINT(tp);
1540 				sbdrop(&so->so_snd, acked);
1541 				/*
1542 				 * We want snd_recover to track snd_una to
1543 				 * avoid sequence wraparound problems for
1544 				 * very large transfers.
1545 				 */
1546 				tp->snd_una = tp->snd_recover = th->th_ack;
1547 				m_freem(m);
1548 
1549 				/*
1550 				 * If all outstanding data are acked, stop
1551 				 * retransmit timer, otherwise restart timer
1552 				 * using current (possibly backed-off) value.
1553 				 * If process is waiting for space,
1554 				 * wakeup/selwakeup/signal.  If data
1555 				 * are ready to send, let tcp_output
1556 				 * decide between more output or persist.
1557 				 */
1558 				if (tp->snd_una == tp->snd_max)
1559 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1560 				else if (TCP_TIMER_ISARMED(tp,
1561 				    TCPT_PERSIST) == 0)
1562 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1563 					    tp->t_rxtcur);
1564 
1565 				sowwakeup(so);
1566 				if (so->so_snd.sb_cc)
1567 					(void) tcp_output(tp);
1568 				if (tcp_saveti)
1569 					m_freem(tcp_saveti);
1570 				return;
1571 			}
1572 		} else if (th->th_ack == tp->snd_una &&
1573 		    TAILQ_FIRST(&tp->segq) == NULL &&
1574 		    tlen <= sbspace(&so->so_rcv)) {
1575 			/*
1576 			 * this is a pure, in-sequence data packet
1577 			 * with nothing on the reassembly queue and
1578 			 * we have enough buffer space to take it.
1579 			 */
1580 			++tcpstat.tcps_preddat;
1581 			tp->rcv_nxt += tlen;
1582 			tcpstat.tcps_rcvpack++;
1583 			tcpstat.tcps_rcvbyte += tlen;
1584 			ND6_HINT(tp);
1585 			/*
1586 			 * Drop TCP, IP headers and TCP options then add data
1587 			 * to socket buffer.
1588 			 */
1589 			if (so->so_state & SS_CANTRCVMORE)
1590 				m_freem(m);
1591 			else {
1592 				m_adj(m, toff + off);
1593 				sbappendstream(&so->so_rcv, m);
1594 			}
1595 			sorwakeup(so);
1596 			TCP_SETUP_ACK(tp, th);
1597 			if (tp->t_flags & TF_ACKNOW)
1598 				(void) tcp_output(tp);
1599 			if (tcp_saveti)
1600 				m_freem(tcp_saveti);
1601 			return;
1602 		}
1603 	}
1604 
1605 	/*
1606 	 * Compute mbuf offset to TCP data segment.
1607 	 */
1608 	hdroptlen = toff + off;
1609 
1610 	/*
1611 	 * Calculate amount of space in receive window,
1612 	 * and then do TCP input processing.
1613 	 * Receive window is amount of space in rcv queue,
1614 	 * but not less than advertised window.
1615 	 */
1616 	{ int win;
1617 
1618 	win = sbspace(&so->so_rcv);
1619 	if (win < 0)
1620 		win = 0;
1621 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1622 	}
1623 
1624 	switch (tp->t_state) {
1625 	case TCPS_LISTEN:
1626 		/*
1627 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1628 		 */
1629 		if (m->m_flags & (M_BCAST|M_MCAST))
1630 			goto drop;
1631 		switch (af) {
1632 #ifdef INET6
1633 		case AF_INET6:
1634 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1635 				goto drop;
1636 			break;
1637 #endif /* INET6 */
1638 		case AF_INET:
1639 			if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1640 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1641 				goto drop;
1642 			break;
1643 		}
1644 		break;
1645 
1646 	/*
1647 	 * If the state is SYN_SENT:
1648 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1649 	 *	if seg contains a RST, then drop the connection.
1650 	 *	if seg does not contain SYN, then drop it.
1651 	 * Otherwise this is an acceptable SYN segment
1652 	 *	initialize tp->rcv_nxt and tp->irs
1653 	 *	if seg contains ack then advance tp->snd_una
1654 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1655 	 *	arrange for segment to be acked (eventually)
1656 	 *	continue processing rest of data/controls, beginning with URG
1657 	 */
1658 	case TCPS_SYN_SENT:
1659 		if ((tiflags & TH_ACK) &&
1660 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1661 		     SEQ_GT(th->th_ack, tp->snd_max)))
1662 			goto dropwithreset;
1663 		if (tiflags & TH_RST) {
1664 			if (tiflags & TH_ACK)
1665 				tp = tcp_drop(tp, ECONNREFUSED);
1666 			goto drop;
1667 		}
1668 		if ((tiflags & TH_SYN) == 0)
1669 			goto drop;
1670 		if (tiflags & TH_ACK) {
1671 			tp->snd_una = tp->snd_recover = th->th_ack;
1672 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1673 				tp->snd_nxt = tp->snd_una;
1674 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1675 		}
1676 		tp->irs = th->th_seq;
1677 		tcp_rcvseqinit(tp);
1678 		tp->t_flags |= TF_ACKNOW;
1679 		tcp_mss_from_peer(tp, opti.maxseg);
1680 
1681 		/*
1682 		 * Initialize the initial congestion window.  If we
1683 		 * had to retransmit the SYN, we must initialize cwnd
1684 		 * to 1 segment (i.e. the Loss Window).
1685 		 */
1686 		if (tp->t_flags & TF_SYN_REXMT)
1687 			tp->snd_cwnd = tp->t_peermss;
1688 		else
1689 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1690 			    tp->t_peermss);
1691 
1692 		tcp_rmx_rtt(tp);
1693 		if (tiflags & TH_ACK) {
1694 			tcpstat.tcps_connects++;
1695 			soisconnected(so);
1696 			tcp_established(tp);
1697 			/* Do window scaling on this connection? */
1698 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1699 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1700 				tp->snd_scale = tp->requested_s_scale;
1701 				tp->rcv_scale = tp->request_r_scale;
1702 			}
1703 			TCP_REASS_LOCK(tp);
1704 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1705 			TCP_REASS_UNLOCK(tp);
1706 			/*
1707 			 * if we didn't have to retransmit the SYN,
1708 			 * use its rtt as our initial srtt & rtt var.
1709 			 */
1710 			if (tp->t_rtttime)
1711 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1712 		} else
1713 			tp->t_state = TCPS_SYN_RECEIVED;
1714 
1715 		/*
1716 		 * Advance th->th_seq to correspond to first data byte.
1717 		 * If data, trim to stay within window,
1718 		 * dropping FIN if necessary.
1719 		 */
1720 		th->th_seq++;
1721 		if (tlen > tp->rcv_wnd) {
1722 			todrop = tlen - tp->rcv_wnd;
1723 			m_adj(m, -todrop);
1724 			tlen = tp->rcv_wnd;
1725 			tiflags &= ~TH_FIN;
1726 			tcpstat.tcps_rcvpackafterwin++;
1727 			tcpstat.tcps_rcvbyteafterwin += todrop;
1728 		}
1729 		tp->snd_wl1 = th->th_seq - 1;
1730 		tp->rcv_up = th->th_seq;
1731 		goto step6;
1732 
1733 	/*
1734 	 * If the state is SYN_RECEIVED:
1735 	 *	If seg contains an ACK, but not for our SYN, drop the input
1736 	 *	and generate an RST.  See page 36, rfc793
1737 	 */
1738 	case TCPS_SYN_RECEIVED:
1739 		if ((tiflags & TH_ACK) &&
1740 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1741 		     SEQ_GT(th->th_ack, tp->snd_max)))
1742 			goto dropwithreset;
1743 		break;
1744 	}
1745 
1746 	/*
1747 	 * States other than LISTEN or SYN_SENT.
1748 	 * First check timestamp, if present.
1749 	 * Then check that at least some bytes of segment are within
1750 	 * receive window.  If segment begins before rcv_nxt,
1751 	 * drop leading data (and SYN); if nothing left, just ack.
1752 	 *
1753 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1754 	 * and it's less than ts_recent, drop it.
1755 	 */
1756 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1757 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1758 
1759 		/* Check to see if ts_recent is over 24 days old.  */
1760 		if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1761 		    TCP_PAWS_IDLE) {
1762 			/*
1763 			 * Invalidate ts_recent.  If this segment updates
1764 			 * ts_recent, the age will be reset later and ts_recent
1765 			 * will get a valid value.  If it does not, setting
1766 			 * ts_recent to zero will at least satisfy the
1767 			 * requirement that zero be placed in the timestamp
1768 			 * echo reply when ts_recent isn't valid.  The
1769 			 * age isn't reset until we get a valid ts_recent
1770 			 * because we don't want out-of-order segments to be
1771 			 * dropped when ts_recent is old.
1772 			 */
1773 			tp->ts_recent = 0;
1774 		} else {
1775 			tcpstat.tcps_rcvduppack++;
1776 			tcpstat.tcps_rcvdupbyte += tlen;
1777 			tcpstat.tcps_pawsdrop++;
1778 			goto dropafterack;
1779 		}
1780 	}
1781 
1782 	todrop = tp->rcv_nxt - th->th_seq;
1783 	if (todrop > 0) {
1784 		if (tiflags & TH_SYN) {
1785 			tiflags &= ~TH_SYN;
1786 			th->th_seq++;
1787 			if (th->th_urp > 1)
1788 				th->th_urp--;
1789 			else {
1790 				tiflags &= ~TH_URG;
1791 				th->th_urp = 0;
1792 			}
1793 			todrop--;
1794 		}
1795 		if (todrop > tlen ||
1796 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1797 			/*
1798 			 * Any valid FIN must be to the left of the window.
1799 			 * At this point the FIN must be a duplicate or
1800 			 * out of sequence; drop it.
1801 			 */
1802 			tiflags &= ~TH_FIN;
1803 			/*
1804 			 * Send an ACK to resynchronize and drop any data.
1805 			 * But keep on processing for RST or ACK.
1806 			 */
1807 			tp->t_flags |= TF_ACKNOW;
1808 			todrop = tlen;
1809 			tcpstat.tcps_rcvdupbyte += todrop;
1810 			tcpstat.tcps_rcvduppack++;
1811 		} else {
1812 			tcpstat.tcps_rcvpartduppack++;
1813 			tcpstat.tcps_rcvpartdupbyte += todrop;
1814 		}
1815 		hdroptlen += todrop;	/*drop from head afterwards*/
1816 		th->th_seq += todrop;
1817 		tlen -= todrop;
1818 		if (th->th_urp > todrop)
1819 			th->th_urp -= todrop;
1820 		else {
1821 			tiflags &= ~TH_URG;
1822 			th->th_urp = 0;
1823 		}
1824 	}
1825 
1826 	/*
1827 	 * If new data are received on a connection after the
1828 	 * user processes are gone, then RST the other end.
1829 	 */
1830 	if ((so->so_state & SS_NOFDREF) &&
1831 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1832 		tp = tcp_close(tp);
1833 		tcpstat.tcps_rcvafterclose++;
1834 		goto dropwithreset;
1835 	}
1836 
1837 	/*
1838 	 * If segment ends after window, drop trailing data
1839 	 * (and PUSH and FIN); if nothing left, just ACK.
1840 	 */
1841 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1842 	if (todrop > 0) {
1843 		tcpstat.tcps_rcvpackafterwin++;
1844 		if (todrop >= tlen) {
1845 			tcpstat.tcps_rcvbyteafterwin += tlen;
1846 			/*
1847 			 * If a new connection request is received
1848 			 * while in TIME_WAIT, drop the old connection
1849 			 * and start over if the sequence numbers
1850 			 * are above the previous ones.
1851 			 *
1852 			 * NOTE: We will checksum the packet again, and
1853 			 * so we need to put the header fields back into
1854 			 * network order!
1855 			 * XXX This kind of sucks, but we don't expect
1856 			 * XXX this to happen very often, so maybe it
1857 			 * XXX doesn't matter so much.
1858 			 */
1859 			if (tiflags & TH_SYN &&
1860 			    tp->t_state == TCPS_TIME_WAIT &&
1861 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1862 				iss = tcp_new_iss(tp, tp->snd_nxt);
1863 				tp = tcp_close(tp);
1864 				TCP_FIELDS_TO_NET(th);
1865 				goto findpcb;
1866 			}
1867 			/*
1868 			 * If window is closed can only take segments at
1869 			 * window edge, and have to drop data and PUSH from
1870 			 * incoming segments.  Continue processing, but
1871 			 * remember to ack.  Otherwise, drop segment
1872 			 * and ack.
1873 			 */
1874 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1875 				tp->t_flags |= TF_ACKNOW;
1876 				tcpstat.tcps_rcvwinprobe++;
1877 			} else
1878 				goto dropafterack;
1879 		} else
1880 			tcpstat.tcps_rcvbyteafterwin += todrop;
1881 		m_adj(m, -todrop);
1882 		tlen -= todrop;
1883 		tiflags &= ~(TH_PUSH|TH_FIN);
1884 	}
1885 
1886 	/*
1887 	 * If last ACK falls within this segment's sequence numbers,
1888 	 * and the timestamp is newer, record it.
1889 	 */
1890 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1891 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1892 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1893 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1894 		tp->ts_recent_age = TCP_TIMESTAMP(tp);
1895 		tp->ts_recent = opti.ts_val;
1896 	}
1897 
1898 	/*
1899 	 * If the RST bit is set examine the state:
1900 	 *    SYN_RECEIVED STATE:
1901 	 *	If passive open, return to LISTEN state.
1902 	 *	If active open, inform user that connection was refused.
1903 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1904 	 *	Inform user that connection was reset, and close tcb.
1905 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1906 	 *	Close the tcb.
1907 	 */
1908 	if (tiflags&TH_RST) switch (tp->t_state) {
1909 
1910 	case TCPS_SYN_RECEIVED:
1911 		so->so_error = ECONNREFUSED;
1912 		goto close;
1913 
1914 	case TCPS_ESTABLISHED:
1915 	case TCPS_FIN_WAIT_1:
1916 	case TCPS_FIN_WAIT_2:
1917 	case TCPS_CLOSE_WAIT:
1918 		so->so_error = ECONNRESET;
1919 	close:
1920 		tp->t_state = TCPS_CLOSED;
1921 		tcpstat.tcps_drops++;
1922 		tp = tcp_close(tp);
1923 		goto drop;
1924 
1925 	case TCPS_CLOSING:
1926 	case TCPS_LAST_ACK:
1927 	case TCPS_TIME_WAIT:
1928 		tp = tcp_close(tp);
1929 		goto drop;
1930 	}
1931 
1932 	/*
1933 	 * If a SYN is in the window, then this is an
1934 	 * error and we send an RST and drop the connection.
1935 	 */
1936 	if (tiflags & TH_SYN) {
1937 		tp = tcp_drop(tp, ECONNRESET);
1938 		goto dropwithreset;
1939 	}
1940 
1941 	/*
1942 	 * If the ACK bit is off we drop the segment and return.
1943 	 */
1944 	if ((tiflags & TH_ACK) == 0) {
1945 		if (tp->t_flags & TF_ACKNOW)
1946 			goto dropafterack;
1947 		else
1948 			goto drop;
1949 	}
1950 
1951 	/*
1952 	 * Ack processing.
1953 	 */
1954 	switch (tp->t_state) {
1955 
1956 	/*
1957 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1958 	 * ESTABLISHED state and continue processing, otherwise
1959 	 * send an RST.
1960 	 */
1961 	case TCPS_SYN_RECEIVED:
1962 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
1963 		    SEQ_GT(th->th_ack, tp->snd_max))
1964 			goto dropwithreset;
1965 		tcpstat.tcps_connects++;
1966 		soisconnected(so);
1967 		tcp_established(tp);
1968 		/* Do window scaling? */
1969 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1970 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1971 			tp->snd_scale = tp->requested_s_scale;
1972 			tp->rcv_scale = tp->request_r_scale;
1973 		}
1974 		TCP_REASS_LOCK(tp);
1975 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1976 		TCP_REASS_UNLOCK(tp);
1977 		tp->snd_wl1 = th->th_seq - 1;
1978 		/* fall into ... */
1979 
1980 	/*
1981 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1982 	 * ACKs.  If the ack is in the range
1983 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1984 	 * then advance tp->snd_una to th->th_ack and drop
1985 	 * data from the retransmission queue.  If this ACK reflects
1986 	 * more up to date window information we update our window information.
1987 	 */
1988 	case TCPS_ESTABLISHED:
1989 	case TCPS_FIN_WAIT_1:
1990 	case TCPS_FIN_WAIT_2:
1991 	case TCPS_CLOSE_WAIT:
1992 	case TCPS_CLOSING:
1993 	case TCPS_LAST_ACK:
1994 	case TCPS_TIME_WAIT:
1995 
1996 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1997 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1998 				tcpstat.tcps_rcvdupack++;
1999 				/*
2000 				 * If we have outstanding data (other than
2001 				 * a window probe), this is a completely
2002 				 * duplicate ack (ie, window info didn't
2003 				 * change), the ack is the biggest we've
2004 				 * seen and we've seen exactly our rexmt
2005 				 * threshhold of them, assume a packet
2006 				 * has been dropped and retransmit it.
2007 				 * Kludge snd_nxt & the congestion
2008 				 * window so we send only this one
2009 				 * packet.
2010 				 *
2011 				 * We know we're losing at the current
2012 				 * window size so do congestion avoidance
2013 				 * (set ssthresh to half the current window
2014 				 * and pull our congestion window back to
2015 				 * the new ssthresh).
2016 				 *
2017 				 * Dup acks mean that packets have left the
2018 				 * network (they're now cached at the receiver)
2019 				 * so bump cwnd by the amount in the receiver
2020 				 * to keep a constant cwnd packets in the
2021 				 * network.
2022 				 */
2023 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2024 				    th->th_ack != tp->snd_una)
2025 					tp->t_dupacks = 0;
2026 				else if (++tp->t_dupacks == tcprexmtthresh) {
2027 					tcp_seq onxt = tp->snd_nxt;
2028 					u_int win =
2029 					    min(tp->snd_wnd, tp->snd_cwnd) /
2030 					    2 /	tp->t_segsz;
2031 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
2032 					    tp->snd_recover)) {
2033 						/*
2034 						 * False fast retransmit after
2035 						 * timeout.  Do not cut window.
2036 						 */
2037 						tp->snd_cwnd += tp->t_segsz;
2038 						tp->t_dupacks = 0;
2039 						(void) tcp_output(tp);
2040 						goto drop;
2041 					}
2042 
2043 					if (win < 2)
2044 						win = 2;
2045 					tp->snd_ssthresh = win * tp->t_segsz;
2046 					tp->snd_recover = tp->snd_max;
2047 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
2048 					tp->t_rtttime = 0;
2049 					tp->snd_nxt = th->th_ack;
2050 					tp->snd_cwnd = tp->t_segsz;
2051 					(void) tcp_output(tp);
2052 					tp->snd_cwnd = tp->snd_ssthresh +
2053 					       tp->t_segsz * tp->t_dupacks;
2054 					if (SEQ_GT(onxt, tp->snd_nxt))
2055 						tp->snd_nxt = onxt;
2056 					goto drop;
2057 				} else if (tp->t_dupacks > tcprexmtthresh) {
2058 					tp->snd_cwnd += tp->t_segsz;
2059 					(void) tcp_output(tp);
2060 					goto drop;
2061 				}
2062 			} else
2063 				tp->t_dupacks = 0;
2064 			break;
2065 		}
2066 		/*
2067 		 * If the congestion window was inflated to account
2068 		 * for the other side's cached packets, retract it.
2069 		 */
2070 		if (tcp_do_newreno == 0) {
2071 			if (tp->t_dupacks >= tcprexmtthresh &&
2072 			    tp->snd_cwnd > tp->snd_ssthresh)
2073 				tp->snd_cwnd = tp->snd_ssthresh;
2074 			tp->t_dupacks = 0;
2075 		} else if (tp->t_dupacks >= tcprexmtthresh &&
2076 			   tcp_newreno(tp, th) == 0) {
2077 			tp->snd_cwnd = tp->snd_ssthresh;
2078 			/*
2079 			 * Window inflation should have left us with approx.
2080 			 * snd_ssthresh outstanding data.  But in case we
2081 			 * would be inclined to send a burst, better to do
2082 			 * it via the slow start mechanism.
2083 			 */
2084 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2085 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2086 				    + tp->t_segsz;
2087 			tp->t_dupacks = 0;
2088 		}
2089 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2090 			tcpstat.tcps_rcvacktoomuch++;
2091 			goto dropafterack;
2092 		}
2093 		acked = th->th_ack - tp->snd_una;
2094 		tcpstat.tcps_rcvackpack++;
2095 		tcpstat.tcps_rcvackbyte += acked;
2096 
2097 		/*
2098 		 * If we have a timestamp reply, update smoothed
2099 		 * round trip time.  If no timestamp is present but
2100 		 * transmit timer is running and timed sequence
2101 		 * number was acked, update smoothed round trip time.
2102 		 * Since we now have an rtt measurement, cancel the
2103 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2104 		 * Recompute the initial retransmit timer.
2105 		 */
2106 		if (opti.ts_present && opti.ts_ecr)
2107 			tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2108 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2109 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2110 
2111 		/*
2112 		 * If all outstanding data is acked, stop retransmit
2113 		 * timer and remember to restart (more output or persist).
2114 		 * If there is more data to be acked, restart retransmit
2115 		 * timer, using current (possibly backed-off) value.
2116 		 */
2117 		if (th->th_ack == tp->snd_max) {
2118 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2119 			needoutput = 1;
2120 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2121 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2122 		/*
2123 		 * When new data is acked, open the congestion window.
2124 		 * If the window gives us less than ssthresh packets
2125 		 * in flight, open exponentially (segsz per packet).
2126 		 * Otherwise open linearly: segsz per window
2127 		 * (segsz^2 / cwnd per packet), plus a constant
2128 		 * fraction of a packet (segsz/8) to help larger windows
2129 		 * open quickly enough.
2130 		 */
2131 		{
2132 		u_int cw = tp->snd_cwnd;
2133 		u_int incr = tp->t_segsz;
2134 
2135 		if (cw > tp->snd_ssthresh)
2136 			incr = incr * incr / cw;
2137 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2138 			tp->snd_cwnd = min(cw + incr,
2139 			    TCP_MAXWIN << tp->snd_scale);
2140 		}
2141 		ND6_HINT(tp);
2142 		if (acked > so->so_snd.sb_cc) {
2143 			tp->snd_wnd -= so->so_snd.sb_cc;
2144 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2145 			ourfinisacked = 1;
2146 		} else {
2147 			sbdrop(&so->so_snd, acked);
2148 			tp->snd_wnd -= acked;
2149 			ourfinisacked = 0;
2150 		}
2151 		sowwakeup(so);
2152 		/*
2153 		 * We want snd_recover to track snd_una to
2154 		 * avoid sequence wraparound problems for
2155 		 * very large transfers.
2156 		 */
2157 		tp->snd_una = tp->snd_recover = th->th_ack;
2158 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2159 			tp->snd_nxt = tp->snd_una;
2160 
2161 		switch (tp->t_state) {
2162 
2163 		/*
2164 		 * In FIN_WAIT_1 STATE in addition to the processing
2165 		 * for the ESTABLISHED state if our FIN is now acknowledged
2166 		 * then enter FIN_WAIT_2.
2167 		 */
2168 		case TCPS_FIN_WAIT_1:
2169 			if (ourfinisacked) {
2170 				/*
2171 				 * If we can't receive any more
2172 				 * data, then closing user can proceed.
2173 				 * Starting the timer is contrary to the
2174 				 * specification, but if we don't get a FIN
2175 				 * we'll hang forever.
2176 				 */
2177 				if (so->so_state & SS_CANTRCVMORE) {
2178 					soisdisconnected(so);
2179 					if (tcp_maxidle > 0)
2180 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2181 						    tcp_maxidle);
2182 				}
2183 				tp->t_state = TCPS_FIN_WAIT_2;
2184 			}
2185 			break;
2186 
2187 	 	/*
2188 		 * In CLOSING STATE in addition to the processing for
2189 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2190 		 * then enter the TIME-WAIT state, otherwise ignore
2191 		 * the segment.
2192 		 */
2193 		case TCPS_CLOSING:
2194 			if (ourfinisacked) {
2195 				tp->t_state = TCPS_TIME_WAIT;
2196 				tcp_canceltimers(tp);
2197 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2198 				soisdisconnected(so);
2199 			}
2200 			break;
2201 
2202 		/*
2203 		 * In LAST_ACK, we may still be waiting for data to drain
2204 		 * and/or to be acked, as well as for the ack of our FIN.
2205 		 * If our FIN is now acknowledged, delete the TCB,
2206 		 * enter the closed state and return.
2207 		 */
2208 		case TCPS_LAST_ACK:
2209 			if (ourfinisacked) {
2210 				tp = tcp_close(tp);
2211 				goto drop;
2212 			}
2213 			break;
2214 
2215 		/*
2216 		 * In TIME_WAIT state the only thing that should arrive
2217 		 * is a retransmission of the remote FIN.  Acknowledge
2218 		 * it and restart the finack timer.
2219 		 */
2220 		case TCPS_TIME_WAIT:
2221 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2222 			goto dropafterack;
2223 		}
2224 	}
2225 
2226 step6:
2227 	/*
2228 	 * Update window information.
2229 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2230 	 */
2231 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2232 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2233 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2234 		/* keep track of pure window updates */
2235 		if (tlen == 0 &&
2236 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2237 			tcpstat.tcps_rcvwinupd++;
2238 		tp->snd_wnd = tiwin;
2239 		tp->snd_wl1 = th->th_seq;
2240 		tp->snd_wl2 = th->th_ack;
2241 		if (tp->snd_wnd > tp->max_sndwnd)
2242 			tp->max_sndwnd = tp->snd_wnd;
2243 		needoutput = 1;
2244 	}
2245 
2246 	/*
2247 	 * Process segments with URG.
2248 	 */
2249 	if ((tiflags & TH_URG) && th->th_urp &&
2250 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2251 		/*
2252 		 * This is a kludge, but if we receive and accept
2253 		 * random urgent pointers, we'll crash in
2254 		 * soreceive.  It's hard to imagine someone
2255 		 * actually wanting to send this much urgent data.
2256 		 */
2257 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2258 			th->th_urp = 0;			/* XXX */
2259 			tiflags &= ~TH_URG;		/* XXX */
2260 			goto dodata;			/* XXX */
2261 		}
2262 		/*
2263 		 * If this segment advances the known urgent pointer,
2264 		 * then mark the data stream.  This should not happen
2265 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2266 		 * a FIN has been received from the remote side.
2267 		 * In these states we ignore the URG.
2268 		 *
2269 		 * According to RFC961 (Assigned Protocols),
2270 		 * the urgent pointer points to the last octet
2271 		 * of urgent data.  We continue, however,
2272 		 * to consider it to indicate the first octet
2273 		 * of data past the urgent section as the original
2274 		 * spec states (in one of two places).
2275 		 */
2276 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2277 			tp->rcv_up = th->th_seq + th->th_urp;
2278 			so->so_oobmark = so->so_rcv.sb_cc +
2279 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2280 			if (so->so_oobmark == 0)
2281 				so->so_state |= SS_RCVATMARK;
2282 			sohasoutofband(so);
2283 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2284 		}
2285 		/*
2286 		 * Remove out of band data so doesn't get presented to user.
2287 		 * This can happen independent of advancing the URG pointer,
2288 		 * but if two URG's are pending at once, some out-of-band
2289 		 * data may creep in... ick.
2290 		 */
2291 		if (th->th_urp <= (u_int16_t) tlen
2292 #ifdef SO_OOBINLINE
2293 		     && (so->so_options & SO_OOBINLINE) == 0
2294 #endif
2295 		     )
2296 			tcp_pulloutofband(so, th, m, hdroptlen);
2297 	} else
2298 		/*
2299 		 * If no out of band data is expected,
2300 		 * pull receive urgent pointer along
2301 		 * with the receive window.
2302 		 */
2303 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2304 			tp->rcv_up = tp->rcv_nxt;
2305 dodata:							/* XXX */
2306 
2307 	/*
2308 	 * Process the segment text, merging it into the TCP sequencing queue,
2309 	 * and arranging for acknowledgement of receipt if necessary.
2310 	 * This process logically involves adjusting tp->rcv_wnd as data
2311 	 * is presented to the user (this happens in tcp_usrreq.c,
2312 	 * case PRU_RCVD).  If a FIN has already been received on this
2313 	 * connection then we just ignore the text.
2314 	 */
2315 	if ((tlen || (tiflags & TH_FIN)) &&
2316 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2317 		/*
2318 		 * Insert segment ti into reassembly queue of tcp with
2319 		 * control block tp.  Return TH_FIN if reassembly now includes
2320 		 * a segment with FIN.  The macro form does the common case
2321 		 * inline (segment is the next to be received on an
2322 		 * established connection, and the queue is empty),
2323 		 * avoiding linkage into and removal from the queue and
2324 		 * repetition of various conversions.
2325 		 * Set DELACK for segments received in order, but ack
2326 		 * immediately when segments are out of order
2327 		 * (so fast retransmit can work).
2328 		 */
2329 		/* NOTE: this was TCP_REASS() macro, but used only once */
2330 		TCP_REASS_LOCK(tp);
2331 		if (th->th_seq == tp->rcv_nxt &&
2332 		    TAILQ_FIRST(&tp->segq) == NULL &&
2333 		    tp->t_state == TCPS_ESTABLISHED) {
2334 			TCP_SETUP_ACK(tp, th);
2335 			tp->rcv_nxt += tlen;
2336 			tiflags = th->th_flags & TH_FIN;
2337 			tcpstat.tcps_rcvpack++;
2338 			tcpstat.tcps_rcvbyte += tlen;
2339 			ND6_HINT(tp);
2340 			if (so->so_state & SS_CANTRCVMORE)
2341 				m_freem(m);
2342 			else {
2343 				m_adj(m, hdroptlen);
2344 				sbappendstream(&(so)->so_rcv, m);
2345 			}
2346 			sorwakeup(so);
2347 		} else {
2348 			m_adj(m, hdroptlen);
2349 			tiflags = tcp_reass(tp, th, m, &tlen);
2350 			tp->t_flags |= TF_ACKNOW;
2351 		}
2352 		TCP_REASS_UNLOCK(tp);
2353 
2354 		/*
2355 		 * Note the amount of data that peer has sent into
2356 		 * our window, in order to estimate the sender's
2357 		 * buffer size.
2358 		 */
2359 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2360 	} else {
2361 		m_freem(m);
2362 		m = NULL;
2363 		tiflags &= ~TH_FIN;
2364 	}
2365 
2366 	/*
2367 	 * If FIN is received ACK the FIN and let the user know
2368 	 * that the connection is closing.  Ignore a FIN received before
2369 	 * the connection is fully established.
2370 	 */
2371 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2372 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2373 			socantrcvmore(so);
2374 			tp->t_flags |= TF_ACKNOW;
2375 			tp->rcv_nxt++;
2376 		}
2377 		switch (tp->t_state) {
2378 
2379 	 	/*
2380 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2381 		 */
2382 		case TCPS_ESTABLISHED:
2383 			tp->t_state = TCPS_CLOSE_WAIT;
2384 			break;
2385 
2386 	 	/*
2387 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2388 		 * enter the CLOSING state.
2389 		 */
2390 		case TCPS_FIN_WAIT_1:
2391 			tp->t_state = TCPS_CLOSING;
2392 			break;
2393 
2394 	 	/*
2395 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2396 		 * starting the time-wait timer, turning off the other
2397 		 * standard timers.
2398 		 */
2399 		case TCPS_FIN_WAIT_2:
2400 			tp->t_state = TCPS_TIME_WAIT;
2401 			tcp_canceltimers(tp);
2402 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2403 			soisdisconnected(so);
2404 			break;
2405 
2406 		/*
2407 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2408 		 */
2409 		case TCPS_TIME_WAIT:
2410 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2411 			break;
2412 		}
2413 	}
2414 #ifdef TCP_DEBUG
2415 	if (so->so_options & SO_DEBUG)
2416 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2417 #endif
2418 
2419 	/*
2420 	 * Return any desired output.
2421 	 */
2422 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2423 		(void) tcp_output(tp);
2424 	if (tcp_saveti)
2425 		m_freem(tcp_saveti);
2426 	return;
2427 
2428 badsyn:
2429 	/*
2430 	 * Received a bad SYN.  Increment counters and dropwithreset.
2431 	 */
2432 	tcpstat.tcps_badsyn++;
2433 	tp = NULL;
2434 	goto dropwithreset;
2435 
2436 dropafterack:
2437 	/*
2438 	 * Generate an ACK dropping incoming segment if it occupies
2439 	 * sequence space, where the ACK reflects our state.
2440 	 */
2441 	if (tiflags & TH_RST)
2442 		goto drop;
2443 	m_freem(m);
2444 	tp->t_flags |= TF_ACKNOW;
2445 	(void) tcp_output(tp);
2446 	if (tcp_saveti)
2447 		m_freem(tcp_saveti);
2448 	return;
2449 
2450 dropwithreset_ratelim:
2451 	/*
2452 	 * We may want to rate-limit RSTs in certain situations,
2453 	 * particularly if we are sending an RST in response to
2454 	 * an attempt to connect to or otherwise communicate with
2455 	 * a port for which we have no socket.
2456 	 */
2457 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2458 	    tcp_rst_ppslim) == 0) {
2459 		/* XXX stat */
2460 		goto drop;
2461 	}
2462 	/* ...fall into dropwithreset... */
2463 
2464 dropwithreset:
2465 	/*
2466 	 * Generate a RST, dropping incoming segment.
2467 	 * Make ACK acceptable to originator of segment.
2468 	 */
2469 	if (tiflags & TH_RST)
2470 		goto drop;
2471 
2472 	switch (af) {
2473 #ifdef INET6
2474 	case AF_INET6:
2475 		/* For following calls to tcp_respond */
2476 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2477 			goto drop;
2478 		break;
2479 #endif /* INET6 */
2480 	case AF_INET:
2481 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2482 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2483 			goto drop;
2484 	}
2485 
2486     {
2487 	/*
2488 	 * need to recover version # field, which was overwritten on
2489 	 * ip_cksum computation.
2490 	 */
2491 	struct ip *sip;
2492 	sip = mtod(m, struct ip *);
2493 	switch (af) {
2494 #ifdef INET
2495 	case AF_INET:
2496 		sip->ip_v = 4;
2497 		break;
2498 #endif
2499 #ifdef INET6
2500 	case AF_INET6:
2501 		sip->ip_v = 6;
2502 		break;
2503 #endif
2504 	}
2505     }
2506 	if (tiflags & TH_ACK)
2507 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2508 	else {
2509 		if (tiflags & TH_SYN)
2510 			tlen++;
2511 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2512 		    TH_RST|TH_ACK);
2513 	}
2514 	if (tcp_saveti)
2515 		m_freem(tcp_saveti);
2516 	return;
2517 
2518 badcsum:
2519 	tcpstat.tcps_rcvbadsum++;
2520 drop:
2521 	/*
2522 	 * Drop space held by incoming segment and return.
2523 	 */
2524 	if (tp) {
2525 		if (tp->t_inpcb)
2526 			so = tp->t_inpcb->inp_socket;
2527 #ifdef INET6
2528 		else if (tp->t_in6pcb)
2529 			so = tp->t_in6pcb->in6p_socket;
2530 #endif
2531 		else
2532 			so = NULL;
2533 #ifdef TCP_DEBUG
2534 		if (so && (so->so_options & SO_DEBUG) != 0)
2535 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2536 #endif
2537 	}
2538 	if (tcp_saveti)
2539 		m_freem(tcp_saveti);
2540 	m_freem(m);
2541 	return;
2542 }
2543 
2544 void
2545 tcp_dooptions(tp, cp, cnt, th, oi)
2546 	struct tcpcb *tp;
2547 	u_char *cp;
2548 	int cnt;
2549 	struct tcphdr *th;
2550 	struct tcp_opt_info *oi;
2551 {
2552 	u_int16_t mss;
2553 	int opt, optlen;
2554 
2555 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2556 		opt = cp[0];
2557 		if (opt == TCPOPT_EOL)
2558 			break;
2559 		if (opt == TCPOPT_NOP)
2560 			optlen = 1;
2561 		else {
2562 			if (cnt < 2)
2563 				break;
2564 			optlen = cp[1];
2565 			if (optlen < 2 || optlen > cnt)
2566 				break;
2567 		}
2568 		switch (opt) {
2569 
2570 		default:
2571 			continue;
2572 
2573 		case TCPOPT_MAXSEG:
2574 			if (optlen != TCPOLEN_MAXSEG)
2575 				continue;
2576 			if (!(th->th_flags & TH_SYN))
2577 				continue;
2578 			bcopy(cp + 2, &mss, sizeof(mss));
2579 			oi->maxseg = ntohs(mss);
2580 			break;
2581 
2582 		case TCPOPT_WINDOW:
2583 			if (optlen != TCPOLEN_WINDOW)
2584 				continue;
2585 			if (!(th->th_flags & TH_SYN))
2586 				continue;
2587 			tp->t_flags |= TF_RCVD_SCALE;
2588 			tp->requested_s_scale = cp[2];
2589 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2590 #if 0	/*XXX*/
2591 				char *p;
2592 
2593 				if (ip)
2594 					p = ntohl(ip->ip_src);
2595 #ifdef INET6
2596 				else if (ip6)
2597 					p = ip6_sprintf(&ip6->ip6_src);
2598 #endif
2599 				else
2600 					p = "(unknown)";
2601 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2602 				    "assuming %d\n",
2603 				    tp->requested_s_scale, p,
2604 				    TCP_MAX_WINSHIFT);
2605 #else
2606 				log(LOG_ERR, "TCP: invalid wscale %d, "
2607 				    "assuming %d\n",
2608 				    tp->requested_s_scale,
2609 				    TCP_MAX_WINSHIFT);
2610 #endif
2611 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
2612 			}
2613 			break;
2614 
2615 		case TCPOPT_TIMESTAMP:
2616 			if (optlen != TCPOLEN_TIMESTAMP)
2617 				continue;
2618 			oi->ts_present = 1;
2619 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2620 			NTOHL(oi->ts_val);
2621 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2622 			NTOHL(oi->ts_ecr);
2623 
2624 			/*
2625 			 * A timestamp received in a SYN makes
2626 			 * it ok to send timestamp requests and replies.
2627 			 */
2628 			if (th->th_flags & TH_SYN) {
2629 				tp->t_flags |= TF_RCVD_TSTMP;
2630 				tp->ts_recent = oi->ts_val;
2631 				tp->ts_recent_age = TCP_TIMESTAMP(tp);
2632 			}
2633 			break;
2634 		case TCPOPT_SACK_PERMITTED:
2635 			if (optlen != TCPOLEN_SACK_PERMITTED)
2636 				continue;
2637 			if (!(th->th_flags & TH_SYN))
2638 				continue;
2639 			tp->t_flags &= ~TF_CANT_TXSACK;
2640 			break;
2641 
2642 		case TCPOPT_SACK:
2643 			if (tp->t_flags & TF_IGNR_RXSACK)
2644 				continue;
2645 			if (optlen % 8 != 2 || optlen < 10)
2646 				continue;
2647 			cp += 2;
2648 			optlen -= 2;
2649 			for (; optlen > 0; cp -= 8, optlen -= 8) {
2650 				tcp_seq lwe, rwe;
2651 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2652 				NTOHL(lwe);
2653 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2654 				NTOHL(rwe);
2655 				/* tcp_mark_sacked(tp, lwe, rwe); */
2656 			}
2657 			break;
2658 		}
2659 	}
2660 }
2661 
2662 /*
2663  * Pull out of band byte out of a segment so
2664  * it doesn't appear in the user's data queue.
2665  * It is still reflected in the segment length for
2666  * sequencing purposes.
2667  */
2668 void
2669 tcp_pulloutofband(so, th, m, off)
2670 	struct socket *so;
2671 	struct tcphdr *th;
2672 	struct mbuf *m;
2673 	int off;
2674 {
2675 	int cnt = off + th->th_urp - 1;
2676 
2677 	while (cnt >= 0) {
2678 		if (m->m_len > cnt) {
2679 			char *cp = mtod(m, caddr_t) + cnt;
2680 			struct tcpcb *tp = sototcpcb(so);
2681 
2682 			tp->t_iobc = *cp;
2683 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2684 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2685 			m->m_len--;
2686 			return;
2687 		}
2688 		cnt -= m->m_len;
2689 		m = m->m_next;
2690 		if (m == 0)
2691 			break;
2692 	}
2693 	panic("tcp_pulloutofband");
2694 }
2695 
2696 /*
2697  * Collect new round-trip time estimate
2698  * and update averages and current timeout.
2699  */
2700 void
2701 tcp_xmit_timer(tp, rtt)
2702 	struct tcpcb *tp;
2703 	uint32_t rtt;
2704 {
2705 	int32_t delta;
2706 
2707 	tcpstat.tcps_rttupdated++;
2708 	if (tp->t_srtt != 0) {
2709 		/*
2710 		 * srtt is stored as fixed point with 3 bits after the
2711 		 * binary point (i.e., scaled by 8).  The following magic
2712 		 * is equivalent to the smoothing algorithm in rfc793 with
2713 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2714 		 * point).  Adjust rtt to origin 0.
2715 		 */
2716 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2717 		if ((tp->t_srtt += delta) <= 0)
2718 			tp->t_srtt = 1 << 2;
2719 		/*
2720 		 * We accumulate a smoothed rtt variance (actually, a
2721 		 * smoothed mean difference), then set the retransmit
2722 		 * timer to smoothed rtt + 4 times the smoothed variance.
2723 		 * rttvar is stored as fixed point with 2 bits after the
2724 		 * binary point (scaled by 4).  The following is
2725 		 * equivalent to rfc793 smoothing with an alpha of .75
2726 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2727 		 * rfc793's wired-in beta.
2728 		 */
2729 		if (delta < 0)
2730 			delta = -delta;
2731 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2732 		if ((tp->t_rttvar += delta) <= 0)
2733 			tp->t_rttvar = 1 << 2;
2734 	} else {
2735 		/*
2736 		 * No rtt measurement yet - use the unsmoothed rtt.
2737 		 * Set the variance to half the rtt (so our first
2738 		 * retransmit happens at 3*rtt).
2739 		 */
2740 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2741 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2742 	}
2743 	tp->t_rtttime = 0;
2744 	tp->t_rxtshift = 0;
2745 
2746 	/*
2747 	 * the retransmit should happen at rtt + 4 * rttvar.
2748 	 * Because of the way we do the smoothing, srtt and rttvar
2749 	 * will each average +1/2 tick of bias.  When we compute
2750 	 * the retransmit timer, we want 1/2 tick of rounding and
2751 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2752 	 * firing of the timer.  The bias will give us exactly the
2753 	 * 1.5 tick we need.  But, because the bias is
2754 	 * statistical, we have to test that we don't drop below
2755 	 * the minimum feasible timer (which is 2 ticks).
2756 	 */
2757 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2758 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2759 
2760 	/*
2761 	 * We received an ack for a packet that wasn't retransmitted;
2762 	 * it is probably safe to discard any error indications we've
2763 	 * received recently.  This isn't quite right, but close enough
2764 	 * for now (a route might have failed after we sent a segment,
2765 	 * and the return path might not be symmetrical).
2766 	 */
2767 	tp->t_softerror = 0;
2768 }
2769 
2770 /*
2771  * Checks for partial ack.  If partial ack arrives, force the retransmission
2772  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2773  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
2774  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
2775  */
2776 int
2777 tcp_newreno(tp, th)
2778 	struct tcpcb *tp;
2779 	struct tcphdr *th;
2780 {
2781 	tcp_seq onxt = tp->snd_nxt;
2782 	u_long ocwnd = tp->snd_cwnd;
2783 
2784 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2785 		/*
2786 		 * snd_una has not yet been updated and the socket's send
2787 		 * buffer has not yet drained off the ACK'd data, so we
2788 		 * have to leave snd_una as it was to get the correct data
2789 		 * offset in tcp_output().
2790 		 */
2791 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2792 	        tp->t_rtttime = 0;
2793 	        tp->snd_nxt = th->th_ack;
2794 		/*
2795 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
2796 		 * is not yet updated when we're called.
2797 		 */
2798 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2799 	        (void) tcp_output(tp);
2800 	        tp->snd_cwnd = ocwnd;
2801 	        if (SEQ_GT(onxt, tp->snd_nxt))
2802 	                tp->snd_nxt = onxt;
2803 	        /*
2804 	         * Partial window deflation.  Relies on fact that tp->snd_una
2805 	         * not updated yet.
2806 	         */
2807 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2808 	        return 1;
2809 	}
2810 	return 0;
2811 }
2812 
2813 
2814 /*
2815  * TCP compressed state engine.  Currently used to hold compressed
2816  * state for SYN_RECEIVED.
2817  */
2818 
2819 u_long	syn_cache_count;
2820 u_int32_t syn_hash1, syn_hash2;
2821 
2822 #define SYN_HASH(sa, sp, dp) \
2823 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2824 				     ((u_int32_t)(sp)))^syn_hash2)))
2825 #ifndef INET6
2826 #define	SYN_HASHALL(hash, src, dst) \
2827 do {									\
2828 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
2829 		((struct sockaddr_in *)(src))->sin_port,		\
2830 		((struct sockaddr_in *)(dst))->sin_port);		\
2831 } while (/*CONSTCOND*/ 0)
2832 #else
2833 #define SYN_HASH6(sa, sp, dp) \
2834 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2835 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2836 	 & 0x7fffffff)
2837 
2838 #define SYN_HASHALL(hash, src, dst) \
2839 do {									\
2840 	switch ((src)->sa_family) {					\
2841 	case AF_INET:							\
2842 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2843 			((struct sockaddr_in *)(src))->sin_port,	\
2844 			((struct sockaddr_in *)(dst))->sin_port);	\
2845 		break;							\
2846 	case AF_INET6:							\
2847 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2848 			((struct sockaddr_in6 *)(src))->sin6_port,	\
2849 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
2850 		break;							\
2851 	default:							\
2852 		hash = 0;						\
2853 	}								\
2854 } while (/*CONSTCOND*/0)
2855 #endif /* INET6 */
2856 
2857 #define	SYN_CACHE_RM(sc)						\
2858 do {									\
2859 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
2860 	    (sc), sc_bucketq);						\
2861 	(sc)->sc_tp = NULL;						\
2862 	LIST_REMOVE((sc), sc_tpq);					\
2863 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
2864 	callout_stop(&(sc)->sc_timer);					\
2865 	syn_cache_count--;						\
2866 } while (/*CONSTCOND*/0)
2867 
2868 #define	SYN_CACHE_PUT(sc)						\
2869 do {									\
2870 	if ((sc)->sc_ipopts)						\
2871 		(void) m_free((sc)->sc_ipopts);				\
2872 	if ((sc)->sc_route4.ro_rt != NULL)				\
2873 		RTFREE((sc)->sc_route4.ro_rt);				\
2874 	pool_put(&syn_cache_pool, (sc));				\
2875 } while (/*CONSTCOND*/0)
2876 
2877 struct pool syn_cache_pool;
2878 
2879 /*
2880  * We don't estimate RTT with SYNs, so each packet starts with the default
2881  * RTT and each timer step has a fixed timeout value.
2882  */
2883 #define	SYN_CACHE_TIMER_ARM(sc)						\
2884 do {									\
2885 	TCPT_RANGESET((sc)->sc_rxtcur,					\
2886 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
2887 	    TCPTV_REXMTMAX);						\
2888 	callout_reset(&(sc)->sc_timer,					\
2889 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
2890 } while (/*CONSTCOND*/0)
2891 
2892 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
2893 
2894 void
2895 syn_cache_init()
2896 {
2897 	int i;
2898 
2899 	/* Initialize the hash buckets. */
2900 	for (i = 0; i < tcp_syn_cache_size; i++)
2901 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2902 
2903 	/* Initialize the syn cache pool. */
2904 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2905 	    "synpl", NULL);
2906 }
2907 
2908 void
2909 syn_cache_insert(sc, tp)
2910 	struct syn_cache *sc;
2911 	struct tcpcb *tp;
2912 {
2913 	struct syn_cache_head *scp;
2914 	struct syn_cache *sc2;
2915 	int s;
2916 
2917 	/*
2918 	 * If there are no entries in the hash table, reinitialize
2919 	 * the hash secrets.
2920 	 */
2921 	if (syn_cache_count == 0) {
2922 		struct timeval tv;
2923 		microtime(&tv);
2924 		syn_hash1 = arc4random() ^ (u_long)&sc;
2925 		syn_hash2 = arc4random() ^ tv.tv_usec;
2926 	}
2927 
2928 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2929 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2930 	scp = &tcp_syn_cache[sc->sc_bucketidx];
2931 
2932 	/*
2933 	 * Make sure that we don't overflow the per-bucket
2934 	 * limit or the total cache size limit.
2935 	 */
2936 	s = splsoftnet();
2937 	if (scp->sch_length >= tcp_syn_bucket_limit) {
2938 		tcpstat.tcps_sc_bucketoverflow++;
2939 		/*
2940 		 * The bucket is full.  Toss the oldest element in the
2941 		 * bucket.  This will be the first entry in the bucket.
2942 		 */
2943 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
2944 #ifdef DIAGNOSTIC
2945 		/*
2946 		 * This should never happen; we should always find an
2947 		 * entry in our bucket.
2948 		 */
2949 		if (sc2 == NULL)
2950 			panic("syn_cache_insert: bucketoverflow: impossible");
2951 #endif
2952 		SYN_CACHE_RM(sc2);
2953 		SYN_CACHE_PUT(sc2);
2954 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
2955 		struct syn_cache_head *scp2, *sce;
2956 
2957 		tcpstat.tcps_sc_overflowed++;
2958 		/*
2959 		 * The cache is full.  Toss the oldest entry in the
2960 		 * first non-empty bucket we can find.
2961 		 *
2962 		 * XXX We would really like to toss the oldest
2963 		 * entry in the cache, but we hope that this
2964 		 * condition doesn't happen very often.
2965 		 */
2966 		scp2 = scp;
2967 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2968 			sce = &tcp_syn_cache[tcp_syn_cache_size];
2969 			for (++scp2; scp2 != scp; scp2++) {
2970 				if (scp2 >= sce)
2971 					scp2 = &tcp_syn_cache[0];
2972 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
2973 					break;
2974 			}
2975 #ifdef DIAGNOSTIC
2976 			/*
2977 			 * This should never happen; we should always find a
2978 			 * non-empty bucket.
2979 			 */
2980 			if (scp2 == scp)
2981 				panic("syn_cache_insert: cacheoverflow: "
2982 				    "impossible");
2983 #endif
2984 		}
2985 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2986 		SYN_CACHE_RM(sc2);
2987 		SYN_CACHE_PUT(sc2);
2988 	}
2989 
2990 	/*
2991 	 * Initialize the entry's timer.
2992 	 */
2993 	sc->sc_rxttot = 0;
2994 	sc->sc_rxtshift = 0;
2995 	SYN_CACHE_TIMER_ARM(sc);
2996 
2997 	/* Link it from tcpcb entry */
2998 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2999 
3000 	/* Put it into the bucket. */
3001 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3002 	scp->sch_length++;
3003 	syn_cache_count++;
3004 
3005 	tcpstat.tcps_sc_added++;
3006 	splx(s);
3007 }
3008 
3009 /*
3010  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3011  * If we have retransmitted an entry the maximum number of times, expire
3012  * that entry.
3013  */
3014 void
3015 syn_cache_timer(void *arg)
3016 {
3017 	struct syn_cache *sc = arg;
3018 	int s;
3019 
3020 	s = splsoftnet();
3021 
3022 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3023 		/* Drop it -- too many retransmissions. */
3024 		goto dropit;
3025 	}
3026 
3027 	/*
3028 	 * Compute the total amount of time this entry has
3029 	 * been on a queue.  If this entry has been on longer
3030 	 * than the keep alive timer would allow, expire it.
3031 	 */
3032 	sc->sc_rxttot += sc->sc_rxtcur;
3033 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3034 		goto dropit;
3035 
3036 	tcpstat.tcps_sc_retransmitted++;
3037 	(void) syn_cache_respond(sc, NULL);
3038 
3039 	/* Advance the timer back-off. */
3040 	sc->sc_rxtshift++;
3041 	SYN_CACHE_TIMER_ARM(sc);
3042 
3043 	splx(s);
3044 	return;
3045 
3046  dropit:
3047 	tcpstat.tcps_sc_timed_out++;
3048 	SYN_CACHE_RM(sc);
3049 	SYN_CACHE_PUT(sc);
3050 	splx(s);
3051 }
3052 
3053 /*
3054  * Remove syn cache created by the specified tcb entry,
3055  * because this does not make sense to keep them
3056  * (if there's no tcb entry, syn cache entry will never be used)
3057  */
3058 void
3059 syn_cache_cleanup(tp)
3060 	struct tcpcb *tp;
3061 {
3062 	struct syn_cache *sc, *nsc;
3063 	int s;
3064 
3065 	s = splsoftnet();
3066 
3067 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3068 		nsc = LIST_NEXT(sc, sc_tpq);
3069 
3070 #ifdef DIAGNOSTIC
3071 		if (sc->sc_tp != tp)
3072 			panic("invalid sc_tp in syn_cache_cleanup");
3073 #endif
3074 		SYN_CACHE_RM(sc);
3075 		SYN_CACHE_PUT(sc);
3076 	}
3077 	/* just for safety */
3078 	LIST_INIT(&tp->t_sc);
3079 
3080 	splx(s);
3081 }
3082 
3083 /*
3084  * Find an entry in the syn cache.
3085  */
3086 struct syn_cache *
3087 syn_cache_lookup(src, dst, headp)
3088 	struct sockaddr *src;
3089 	struct sockaddr *dst;
3090 	struct syn_cache_head **headp;
3091 {
3092 	struct syn_cache *sc;
3093 	struct syn_cache_head *scp;
3094 	u_int32_t hash;
3095 	int s;
3096 
3097 	SYN_HASHALL(hash, src, dst);
3098 
3099 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3100 	*headp = scp;
3101 	s = splsoftnet();
3102 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3103 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3104 		if (sc->sc_hash != hash)
3105 			continue;
3106 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3107 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3108 			splx(s);
3109 			return (sc);
3110 		}
3111 	}
3112 	splx(s);
3113 	return (NULL);
3114 }
3115 
3116 /*
3117  * This function gets called when we receive an ACK for a
3118  * socket in the LISTEN state.  We look up the connection
3119  * in the syn cache, and if its there, we pull it out of
3120  * the cache and turn it into a full-blown connection in
3121  * the SYN-RECEIVED state.
3122  *
3123  * The return values may not be immediately obvious, and their effects
3124  * can be subtle, so here they are:
3125  *
3126  *	NULL	SYN was not found in cache; caller should drop the
3127  *		packet and send an RST.
3128  *
3129  *	-1	We were unable to create the new connection, and are
3130  *		aborting it.  An ACK,RST is being sent to the peer
3131  *		(unless we got screwey sequence numbners; see below),
3132  *		because the 3-way handshake has been completed.  Caller
3133  *		should not free the mbuf, since we may be using it.  If
3134  *		we are not, we will free it.
3135  *
3136  *	Otherwise, the return value is a pointer to the new socket
3137  *	associated with the connection.
3138  */
3139 struct socket *
3140 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3141 	struct sockaddr *src;
3142 	struct sockaddr *dst;
3143 	struct tcphdr *th;
3144 	unsigned int hlen, tlen;
3145 	struct socket *so;
3146 	struct mbuf *m;
3147 {
3148 	struct syn_cache *sc;
3149 	struct syn_cache_head *scp;
3150 	struct inpcb *inp = NULL;
3151 #ifdef INET6
3152 	struct in6pcb *in6p = NULL;
3153 #endif
3154 	struct tcpcb *tp = 0;
3155 	struct mbuf *am;
3156 	int s;
3157 	struct socket *oso;
3158 
3159 	s = splsoftnet();
3160 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3161 		splx(s);
3162 		return (NULL);
3163 	}
3164 
3165 	/*
3166 	 * Verify the sequence and ack numbers.  Try getting the correct
3167 	 * response again.
3168 	 */
3169 	if ((th->th_ack != sc->sc_iss + 1) ||
3170 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3171 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3172 		(void) syn_cache_respond(sc, m);
3173 		splx(s);
3174 		return ((struct socket *)(-1));
3175 	}
3176 
3177 	/* Remove this cache entry */
3178 	SYN_CACHE_RM(sc);
3179 	splx(s);
3180 
3181 	/*
3182 	 * Ok, create the full blown connection, and set things up
3183 	 * as they would have been set up if we had created the
3184 	 * connection when the SYN arrived.  If we can't create
3185 	 * the connection, abort it.
3186 	 */
3187 	/*
3188 	 * inp still has the OLD in_pcb stuff, set the
3189 	 * v6-related flags on the new guy, too.   This is
3190 	 * done particularly for the case where an AF_INET6
3191 	 * socket is bound only to a port, and a v4 connection
3192 	 * comes in on that port.
3193 	 * we also copy the flowinfo from the original pcb
3194 	 * to the new one.
3195 	 */
3196 	oso = so;
3197 	so = sonewconn(so, SS_ISCONNECTED);
3198 	if (so == NULL)
3199 		goto resetandabort;
3200 
3201 	switch (so->so_proto->pr_domain->dom_family) {
3202 #ifdef INET
3203 	case AF_INET:
3204 		inp = sotoinpcb(so);
3205 		break;
3206 #endif
3207 #ifdef INET6
3208 	case AF_INET6:
3209 		in6p = sotoin6pcb(so);
3210 		break;
3211 #endif
3212 	}
3213 	switch (src->sa_family) {
3214 #ifdef INET
3215 	case AF_INET:
3216 		if (inp) {
3217 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3218 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3219 			inp->inp_options = ip_srcroute();
3220 			in_pcbstate(inp, INP_BOUND);
3221 			if (inp->inp_options == NULL) {
3222 				inp->inp_options = sc->sc_ipopts;
3223 				sc->sc_ipopts = NULL;
3224 			}
3225 		}
3226 #ifdef INET6
3227 		else if (in6p) {
3228 			/* IPv4 packet to AF_INET6 socket */
3229 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3230 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3231 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3232 				&in6p->in6p_laddr.s6_addr32[3],
3233 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
3234 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3235 			in6totcpcb(in6p)->t_family = AF_INET;
3236 		}
3237 #endif
3238 		break;
3239 #endif
3240 #ifdef INET6
3241 	case AF_INET6:
3242 		if (in6p) {
3243 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3244 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3245 #if 0
3246 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3247 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
3248 #endif
3249 		}
3250 		break;
3251 #endif
3252 	}
3253 #ifdef INET6
3254 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3255 		struct in6pcb *oin6p = sotoin6pcb(oso);
3256 		/* inherit socket options from the listening socket */
3257 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3258 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3259 			m_freem(in6p->in6p_options);
3260 			in6p->in6p_options = 0;
3261 		}
3262 		ip6_savecontrol(in6p, &in6p->in6p_options,
3263 			mtod(m, struct ip6_hdr *), m);
3264 	}
3265 #endif
3266 
3267 #ifdef IPSEC
3268 	/*
3269 	 * we make a copy of policy, instead of sharing the policy,
3270 	 * for better behavior in terms of SA lookup and dead SA removal.
3271 	 */
3272 	if (inp) {
3273 		/* copy old policy into new socket's */
3274 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3275 			printf("tcp_input: could not copy policy\n");
3276 	}
3277 #ifdef INET6
3278 	else if (in6p) {
3279 		/* copy old policy into new socket's */
3280 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3281 		    in6p->in6p_sp))
3282 			printf("tcp_input: could not copy policy\n");
3283 	}
3284 #endif
3285 #endif
3286 
3287 	/*
3288 	 * Give the new socket our cached route reference.
3289 	 */
3290 	if (inp)
3291 		inp->inp_route = sc->sc_route4;		/* struct assignment */
3292 #ifdef INET6
3293 	else
3294 		in6p->in6p_route = sc->sc_route6;
3295 #endif
3296 	sc->sc_route4.ro_rt = NULL;
3297 
3298 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3299 	if (am == NULL)
3300 		goto resetandabort;
3301 	am->m_len = src->sa_len;
3302 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3303 	if (inp) {
3304 		if (in_pcbconnect(inp, am)) {
3305 			(void) m_free(am);
3306 			goto resetandabort;
3307 		}
3308 	}
3309 #ifdef INET6
3310 	else if (in6p) {
3311 		if (src->sa_family == AF_INET) {
3312 			/* IPv4 packet to AF_INET6 socket */
3313 			struct sockaddr_in6 *sin6;
3314 			sin6 = mtod(am, struct sockaddr_in6 *);
3315 			am->m_len = sizeof(*sin6);
3316 			bzero(sin6, sizeof(*sin6));
3317 			sin6->sin6_family = AF_INET6;
3318 			sin6->sin6_len = sizeof(*sin6);
3319 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3320 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3321 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3322 				&sin6->sin6_addr.s6_addr32[3],
3323 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3324 		}
3325 		if (in6_pcbconnect(in6p, am)) {
3326 			(void) m_free(am);
3327 			goto resetandabort;
3328 		}
3329 	}
3330 #endif
3331 	else {
3332 		(void) m_free(am);
3333 		goto resetandabort;
3334 	}
3335 	(void) m_free(am);
3336 
3337 	if (inp)
3338 		tp = intotcpcb(inp);
3339 #ifdef INET6
3340 	else if (in6p)
3341 		tp = in6totcpcb(in6p);
3342 #endif
3343 	else
3344 		tp = NULL;
3345 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3346 	if (sc->sc_request_r_scale != 15) {
3347 		tp->requested_s_scale = sc->sc_requested_s_scale;
3348 		tp->request_r_scale = sc->sc_request_r_scale;
3349 		tp->snd_scale = sc->sc_requested_s_scale;
3350 		tp->rcv_scale = sc->sc_request_r_scale;
3351 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3352 	}
3353 	if (sc->sc_flags & SCF_TIMESTAMP)
3354 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3355 	tp->ts_timebase = sc->sc_timebase;
3356 
3357 	tp->t_template = tcp_template(tp);
3358 	if (tp->t_template == 0) {
3359 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3360 		so = NULL;
3361 		m_freem(m);
3362 		goto abort;
3363 	}
3364 
3365 	tp->iss = sc->sc_iss;
3366 	tp->irs = sc->sc_irs;
3367 	tcp_sendseqinit(tp);
3368 	tcp_rcvseqinit(tp);
3369 	tp->t_state = TCPS_SYN_RECEIVED;
3370 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3371 	tcpstat.tcps_accepts++;
3372 
3373 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3374 	tp->t_ourmss = sc->sc_ourmaxseg;
3375 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3376 
3377 	/*
3378 	 * Initialize the initial congestion window.  If we
3379 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3380 	 * to 1 segment (i.e. the Loss Window).
3381 	 */
3382 	if (sc->sc_rxtshift)
3383 		tp->snd_cwnd = tp->t_peermss;
3384 	else
3385 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3386 
3387 	tcp_rmx_rtt(tp);
3388 	tp->snd_wl1 = sc->sc_irs;
3389 	tp->rcv_up = sc->sc_irs + 1;
3390 
3391 	/*
3392 	 * This is what whould have happened in tcp_ouput() when
3393 	 * the SYN,ACK was sent.
3394 	 */
3395 	tp->snd_up = tp->snd_una;
3396 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3397 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3398 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3399 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3400 	tp->last_ack_sent = tp->rcv_nxt;
3401 
3402 	tcpstat.tcps_sc_completed++;
3403 	SYN_CACHE_PUT(sc);
3404 	return (so);
3405 
3406 resetandabort:
3407 	(void) tcp_respond(NULL, m, m, th,
3408 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3409 abort:
3410 	if (so != NULL)
3411 		(void) soabort(so);
3412 	SYN_CACHE_PUT(sc);
3413 	tcpstat.tcps_sc_aborted++;
3414 	return ((struct socket *)(-1));
3415 }
3416 
3417 /*
3418  * This function is called when we get a RST for a
3419  * non-existent connection, so that we can see if the
3420  * connection is in the syn cache.  If it is, zap it.
3421  */
3422 
3423 void
3424 syn_cache_reset(src, dst, th)
3425 	struct sockaddr *src;
3426 	struct sockaddr *dst;
3427 	struct tcphdr *th;
3428 {
3429 	struct syn_cache *sc;
3430 	struct syn_cache_head *scp;
3431 	int s = splsoftnet();
3432 
3433 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3434 		splx(s);
3435 		return;
3436 	}
3437 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3438 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3439 		splx(s);
3440 		return;
3441 	}
3442 	SYN_CACHE_RM(sc);
3443 	splx(s);
3444 	tcpstat.tcps_sc_reset++;
3445 	SYN_CACHE_PUT(sc);
3446 }
3447 
3448 void
3449 syn_cache_unreach(src, dst, th)
3450 	struct sockaddr *src;
3451 	struct sockaddr *dst;
3452 	struct tcphdr *th;
3453 {
3454 	struct syn_cache *sc;
3455 	struct syn_cache_head *scp;
3456 	int s;
3457 
3458 	s = splsoftnet();
3459 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3460 		splx(s);
3461 		return;
3462 	}
3463 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3464 	if (ntohl (th->th_seq) != sc->sc_iss) {
3465 		splx(s);
3466 		return;
3467 	}
3468 
3469 	/*
3470 	 * If we've rertransmitted 3 times and this is our second error,
3471 	 * we remove the entry.  Otherwise, we allow it to continue on.
3472 	 * This prevents us from incorrectly nuking an entry during a
3473 	 * spurious network outage.
3474 	 *
3475 	 * See tcp_notify().
3476 	 */
3477 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3478 		sc->sc_flags |= SCF_UNREACH;
3479 		splx(s);
3480 		return;
3481 	}
3482 
3483 	SYN_CACHE_RM(sc);
3484 	splx(s);
3485 	tcpstat.tcps_sc_unreach++;
3486 	SYN_CACHE_PUT(sc);
3487 }
3488 
3489 /*
3490  * Given a LISTEN socket and an inbound SYN request, add
3491  * this to the syn cache, and send back a segment:
3492  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3493  * to the source.
3494  *
3495  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3496  * Doing so would require that we hold onto the data and deliver it
3497  * to the application.  However, if we are the target of a SYN-flood
3498  * DoS attack, an attacker could send data which would eventually
3499  * consume all available buffer space if it were ACKed.  By not ACKing
3500  * the data, we avoid this DoS scenario.
3501  */
3502 
3503 int
3504 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3505 	struct sockaddr *src;
3506 	struct sockaddr *dst;
3507 	struct tcphdr *th;
3508 	unsigned int hlen;
3509 	struct socket *so;
3510 	struct mbuf *m;
3511 	u_char *optp;
3512 	int optlen;
3513 	struct tcp_opt_info *oi;
3514 {
3515 	struct tcpcb tb, *tp;
3516 	long win;
3517 	struct syn_cache *sc;
3518 	struct syn_cache_head *scp;
3519 	struct mbuf *ipopts;
3520 
3521 	tp = sototcpcb(so);
3522 
3523 	/*
3524 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3525 	 *
3526 	 * Note this check is performed in tcp_input() very early on.
3527 	 */
3528 
3529 	/*
3530 	 * Initialize some local state.
3531 	 */
3532 	win = sbspace(&so->so_rcv);
3533 	if (win > TCP_MAXWIN)
3534 		win = TCP_MAXWIN;
3535 
3536 	switch (src->sa_family) {
3537 #ifdef INET
3538 	case AF_INET:
3539 		/*
3540 		 * Remember the IP options, if any.
3541 		 */
3542 		ipopts = ip_srcroute();
3543 		break;
3544 #endif
3545 	default:
3546 		ipopts = NULL;
3547 	}
3548 
3549 	if (optp) {
3550 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3551 		tcp_dooptions(&tb, optp, optlen, th, oi);
3552 	} else
3553 		tb.t_flags = 0;
3554 
3555 	/*
3556 	 * See if we already have an entry for this connection.
3557 	 * If we do, resend the SYN,ACK.  We do not count this
3558 	 * as a retransmission (XXX though maybe we should).
3559 	 */
3560 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3561 		tcpstat.tcps_sc_dupesyn++;
3562 		if (ipopts) {
3563 			/*
3564 			 * If we were remembering a previous source route,
3565 			 * forget it and use the new one we've been given.
3566 			 */
3567 			if (sc->sc_ipopts)
3568 				(void) m_free(sc->sc_ipopts);
3569 			sc->sc_ipopts = ipopts;
3570 		}
3571 		sc->sc_timestamp = tb.ts_recent;
3572 		if (syn_cache_respond(sc, m) == 0) {
3573 			tcpstat.tcps_sndacks++;
3574 			tcpstat.tcps_sndtotal++;
3575 		}
3576 		return (1);
3577 	}
3578 
3579 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3580 	if (sc == NULL) {
3581 		if (ipopts)
3582 			(void) m_free(ipopts);
3583 		return (0);
3584 	}
3585 
3586 	/*
3587 	 * Fill in the cache, and put the necessary IP and TCP
3588 	 * options into the reply.
3589 	 */
3590 	callout_init(&sc->sc_timer);
3591 	bzero(sc, sizeof(struct syn_cache));
3592 	bcopy(src, &sc->sc_src, src->sa_len);
3593 	bcopy(dst, &sc->sc_dst, dst->sa_len);
3594 	sc->sc_flags = 0;
3595 	sc->sc_ipopts = ipopts;
3596 	sc->sc_irs = th->th_seq;
3597 	switch (src->sa_family) {
3598 #ifdef INET
3599 	case AF_INET:
3600 	    {
3601 		struct sockaddr_in *srcin = (void *) src;
3602 		struct sockaddr_in *dstin = (void *) dst;
3603 
3604 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3605 		    &srcin->sin_addr, dstin->sin_port,
3606 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
3607 		break;
3608 	    }
3609 #endif /* INET */
3610 #ifdef INET6
3611 	case AF_INET6:
3612 	    {
3613 		struct sockaddr_in6 *srcin6 = (void *) src;
3614 		struct sockaddr_in6 *dstin6 = (void *) dst;
3615 
3616 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3617 		    &srcin6->sin6_addr, dstin6->sin6_port,
3618 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3619 		break;
3620 	    }
3621 #endif /* INET6 */
3622 	}
3623 	sc->sc_peermaxseg = oi->maxseg;
3624 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3625 						m->m_pkthdr.rcvif : NULL,
3626 						sc->sc_src.sa.sa_family);
3627 	sc->sc_win = win;
3628 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
3629 	sc->sc_timestamp = tb.ts_recent;
3630 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3631 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3632 		sc->sc_flags |= SCF_TIMESTAMP;
3633 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3634 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3635 		sc->sc_requested_s_scale = tb.requested_s_scale;
3636 		sc->sc_request_r_scale = 0;
3637 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3638 		    TCP_MAXWIN << sc->sc_request_r_scale <
3639 		    so->so_rcv.sb_hiwat)
3640 			sc->sc_request_r_scale++;
3641 	} else {
3642 		sc->sc_requested_s_scale = 15;
3643 		sc->sc_request_r_scale = 15;
3644 	}
3645 	sc->sc_tp = tp;
3646 	if (syn_cache_respond(sc, m) == 0) {
3647 		syn_cache_insert(sc, tp);
3648 		tcpstat.tcps_sndacks++;
3649 		tcpstat.tcps_sndtotal++;
3650 	} else {
3651 		SYN_CACHE_PUT(sc);
3652 		tcpstat.tcps_sc_dropped++;
3653 	}
3654 	return (1);
3655 }
3656 
3657 int
3658 syn_cache_respond(sc, m)
3659 	struct syn_cache *sc;
3660 	struct mbuf *m;
3661 {
3662 	struct route *ro;
3663 	u_int8_t *optp;
3664 	int optlen, error;
3665 	u_int16_t tlen;
3666 	struct ip *ip = NULL;
3667 #ifdef INET6
3668 	struct ip6_hdr *ip6 = NULL;
3669 #endif
3670 	struct tcphdr *th;
3671 	u_int hlen;
3672 
3673 	switch (sc->sc_src.sa.sa_family) {
3674 	case AF_INET:
3675 		hlen = sizeof(struct ip);
3676 		ro = &sc->sc_route4;
3677 		break;
3678 #ifdef INET6
3679 	case AF_INET6:
3680 		hlen = sizeof(struct ip6_hdr);
3681 		ro = (struct route *)&sc->sc_route6;
3682 		break;
3683 #endif
3684 	default:
3685 		if (m)
3686 			m_freem(m);
3687 		return EAFNOSUPPORT;
3688 	}
3689 
3690 	/* Compute the size of the TCP options. */
3691 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3692 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3693 
3694 	tlen = hlen + sizeof(struct tcphdr) + optlen;
3695 
3696 	/*
3697 	 * Create the IP+TCP header from scratch.
3698 	 */
3699 	if (m)
3700 		m_freem(m);
3701 #ifdef DIAGNOSTIC
3702 	if (max_linkhdr + tlen > MCLBYTES)
3703 		return (ENOBUFS);
3704 #endif
3705 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3706 	if (m && tlen > MHLEN) {
3707 		MCLGET(m, M_DONTWAIT);
3708 		if ((m->m_flags & M_EXT) == 0) {
3709 			m_freem(m);
3710 			m = NULL;
3711 		}
3712 	}
3713 	if (m == NULL)
3714 		return (ENOBUFS);
3715 
3716 	/* Fixup the mbuf. */
3717 	m->m_data += max_linkhdr;
3718 	m->m_len = m->m_pkthdr.len = tlen;
3719 #ifdef IPSEC
3720 	if (sc->sc_tp) {
3721 		struct tcpcb *tp;
3722 		struct socket *so;
3723 
3724 		tp = sc->sc_tp;
3725 		if (tp->t_inpcb)
3726 			so = tp->t_inpcb->inp_socket;
3727 #ifdef INET6
3728 		else if (tp->t_in6pcb)
3729 			so = tp->t_in6pcb->in6p_socket;
3730 #endif
3731 		else
3732 			so = NULL;
3733 		/* use IPsec policy on listening socket, on SYN ACK */
3734 		if (ipsec_setsocket(m, so) != 0) {
3735 			m_freem(m);
3736 			return ENOBUFS;
3737 		}
3738 	}
3739 #endif
3740 	m->m_pkthdr.rcvif = NULL;
3741 	memset(mtod(m, u_char *), 0, tlen);
3742 
3743 	switch (sc->sc_src.sa.sa_family) {
3744 	case AF_INET:
3745 		ip = mtod(m, struct ip *);
3746 		ip->ip_dst = sc->sc_src.sin.sin_addr;
3747 		ip->ip_src = sc->sc_dst.sin.sin_addr;
3748 		ip->ip_p = IPPROTO_TCP;
3749 		th = (struct tcphdr *)(ip + 1);
3750 		th->th_dport = sc->sc_src.sin.sin_port;
3751 		th->th_sport = sc->sc_dst.sin.sin_port;
3752 		break;
3753 #ifdef INET6
3754 	case AF_INET6:
3755 		ip6 = mtod(m, struct ip6_hdr *);
3756 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3757 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3758 		ip6->ip6_nxt = IPPROTO_TCP;
3759 		/* ip6_plen will be updated in ip6_output() */
3760 		th = (struct tcphdr *)(ip6 + 1);
3761 		th->th_dport = sc->sc_src.sin6.sin6_port;
3762 		th->th_sport = sc->sc_dst.sin6.sin6_port;
3763 		break;
3764 #endif
3765 	default:
3766 		th = NULL;
3767 	}
3768 
3769 	th->th_seq = htonl(sc->sc_iss);
3770 	th->th_ack = htonl(sc->sc_irs + 1);
3771 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3772 	th->th_flags = TH_SYN|TH_ACK;
3773 	th->th_win = htons(sc->sc_win);
3774 	/* th_sum already 0 */
3775 	/* th_urp already 0 */
3776 
3777 	/* Tack on the TCP options. */
3778 	optp = (u_int8_t *)(th + 1);
3779 	*optp++ = TCPOPT_MAXSEG;
3780 	*optp++ = 4;
3781 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3782 	*optp++ = sc->sc_ourmaxseg & 0xff;
3783 
3784 	if (sc->sc_request_r_scale != 15) {
3785 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3786 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3787 		    sc->sc_request_r_scale);
3788 		optp += 4;
3789 	}
3790 
3791 	if (sc->sc_flags & SCF_TIMESTAMP) {
3792 		u_int32_t *lp = (u_int32_t *)(optp);
3793 		/* Form timestamp option as shown in appendix A of RFC 1323. */
3794 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
3795 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3796 		*lp   = htonl(sc->sc_timestamp);
3797 		optp += TCPOLEN_TSTAMP_APPA;
3798 	}
3799 
3800 	/* Compute the packet's checksum. */
3801 	switch (sc->sc_src.sa.sa_family) {
3802 	case AF_INET:
3803 		ip->ip_len = htons(tlen - hlen);
3804 		th->th_sum = 0;
3805 		th->th_sum = in_cksum(m, tlen);
3806 		break;
3807 #ifdef INET6
3808 	case AF_INET6:
3809 		ip6->ip6_plen = htons(tlen - hlen);
3810 		th->th_sum = 0;
3811 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3812 		break;
3813 #endif
3814 	}
3815 
3816 	/*
3817 	 * Fill in some straggling IP bits.  Note the stack expects
3818 	 * ip_len to be in host order, for convenience.
3819 	 */
3820 	switch (sc->sc_src.sa.sa_family) {
3821 #ifdef INET
3822 	case AF_INET:
3823 		ip->ip_len = htons(tlen);
3824 		ip->ip_ttl = ip_defttl;
3825 		/* XXX tos? */
3826 		break;
3827 #endif
3828 #ifdef INET6
3829 	case AF_INET6:
3830 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3831 		ip6->ip6_vfc |= IPV6_VERSION;
3832 		ip6->ip6_plen = htons(tlen - hlen);
3833 		/* ip6_hlim will be initialized afterwards */
3834 		/* XXX flowlabel? */
3835 		break;
3836 #endif
3837 	}
3838 
3839 	switch (sc->sc_src.sa.sa_family) {
3840 #ifdef INET
3841 	case AF_INET:
3842 		error = ip_output(m, sc->sc_ipopts, ro,
3843 		    (ip_mtudisc ? IP_MTUDISC : 0),
3844 		    NULL);
3845 		break;
3846 #endif
3847 #ifdef INET6
3848 	case AF_INET6:
3849 		ip6->ip6_hlim = in6_selecthlim(NULL,
3850 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3851 
3852 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3853 			0, NULL, NULL);
3854 		break;
3855 #endif
3856 	default:
3857 		error = EAFNOSUPPORT;
3858 		break;
3859 	}
3860 	return (error);
3861 }
3862