xref: /netbsd/sys/netinet6/frag6.c (revision 6550d01e)
1 /*	$NetBSD: frag6.c,v 1.48 2011/01/22 18:26:36 mlelstv Exp $	*/
2 /*	$KAME: frag6.c,v 1.40 2002/05/27 21:40:31 itojun Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: frag6.c,v 1.48 2011/01/22 18:26:36 mlelstv Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/domain.h>
41 #include <sys/protosw.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/errno.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/syslog.h>
48 
49 #include <net/if.h>
50 #include <net/route.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip6.h>
55 #include <netinet6/ip6_var.h>
56 #include <netinet6/ip6_private.h>
57 #include <netinet/icmp6.h>
58 
59 #include <net/net_osdep.h>
60 
61 static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *);
62 static void frag6_deq(struct ip6asfrag *);
63 static void frag6_insque(struct ip6q *, struct ip6q *);
64 static void frag6_remque(struct ip6q *);
65 static void frag6_freef(struct ip6q *);
66 
67 static int ip6q_locked;
68 u_int frag6_nfragpackets;
69 u_int frag6_nfrags;
70 struct	ip6q ip6q;	/* ip6 reassemble queue */
71 
72 static inline int ip6q_lock_try(void);
73 static inline void ip6q_unlock(void);
74 
75 static inline int
76 ip6q_lock_try(void)
77 {
78 	int s;
79 
80 	/*
81 	 * Use splvm() -- we're bloking things that would cause
82 	 * mbuf allocation.
83 	 */
84 	s = splvm();
85 	if (ip6q_locked) {
86 		splx(s);
87 		return (0);
88 	}
89 	ip6q_locked = 1;
90 	splx(s);
91 	return (1);
92 }
93 
94 static inline void
95 ip6q_unlock(void)
96 {
97 	int s;
98 
99 	s = splvm();
100 	ip6q_locked = 0;
101 	splx(s);
102 }
103 
104 #ifdef DIAGNOSTIC
105 #define	IP6Q_LOCK()							\
106 do {									\
107 	if (ip6q_lock_try() == 0) {					\
108 		printf("%s:%d: ip6q already locked\n", __FILE__, __LINE__); \
109 		panic("ip6q_lock");					\
110 	}								\
111 } while (/*CONSTCOND*/ 0)
112 #define	IP6Q_LOCK_CHECK()						\
113 do {									\
114 	if (ip6q_locked == 0) {						\
115 		printf("%s:%d: ip6q lock not held\n", __FILE__, __LINE__); \
116 		panic("ip6q lock check");				\
117 	}								\
118 } while (/*CONSTCOND*/ 0)
119 #else
120 #define	IP6Q_LOCK()		(void) ip6q_lock_try()
121 #define	IP6Q_LOCK_CHECK()	/* nothing */
122 #endif
123 
124 #define	IP6Q_UNLOCK()		ip6q_unlock()
125 
126 #ifndef offsetof		/* XXX */
127 #define	offsetof(type, member)	((size_t)(&((type *)0)->member))
128 #endif
129 
130 /*
131  * Initialise reassembly queue and fragment identifier.
132  */
133 void
134 frag6_init(void)
135 {
136 
137 	ip6q.ip6q_next = ip6q.ip6q_prev = &ip6q;
138 }
139 
140 /*
141  * In RFC2460, fragment and reassembly rule do not agree with each other,
142  * in terms of next header field handling in fragment header.
143  * While the sender will use the same value for all of the fragmented packets,
144  * receiver is suggested not to check the consistency.
145  *
146  * fragment rule (p20):
147  *	(2) A Fragment header containing:
148  *	The Next Header value that identifies the first header of
149  *	the Fragmentable Part of the original packet.
150  *		-> next header field is same for all fragments
151  *
152  * reassembly rule (p21):
153  *	The Next Header field of the last header of the Unfragmentable
154  *	Part is obtained from the Next Header field of the first
155  *	fragment's Fragment header.
156  *		-> should grab it from the first fragment only
157  *
158  * The following note also contradicts with fragment rule - noone is going to
159  * send different fragment with different next header field.
160  *
161  * additional note (p22):
162  *	The Next Header values in the Fragment headers of different
163  *	fragments of the same original packet may differ.  Only the value
164  *	from the Offset zero fragment packet is used for reassembly.
165  *		-> should grab it from the first fragment only
166  *
167  * There is no explicit reason given in the RFC.  Historical reason maybe?
168  */
169 /*
170  * Fragment input
171  */
172 int
173 frag6_input(struct mbuf **mp, int *offp, int proto)
174 {
175 	struct rtentry *rt;
176 	struct mbuf *m = *mp, *t;
177 	struct ip6_hdr *ip6;
178 	struct ip6_frag *ip6f;
179 	struct ip6q *q6;
180 	struct ip6asfrag *af6, *ip6af, *af6dwn;
181 	int offset = *offp, nxt, i, next;
182 	int first_frag = 0;
183 	int fragoff, frgpartlen;	/* must be larger than u_int16_t */
184 	struct ifnet *dstifp;
185 	static struct route ro;
186 	union {
187 		struct sockaddr		dst;
188 		struct sockaddr_in6	dst6;
189 	} u;
190 
191 	ip6 = mtod(m, struct ip6_hdr *);
192 	IP6_EXTHDR_GET(ip6f, struct ip6_frag *, m, offset, sizeof(*ip6f));
193 	if (ip6f == NULL)
194 		return IPPROTO_DONE;
195 
196 	dstifp = NULL;
197 	/* find the destination interface of the packet. */
198 	sockaddr_in6_init(&u.dst6, &ip6->ip6_dst, 0, 0, 0);
199 	if ((rt = rtcache_lookup(&ro, &u.dst)) != NULL && rt->rt_ifa != NULL)
200 		dstifp = ((struct in6_ifaddr *)rt->rt_ifa)->ia_ifp;
201 
202 	/* jumbo payload can't contain a fragment header */
203 	if (ip6->ip6_plen == 0) {
204 		icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset);
205 		in6_ifstat_inc(dstifp, ifs6_reass_fail);
206 		return IPPROTO_DONE;
207 	}
208 
209 	/*
210 	 * check whether fragment packet's fragment length is
211 	 * multiple of 8 octets.
212 	 * sizeof(struct ip6_frag) == 8
213 	 * sizeof(struct ip6_hdr) = 40
214 	 */
215 	if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) &&
216 	    (((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) {
217 		icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
218 		    offsetof(struct ip6_hdr, ip6_plen));
219 		in6_ifstat_inc(dstifp, ifs6_reass_fail);
220 		return IPPROTO_DONE;
221 	}
222 
223 	IP6_STATINC(IP6_STAT_FRAGMENTS);
224 	in6_ifstat_inc(dstifp, ifs6_reass_reqd);
225 
226 	/* offset now points to data portion */
227 	offset += sizeof(struct ip6_frag);
228 
229 	IP6Q_LOCK();
230 
231 	/*
232 	 * Enforce upper bound on number of fragments.
233 	 * If maxfrag is 0, never accept fragments.
234 	 * If maxfrag is -1, accept all fragments without limitation.
235 	 */
236 	if (ip6_maxfrags < 0)
237 		;
238 	else if (frag6_nfrags >= (u_int)ip6_maxfrags)
239 		goto dropfrag;
240 
241 	for (q6 = ip6q.ip6q_next; q6 != &ip6q; q6 = q6->ip6q_next)
242 		if (ip6f->ip6f_ident == q6->ip6q_ident &&
243 		    IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) &&
244 		    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst))
245 			break;
246 
247 	if (q6 == &ip6q) {
248 		/*
249 		 * the first fragment to arrive, create a reassembly queue.
250 		 */
251 		first_frag = 1;
252 
253 		/*
254 		 * Enforce upper bound on number of fragmented packets
255 		 * for which we attempt reassembly;
256 		 * If maxfragpackets is 0, never accept fragments.
257 		 * If maxfragpackets is -1, accept all fragments without
258 		 * limitation.
259 		 */
260 		if (ip6_maxfragpackets < 0)
261 			;
262 		else if (frag6_nfragpackets >= (u_int)ip6_maxfragpackets)
263 			goto dropfrag;
264 		frag6_nfragpackets++;
265 		q6 = (struct ip6q *)malloc(sizeof(struct ip6q), M_FTABLE,
266 		    M_DONTWAIT);
267 		if (q6 == NULL)
268 			goto dropfrag;
269 		memset(q6, 0, sizeof(*q6));
270 
271 		frag6_insque(q6, &ip6q);
272 
273 		/* ip6q_nxt will be filled afterwards, from 1st fragment */
274 		q6->ip6q_down	= q6->ip6q_up = (struct ip6asfrag *)q6;
275 #ifdef notyet
276 		q6->ip6q_nxtp	= (u_char *)nxtp;
277 #endif
278 		q6->ip6q_ident	= ip6f->ip6f_ident;
279 		q6->ip6q_arrive = 0; /* Is it used anywhere? */
280 		q6->ip6q_ttl 	= IPV6_FRAGTTL;
281 		q6->ip6q_src	= ip6->ip6_src;
282 		q6->ip6q_dst	= ip6->ip6_dst;
283 		q6->ip6q_unfrglen = -1;	/* The 1st fragment has not arrived. */
284 
285 		q6->ip6q_nfrag = 0;
286 	}
287 
288 	/*
289 	 * If it's the 1st fragment, record the length of the
290 	 * unfragmentable part and the next header of the fragment header.
291 	 */
292 	fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK);
293 	if (fragoff == 0) {
294 		q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) -
295 		    sizeof(struct ip6_frag);
296 		q6->ip6q_nxt = ip6f->ip6f_nxt;
297 	}
298 
299 	/*
300 	 * Check that the reassembled packet would not exceed 65535 bytes
301 	 * in size.
302 	 * If it would exceed, discard the fragment and return an ICMP error.
303 	 */
304 	frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset;
305 	if (q6->ip6q_unfrglen >= 0) {
306 		/* The 1st fragment has already arrived. */
307 		if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) {
308 			icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
309 			    offset - sizeof(struct ip6_frag) +
310 			    offsetof(struct ip6_frag, ip6f_offlg));
311 			IP6Q_UNLOCK();
312 			return (IPPROTO_DONE);
313 		}
314 	} else if (fragoff + frgpartlen > IPV6_MAXPACKET) {
315 		icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
316 			    offset - sizeof(struct ip6_frag) +
317 				offsetof(struct ip6_frag, ip6f_offlg));
318 		IP6Q_UNLOCK();
319 		return (IPPROTO_DONE);
320 	}
321 	/*
322 	 * If it's the first fragment, do the above check for each
323 	 * fragment already stored in the reassembly queue.
324 	 */
325 	if (fragoff == 0) {
326 		for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
327 		     af6 = af6dwn) {
328 			af6dwn = af6->ip6af_down;
329 
330 			if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen >
331 			    IPV6_MAXPACKET) {
332 				struct mbuf *merr = IP6_REASS_MBUF(af6);
333 				struct ip6_hdr *ip6err;
334 				int erroff = af6->ip6af_offset;
335 
336 				/* dequeue the fragment. */
337 				frag6_deq(af6);
338 				free(af6, M_FTABLE);
339 
340 				/* adjust pointer. */
341 				ip6err = mtod(merr, struct ip6_hdr *);
342 
343 				/*
344 				 * Restore source and destination addresses
345 				 * in the erroneous IPv6 header.
346 				 */
347 				ip6err->ip6_src = q6->ip6q_src;
348 				ip6err->ip6_dst = q6->ip6q_dst;
349 
350 				icmp6_error(merr, ICMP6_PARAM_PROB,
351 				    ICMP6_PARAMPROB_HEADER,
352 				    erroff - sizeof(struct ip6_frag) +
353 				    offsetof(struct ip6_frag, ip6f_offlg));
354 			}
355 		}
356 	}
357 
358 	ip6af = (struct ip6asfrag *)malloc(sizeof(struct ip6asfrag), M_FTABLE,
359 	    M_DONTWAIT);
360 	if (ip6af == NULL)
361 		goto dropfrag;
362 	memset(ip6af, 0, sizeof(*ip6af));
363 	ip6af->ip6af_head = ip6->ip6_flow;
364 	ip6af->ip6af_len = ip6->ip6_plen;
365 	ip6af->ip6af_nxt = ip6->ip6_nxt;
366 	ip6af->ip6af_hlim = ip6->ip6_hlim;
367 	ip6af->ip6af_mff = ip6f->ip6f_offlg & IP6F_MORE_FRAG;
368 	ip6af->ip6af_off = fragoff;
369 	ip6af->ip6af_frglen = frgpartlen;
370 	ip6af->ip6af_offset = offset;
371 	IP6_REASS_MBUF(ip6af) = m;
372 
373 	if (first_frag) {
374 		af6 = (struct ip6asfrag *)q6;
375 		goto insert;
376 	}
377 
378 	/*
379 	 * Find a segment which begins after this one does.
380 	 */
381 	for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
382 	     af6 = af6->ip6af_down)
383 		if (af6->ip6af_off > ip6af->ip6af_off)
384 			break;
385 
386 #if 0
387 	/*
388 	 * If there is a preceding segment, it may provide some of
389 	 * our data already.  If so, drop the data from the incoming
390 	 * segment.  If it provides all of our data, drop us.
391 	 */
392 	if (af6->ip6af_up != (struct ip6asfrag *)q6) {
393 		i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
394 			- ip6af->ip6af_off;
395 		if (i > 0) {
396 			if (i >= ip6af->ip6af_frglen)
397 				goto dropfrag;
398 			m_adj(IP6_REASS_MBUF(ip6af), i);
399 			ip6af->ip6af_off += i;
400 			ip6af->ip6af_frglen -= i;
401 		}
402 	}
403 
404 	/*
405 	 * While we overlap succeeding segments trim them or,
406 	 * if they are completely covered, dequeue them.
407 	 */
408 	while (af6 != (struct ip6asfrag *)q6 &&
409 	       ip6af->ip6af_off + ip6af->ip6af_frglen > af6->ip6af_off) {
410 		i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
411 		if (i < af6->ip6af_frglen) {
412 			af6->ip6af_frglen -= i;
413 			af6->ip6af_off += i;
414 			m_adj(IP6_REASS_MBUF(af6), i);
415 			break;
416 		}
417 		af6 = af6->ip6af_down;
418 		m_freem(IP6_REASS_MBUF(af6->ip6af_up));
419 		frag6_deq(af6->ip6af_up);
420 	}
421 #else
422 	/*
423 	 * If the incoming framgent overlaps some existing fragments in
424 	 * the reassembly queue, drop it, since it is dangerous to override
425 	 * existing fragments from a security point of view.
426 	 * We don't know which fragment is the bad guy - here we trust
427 	 * fragment that came in earlier, with no real reason.
428 	 */
429 	if (af6->ip6af_up != (struct ip6asfrag *)q6) {
430 		i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
431 			- ip6af->ip6af_off;
432 		if (i > 0) {
433 #if 0				/* suppress the noisy log */
434 			log(LOG_ERR, "%d bytes of a fragment from %s "
435 			    "overlaps the previous fragment\n",
436 			    i, ip6_sprintf(&q6->ip6q_src));
437 #endif
438 			free(ip6af, M_FTABLE);
439 			goto dropfrag;
440 		}
441 	}
442 	if (af6 != (struct ip6asfrag *)q6) {
443 		i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
444 		if (i > 0) {
445 #if 0				/* suppress the noisy log */
446 			log(LOG_ERR, "%d bytes of a fragment from %s "
447 			    "overlaps the succeeding fragment",
448 			    i, ip6_sprintf(&q6->ip6q_src));
449 #endif
450 			free(ip6af, M_FTABLE);
451 			goto dropfrag;
452 		}
453 	}
454 #endif
455 
456 insert:
457 
458 	/*
459 	 * Stick new segment in its place;
460 	 * check for complete reassembly.
461 	 * Move to front of packet queue, as we are
462 	 * the most recently active fragmented packet.
463 	 */
464 	frag6_enq(ip6af, af6->ip6af_up);
465 	frag6_nfrags++;
466 	q6->ip6q_nfrag++;
467 #if 0 /* xxx */
468 	if (q6 != ip6q.ip6q_next) {
469 		frag6_remque(q6);
470 		frag6_insque(q6, &ip6q);
471 	}
472 #endif
473 	next = 0;
474 	for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
475 	     af6 = af6->ip6af_down) {
476 		if (af6->ip6af_off != next) {
477 			IP6Q_UNLOCK();
478 			return IPPROTO_DONE;
479 		}
480 		next += af6->ip6af_frglen;
481 	}
482 	if (af6->ip6af_up->ip6af_mff) {
483 		IP6Q_UNLOCK();
484 		return IPPROTO_DONE;
485 	}
486 
487 	/*
488 	 * Reassembly is complete; concatenate fragments.
489 	 */
490 	ip6af = q6->ip6q_down;
491 	t = m = IP6_REASS_MBUF(ip6af);
492 	af6 = ip6af->ip6af_down;
493 	frag6_deq(ip6af);
494 	while (af6 != (struct ip6asfrag *)q6) {
495 		af6dwn = af6->ip6af_down;
496 		frag6_deq(af6);
497 		while (t->m_next)
498 			t = t->m_next;
499 		t->m_next = IP6_REASS_MBUF(af6);
500 		m_adj(t->m_next, af6->ip6af_offset);
501 		free(af6, M_FTABLE);
502 		af6 = af6dwn;
503 	}
504 
505 	/* adjust offset to point where the original next header starts */
506 	offset = ip6af->ip6af_offset - sizeof(struct ip6_frag);
507 	free(ip6af, M_FTABLE);
508 	ip6 = mtod(m, struct ip6_hdr *);
509 	ip6->ip6_plen = htons(next + offset - sizeof(struct ip6_hdr));
510 	ip6->ip6_src = q6->ip6q_src;
511 	ip6->ip6_dst = q6->ip6q_dst;
512 	nxt = q6->ip6q_nxt;
513 #ifdef notyet
514 	*q6->ip6q_nxtp = (u_char)(nxt & 0xff);
515 #endif
516 
517 	/*
518 	 * Delete frag6 header with as a few cost as possible.
519 	 */
520 	if (m->m_len >= offset + sizeof(struct ip6_frag)) {
521 		memmove((char *)ip6 + sizeof(struct ip6_frag), ip6, offset);
522 		m->m_data += sizeof(struct ip6_frag);
523 		m->m_len -= sizeof(struct ip6_frag);
524 	} else {
525 		/* this comes with no copy if the boundary is on cluster */
526 		if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) {
527 			frag6_remque(q6);
528 			frag6_nfrags -= q6->ip6q_nfrag;
529 			free(q6, M_FTABLE);
530 			frag6_nfragpackets--;
531 			goto dropfrag;
532 		}
533 		m_adj(t, sizeof(struct ip6_frag));
534 		m_cat(m, t);
535 	}
536 
537 	/*
538 	 * Store NXT to the original.
539 	 */
540 	{
541 		u_int8_t *prvnxtp = ip6_get_prevhdr(m, offset); /* XXX */
542 		*prvnxtp = nxt;
543 	}
544 
545 	frag6_remque(q6);
546 	frag6_nfrags -= q6->ip6q_nfrag;
547 	free(q6, M_FTABLE);
548 	frag6_nfragpackets--;
549 
550 	if (m->m_flags & M_PKTHDR) { /* Isn't it always true? */
551 		int plen = 0;
552 		for (t = m; t; t = t->m_next)
553 			plen += t->m_len;
554 		m->m_pkthdr.len = plen;
555 	}
556 
557 	IP6_STATINC(IP6_STAT_REASSEMBLED);
558 	in6_ifstat_inc(dstifp, ifs6_reass_ok);
559 
560 	/*
561 	 * Tell launch routine the next header
562 	 */
563 
564 	*mp = m;
565 	*offp = offset;
566 
567 	IP6Q_UNLOCK();
568 	return nxt;
569 
570  dropfrag:
571 	in6_ifstat_inc(dstifp, ifs6_reass_fail);
572 	IP6_STATINC(IP6_STAT_FRAGDROPPED);
573 	m_freem(m);
574 	IP6Q_UNLOCK();
575 	return IPPROTO_DONE;
576 }
577 
578 /*
579  * Free a fragment reassembly header and all
580  * associated datagrams.
581  */
582 void
583 frag6_freef(struct ip6q *q6)
584 {
585 	struct ip6asfrag *af6, *down6;
586 
587 	IP6Q_LOCK_CHECK();
588 
589 	for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
590 	     af6 = down6) {
591 		struct mbuf *m = IP6_REASS_MBUF(af6);
592 
593 		down6 = af6->ip6af_down;
594 		frag6_deq(af6);
595 
596 		/*
597 		 * Return ICMP time exceeded error for the 1st fragment.
598 		 * Just free other fragments.
599 		 */
600 		if (af6->ip6af_off == 0) {
601 			struct ip6_hdr *ip6;
602 
603 			/* adjust pointer */
604 			ip6 = mtod(m, struct ip6_hdr *);
605 
606 			/* restoure source and destination addresses */
607 			ip6->ip6_src = q6->ip6q_src;
608 			ip6->ip6_dst = q6->ip6q_dst;
609 
610 			icmp6_error(m, ICMP6_TIME_EXCEEDED,
611 				    ICMP6_TIME_EXCEED_REASSEMBLY, 0);
612 		} else
613 			m_freem(m);
614 		free(af6, M_FTABLE);
615 	}
616 	frag6_remque(q6);
617 	frag6_nfrags -= q6->ip6q_nfrag;
618 	free(q6, M_FTABLE);
619 	frag6_nfragpackets--;
620 }
621 
622 /*
623  * Put an ip fragment on a reassembly chain.
624  * Like insque, but pointers in middle of structure.
625  */
626 void
627 frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6)
628 {
629 
630 	IP6Q_LOCK_CHECK();
631 
632 	af6->ip6af_up = up6;
633 	af6->ip6af_down = up6->ip6af_down;
634 	up6->ip6af_down->ip6af_up = af6;
635 	up6->ip6af_down = af6;
636 }
637 
638 /*
639  * To frag6_enq as remque is to insque.
640  */
641 void
642 frag6_deq(struct ip6asfrag *af6)
643 {
644 
645 	IP6Q_LOCK_CHECK();
646 
647 	af6->ip6af_up->ip6af_down = af6->ip6af_down;
648 	af6->ip6af_down->ip6af_up = af6->ip6af_up;
649 }
650 
651 void
652 frag6_insque(struct ip6q *new, struct ip6q *old)
653 {
654 
655 	IP6Q_LOCK_CHECK();
656 
657 	new->ip6q_prev = old;
658 	new->ip6q_next = old->ip6q_next;
659 	old->ip6q_next->ip6q_prev= new;
660 	old->ip6q_next = new;
661 }
662 
663 void
664 frag6_remque(struct ip6q *p6)
665 {
666 
667 	IP6Q_LOCK_CHECK();
668 
669 	p6->ip6q_prev->ip6q_next = p6->ip6q_next;
670 	p6->ip6q_next->ip6q_prev = p6->ip6q_prev;
671 }
672 
673 /*
674  * IPv6 reassembling timer processing;
675  * if a timer expires on a reassembly
676  * queue, discard it.
677  */
678 void
679 frag6_slowtimo(void)
680 {
681 	struct ip6q *q6;
682 
683 	mutex_enter(softnet_lock);
684 	KERNEL_LOCK(1, NULL);
685 
686 	IP6Q_LOCK();
687 	q6 = ip6q.ip6q_next;
688 	if (q6)
689 		while (q6 != &ip6q) {
690 			--q6->ip6q_ttl;
691 			q6 = q6->ip6q_next;
692 			if (q6->ip6q_prev->ip6q_ttl == 0) {
693 				IP6_STATINC(IP6_STAT_FRAGTIMEOUT);
694 				/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
695 				frag6_freef(q6->ip6q_prev);
696 			}
697 		}
698 	/*
699 	 * If we are over the maximum number of fragments
700 	 * (due to the limit being lowered), drain off
701 	 * enough to get down to the new limit.
702 	 */
703 	while (frag6_nfragpackets > (u_int)ip6_maxfragpackets &&
704 	    ip6q.ip6q_prev) {
705 		IP6_STATINC(IP6_STAT_FRAGOVERFLOW);
706 		/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
707 		frag6_freef(ip6q.ip6q_prev);
708 	}
709 	IP6Q_UNLOCK();
710 
711 #if 0
712 	/*
713 	 * Routing changes might produce a better route than we last used;
714 	 * make sure we notice eventually, even if forwarding only for one
715 	 * destination and the cache is never replaced.
716 	 */
717 	rtcache_free(&ip6_forward_rt);
718 	rtcache_free(&ipsrcchk_rt);
719 #endif
720 
721 	KERNEL_UNLOCK_ONE(NULL);
722 	mutex_exit(softnet_lock);
723 }
724 
725 /*
726  * Drain off all datagram fragments.
727  */
728 void
729 frag6_drain(void)
730 {
731 
732 	KERNEL_LOCK(1, NULL);
733 	if (ip6q_lock_try() != 0) {
734 		while (ip6q.ip6q_next != &ip6q) {
735 			IP6_STATINC(IP6_STAT_FRAGDROPPED);
736 			/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
737 			frag6_freef(ip6q.ip6q_next);
738 		}
739 		IP6Q_UNLOCK();
740 	}
741 	KERNEL_UNLOCK_ONE(NULL);
742 }
743