xref: /netbsd/sys/netinet/tcp_subr.c (revision bf9ec67e)
1 /*	$NetBSD: tcp_subr.c,v 1.129 2002/05/28 10:17:27 itojun Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the NetBSD
51  *	Foundation, Inc. and its contributors.
52  * 4. Neither the name of The NetBSD Foundation nor the names of its
53  *    contributors may be used to endorse or promote products derived
54  *    from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66  * POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 /*
70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71  *	The Regents of the University of California.  All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce the above copyright
79  *    notice, this list of conditions and the following disclaimer in the
80  *    documentation and/or other materials provided with the distribution.
81  * 3. All advertising materials mentioning features or use of this software
82  *    must display the following acknowledgement:
83  *	This product includes software developed by the University of
84  *	California, Berkeley and its contributors.
85  * 4. Neither the name of the University nor the names of its contributors
86  *    may be used to endorse or promote products derived from this software
87  *    without specific prior written permission.
88  *
89  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99  * SUCH DAMAGE.
100  *
101  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
102  */
103 
104 #include <sys/cdefs.h>
105 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.129 2002/05/28 10:17:27 itojun Exp $");
106 
107 #include "opt_inet.h"
108 #include "opt_ipsec.h"
109 #include "opt_tcp_compat_42.h"
110 #include "opt_inet_csum.h"
111 #include "rnd.h"
112 
113 #include <sys/param.h>
114 #include <sys/proc.h>
115 #include <sys/systm.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/socket.h>
119 #include <sys/socketvar.h>
120 #include <sys/protosw.h>
121 #include <sys/errno.h>
122 #include <sys/kernel.h>
123 #include <sys/pool.h>
124 #if NRND > 0
125 #include <sys/md5.h>
126 #include <sys/rnd.h>
127 #endif
128 
129 #include <net/route.h>
130 #include <net/if.h>
131 
132 #include <netinet/in.h>
133 #include <netinet/in_systm.h>
134 #include <netinet/ip.h>
135 #include <netinet/in_pcb.h>
136 #include <netinet/ip_var.h>
137 #include <netinet/ip_icmp.h>
138 
139 #ifdef INET6
140 #ifndef INET
141 #include <netinet/in.h>
142 #endif
143 #include <netinet/ip6.h>
144 #include <netinet6/in6_pcb.h>
145 #include <netinet6/ip6_var.h>
146 #include <netinet6/in6_var.h>
147 #include <netinet6/ip6protosw.h>
148 #include <netinet/icmp6.h>
149 #endif
150 
151 #include <netinet/tcp.h>
152 #include <netinet/tcp_fsm.h>
153 #include <netinet/tcp_seq.h>
154 #include <netinet/tcp_timer.h>
155 #include <netinet/tcp_var.h>
156 #include <netinet/tcpip.h>
157 
158 #ifdef IPSEC
159 #include <netinet6/ipsec.h>
160 #endif /*IPSEC*/
161 
162 #ifdef INET6
163 struct in6pcb tcb6;
164 #endif
165 
166 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
167 struct	tcpstat tcpstat;	/* tcp statistics */
168 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
169 
170 /* patchable/settable parameters for tcp */
171 int 	tcp_mssdflt = TCP_MSS;
172 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
173 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
174 #if NRND > 0
175 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
176 #endif
177 int	tcp_do_sack = 1;	/* selective acknowledgement */
178 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
179 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
180 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
181 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
182 int	tcp_init_win = 1;
183 int	tcp_mss_ifmtu = 0;
184 #ifdef TCP_COMPAT_42
185 int	tcp_compat_42 = 1;
186 #else
187 int	tcp_compat_42 = 0;
188 #endif
189 int	tcp_rst_ppslim = 100;	/* 100pps */
190 
191 /* tcb hash */
192 #ifndef TCBHASHSIZE
193 #define	TCBHASHSIZE	128
194 #endif
195 int	tcbhashsize = TCBHASHSIZE;
196 
197 /* syn hash parameters */
198 #define	TCP_SYN_HASH_SIZE	293
199 #define	TCP_SYN_BUCKET_SIZE	35
200 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
201 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
202 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
203 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
204 
205 int	tcp_freeq __P((struct tcpcb *));
206 
207 #ifdef INET
208 void	tcp_mtudisc_callback __P((struct in_addr));
209 #endif
210 #ifdef INET6
211 void	tcp6_mtudisc_callback __P((struct in6_addr *));
212 #endif
213 
214 void	tcp_mtudisc __P((struct inpcb *, int));
215 #ifdef INET6
216 void	tcp6_mtudisc __P((struct in6pcb *, int));
217 #endif
218 
219 struct pool tcpcb_pool;
220 
221 #ifdef TCP_CSUM_COUNTERS
222 #include <sys/device.h>
223 
224 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
225     NULL, "tcp", "hwcsum bad");
226 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
227     NULL, "tcp", "hwcsum ok");
228 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
229     NULL, "tcp", "hwcsum data");
230 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
231     NULL, "tcp", "swcsum");
232 #endif /* TCP_CSUM_COUNTERS */
233 
234 #ifdef TCP_OUTPUT_COUNTERS
235 #include <sys/device.h>
236 
237 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
238     NULL, "tcp", "output big header");
239 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
240     NULL, "tcp", "output copy small");
241 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
242     NULL, "tcp", "output copy big");
243 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
244     NULL, "tcp", "output reference big");
245 #endif /* TCP_OUTPUT_COUNTERS */
246 
247 #ifdef TCP_REASS_COUNTERS
248 #include <sys/device.h>
249 
250 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
251     NULL, "tcp_reass", "calls");
252 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
253     &tcp_reass_, "tcp_reass", "insert into empty queue");
254 struct evcnt tcp_reass_iteration[8] = {
255     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
256     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
257     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
258     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
259     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
260     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
261     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
262     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
263 };
264 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
265     &tcp_reass_, "tcp_reass", "prepend to first");
266 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
267     &tcp_reass_, "tcp_reass", "prepend");
268 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
269     &tcp_reass_, "tcp_reass", "insert");
270 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
271     &tcp_reass_, "tcp_reass", "insert at tail");
272 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
273     &tcp_reass_, "tcp_reass", "append");
274 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
275     &tcp_reass_, "tcp_reass", "append to tail fragment");
276 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
277     &tcp_reass_, "tcp_reass", "overlap at end");
278 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
279     &tcp_reass_, "tcp_reass", "overlap at start");
280 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
281     &tcp_reass_, "tcp_reass", "duplicate segment");
282 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
283     &tcp_reass_, "tcp_reass", "duplicate fragment");
284 
285 #endif /* TCP_REASS_COUNTERS */
286 
287 /*
288  * Tcp initialization
289  */
290 void
291 tcp_init()
292 {
293 	int hlen;
294 
295 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
296 	    NULL);
297 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
298 #ifdef INET6
299 	tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
300 #endif
301 
302 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
303 #ifdef INET6
304 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
305 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
306 #endif
307 	if (max_protohdr < hlen)
308 		max_protohdr = hlen;
309 	if (max_linkhdr + hlen > MHLEN)
310 		panic("tcp_init");
311 
312 #ifdef INET
313 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
314 #endif
315 #ifdef INET6
316 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
317 #endif
318 
319 	/* Initialize timer state. */
320 	tcp_timer_init();
321 
322 	/* Initialize the compressed state engine. */
323 	syn_cache_init();
324 
325 #ifdef TCP_CSUM_COUNTERS
326 	evcnt_attach_static(&tcp_hwcsum_bad);
327 	evcnt_attach_static(&tcp_hwcsum_ok);
328 	evcnt_attach_static(&tcp_hwcsum_data);
329 	evcnt_attach_static(&tcp_swcsum);
330 #endif /* TCP_CSUM_COUNTERS */
331 
332 #ifdef TCP_OUTPUT_COUNTERS
333 	evcnt_attach_static(&tcp_output_bigheader);
334 	evcnt_attach_static(&tcp_output_copysmall);
335 	evcnt_attach_static(&tcp_output_copybig);
336 	evcnt_attach_static(&tcp_output_refbig);
337 #endif /* TCP_OUTPUT_COUNTERS */
338 
339 #ifdef TCP_REASS_COUNTERS
340 	evcnt_attach_static(&tcp_reass_);
341 	evcnt_attach_static(&tcp_reass_empty);
342 	evcnt_attach_static(&tcp_reass_iteration[0]);
343 	evcnt_attach_static(&tcp_reass_iteration[1]);
344 	evcnt_attach_static(&tcp_reass_iteration[2]);
345 	evcnt_attach_static(&tcp_reass_iteration[3]);
346 	evcnt_attach_static(&tcp_reass_iteration[4]);
347 	evcnt_attach_static(&tcp_reass_iteration[5]);
348 	evcnt_attach_static(&tcp_reass_iteration[6]);
349 	evcnt_attach_static(&tcp_reass_iteration[7]);
350 	evcnt_attach_static(&tcp_reass_prependfirst);
351 	evcnt_attach_static(&tcp_reass_prepend);
352 	evcnt_attach_static(&tcp_reass_insert);
353 	evcnt_attach_static(&tcp_reass_inserttail);
354 	evcnt_attach_static(&tcp_reass_append);
355 	evcnt_attach_static(&tcp_reass_appendtail);
356 	evcnt_attach_static(&tcp_reass_overlaptail);
357 	evcnt_attach_static(&tcp_reass_overlapfront);
358 	evcnt_attach_static(&tcp_reass_segdup);
359 	evcnt_attach_static(&tcp_reass_fragdup);
360 #endif /* TCP_REASS_COUNTERS */
361 }
362 
363 /*
364  * Create template to be used to send tcp packets on a connection.
365  * Call after host entry created, allocates an mbuf and fills
366  * in a skeletal tcp/ip header, minimizing the amount of work
367  * necessary when the connection is used.
368  */
369 struct mbuf *
370 tcp_template(tp)
371 	struct tcpcb *tp;
372 {
373 	struct inpcb *inp = tp->t_inpcb;
374 #ifdef INET6
375 	struct in6pcb *in6p = tp->t_in6pcb;
376 #endif
377 	struct tcphdr *n;
378 	struct mbuf *m;
379 	int hlen;
380 
381 	switch (tp->t_family) {
382 	case AF_INET:
383 		hlen = sizeof(struct ip);
384 		if (inp)
385 			break;
386 #ifdef INET6
387 		if (in6p) {
388 			/* mapped addr case */
389 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
390 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
391 				break;
392 		}
393 #endif
394 		return NULL;	/*EINVAL*/
395 #ifdef INET6
396 	case AF_INET6:
397 		hlen = sizeof(struct ip6_hdr);
398 		if (in6p) {
399 			/* more sainty check? */
400 			break;
401 		}
402 		return NULL;	/*EINVAL*/
403 #endif
404 	default:
405 		hlen = 0;	/*pacify gcc*/
406 		return NULL;	/*EAFNOSUPPORT*/
407 	}
408 #ifdef DIAGNOSTIC
409 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
410 		panic("mclbytes too small for t_template");
411 #endif
412 	m = tp->t_template;
413 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
414 		;
415 	else {
416 		if (m)
417 			m_freem(m);
418 		m = tp->t_template = NULL;
419 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
420 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
421 			MCLGET(m, M_DONTWAIT);
422 			if ((m->m_flags & M_EXT) == 0) {
423 				m_free(m);
424 				m = NULL;
425 			}
426 		}
427 		if (m == NULL)
428 			return NULL;
429 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
430 	}
431 
432 	bzero(mtod(m, caddr_t), m->m_len);
433 
434 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
435 
436 	switch (tp->t_family) {
437 	case AF_INET:
438 	    {
439 		struct ipovly *ipov;
440 		mtod(m, struct ip *)->ip_v = 4;
441 		ipov = mtod(m, struct ipovly *);
442 		ipov->ih_pr = IPPROTO_TCP;
443 		ipov->ih_len = htons(sizeof(struct tcphdr));
444 		if (inp) {
445 			ipov->ih_src = inp->inp_laddr;
446 			ipov->ih_dst = inp->inp_faddr;
447 		}
448 #ifdef INET6
449 		else if (in6p) {
450 			/* mapped addr case */
451 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
452 				sizeof(ipov->ih_src));
453 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
454 				sizeof(ipov->ih_dst));
455 		}
456 #endif
457 		/*
458 		 * Compute the pseudo-header portion of the checksum
459 		 * now.  We incrementally add in the TCP option and
460 		 * payload lengths later, and then compute the TCP
461 		 * checksum right before the packet is sent off onto
462 		 * the wire.
463 		 */
464 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
465 		    ipov->ih_dst.s_addr,
466 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
467 		break;
468 	    }
469 #ifdef INET6
470 	case AF_INET6:
471 	    {
472 		struct ip6_hdr *ip6;
473 		mtod(m, struct ip *)->ip_v = 6;
474 		ip6 = mtod(m, struct ip6_hdr *);
475 		ip6->ip6_nxt = IPPROTO_TCP;
476 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
477 		ip6->ip6_src = in6p->in6p_laddr;
478 		ip6->ip6_dst = in6p->in6p_faddr;
479 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
480 		if (ip6_auto_flowlabel) {
481 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
482 			ip6->ip6_flow |=
483 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
484 		}
485 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
486 		ip6->ip6_vfc |= IPV6_VERSION;
487 
488 		/*
489 		 * Compute the pseudo-header portion of the checksum
490 		 * now.  We incrementally add in the TCP option and
491 		 * payload lengths later, and then compute the TCP
492 		 * checksum right before the packet is sent off onto
493 		 * the wire.
494 		 */
495 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
496 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
497 		    htonl(IPPROTO_TCP));
498 		break;
499 	    }
500 #endif
501 	}
502 	if (inp) {
503 		n->th_sport = inp->inp_lport;
504 		n->th_dport = inp->inp_fport;
505 	}
506 #ifdef INET6
507 	else if (in6p) {
508 		n->th_sport = in6p->in6p_lport;
509 		n->th_dport = in6p->in6p_fport;
510 	}
511 #endif
512 	n->th_seq = 0;
513 	n->th_ack = 0;
514 	n->th_x2 = 0;
515 	n->th_off = 5;
516 	n->th_flags = 0;
517 	n->th_win = 0;
518 	n->th_urp = 0;
519 	return (m);
520 }
521 
522 /*
523  * Send a single message to the TCP at address specified by
524  * the given TCP/IP header.  If m == 0, then we make a copy
525  * of the tcpiphdr at ti and send directly to the addressed host.
526  * This is used to force keep alive messages out using the TCP
527  * template for a connection tp->t_template.  If flags are given
528  * then we send a message back to the TCP which originated the
529  * segment ti, and discard the mbuf containing it and any other
530  * attached mbufs.
531  *
532  * In any case the ack and sequence number of the transmitted
533  * segment are as specified by the parameters.
534  */
535 int
536 tcp_respond(tp, template, m, th0, ack, seq, flags)
537 	struct tcpcb *tp;
538 	struct mbuf *template;
539 	struct mbuf *m;
540 	struct tcphdr *th0;
541 	tcp_seq ack, seq;
542 	int flags;
543 {
544 	struct route *ro;
545 	int error, tlen, win = 0;
546 	int hlen;
547 	struct ip *ip;
548 #ifdef INET6
549 	struct ip6_hdr *ip6;
550 #endif
551 	int family;	/* family on packet, not inpcb/in6pcb! */
552 	struct tcphdr *th;
553 
554 	if (tp != NULL && (flags & TH_RST) == 0) {
555 #ifdef DIAGNOSTIC
556 		if (tp->t_inpcb && tp->t_in6pcb)
557 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
558 #endif
559 #ifdef INET
560 		if (tp->t_inpcb)
561 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
562 #endif
563 #ifdef INET6
564 		if (tp->t_in6pcb)
565 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
566 #endif
567 	}
568 
569 	ip = NULL;
570 #ifdef INET6
571 	ip6 = NULL;
572 #endif
573 	if (m == 0) {
574 		if (!template)
575 			return EINVAL;
576 
577 		/* get family information from template */
578 		switch (mtod(template, struct ip *)->ip_v) {
579 		case 4:
580 			family = AF_INET;
581 			hlen = sizeof(struct ip);
582 			break;
583 #ifdef INET6
584 		case 6:
585 			family = AF_INET6;
586 			hlen = sizeof(struct ip6_hdr);
587 			break;
588 #endif
589 		default:
590 			return EAFNOSUPPORT;
591 		}
592 
593 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
594 		if (m) {
595 			MCLGET(m, M_DONTWAIT);
596 			if ((m->m_flags & M_EXT) == 0) {
597 				m_free(m);
598 				m = NULL;
599 			}
600 		}
601 		if (m == NULL)
602 			return (ENOBUFS);
603 
604 		if (tcp_compat_42)
605 			tlen = 1;
606 		else
607 			tlen = 0;
608 
609 		m->m_data += max_linkhdr;
610 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
611 			template->m_len);
612 		switch (family) {
613 		case AF_INET:
614 			ip = mtod(m, struct ip *);
615 			th = (struct tcphdr *)(ip + 1);
616 			break;
617 #ifdef INET6
618 		case AF_INET6:
619 			ip6 = mtod(m, struct ip6_hdr *);
620 			th = (struct tcphdr *)(ip6 + 1);
621 			break;
622 #endif
623 #if 0
624 		default:
625 			/* noone will visit here */
626 			m_freem(m);
627 			return EAFNOSUPPORT;
628 #endif
629 		}
630 		flags = TH_ACK;
631 	} else {
632 
633 		if ((m->m_flags & M_PKTHDR) == 0) {
634 #if 0
635 			printf("non PKTHDR to tcp_respond\n");
636 #endif
637 			m_freem(m);
638 			return EINVAL;
639 		}
640 #ifdef DIAGNOSTIC
641 		if (!th0)
642 			panic("th0 == NULL in tcp_respond");
643 #endif
644 
645 		/* get family information from m */
646 		switch (mtod(m, struct ip *)->ip_v) {
647 		case 4:
648 			family = AF_INET;
649 			hlen = sizeof(struct ip);
650 			ip = mtod(m, struct ip *);
651 			break;
652 #ifdef INET6
653 		case 6:
654 			family = AF_INET6;
655 			hlen = sizeof(struct ip6_hdr);
656 			ip6 = mtod(m, struct ip6_hdr *);
657 			break;
658 #endif
659 		default:
660 			m_freem(m);
661 			return EAFNOSUPPORT;
662 		}
663 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
664 			tlen = sizeof(*th0);
665 		else
666 			tlen = th0->th_off << 2;
667 
668 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
669 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
670 			m->m_len = hlen + tlen;
671 			m_freem(m->m_next);
672 			m->m_next = NULL;
673 		} else {
674 			struct mbuf *n;
675 
676 #ifdef DIAGNOSTIC
677 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
678 				m_freem(m);
679 				return EMSGSIZE;
680 			}
681 #endif
682 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
683 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
684 				MCLGET(n, M_DONTWAIT);
685 				if ((n->m_flags & M_EXT) == 0) {
686 					m_freem(n);
687 					n = NULL;
688 				}
689 			}
690 			if (!n) {
691 				m_freem(m);
692 				return ENOBUFS;
693 			}
694 
695 			n->m_data += max_linkhdr;
696 			n->m_len = hlen + tlen;
697 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
698 			m_copyback(n, hlen, tlen, (caddr_t)th0);
699 
700 			m_freem(m);
701 			m = n;
702 			n = NULL;
703 		}
704 
705 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
706 		switch (family) {
707 		case AF_INET:
708 			ip = mtod(m, struct ip *);
709 			th = (struct tcphdr *)(ip + 1);
710 			ip->ip_p = IPPROTO_TCP;
711 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
712 			ip->ip_p = IPPROTO_TCP;
713 			break;
714 #ifdef INET6
715 		case AF_INET6:
716 			ip6 = mtod(m, struct ip6_hdr *);
717 			th = (struct tcphdr *)(ip6 + 1);
718 			ip6->ip6_nxt = IPPROTO_TCP;
719 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
720 			ip6->ip6_nxt = IPPROTO_TCP;
721 			break;
722 #endif
723 #if 0
724 		default:
725 			/* noone will visit here */
726 			m_freem(m);
727 			return EAFNOSUPPORT;
728 #endif
729 		}
730 		xchg(th->th_dport, th->th_sport, u_int16_t);
731 #undef xchg
732 		tlen = 0;	/*be friendly with the following code*/
733 	}
734 	th->th_seq = htonl(seq);
735 	th->th_ack = htonl(ack);
736 	th->th_x2 = 0;
737 	if ((flags & TH_SYN) == 0) {
738 		if (tp)
739 			win >>= tp->rcv_scale;
740 		if (win > TCP_MAXWIN)
741 			win = TCP_MAXWIN;
742 		th->th_win = htons((u_int16_t)win);
743 		th->th_off = sizeof (struct tcphdr) >> 2;
744 		tlen += sizeof(*th);
745 	} else
746 		tlen += th->th_off << 2;
747 	m->m_len = hlen + tlen;
748 	m->m_pkthdr.len = hlen + tlen;
749 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
750 	th->th_flags = flags;
751 	th->th_urp = 0;
752 
753 	switch (family) {
754 #ifdef INET
755 	case AF_INET:
756 	    {
757 		struct ipovly *ipov = (struct ipovly *)ip;
758 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
759 		ipov->ih_len = htons((u_int16_t)tlen);
760 
761 		th->th_sum = 0;
762 		th->th_sum = in_cksum(m, hlen + tlen);
763 		ip->ip_len = hlen + tlen;	/*will be flipped on output*/
764 		ip->ip_ttl = ip_defttl;
765 		break;
766 	    }
767 #endif
768 #ifdef INET6
769 	case AF_INET6:
770 	    {
771 		th->th_sum = 0;
772 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
773 				tlen);
774 		ip6->ip6_plen = ntohs(tlen);
775 		if (tp && tp->t_in6pcb) {
776 			struct ifnet *oifp;
777 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
778 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
779 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
780 		} else
781 			ip6->ip6_hlim = ip6_defhlim;
782 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
783 		if (ip6_auto_flowlabel) {
784 			ip6->ip6_flow |=
785 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
786 		}
787 		break;
788 	    }
789 #endif
790 	}
791 
792 #ifdef IPSEC
793 	(void)ipsec_setsocket(m, NULL);
794 #endif /*IPSEC*/
795 
796 	if (tp != NULL && tp->t_inpcb != NULL) {
797 		ro = &tp->t_inpcb->inp_route;
798 #ifdef IPSEC
799 		if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
800 			m_freem(m);
801 			return ENOBUFS;
802 		}
803 #endif
804 #ifdef DIAGNOSTIC
805 		if (family != AF_INET)
806 			panic("tcp_respond: address family mismatch");
807 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
808 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
809 			    ntohl(ip->ip_dst.s_addr),
810 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
811 		}
812 #endif
813 	}
814 #ifdef INET6
815 	else if (tp != NULL && tp->t_in6pcb != NULL) {
816 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
817 #ifdef IPSEC
818 		if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
819 			m_freem(m);
820 			return ENOBUFS;
821 		}
822 #endif
823 #ifdef DIAGNOSTIC
824 		if (family == AF_INET) {
825 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
826 				panic("tcp_respond: not mapped addr");
827 			if (bcmp(&ip->ip_dst,
828 					&tp->t_in6pcb->in6p_faddr.s6_addr32[3],
829 					sizeof(ip->ip_dst)) != 0) {
830 				panic("tcp_respond: ip_dst != in6p_faddr");
831 			}
832 		} else if (family == AF_INET6) {
833 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
834 				panic("tcp_respond: ip6_dst != in6p_faddr");
835 		} else
836 			panic("tcp_respond: address family mismatch");
837 #endif
838 	}
839 #endif
840 	else
841 		ro = NULL;
842 
843 	switch (family) {
844 #ifdef INET
845 	case AF_INET:
846 		error = ip_output(m, NULL, ro,
847 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
848 		    NULL);
849 		break;
850 #endif
851 #ifdef INET6
852 	case AF_INET6:
853 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
854 			NULL);
855 		break;
856 #endif
857 	default:
858 		error = EAFNOSUPPORT;
859 		break;
860 	}
861 
862 	return (error);
863 }
864 
865 /*
866  * Create a new TCP control block, making an
867  * empty reassembly queue and hooking it to the argument
868  * protocol control block.
869  */
870 struct tcpcb *
871 tcp_newtcpcb(family, aux)
872 	int family;	/* selects inpcb, or in6pcb */
873 	void *aux;
874 {
875 	struct tcpcb *tp;
876 	int i;
877 
878 	switch (family) {
879 	case PF_INET:
880 		break;
881 #ifdef INET6
882 	case PF_INET6:
883 		break;
884 #endif
885 	default:
886 		return NULL;
887 	}
888 
889 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
890 	if (tp == NULL)
891 		return (NULL);
892 	bzero((caddr_t)tp, sizeof(struct tcpcb));
893 	TAILQ_INIT(&tp->segq);
894 	TAILQ_INIT(&tp->timeq);
895 	tp->t_family = family;		/* may be overridden later on */
896 	tp->t_peermss = tcp_mssdflt;
897 	tp->t_ourmss = tcp_mssdflt;
898 	tp->t_segsz = tcp_mssdflt;
899 	LIST_INIT(&tp->t_sc);
900 
901 	callout_init(&tp->t_delack_ch);
902 	for (i = 0; i < TCPT_NTIMERS; i++)
903 		TCP_TIMER_INIT(tp, i);
904 
905 	tp->t_flags = 0;
906 	if (tcp_do_rfc1323 && tcp_do_win_scale)
907 		tp->t_flags |= TF_REQ_SCALE;
908 	if (tcp_do_rfc1323 && tcp_do_timestamps)
909 		tp->t_flags |= TF_REQ_TSTMP;
910 	if (tcp_do_sack == 2)
911 		tp->t_flags |= TF_WILL_SACK;
912 	else if (tcp_do_sack == 1)
913 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
914 	tp->t_flags |= TF_CANT_TXSACK;
915 	switch (family) {
916 	case PF_INET:
917 		tp->t_inpcb = (struct inpcb *)aux;
918 		tp->t_mtudisc = ip_mtudisc;
919 		break;
920 #ifdef INET6
921 	case PF_INET6:
922 		tp->t_in6pcb = (struct in6pcb *)aux;
923 		/* for IPv6, always try to run path MTU discovery */
924 		tp->t_mtudisc = 1;
925 		break;
926 #endif
927 	}
928 	/*
929 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
930 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
931 	 * reasonable initial retransmit time.
932 	 */
933 	tp->t_srtt = TCPTV_SRTTBASE;
934 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
935 	tp->t_rttmin = TCPTV_MIN;
936 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
937 	    TCPTV_MIN, TCPTV_REXMTMAX);
938 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
939 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
940 	if (family == AF_INET) {
941 		struct inpcb *inp = (struct inpcb *)aux;
942 		inp->inp_ip.ip_ttl = ip_defttl;
943 		inp->inp_ppcb = (caddr_t)tp;
944 	}
945 #ifdef INET6
946 	else if (family == AF_INET6) {
947 		struct in6pcb *in6p = (struct in6pcb *)aux;
948 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
949 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
950 					       : NULL);
951 		in6p->in6p_ppcb = (caddr_t)tp;
952 	}
953 #endif
954 
955 	/*
956 	 * Initialize our timebase.  When we send timestamps, we take
957 	 * the delta from tcp_now -- this means each connection always
958 	 * gets a timebase of 0, which makes it, among other things,
959 	 * more difficult to determine how long a system has been up,
960 	 * and thus how many TCP sequence increments have occurred.
961 	 */
962 	tp->ts_timebase = tcp_now;
963 
964 	return (tp);
965 }
966 
967 /*
968  * Drop a TCP connection, reporting
969  * the specified error.  If connection is synchronized,
970  * then send a RST to peer.
971  */
972 struct tcpcb *
973 tcp_drop(tp, errno)
974 	struct tcpcb *tp;
975 	int errno;
976 {
977 	struct socket *so = NULL;
978 
979 #ifdef DIAGNOSTIC
980 	if (tp->t_inpcb && tp->t_in6pcb)
981 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
982 #endif
983 #ifdef INET
984 	if (tp->t_inpcb)
985 		so = tp->t_inpcb->inp_socket;
986 #endif
987 #ifdef INET6
988 	if (tp->t_in6pcb)
989 		so = tp->t_in6pcb->in6p_socket;
990 #endif
991 	if (!so)
992 		return NULL;
993 
994 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
995 		tp->t_state = TCPS_CLOSED;
996 		(void) tcp_output(tp);
997 		tcpstat.tcps_drops++;
998 	} else
999 		tcpstat.tcps_conndrops++;
1000 	if (errno == ETIMEDOUT && tp->t_softerror)
1001 		errno = tp->t_softerror;
1002 	so->so_error = errno;
1003 	return (tcp_close(tp));
1004 }
1005 
1006 /*
1007  * Close a TCP control block:
1008  *	discard all space held by the tcp
1009  *	discard internet protocol block
1010  *	wake up any sleepers
1011  */
1012 struct tcpcb *
1013 tcp_close(tp)
1014 	struct tcpcb *tp;
1015 {
1016 	struct inpcb *inp;
1017 #ifdef INET6
1018 	struct in6pcb *in6p;
1019 #endif
1020 	struct socket *so;
1021 #ifdef RTV_RTT
1022 	struct rtentry *rt;
1023 #endif
1024 	struct route *ro;
1025 
1026 	inp = tp->t_inpcb;
1027 #ifdef INET6
1028 	in6p = tp->t_in6pcb;
1029 #endif
1030 	so = NULL;
1031 	ro = NULL;
1032 	if (inp) {
1033 		so = inp->inp_socket;
1034 		ro = &inp->inp_route;
1035 	}
1036 #ifdef INET6
1037 	else if (in6p) {
1038 		so = in6p->in6p_socket;
1039 		ro = (struct route *)&in6p->in6p_route;
1040 	}
1041 #endif
1042 
1043 #ifdef RTV_RTT
1044 	/*
1045 	 * If we sent enough data to get some meaningful characteristics,
1046 	 * save them in the routing entry.  'Enough' is arbitrarily
1047 	 * defined as the sendpipesize (default 4K) * 16.  This would
1048 	 * give us 16 rtt samples assuming we only get one sample per
1049 	 * window (the usual case on a long haul net).  16 samples is
1050 	 * enough for the srtt filter to converge to within 5% of the correct
1051 	 * value; fewer samples and we could save a very bogus rtt.
1052 	 *
1053 	 * Don't update the default route's characteristics and don't
1054 	 * update anything that the user "locked".
1055 	 */
1056 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1057 	    ro && (rt = ro->ro_rt) &&
1058 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1059 		u_long i = 0;
1060 
1061 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1062 			i = tp->t_srtt *
1063 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1064 			if (rt->rt_rmx.rmx_rtt && i)
1065 				/*
1066 				 * filter this update to half the old & half
1067 				 * the new values, converting scale.
1068 				 * See route.h and tcp_var.h for a
1069 				 * description of the scaling constants.
1070 				 */
1071 				rt->rt_rmx.rmx_rtt =
1072 				    (rt->rt_rmx.rmx_rtt + i) / 2;
1073 			else
1074 				rt->rt_rmx.rmx_rtt = i;
1075 		}
1076 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1077 			i = tp->t_rttvar *
1078 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1079 			if (rt->rt_rmx.rmx_rttvar && i)
1080 				rt->rt_rmx.rmx_rttvar =
1081 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1082 			else
1083 				rt->rt_rmx.rmx_rttvar = i;
1084 		}
1085 		/*
1086 		 * update the pipelimit (ssthresh) if it has been updated
1087 		 * already or if a pipesize was specified & the threshhold
1088 		 * got below half the pipesize.  I.e., wait for bad news
1089 		 * before we start updating, then update on both good
1090 		 * and bad news.
1091 		 */
1092 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1093 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1094 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1095 			/*
1096 			 * convert the limit from user data bytes to
1097 			 * packets then to packet data bytes.
1098 			 */
1099 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
1100 			if (i < 2)
1101 				i = 2;
1102 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1103 			if (rt->rt_rmx.rmx_ssthresh)
1104 				rt->rt_rmx.rmx_ssthresh =
1105 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1106 			else
1107 				rt->rt_rmx.rmx_ssthresh = i;
1108 		}
1109 	}
1110 #endif /* RTV_RTT */
1111 	/* free the reassembly queue, if any */
1112 	TCP_REASS_LOCK(tp);
1113 	(void) tcp_freeq(tp);
1114 	TCP_REASS_UNLOCK(tp);
1115 
1116 	tcp_canceltimers(tp);
1117 	TCP_CLEAR_DELACK(tp);
1118 	syn_cache_cleanup(tp);
1119 
1120 	if (tp->t_template) {
1121 		m_free(tp->t_template);
1122 		tp->t_template = NULL;
1123 	}
1124 	pool_put(&tcpcb_pool, tp);
1125 	if (inp) {
1126 		inp->inp_ppcb = 0;
1127 		soisdisconnected(so);
1128 		in_pcbdetach(inp);
1129 	}
1130 #ifdef INET6
1131 	else if (in6p) {
1132 		in6p->in6p_ppcb = 0;
1133 		soisdisconnected(so);
1134 		in6_pcbdetach(in6p);
1135 	}
1136 #endif
1137 	tcpstat.tcps_closed++;
1138 	return ((struct tcpcb *)0);
1139 }
1140 
1141 int
1142 tcp_freeq(tp)
1143 	struct tcpcb *tp;
1144 {
1145 	struct ipqent *qe;
1146 	int rv = 0;
1147 #ifdef TCPREASS_DEBUG
1148 	int i = 0;
1149 #endif
1150 
1151 	TCP_REASS_LOCK_CHECK(tp);
1152 
1153 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1154 #ifdef TCPREASS_DEBUG
1155 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1156 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1157 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1158 #endif
1159 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1160 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1161 		m_freem(qe->ipqe_m);
1162 		pool_put(&ipqent_pool, qe);
1163 		rv = 1;
1164 	}
1165 	return (rv);
1166 }
1167 
1168 /*
1169  * Protocol drain routine.  Called when memory is in short supply.
1170  */
1171 void
1172 tcp_drain()
1173 {
1174 	struct inpcb *inp;
1175 	struct tcpcb *tp;
1176 
1177 	/*
1178 	 * Free the sequence queue of all TCP connections.
1179 	 */
1180 	inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
1181 	if (inp)						/* XXX */
1182 	CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
1183 		if ((tp = intotcpcb(inp)) != NULL) {
1184 			/*
1185 			 * We may be called from a device's interrupt
1186 			 * context.  If the tcpcb is already busy,
1187 			 * just bail out now.
1188 			 */
1189 			if (tcp_reass_lock_try(tp) == 0)
1190 				continue;
1191 			if (tcp_freeq(tp))
1192 				tcpstat.tcps_connsdrained++;
1193 			TCP_REASS_UNLOCK(tp);
1194 		}
1195 	}
1196 }
1197 
1198 #ifdef INET6
1199 void
1200 tcp6_drain()
1201 {
1202 	struct in6pcb *in6p;
1203 	struct tcpcb *tp;
1204 	struct in6pcb *head = &tcb6;
1205 
1206 	/*
1207 	 * Free the sequence queue of all TCP connections.
1208 	 */
1209 	for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
1210 		if ((tp = in6totcpcb(in6p)) != NULL) {
1211 			/*
1212 			 * We may be called from a device's interrupt
1213 			 * context.  If the tcpcb is already busy,
1214 			 * just bail out now.
1215 			 */
1216 			if (tcp_reass_lock_try(tp) == 0)
1217 				continue;
1218 			if (tcp_freeq(tp))
1219 				tcpstat.tcps_connsdrained++;
1220 			TCP_REASS_UNLOCK(tp);
1221 		}
1222 	}
1223 }
1224 #endif
1225 
1226 /*
1227  * Notify a tcp user of an asynchronous error;
1228  * store error as soft error, but wake up user
1229  * (for now, won't do anything until can select for soft error).
1230  */
1231 void
1232 tcp_notify(inp, error)
1233 	struct inpcb *inp;
1234 	int error;
1235 {
1236 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1237 	struct socket *so = inp->inp_socket;
1238 
1239 	/*
1240 	 * Ignore some errors if we are hooked up.
1241 	 * If connection hasn't completed, has retransmitted several times,
1242 	 * and receives a second error, give up now.  This is better
1243 	 * than waiting a long time to establish a connection that
1244 	 * can never complete.
1245 	 */
1246 	if (tp->t_state == TCPS_ESTABLISHED &&
1247 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1248 	      error == EHOSTDOWN)) {
1249 		return;
1250 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1251 	    tp->t_rxtshift > 3 && tp->t_softerror)
1252 		so->so_error = error;
1253 	else
1254 		tp->t_softerror = error;
1255 	wakeup((caddr_t) &so->so_timeo);
1256 	sorwakeup(so);
1257 	sowwakeup(so);
1258 }
1259 
1260 #ifdef INET6
1261 void
1262 tcp6_notify(in6p, error)
1263 	struct in6pcb *in6p;
1264 	int error;
1265 {
1266 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1267 	struct socket *so = in6p->in6p_socket;
1268 
1269 	/*
1270 	 * Ignore some errors if we are hooked up.
1271 	 * If connection hasn't completed, has retransmitted several times,
1272 	 * and receives a second error, give up now.  This is better
1273 	 * than waiting a long time to establish a connection that
1274 	 * can never complete.
1275 	 */
1276 	if (tp->t_state == TCPS_ESTABLISHED &&
1277 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1278 	      error == EHOSTDOWN)) {
1279 		return;
1280 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1281 	    tp->t_rxtshift > 3 && tp->t_softerror)
1282 		so->so_error = error;
1283 	else
1284 		tp->t_softerror = error;
1285 	wakeup((caddr_t) &so->so_timeo);
1286 	sorwakeup(so);
1287 	sowwakeup(so);
1288 }
1289 #endif
1290 
1291 #ifdef INET6
1292 void
1293 tcp6_ctlinput(cmd, sa, d)
1294 	int cmd;
1295 	struct sockaddr *sa;
1296 	void *d;
1297 {
1298 	struct tcphdr th;
1299 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1300 	int nmatch;
1301 	struct ip6_hdr *ip6;
1302 	const struct sockaddr_in6 *sa6_src = NULL;
1303 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1304 	struct mbuf *m;
1305 	int off;
1306 
1307 	if (sa->sa_family != AF_INET6 ||
1308 	    sa->sa_len != sizeof(struct sockaddr_in6))
1309 		return;
1310 	if ((unsigned)cmd >= PRC_NCMDS)
1311 		return;
1312 	else if (cmd == PRC_QUENCH) {
1313 		/* XXX there's no PRC_QUENCH in IPv6 */
1314 		notify = tcp6_quench;
1315 	} else if (PRC_IS_REDIRECT(cmd))
1316 		notify = in6_rtchange, d = NULL;
1317 	else if (cmd == PRC_MSGSIZE)
1318 		; /* special code is present, see below */
1319 	else if (cmd == PRC_HOSTDEAD)
1320 		d = NULL;
1321 	else if (inet6ctlerrmap[cmd] == 0)
1322 		return;
1323 
1324 	/* if the parameter is from icmp6, decode it. */
1325 	if (d != NULL) {
1326 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1327 		m = ip6cp->ip6c_m;
1328 		ip6 = ip6cp->ip6c_ip6;
1329 		off = ip6cp->ip6c_off;
1330 		sa6_src = ip6cp->ip6c_src;
1331 	} else {
1332 		m = NULL;
1333 		ip6 = NULL;
1334 		sa6_src = &sa6_any;
1335 	}
1336 
1337 	if (ip6) {
1338 		/*
1339 		 * XXX: We assume that when ip6 is non NULL,
1340 		 * M and OFF are valid.
1341 		 */
1342 
1343 		/* check if we can safely examine src and dst ports */
1344 		if (m->m_pkthdr.len < off + sizeof(th)) {
1345 			if (cmd == PRC_MSGSIZE)
1346 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1347 			return;
1348 		}
1349 
1350 		bzero(&th, sizeof(th));
1351 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
1352 
1353 		if (cmd == PRC_MSGSIZE) {
1354 			int valid = 0;
1355 
1356 			/*
1357 			 * Check to see if we have a valid TCP connection
1358 			 * corresponding to the address in the ICMPv6 message
1359 			 * payload.
1360 			 */
1361 			if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
1362 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1363 			    th.th_sport, 0))
1364 				valid++;
1365 
1366 			/*
1367 			 * Depending on the value of "valid" and routing table
1368 			 * size (mtudisc_{hi,lo}wat), we will:
1369 			 * - recalcurate the new MTU and create the
1370 			 *   corresponding routing entry, or
1371 			 * - ignore the MTU change notification.
1372 			 */
1373 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1374 
1375 			/*
1376 			 * no need to call in6_pcbnotify, it should have been
1377 			 * called via callback if necessary
1378 			 */
1379 			return;
1380 		}
1381 
1382 		nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
1383 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1384 		if (nmatch == 0 && syn_cache_count &&
1385 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1386 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1387 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1388 			syn_cache_unreach((struct sockaddr *)sa6_src,
1389 					  sa, &th);
1390 	} else {
1391 		(void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
1392 		    0, cmd, NULL, notify);
1393 	}
1394 }
1395 #endif
1396 
1397 #ifdef INET
1398 /* assumes that ip header and tcp header are contiguous on mbuf */
1399 void *
1400 tcp_ctlinput(cmd, sa, v)
1401 	int cmd;
1402 	struct sockaddr *sa;
1403 	void *v;
1404 {
1405 	struct ip *ip = v;
1406 	struct tcphdr *th;
1407 	struct icmp *icp;
1408 	extern const int inetctlerrmap[];
1409 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1410 	int errno;
1411 	int nmatch;
1412 
1413 	if (sa->sa_family != AF_INET ||
1414 	    sa->sa_len != sizeof(struct sockaddr_in))
1415 		return NULL;
1416 	if ((unsigned)cmd >= PRC_NCMDS)
1417 		return NULL;
1418 	errno = inetctlerrmap[cmd];
1419 	if (cmd == PRC_QUENCH)
1420 		notify = tcp_quench;
1421 	else if (PRC_IS_REDIRECT(cmd))
1422 		notify = in_rtchange, ip = 0;
1423 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1424 		/*
1425 		 * Check to see if we have a valid TCP connection
1426 		 * corresponding to the address in the ICMP message
1427 		 * payload.
1428 		 *
1429 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1430 		 */
1431 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1432 		if (in_pcblookup_connect(&tcbtable,
1433 					 ip->ip_dst, th->th_dport,
1434 					 ip->ip_src, th->th_sport) == NULL)
1435 			return NULL;
1436 
1437 		/*
1438 		 * Now that we've validated that we are actually communicating
1439 		 * with the host indicated in the ICMP message, locate the
1440 		 * ICMP header, recalculate the new MTU, and create the
1441 		 * corresponding routing entry.
1442 		 */
1443 		icp = (struct icmp *)((caddr_t)ip -
1444 		    offsetof(struct icmp, icmp_ip));
1445 		icmp_mtudisc(icp, ip->ip_dst);
1446 
1447 		return NULL;
1448 	} else if (cmd == PRC_HOSTDEAD)
1449 		ip = 0;
1450 	else if (errno == 0)
1451 		return NULL;
1452 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1453 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1454 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1455 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1456 		if (nmatch == 0 && syn_cache_count &&
1457 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1458 		    inetctlerrmap[cmd] == ENETUNREACH ||
1459 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1460 			struct sockaddr_in sin;
1461 			bzero(&sin, sizeof(sin));
1462 			sin.sin_len = sizeof(sin);
1463 			sin.sin_family = AF_INET;
1464 			sin.sin_port = th->th_sport;
1465 			sin.sin_addr = ip->ip_src;
1466 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1467 		}
1468 
1469 		/* XXX mapped address case */
1470 	} else
1471 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1472 		    notify);
1473 	return NULL;
1474 }
1475 
1476 /*
1477  * When a source quence is received, we are being notifed of congestion.
1478  * Close the congestion window down to the Loss Window (one segment).
1479  * We will gradually open it again as we proceed.
1480  */
1481 void
1482 tcp_quench(inp, errno)
1483 	struct inpcb *inp;
1484 	int errno;
1485 {
1486 	struct tcpcb *tp = intotcpcb(inp);
1487 
1488 	if (tp)
1489 		tp->snd_cwnd = tp->t_segsz;
1490 }
1491 #endif
1492 
1493 #ifdef INET6
1494 void
1495 tcp6_quench(in6p, errno)
1496 	struct in6pcb *in6p;
1497 	int errno;
1498 {
1499 	struct tcpcb *tp = in6totcpcb(in6p);
1500 
1501 	if (tp)
1502 		tp->snd_cwnd = tp->t_segsz;
1503 }
1504 #endif
1505 
1506 #ifdef INET
1507 /*
1508  * Path MTU Discovery handlers.
1509  */
1510 void
1511 tcp_mtudisc_callback(faddr)
1512 	struct in_addr faddr;
1513 {
1514 
1515 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1516 }
1517 
1518 /*
1519  * On receipt of path MTU corrections, flush old route and replace it
1520  * with the new one.  Retransmit all unacknowledged packets, to ensure
1521  * that all packets will be received.
1522  */
1523 void
1524 tcp_mtudisc(inp, errno)
1525 	struct inpcb *inp;
1526 	int errno;
1527 {
1528 	struct tcpcb *tp = intotcpcb(inp);
1529 	struct rtentry *rt = in_pcbrtentry(inp);
1530 
1531 	if (tp != 0) {
1532 		if (rt != 0) {
1533 			/*
1534 			 * If this was not a host route, remove and realloc.
1535 			 */
1536 			if ((rt->rt_flags & RTF_HOST) == 0) {
1537 				in_rtchange(inp, errno);
1538 				if ((rt = in_pcbrtentry(inp)) == 0)
1539 					return;
1540 			}
1541 
1542 			/*
1543 			 * Slow start out of the error condition.  We
1544 			 * use the MTU because we know it's smaller
1545 			 * than the previously transmitted segment.
1546 			 *
1547 			 * Note: This is more conservative than the
1548 			 * suggestion in draft-floyd-incr-init-win-03.
1549 			 */
1550 			if (rt->rt_rmx.rmx_mtu != 0)
1551 				tp->snd_cwnd =
1552 				    TCP_INITIAL_WINDOW(tcp_init_win,
1553 				    rt->rt_rmx.rmx_mtu);
1554 		}
1555 
1556 		/*
1557 		 * Resend unacknowledged packets.
1558 		 */
1559 		tp->snd_nxt = tp->snd_una;
1560 		tcp_output(tp);
1561 	}
1562 }
1563 #endif
1564 
1565 #ifdef INET6
1566 /*
1567  * Path MTU Discovery handlers.
1568  */
1569 void
1570 tcp6_mtudisc_callback(faddr)
1571 	struct in6_addr *faddr;
1572 {
1573 	struct sockaddr_in6 sin6;
1574 
1575 	bzero(&sin6, sizeof(sin6));
1576 	sin6.sin6_family = AF_INET6;
1577 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1578 	sin6.sin6_addr = *faddr;
1579 	(void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
1580 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1581 }
1582 
1583 void
1584 tcp6_mtudisc(in6p, errno)
1585 	struct in6pcb *in6p;
1586 	int errno;
1587 {
1588 	struct tcpcb *tp = in6totcpcb(in6p);
1589 	struct rtentry *rt = in6_pcbrtentry(in6p);
1590 
1591 	if (tp != 0) {
1592 		if (rt != 0) {
1593 			/*
1594 			 * If this was not a host route, remove and realloc.
1595 			 */
1596 			if ((rt->rt_flags & RTF_HOST) == 0) {
1597 				in6_rtchange(in6p, errno);
1598 				if ((rt = in6_pcbrtentry(in6p)) == 0)
1599 					return;
1600 			}
1601 
1602 			/*
1603 			 * Slow start out of the error condition.  We
1604 			 * use the MTU because we know it's smaller
1605 			 * than the previously transmitted segment.
1606 			 *
1607 			 * Note: This is more conservative than the
1608 			 * suggestion in draft-floyd-incr-init-win-03.
1609 			 */
1610 			if (rt->rt_rmx.rmx_mtu != 0)
1611 				tp->snd_cwnd =
1612 				    TCP_INITIAL_WINDOW(tcp_init_win,
1613 				    rt->rt_rmx.rmx_mtu);
1614 		}
1615 
1616 		/*
1617 		 * Resend unacknowledged packets.
1618 		 */
1619 		tp->snd_nxt = tp->snd_una;
1620 		tcp_output(tp);
1621 	}
1622 }
1623 #endif /* INET6 */
1624 
1625 /*
1626  * Compute the MSS to advertise to the peer.  Called only during
1627  * the 3-way handshake.  If we are the server (peer initiated
1628  * connection), we are called with a pointer to the interface
1629  * on which the SYN packet arrived.  If we are the client (we
1630  * initiated connection), we are called with a pointer to the
1631  * interface out which this connection should go.
1632  *
1633  * NOTE: Do not subtract IP option/extension header size nor IPsec
1634  * header size from MSS advertisement.  MSS option must hold the maximum
1635  * segment size we can accept, so it must always be:
1636  *	 max(if mtu) - ip header - tcp header
1637  */
1638 u_long
1639 tcp_mss_to_advertise(ifp, af)
1640 	const struct ifnet *ifp;
1641 	int af;
1642 {
1643 	extern u_long in_maxmtu;
1644 	u_long mss = 0;
1645 	u_long hdrsiz;
1646 
1647 	/*
1648 	 * In order to avoid defeating path MTU discovery on the peer,
1649 	 * we advertise the max MTU of all attached networks as our MSS,
1650 	 * per RFC 1191, section 3.1.
1651 	 *
1652 	 * We provide the option to advertise just the MTU of
1653 	 * the interface on which we hope this connection will
1654 	 * be receiving.  If we are responding to a SYN, we
1655 	 * will have a pretty good idea about this, but when
1656 	 * initiating a connection there is a bit more doubt.
1657 	 *
1658 	 * We also need to ensure that loopback has a large enough
1659 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1660 	 */
1661 
1662 	if (ifp != NULL)
1663 		mss = ifp->if_mtu;
1664 
1665 	if (tcp_mss_ifmtu == 0)
1666 		switch (af) {
1667 		case AF_INET:
1668 			mss = max(in_maxmtu, mss);
1669 			break;
1670 #ifdef INET6
1671 		case AF_INET6:
1672 			mss = max(in6_maxmtu, mss);
1673 			break;
1674 #endif
1675 		}
1676 
1677 	switch (af) {
1678 	case AF_INET:
1679 		hdrsiz = sizeof(struct ip);
1680 		break;
1681 #ifdef INET6
1682 	case AF_INET6:
1683 		hdrsiz = sizeof(struct ip6_hdr);
1684 		break;
1685 #endif
1686 	default:
1687 		hdrsiz = 0;
1688 		break;
1689 	}
1690 	hdrsiz += sizeof(struct tcphdr);
1691 	if (mss > hdrsiz)
1692 		mss -= hdrsiz;
1693 
1694 	mss = max(tcp_mssdflt, mss);
1695 	return (mss);
1696 }
1697 
1698 /*
1699  * Set connection variables based on the peer's advertised MSS.
1700  * We are passed the TCPCB for the actual connection.  If we
1701  * are the server, we are called by the compressed state engine
1702  * when the 3-way handshake is complete.  If we are the client,
1703  * we are called when we receive the SYN,ACK from the server.
1704  *
1705  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1706  * before this routine is called!
1707  */
1708 void
1709 tcp_mss_from_peer(tp, offer)
1710 	struct tcpcb *tp;
1711 	int offer;
1712 {
1713 	struct socket *so;
1714 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1715 	struct rtentry *rt;
1716 #endif
1717 	u_long bufsize;
1718 	int mss;
1719 
1720 #ifdef DIAGNOSTIC
1721 	if (tp->t_inpcb && tp->t_in6pcb)
1722 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1723 #endif
1724 	so = NULL;
1725 	rt = NULL;
1726 #ifdef INET
1727 	if (tp->t_inpcb) {
1728 		so = tp->t_inpcb->inp_socket;
1729 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1730 		rt = in_pcbrtentry(tp->t_inpcb);
1731 #endif
1732 	}
1733 #endif
1734 #ifdef INET6
1735 	if (tp->t_in6pcb) {
1736 		so = tp->t_in6pcb->in6p_socket;
1737 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1738 		rt = in6_pcbrtentry(tp->t_in6pcb);
1739 #endif
1740 	}
1741 #endif
1742 
1743 	/*
1744 	 * As per RFC1122, use the default MSS value, unless they
1745 	 * sent us an offer.  Do not accept offers less than 32 bytes.
1746 	 */
1747 	mss = tcp_mssdflt;
1748 	if (offer)
1749 		mss = offer;
1750 	mss = max(mss, 32);		/* sanity */
1751 	tp->t_peermss = mss;
1752 	mss -= tcp_optlen(tp);
1753 #ifdef INET
1754 	if (tp->t_inpcb)
1755 		mss -= ip_optlen(tp->t_inpcb);
1756 #endif
1757 #ifdef INET6
1758 	if (tp->t_in6pcb)
1759 		mss -= ip6_optlen(tp->t_in6pcb);
1760 #endif
1761 
1762 	/*
1763 	 * If there's a pipesize, change the socket buffer to that size.
1764 	 * Make the socket buffer an integral number of MSS units.  If
1765 	 * the MSS is larger than the socket buffer, artificially decrease
1766 	 * the MSS.
1767 	 */
1768 #ifdef RTV_SPIPE
1769 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1770 		bufsize = rt->rt_rmx.rmx_sendpipe;
1771 	else
1772 #endif
1773 		bufsize = so->so_snd.sb_hiwat;
1774 	if (bufsize < mss)
1775 		mss = bufsize;
1776 	else {
1777 		bufsize = roundup(bufsize, mss);
1778 		if (bufsize > sb_max)
1779 			bufsize = sb_max;
1780 		(void) sbreserve(&so->so_snd, bufsize);
1781 	}
1782 	tp->t_segsz = mss;
1783 
1784 #ifdef RTV_SSTHRESH
1785 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1786 		/*
1787 		 * There's some sort of gateway or interface buffer
1788 		 * limit on the path.  Use this to set the slow
1789 		 * start threshold, but set the threshold to no less
1790 		 * than 2 * MSS.
1791 		 */
1792 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1793 	}
1794 #endif
1795 }
1796 
1797 /*
1798  * Processing necessary when a TCP connection is established.
1799  */
1800 void
1801 tcp_established(tp)
1802 	struct tcpcb *tp;
1803 {
1804 	struct socket *so;
1805 #ifdef RTV_RPIPE
1806 	struct rtentry *rt;
1807 #endif
1808 	u_long bufsize;
1809 
1810 #ifdef DIAGNOSTIC
1811 	if (tp->t_inpcb && tp->t_in6pcb)
1812 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
1813 #endif
1814 	so = NULL;
1815 	rt = NULL;
1816 #ifdef INET
1817 	if (tp->t_inpcb) {
1818 		so = tp->t_inpcb->inp_socket;
1819 #if defined(RTV_RPIPE)
1820 		rt = in_pcbrtentry(tp->t_inpcb);
1821 #endif
1822 	}
1823 #endif
1824 #ifdef INET6
1825 	if (tp->t_in6pcb) {
1826 		so = tp->t_in6pcb->in6p_socket;
1827 #if defined(RTV_RPIPE)
1828 		rt = in6_pcbrtentry(tp->t_in6pcb);
1829 #endif
1830 	}
1831 #endif
1832 
1833 	tp->t_state = TCPS_ESTABLISHED;
1834 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1835 
1836 #ifdef RTV_RPIPE
1837 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1838 		bufsize = rt->rt_rmx.rmx_recvpipe;
1839 	else
1840 #endif
1841 		bufsize = so->so_rcv.sb_hiwat;
1842 	if (bufsize > tp->t_ourmss) {
1843 		bufsize = roundup(bufsize, tp->t_ourmss);
1844 		if (bufsize > sb_max)
1845 			bufsize = sb_max;
1846 		(void) sbreserve(&so->so_rcv, bufsize);
1847 	}
1848 }
1849 
1850 /*
1851  * Check if there's an initial rtt or rttvar.  Convert from the
1852  * route-table units to scaled multiples of the slow timeout timer.
1853  * Called only during the 3-way handshake.
1854  */
1855 void
1856 tcp_rmx_rtt(tp)
1857 	struct tcpcb *tp;
1858 {
1859 #ifdef RTV_RTT
1860 	struct rtentry *rt = NULL;
1861 	int rtt;
1862 
1863 #ifdef DIAGNOSTIC
1864 	if (tp->t_inpcb && tp->t_in6pcb)
1865 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1866 #endif
1867 #ifdef INET
1868 	if (tp->t_inpcb)
1869 		rt = in_pcbrtentry(tp->t_inpcb);
1870 #endif
1871 #ifdef INET6
1872 	if (tp->t_in6pcb)
1873 		rt = in6_pcbrtentry(tp->t_in6pcb);
1874 #endif
1875 	if (rt == NULL)
1876 		return;
1877 
1878 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1879 		/*
1880 		 * XXX The lock bit for MTU indicates that the value
1881 		 * is also a minimum value; this is subject to time.
1882 		 */
1883 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
1884 			TCPT_RANGESET(tp->t_rttmin,
1885 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1886 			    TCPTV_MIN, TCPTV_REXMTMAX);
1887 		tp->t_srtt = rtt /
1888 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1889 		if (rt->rt_rmx.rmx_rttvar) {
1890 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1891 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
1892 				(TCP_RTTVAR_SHIFT + 2));
1893 		} else {
1894 			/* Default variation is +- 1 rtt */
1895 			tp->t_rttvar =
1896 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1897 		}
1898 		TCPT_RANGESET(tp->t_rxtcur,
1899 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1900 		    tp->t_rttmin, TCPTV_REXMTMAX);
1901 	}
1902 #endif
1903 }
1904 
1905 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
1906 #if NRND > 0
1907 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
1908 #endif
1909 
1910 /*
1911  * Get a new sequence value given a tcp control block
1912  */
1913 tcp_seq
1914 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1915 {
1916 
1917 #ifdef INET
1918 	if (tp->t_inpcb != NULL) {
1919 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1920 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1921 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1922 		    addin));
1923 	}
1924 #endif
1925 #ifdef INET6
1926 	if (tp->t_in6pcb != NULL) {
1927 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
1928 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
1929 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
1930 		    addin));
1931 	}
1932 #endif
1933 	/* Not possible. */
1934 	panic("tcp_new_iss");
1935 }
1936 
1937 /*
1938  * This routine actually generates a new TCP initial sequence number.
1939  */
1940 tcp_seq
1941 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
1942     size_t addrsz, tcp_seq addin)
1943 {
1944 	tcp_seq tcp_iss;
1945 
1946 #if NRND > 0
1947 	static int beenhere;
1948 
1949 	/*
1950 	 * If we haven't been here before, initialize our cryptographic
1951 	 * hash secret.
1952 	 */
1953 	if (beenhere == 0) {
1954 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
1955 		    RND_EXTRACT_ANY);
1956 		beenhere = 1;
1957 	}
1958 
1959 	if (tcp_do_rfc1948) {
1960 		MD5_CTX ctx;
1961 		u_int8_t hash[16];	/* XXX MD5 knowledge */
1962 
1963 		/*
1964 		 * Compute the base value of the ISS.  It is a hash
1965 		 * of (saddr, sport, daddr, dport, secret).
1966 		 */
1967 		MD5Init(&ctx);
1968 
1969 		MD5Update(&ctx, (u_char *) laddr, addrsz);
1970 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
1971 
1972 		MD5Update(&ctx, (u_char *) faddr, addrsz);
1973 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
1974 
1975 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
1976 
1977 		MD5Final(hash, &ctx);
1978 
1979 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
1980 
1981 		/*
1982 		 * Now increment our "timer", and add it in to
1983 		 * the computed value.
1984 		 *
1985 		 * XXX Use `addin'?
1986 		 * XXX TCP_ISSINCR too large to use?
1987 		 */
1988 		tcp_iss_seq += TCP_ISSINCR;
1989 #ifdef TCPISS_DEBUG
1990 		printf("ISS hash 0x%08x, ", tcp_iss);
1991 #endif
1992 		tcp_iss += tcp_iss_seq + addin;
1993 #ifdef TCPISS_DEBUG
1994 		printf("new ISS 0x%08x\n", tcp_iss);
1995 #endif
1996 	} else
1997 #endif /* NRND > 0 */
1998 	{
1999 		/*
2000 		 * Randomize.
2001 		 */
2002 #if NRND > 0
2003 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2004 #else
2005 		tcp_iss = arc4random();
2006 #endif
2007 
2008 		/*
2009 		 * If we were asked to add some amount to a known value,
2010 		 * we will take a random value obtained above, mask off
2011 		 * the upper bits, and add in the known value.  We also
2012 		 * add in a constant to ensure that we are at least a
2013 		 * certain distance from the original value.
2014 		 *
2015 		 * This is used when an old connection is in timed wait
2016 		 * and we have a new one coming in, for instance.
2017 		 */
2018 		if (addin != 0) {
2019 #ifdef TCPISS_DEBUG
2020 			printf("Random %08x, ", tcp_iss);
2021 #endif
2022 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2023 			tcp_iss += addin + TCP_ISSINCR;
2024 #ifdef TCPISS_DEBUG
2025 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2026 #endif
2027 		} else {
2028 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2029 			tcp_iss += tcp_iss_seq;
2030 			tcp_iss_seq += TCP_ISSINCR;
2031 #ifdef TCPISS_DEBUG
2032 			printf("ISS %08x\n", tcp_iss);
2033 #endif
2034 		}
2035 	}
2036 
2037 	if (tcp_compat_42) {
2038 		/*
2039 		 * Limit it to the positive range for really old TCP
2040 		 * implementations.
2041 		 */
2042 		if (tcp_iss >= 0x80000000)
2043 			tcp_iss &= 0x7fffffff;		/* XXX */
2044 	}
2045 
2046 	return (tcp_iss);
2047 }
2048 
2049 #ifdef IPSEC
2050 /* compute ESP/AH header size for TCP, including outer IP header. */
2051 size_t
2052 ipsec4_hdrsiz_tcp(tp)
2053 	struct tcpcb *tp;
2054 {
2055 	struct inpcb *inp;
2056 	size_t hdrsiz;
2057 
2058 	/* XXX mapped addr case (tp->t_in6pcb) */
2059 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2060 		return 0;
2061 	switch (tp->t_family) {
2062 	case AF_INET:
2063 		/* XXX: should use currect direction. */
2064 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2065 		break;
2066 	default:
2067 		hdrsiz = 0;
2068 		break;
2069 	}
2070 
2071 	return hdrsiz;
2072 }
2073 
2074 #ifdef INET6
2075 size_t
2076 ipsec6_hdrsiz_tcp(tp)
2077 	struct tcpcb *tp;
2078 {
2079 	struct in6pcb *in6p;
2080 	size_t hdrsiz;
2081 
2082 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2083 		return 0;
2084 	switch (tp->t_family) {
2085 	case AF_INET6:
2086 		/* XXX: should use currect direction. */
2087 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2088 		break;
2089 	case AF_INET:
2090 		/* mapped address case - tricky */
2091 	default:
2092 		hdrsiz = 0;
2093 		break;
2094 	}
2095 
2096 	return hdrsiz;
2097 }
2098 #endif
2099 #endif /*IPSEC*/
2100 
2101 /*
2102  * Determine the length of the TCP options for this connection.
2103  *
2104  * XXX:  What do we do for SACK, when we add that?  Just reserve
2105  *       all of the space?  Otherwise we can't exactly be incrementing
2106  *       cwnd by an amount that varies depending on the amount we last
2107  *       had to SACK!
2108  */
2109 
2110 u_int
2111 tcp_optlen(tp)
2112 	struct tcpcb *tp;
2113 {
2114 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2115 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2116 		return TCPOLEN_TSTAMP_APPA;
2117 	else
2118 		return 0;
2119 }
2120