xref: /netbsd/sys/ufs/ffs/ffs_alloc.c (revision c4a72b64)
1 /*	$NetBSD: ffs_alloc.c,v 1.56 2002/09/27 15:38:03 provos Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.56 2002/09/27 15:38:03 provos Exp $");
40 
41 #if defined(_KERNEL_OPT)
42 #include "opt_ffs.h"
43 #include "opt_quota.h"
44 #endif
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/buf.h>
49 #include <sys/proc.h>
50 #include <sys/vnode.h>
51 #include <sys/mount.h>
52 #include <sys/kernel.h>
53 #include <sys/syslog.h>
54 
55 #include <ufs/ufs/quota.h>
56 #include <ufs/ufs/ufsmount.h>
57 #include <ufs/ufs/inode.h>
58 #include <ufs/ufs/ufs_extern.h>
59 #include <ufs/ufs/ufs_bswap.h>
60 
61 #include <ufs/ffs/fs.h>
62 #include <ufs/ffs/ffs_extern.h>
63 
64 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
65 static ufs_daddr_t ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
66 #ifdef XXXUBC
67 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
68 #endif
69 static ino_t ffs_dirpref __P((struct inode *));
70 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
71 static void ffs_fserr __P((struct fs *, u_int, char *));
72 static u_long ffs_hashalloc __P((struct inode *, int, long, int,
73     ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
74 static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
75 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *,
76 				      ufs_daddr_t, int));
77 #if defined(DIAGNOSTIC) || defined(DEBUG)
78 #ifdef XXXUBC
79 static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
80 #endif
81 #endif
82 
83 /* if 1, changes in optimalization strategy are logged */
84 int ffs_log_changeopt = 0;
85 
86 /* in ffs_tables.c */
87 extern const int inside[], around[];
88 extern const u_char * const fragtbl[];
89 
90 /*
91  * Allocate a block in the file system.
92  *
93  * The size of the requested block is given, which must be some
94  * multiple of fs_fsize and <= fs_bsize.
95  * A preference may be optionally specified. If a preference is given
96  * the following hierarchy is used to allocate a block:
97  *   1) allocate the requested block.
98  *   2) allocate a rotationally optimal block in the same cylinder.
99  *   3) allocate a block in the same cylinder group.
100  *   4) quadradically rehash into other cylinder groups, until an
101  *      available block is located.
102  * If no block preference is given the following hierarchy is used
103  * to allocate a block:
104  *   1) allocate a block in the cylinder group that contains the
105  *      inode for the file.
106  *   2) quadradically rehash into other cylinder groups, until an
107  *      available block is located.
108  */
109 int
110 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
111 	struct inode *ip;
112 	ufs_daddr_t lbn, bpref;
113 	int size;
114 	struct ucred *cred;
115 	ufs_daddr_t *bnp;
116 {
117 	struct fs *fs = ip->i_fs;
118 	ufs_daddr_t bno;
119 	int cg;
120 #ifdef QUOTA
121 	int error;
122 #endif
123 
124 #ifdef UVM_PAGE_TRKOWN
125 	if (ITOV(ip)->v_type == VREG &&
126 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
127 		struct vm_page *pg;
128 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
129 		voff_t off = trunc_page(lblktosize(fs, lbn));
130 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
131 
132 		simple_lock(&uobj->vmobjlock);
133 		while (off < endoff) {
134 			pg = uvm_pagelookup(uobj, off);
135 			KASSERT(pg != NULL);
136 			KASSERT(pg->owner == curproc->p_pid);
137 			KASSERT((pg->flags & PG_CLEAN) == 0);
138 			off += PAGE_SIZE;
139 		}
140 		simple_unlock(&uobj->vmobjlock);
141 	}
142 #endif
143 
144 	*bnp = 0;
145 #ifdef DIAGNOSTIC
146 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
147 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
148 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
149 		panic("ffs_alloc: bad size");
150 	}
151 	if (cred == NOCRED)
152 		panic("ffs_alloc: missing credential");
153 #endif /* DIAGNOSTIC */
154 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
155 		goto nospace;
156 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
157 		goto nospace;
158 #ifdef QUOTA
159 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
160 		return (error);
161 #endif
162 	if (bpref >= fs->fs_size)
163 		bpref = 0;
164 	if (bpref == 0)
165 		cg = ino_to_cg(fs, ip->i_number);
166 	else
167 		cg = dtog(fs, bpref);
168 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
169 	    			     ffs_alloccg);
170 	if (bno > 0) {
171 		ip->i_ffs_blocks += btodb(size);
172 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
173 		*bnp = bno;
174 		return (0);
175 	}
176 #ifdef QUOTA
177 	/*
178 	 * Restore user's disk quota because allocation failed.
179 	 */
180 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
181 #endif
182 nospace:
183 	ffs_fserr(fs, cred->cr_uid, "file system full");
184 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
185 	return (ENOSPC);
186 }
187 
188 /*
189  * Reallocate a fragment to a bigger size
190  *
191  * The number and size of the old block is given, and a preference
192  * and new size is also specified. The allocator attempts to extend
193  * the original block. Failing that, the regular block allocator is
194  * invoked to get an appropriate block.
195  */
196 int
197 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp, blknop)
198 	struct inode *ip;
199 	ufs_daddr_t lbprev;
200 	ufs_daddr_t bpref;
201 	int osize, nsize;
202 	struct ucred *cred;
203 	struct buf **bpp;
204 	ufs_daddr_t *blknop;
205 {
206 	struct fs *fs = ip->i_fs;
207 	struct buf *bp;
208 	int cg, request, error;
209 	ufs_daddr_t bprev, bno;
210 
211 #ifdef UVM_PAGE_TRKOWN
212 	if (ITOV(ip)->v_type == VREG) {
213 		struct vm_page *pg;
214 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
215 		voff_t off = trunc_page(lblktosize(fs, lbprev));
216 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
217 
218 		simple_lock(&uobj->vmobjlock);
219 		while (off < endoff) {
220 			pg = uvm_pagelookup(uobj, off);
221 			KASSERT(pg != NULL);
222 			KASSERT(pg->owner == curproc->p_pid);
223 			KASSERT((pg->flags & PG_CLEAN) == 0);
224 			off += PAGE_SIZE;
225 		}
226 		simple_unlock(&uobj->vmobjlock);
227 	}
228 #endif
229 
230 #ifdef DIAGNOSTIC
231 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
232 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
233 		printf(
234 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
235 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
236 		panic("ffs_realloccg: bad size");
237 	}
238 	if (cred == NOCRED)
239 		panic("ffs_realloccg: missing credential");
240 #endif /* DIAGNOSTIC */
241 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
242 		goto nospace;
243 	if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_FSNEEDSWAP(fs))) == 0) {
244 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
245 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
246 		panic("ffs_realloccg: bad bprev");
247 	}
248 	/*
249 	 * Allocate the extra space in the buffer.
250 	 */
251 	if (bpp != NULL &&
252 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
253 		brelse(bp);
254 		return (error);
255 	}
256 #ifdef QUOTA
257 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
258 		if (bpp != NULL) {
259 			brelse(bp);
260 		}
261 		return (error);
262 	}
263 #endif
264 	/*
265 	 * Check for extension in the existing location.
266 	 */
267 	cg = dtog(fs, bprev);
268 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
269 		ip->i_ffs_blocks += btodb(nsize - osize);
270 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
271 
272 		if (bpp != NULL) {
273 			if (bp->b_blkno != fsbtodb(fs, bno))
274 				panic("bad blockno");
275 			allocbuf(bp, nsize);
276 			bp->b_flags |= B_DONE;
277 			memset(bp->b_data + osize, 0, nsize - osize);
278 			*bpp = bp;
279 		}
280 		if (blknop != NULL) {
281 			*blknop = bno;
282 		}
283 		return (0);
284 	}
285 	/*
286 	 * Allocate a new disk location.
287 	 */
288 	if (bpref >= fs->fs_size)
289 		bpref = 0;
290 	switch ((int)fs->fs_optim) {
291 	case FS_OPTSPACE:
292 		/*
293 		 * Allocate an exact sized fragment. Although this makes
294 		 * best use of space, we will waste time relocating it if
295 		 * the file continues to grow. If the fragmentation is
296 		 * less than half of the minimum free reserve, we choose
297 		 * to begin optimizing for time.
298 		 */
299 		request = nsize;
300 		if (fs->fs_minfree < 5 ||
301 		    fs->fs_cstotal.cs_nffree >
302 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
303 			break;
304 
305 		if (ffs_log_changeopt) {
306 			log(LOG_NOTICE,
307 				"%s: optimization changed from SPACE to TIME\n",
308 				fs->fs_fsmnt);
309 		}
310 
311 		fs->fs_optim = FS_OPTTIME;
312 		break;
313 	case FS_OPTTIME:
314 		/*
315 		 * At this point we have discovered a file that is trying to
316 		 * grow a small fragment to a larger fragment. To save time,
317 		 * we allocate a full sized block, then free the unused portion.
318 		 * If the file continues to grow, the `ffs_fragextend' call
319 		 * above will be able to grow it in place without further
320 		 * copying. If aberrant programs cause disk fragmentation to
321 		 * grow within 2% of the free reserve, we choose to begin
322 		 * optimizing for space.
323 		 */
324 		request = fs->fs_bsize;
325 		if (fs->fs_cstotal.cs_nffree <
326 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
327 			break;
328 
329 		if (ffs_log_changeopt) {
330 			log(LOG_NOTICE,
331 				"%s: optimization changed from TIME to SPACE\n",
332 				fs->fs_fsmnt);
333 		}
334 
335 		fs->fs_optim = FS_OPTSPACE;
336 		break;
337 	default:
338 		printf("dev = 0x%x, optim = %d, fs = %s\n",
339 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
340 		panic("ffs_realloccg: bad optim");
341 		/* NOTREACHED */
342 	}
343 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
344 	    			     ffs_alloccg);
345 	if (bno > 0) {
346 		if (!DOINGSOFTDEP(ITOV(ip)))
347 			ffs_blkfree(ip, bprev, (long)osize);
348 		if (nsize < request)
349 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
350 			    (long)(request - nsize));
351 		ip->i_ffs_blocks += btodb(nsize - osize);
352 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
353 		if (bpp != NULL) {
354 			bp->b_blkno = fsbtodb(fs, bno);
355 			allocbuf(bp, nsize);
356 			bp->b_flags |= B_DONE;
357 			memset(bp->b_data + osize, 0, (u_int)nsize - osize);
358 			*bpp = bp;
359 		}
360 		if (blknop != NULL) {
361 			*blknop = bno;
362 		}
363 		return (0);
364 	}
365 #ifdef QUOTA
366 	/*
367 	 * Restore user's disk quota because allocation failed.
368 	 */
369 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
370 #endif
371 	if (bpp != NULL) {
372 		brelse(bp);
373 	}
374 
375 nospace:
376 	/*
377 	 * no space available
378 	 */
379 	ffs_fserr(fs, cred->cr_uid, "file system full");
380 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
381 	return (ENOSPC);
382 }
383 
384 /*
385  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
386  *
387  * The vnode and an array of buffer pointers for a range of sequential
388  * logical blocks to be made contiguous is given. The allocator attempts
389  * to find a range of sequential blocks starting as close as possible to
390  * an fs_rotdelay offset from the end of the allocation for the logical
391  * block immediately preceding the current range. If successful, the
392  * physical block numbers in the buffer pointers and in the inode are
393  * changed to reflect the new allocation. If unsuccessful, the allocation
394  * is left unchanged. The success in doing the reallocation is returned.
395  * Note that the error return is not reflected back to the user. Rather
396  * the previous block allocation will be used.
397  */
398 #ifdef XXXUBC
399 #ifdef DEBUG
400 #include <sys/sysctl.h>
401 int prtrealloc = 0;
402 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
403 #endif
404 #endif
405 
406 int doasyncfree = 1;
407 
408 int
409 ffs_reallocblks(v)
410 	void *v;
411 {
412 #ifdef XXXUBC
413 	struct vop_reallocblks_args /* {
414 		struct vnode *a_vp;
415 		struct cluster_save *a_buflist;
416 	} */ *ap = v;
417 	struct fs *fs;
418 	struct inode *ip;
419 	struct vnode *vp;
420 	struct buf *sbp, *ebp;
421 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
422 	struct cluster_save *buflist;
423 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
424 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
425 	int i, len, start_lvl, end_lvl, pref, ssize;
426 #endif /* XXXUBC */
427 
428 	/* XXXUBC don't reallocblks for now */
429 	return ENOSPC;
430 
431 #ifdef XXXUBC
432 	vp = ap->a_vp;
433 	ip = VTOI(vp);
434 	fs = ip->i_fs;
435 	if (fs->fs_contigsumsize <= 0)
436 		return (ENOSPC);
437 	buflist = ap->a_buflist;
438 	len = buflist->bs_nchildren;
439 	start_lbn = buflist->bs_children[0]->b_lblkno;
440 	end_lbn = start_lbn + len - 1;
441 #ifdef DIAGNOSTIC
442 	for (i = 0; i < len; i++)
443 		if (!ffs_checkblk(ip,
444 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
445 			panic("ffs_reallocblks: unallocated block 1");
446 	for (i = 1; i < len; i++)
447 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
448 			panic("ffs_reallocblks: non-logical cluster");
449 	blkno = buflist->bs_children[0]->b_blkno;
450 	ssize = fsbtodb(fs, fs->fs_frag);
451 	for (i = 1; i < len - 1; i++)
452 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
453 			panic("ffs_reallocblks: non-physical cluster %d", i);
454 #endif
455 	/*
456 	 * If the latest allocation is in a new cylinder group, assume that
457 	 * the filesystem has decided to move and do not force it back to
458 	 * the previous cylinder group.
459 	 */
460 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
461 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
462 		return (ENOSPC);
463 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
464 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
465 		return (ENOSPC);
466 	/*
467 	 * Get the starting offset and block map for the first block.
468 	 */
469 	if (start_lvl == 0) {
470 		sbap = &ip->i_ffs_db[0];
471 		soff = start_lbn;
472 	} else {
473 		idp = &start_ap[start_lvl - 1];
474 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
475 			brelse(sbp);
476 			return (ENOSPC);
477 		}
478 		sbap = (ufs_daddr_t *)sbp->b_data;
479 		soff = idp->in_off;
480 	}
481 	/*
482 	 * Find the preferred location for the cluster.
483 	 */
484 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
485 	/*
486 	 * If the block range spans two block maps, get the second map.
487 	 */
488 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
489 		ssize = len;
490 	} else {
491 #ifdef DIAGNOSTIC
492 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
493 			panic("ffs_reallocblk: start == end");
494 #endif
495 		ssize = len - (idp->in_off + 1);
496 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
497 			goto fail;
498 		ebap = (ufs_daddr_t *)ebp->b_data;
499 	}
500 	/*
501 	 * Search the block map looking for an allocation of the desired size.
502 	 */
503 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
504 	    len, ffs_clusteralloc)) == 0)
505 		goto fail;
506 	/*
507 	 * We have found a new contiguous block.
508 	 *
509 	 * First we have to replace the old block pointers with the new
510 	 * block pointers in the inode and indirect blocks associated
511 	 * with the file.
512 	 */
513 #ifdef DEBUG
514 	if (prtrealloc)
515 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
516 		    start_lbn, end_lbn);
517 #endif
518 	blkno = newblk;
519 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
520 		ufs_daddr_t ba;
521 
522 		if (i == ssize) {
523 			bap = ebap;
524 			soff = -i;
525 		}
526 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
527 #ifdef DIAGNOSTIC
528 		if (!ffs_checkblk(ip,
529 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
530 			panic("ffs_reallocblks: unallocated block 2");
531 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
532 			panic("ffs_reallocblks: alloc mismatch");
533 #endif
534 #ifdef DEBUG
535 		if (prtrealloc)
536 			printf(" %d,", ba);
537 #endif
538  		if (DOINGSOFTDEP(vp)) {
539  			if (sbap == &ip->i_ffs_db[0] && i < ssize)
540  				softdep_setup_allocdirect(ip, start_lbn + i,
541  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
542  				    buflist->bs_children[i]);
543  			else
544  				softdep_setup_allocindir_page(ip, start_lbn + i,
545  				    i < ssize ? sbp : ebp, soff + i, blkno,
546  				    ba, buflist->bs_children[i]);
547  		}
548 		*bap++ = ufs_rw32(blkno, UFS_FSNEEDSWAP(fs));
549 	}
550 	/*
551 	 * Next we must write out the modified inode and indirect blocks.
552 	 * For strict correctness, the writes should be synchronous since
553 	 * the old block values may have been written to disk. In practise
554 	 * they are almost never written, but if we are concerned about
555 	 * strict correctness, the `doasyncfree' flag should be set to zero.
556 	 *
557 	 * The test on `doasyncfree' should be changed to test a flag
558 	 * that shows whether the associated buffers and inodes have
559 	 * been written. The flag should be set when the cluster is
560 	 * started and cleared whenever the buffer or inode is flushed.
561 	 * We can then check below to see if it is set, and do the
562 	 * synchronous write only when it has been cleared.
563 	 */
564 	if (sbap != &ip->i_ffs_db[0]) {
565 		if (doasyncfree)
566 			bdwrite(sbp);
567 		else
568 			bwrite(sbp);
569 	} else {
570 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
571 		if (!doasyncfree)
572 			VOP_UPDATE(vp, NULL, NULL, 1);
573 	}
574 	if (ssize < len) {
575 		if (doasyncfree)
576 			bdwrite(ebp);
577 		else
578 			bwrite(ebp);
579 	}
580 	/*
581 	 * Last, free the old blocks and assign the new blocks to the buffers.
582 	 */
583 #ifdef DEBUG
584 	if (prtrealloc)
585 		printf("\n\tnew:");
586 #endif
587 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
588 		if (!DOINGSOFTDEP(vp))
589 			ffs_blkfree(ip,
590 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
591 			    fs->fs_bsize);
592 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
593 #ifdef DEBUG
594 		if (!ffs_checkblk(ip,
595 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
596 			panic("ffs_reallocblks: unallocated block 3");
597 		if (prtrealloc)
598 			printf(" %d,", blkno);
599 #endif
600 	}
601 #ifdef DEBUG
602 	if (prtrealloc) {
603 		prtrealloc--;
604 		printf("\n");
605 	}
606 #endif
607 	return (0);
608 
609 fail:
610 	if (ssize < len)
611 		brelse(ebp);
612 	if (sbap != &ip->i_ffs_db[0])
613 		brelse(sbp);
614 	return (ENOSPC);
615 #endif /* XXXUBC */
616 }
617 
618 /*
619  * Allocate an inode in the file system.
620  *
621  * If allocating a directory, use ffs_dirpref to select the inode.
622  * If allocating in a directory, the following hierarchy is followed:
623  *   1) allocate the preferred inode.
624  *   2) allocate an inode in the same cylinder group.
625  *   3) quadradically rehash into other cylinder groups, until an
626  *      available inode is located.
627  * If no inode preference is given the following hierarchy is used
628  * to allocate an inode:
629  *   1) allocate an inode in cylinder group 0.
630  *   2) quadradically rehash into other cylinder groups, until an
631  *      available inode is located.
632  */
633 int
634 ffs_valloc(v)
635 	void *v;
636 {
637 	struct vop_valloc_args /* {
638 		struct vnode *a_pvp;
639 		int a_mode;
640 		struct ucred *a_cred;
641 		struct vnode **a_vpp;
642 	} */ *ap = v;
643 	struct vnode *pvp = ap->a_pvp;
644 	struct inode *pip;
645 	struct fs *fs;
646 	struct inode *ip;
647 	mode_t mode = ap->a_mode;
648 	ino_t ino, ipref;
649 	int cg, error;
650 
651 	*ap->a_vpp = NULL;
652 	pip = VTOI(pvp);
653 	fs = pip->i_fs;
654 	if (fs->fs_cstotal.cs_nifree == 0)
655 		goto noinodes;
656 
657 	if ((mode & IFMT) == IFDIR)
658 		ipref = ffs_dirpref(pip);
659 	else
660 		ipref = pip->i_number;
661 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
662 		ipref = 0;
663 	cg = ino_to_cg(fs, ipref);
664 	/*
665 	 * Track number of dirs created one after another
666 	 * in a same cg without intervening by files.
667 	 */
668 	if ((mode & IFMT) == IFDIR) {
669 		if (fs->fs_contigdirs[cg] < 65535)
670 			fs->fs_contigdirs[cg]++;
671 	} else {
672 		if (fs->fs_contigdirs[cg] > 0)
673 			fs->fs_contigdirs[cg]--;
674 	}
675 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
676 	if (ino == 0)
677 		goto noinodes;
678 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
679 	if (error) {
680 		VOP_VFREE(pvp, ino, mode);
681 		return (error);
682 	}
683 	ip = VTOI(*ap->a_vpp);
684 	if (ip->i_ffs_mode) {
685 		printf("mode = 0%o, inum = %d, fs = %s\n",
686 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
687 		panic("ffs_valloc: dup alloc");
688 	}
689 	if (ip->i_ffs_blocks) {				/* XXX */
690 		printf("free inode %s/%d had %d blocks\n",
691 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
692 		ip->i_ffs_blocks = 0;
693 	}
694 	ip->i_ffs_flags = 0;
695 	/*
696 	 * Set up a new generation number for this inode.
697 	 */
698 	ip->i_ffs_gen++;
699 	return (0);
700 noinodes:
701 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
702 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
703 	return (ENOSPC);
704 }
705 
706 /*
707  * Find a cylinder group in which to place a directory.
708  *
709  * The policy implemented by this algorithm is to allocate a
710  * directory inode in the same cylinder group as its parent
711  * directory, but also to reserve space for its files inodes
712  * and data. Restrict the number of directories which may be
713  * allocated one after another in the same cylinder group
714  * without intervening allocation of files.
715  *
716  * If we allocate a first level directory then force allocation
717  * in another cylinder group.
718  */
719 static ino_t
720 ffs_dirpref(pip)
721 	struct inode *pip;
722 {
723 	register struct fs *fs;
724 	int cg, prefcg, dirsize, cgsize;
725 	int avgifree, avgbfree, avgndir, curdirsize;
726 	int minifree, minbfree, maxndir;
727 	int mincg, minndir;
728 	int maxcontigdirs;
729 
730 	fs = pip->i_fs;
731 
732 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
733 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
734 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
735 
736 	/*
737 	 * Force allocation in another cg if creating a first level dir.
738 	 */
739 	if (ITOV(pip)->v_flag & VROOT) {
740 		prefcg = random() % fs->fs_ncg;
741 		mincg = prefcg;
742 		minndir = fs->fs_ipg;
743 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
744 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
745 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
746 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
747 				mincg = cg;
748 				minndir = fs->fs_cs(fs, cg).cs_ndir;
749 			}
750 		for (cg = 0; cg < prefcg; cg++)
751 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
752 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
753 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
754 				mincg = cg;
755 				minndir = fs->fs_cs(fs, cg).cs_ndir;
756 			}
757 		return ((ino_t)(fs->fs_ipg * mincg));
758 	}
759 
760 	/*
761 	 * Count various limits which used for
762 	 * optimal allocation of a directory inode.
763 	 */
764 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
765 	minifree = avgifree - fs->fs_ipg / 4;
766 	if (minifree < 0)
767 		minifree = 0;
768 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
769 	if (minbfree < 0)
770 		minbfree = 0;
771 	cgsize = fs->fs_fsize * fs->fs_fpg;
772 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
773 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
774 	if (dirsize < curdirsize)
775 		dirsize = curdirsize;
776 	maxcontigdirs = min(cgsize / dirsize, 255);
777 	if (fs->fs_avgfpdir > 0)
778 		maxcontigdirs = min(maxcontigdirs,
779 				    fs->fs_ipg / fs->fs_avgfpdir);
780 	if (maxcontigdirs == 0)
781 		maxcontigdirs = 1;
782 
783 	/*
784 	 * Limit number of dirs in one cg and reserve space for
785 	 * regular files, but only if we have no deficit in
786 	 * inodes or space.
787 	 */
788 	prefcg = ino_to_cg(fs, pip->i_number);
789 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
790 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
791 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
792 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
793 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
794 				return ((ino_t)(fs->fs_ipg * cg));
795 		}
796 	for (cg = 0; cg < prefcg; cg++)
797 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
798 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
799 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
800 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
801 				return ((ino_t)(fs->fs_ipg * cg));
802 		}
803 	/*
804 	 * This is a backstop when we are deficient in space.
805 	 */
806 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
807 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
808 			return ((ino_t)(fs->fs_ipg * cg));
809 	for (cg = 0; cg < prefcg; cg++)
810 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
811 			break;
812 	return ((ino_t)(fs->fs_ipg * cg));
813 }
814 
815 /*
816  * Select the desired position for the next block in a file.  The file is
817  * logically divided into sections. The first section is composed of the
818  * direct blocks. Each additional section contains fs_maxbpg blocks.
819  *
820  * If no blocks have been allocated in the first section, the policy is to
821  * request a block in the same cylinder group as the inode that describes
822  * the file. If no blocks have been allocated in any other section, the
823  * policy is to place the section in a cylinder group with a greater than
824  * average number of free blocks.  An appropriate cylinder group is found
825  * by using a rotor that sweeps the cylinder groups. When a new group of
826  * blocks is needed, the sweep begins in the cylinder group following the
827  * cylinder group from which the previous allocation was made. The sweep
828  * continues until a cylinder group with greater than the average number
829  * of free blocks is found. If the allocation is for the first block in an
830  * indirect block, the information on the previous allocation is unavailable;
831  * here a best guess is made based upon the logical block number being
832  * allocated.
833  *
834  * If a section is already partially allocated, the policy is to
835  * contiguously allocate fs_maxcontig blocks.  The end of one of these
836  * contiguous blocks and the beginning of the next is physically separated
837  * so that the disk head will be in transit between them for at least
838  * fs_rotdelay milliseconds.  This is to allow time for the processor to
839  * schedule another I/O transfer.
840  */
841 ufs_daddr_t
842 ffs_blkpref(ip, lbn, indx, bap)
843 	struct inode *ip;
844 	ufs_daddr_t lbn;
845 	int indx;
846 	ufs_daddr_t *bap;
847 {
848 	struct fs *fs;
849 	int cg;
850 	int avgbfree, startcg;
851 	ufs_daddr_t nextblk;
852 
853 	fs = ip->i_fs;
854 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
855 		if (lbn < NDADDR + NINDIR(fs)) {
856 			cg = ino_to_cg(fs, ip->i_number);
857 			return (fs->fs_fpg * cg + fs->fs_frag);
858 		}
859 		/*
860 		 * Find a cylinder with greater than average number of
861 		 * unused data blocks.
862 		 */
863 		if (indx == 0 || bap[indx - 1] == 0)
864 			startcg =
865 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
866 		else
867 			startcg = dtog(fs,
868 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
869 		startcg %= fs->fs_ncg;
870 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
871 		for (cg = startcg; cg < fs->fs_ncg; cg++)
872 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
873 				return (fs->fs_fpg * cg + fs->fs_frag);
874 			}
875 		for (cg = 0; cg < startcg; cg++)
876 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
877 				return (fs->fs_fpg * cg + fs->fs_frag);
878 			}
879 		return (0);
880 	}
881 	/*
882 	 * One or more previous blocks have been laid out. If less
883 	 * than fs_maxcontig previous blocks are contiguous, the
884 	 * next block is requested contiguously, otherwise it is
885 	 * requested rotationally delayed by fs_rotdelay milliseconds.
886 	 */
887 	nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
888 	if (indx < fs->fs_maxcontig ||
889 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
890 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
891 		return (nextblk);
892 	if (fs->fs_rotdelay != 0)
893 		/*
894 		 * Here we convert ms of delay to frags as:
895 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
896 		 *	((sect/frag) * (ms/sec))
897 		 * then round up to the next block.
898 		 */
899 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
900 		    (NSPF(fs) * 1000), fs->fs_frag);
901 	return (nextblk);
902 }
903 
904 /*
905  * Implement the cylinder overflow algorithm.
906  *
907  * The policy implemented by this algorithm is:
908  *   1) allocate the block in its requested cylinder group.
909  *   2) quadradically rehash on the cylinder group number.
910  *   3) brute force search for a free block.
911  */
912 /*VARARGS5*/
913 static u_long
914 ffs_hashalloc(ip, cg, pref, size, allocator)
915 	struct inode *ip;
916 	int cg;
917 	long pref;
918 	int size;	/* size for data blocks, mode for inodes */
919 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
920 {
921 	struct fs *fs;
922 	long result;
923 	int i, icg = cg;
924 
925 	fs = ip->i_fs;
926 	/*
927 	 * 1: preferred cylinder group
928 	 */
929 	result = (*allocator)(ip, cg, pref, size);
930 	if (result)
931 		return (result);
932 	/*
933 	 * 2: quadratic rehash
934 	 */
935 	for (i = 1; i < fs->fs_ncg; i *= 2) {
936 		cg += i;
937 		if (cg >= fs->fs_ncg)
938 			cg -= fs->fs_ncg;
939 		result = (*allocator)(ip, cg, 0, size);
940 		if (result)
941 			return (result);
942 	}
943 	/*
944 	 * 3: brute force search
945 	 * Note that we start at i == 2, since 0 was checked initially,
946 	 * and 1 is always checked in the quadratic rehash.
947 	 */
948 	cg = (icg + 2) % fs->fs_ncg;
949 	for (i = 2; i < fs->fs_ncg; i++) {
950 		result = (*allocator)(ip, cg, 0, size);
951 		if (result)
952 			return (result);
953 		cg++;
954 		if (cg == fs->fs_ncg)
955 			cg = 0;
956 	}
957 	return (0);
958 }
959 
960 /*
961  * Determine whether a fragment can be extended.
962  *
963  * Check to see if the necessary fragments are available, and
964  * if they are, allocate them.
965  */
966 static ufs_daddr_t
967 ffs_fragextend(ip, cg, bprev, osize, nsize)
968 	struct inode *ip;
969 	int cg;
970 	long bprev;
971 	int osize, nsize;
972 {
973 	struct fs *fs;
974 	struct cg *cgp;
975 	struct buf *bp;
976 	long bno;
977 	int frags, bbase;
978 	int i, error;
979 
980 	fs = ip->i_fs;
981 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
982 		return (0);
983 	frags = numfrags(fs, nsize);
984 	bbase = fragnum(fs, bprev);
985 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
986 		/* cannot extend across a block boundary */
987 		return (0);
988 	}
989 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
990 		(int)fs->fs_cgsize, NOCRED, &bp);
991 	if (error) {
992 		brelse(bp);
993 		return (0);
994 	}
995 	cgp = (struct cg *)bp->b_data;
996 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
997 		brelse(bp);
998 		return (0);
999 	}
1000 	cgp->cg_time = ufs_rw32(time.tv_sec, UFS_FSNEEDSWAP(fs));
1001 	bno = dtogd(fs, bprev);
1002 	for (i = numfrags(fs, osize); i < frags; i++)
1003 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i)) {
1004 			brelse(bp);
1005 			return (0);
1006 		}
1007 	/*
1008 	 * the current fragment can be extended
1009 	 * deduct the count on fragment being extended into
1010 	 * increase the count on the remaining fragment (if any)
1011 	 * allocate the extended piece
1012 	 */
1013 	for (i = frags; i < fs->fs_frag - bbase; i++)
1014 		if (isclr(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1015 			break;
1016 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1017 	if (i != frags)
1018 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1019 	for (i = numfrags(fs, osize); i < frags; i++) {
1020 		clrbit(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i);
1021 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1022 		fs->fs_cstotal.cs_nffree--;
1023 		fs->fs_cs(fs, cg).cs_nffree--;
1024 	}
1025 	fs->fs_fmod = 1;
1026 	if (DOINGSOFTDEP(ITOV(ip)))
1027 		softdep_setup_blkmapdep(bp, fs, bprev);
1028 	bdwrite(bp);
1029 	return (bprev);
1030 }
1031 
1032 /*
1033  * Determine whether a block can be allocated.
1034  *
1035  * Check to see if a block of the appropriate size is available,
1036  * and if it is, allocate it.
1037  */
1038 static ufs_daddr_t
1039 ffs_alloccg(ip, cg, bpref, size)
1040 	struct inode *ip;
1041 	int cg;
1042 	ufs_daddr_t bpref;
1043 	int size;
1044 {
1045 	struct cg *cgp;
1046 	struct buf *bp;
1047 	ufs_daddr_t bno, blkno;
1048 	int error, frags, allocsiz, i;
1049 	struct fs *fs = ip->i_fs;
1050 #ifdef FFS_EI
1051 	const int needswap = UFS_FSNEEDSWAP(fs);
1052 #endif
1053 
1054 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1055 		return (0);
1056 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1057 		(int)fs->fs_cgsize, NOCRED, &bp);
1058 	if (error) {
1059 		brelse(bp);
1060 		return (0);
1061 	}
1062 	cgp = (struct cg *)bp->b_data;
1063 	if (!cg_chkmagic(cgp, needswap) ||
1064 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1065 		brelse(bp);
1066 		return (0);
1067 	}
1068 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1069 	if (size == fs->fs_bsize) {
1070 		bno = ffs_alloccgblk(ip, bp, bpref);
1071 		bdwrite(bp);
1072 		return (bno);
1073 	}
1074 	/*
1075 	 * check to see if any fragments are already available
1076 	 * allocsiz is the size which will be allocated, hacking
1077 	 * it down to a smaller size if necessary
1078 	 */
1079 	frags = numfrags(fs, size);
1080 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1081 		if (cgp->cg_frsum[allocsiz] != 0)
1082 			break;
1083 	if (allocsiz == fs->fs_frag) {
1084 		/*
1085 		 * no fragments were available, so a block will be
1086 		 * allocated, and hacked up
1087 		 */
1088 		if (cgp->cg_cs.cs_nbfree == 0) {
1089 			brelse(bp);
1090 			return (0);
1091 		}
1092 		bno = ffs_alloccgblk(ip, bp, bpref);
1093 		bpref = dtogd(fs, bno);
1094 		for (i = frags; i < fs->fs_frag; i++)
1095 			setbit(cg_blksfree(cgp, needswap), bpref + i);
1096 		i = fs->fs_frag - frags;
1097 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1098 		fs->fs_cstotal.cs_nffree += i;
1099 		fs->fs_cs(fs, cg).cs_nffree += i;
1100 		fs->fs_fmod = 1;
1101 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
1102 		bdwrite(bp);
1103 		return (bno);
1104 	}
1105 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1106 #if 0
1107 	/*
1108 	 * XXX fvdl mapsearch will panic, and never return -1
1109 	 *          also: returning NULL as ufs_daddr_t ?
1110 	 */
1111 	if (bno < 0) {
1112 		brelse(bp);
1113 		return (0);
1114 	}
1115 #endif
1116 	for (i = 0; i < frags; i++)
1117 		clrbit(cg_blksfree(cgp, needswap), bno + i);
1118 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1119 	fs->fs_cstotal.cs_nffree -= frags;
1120 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1121 	fs->fs_fmod = 1;
1122 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1123 	if (frags != allocsiz)
1124 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1125 	blkno = cg * fs->fs_fpg + bno;
1126 	if (DOINGSOFTDEP(ITOV(ip)))
1127 		softdep_setup_blkmapdep(bp, fs, blkno);
1128 	bdwrite(bp);
1129 	return blkno;
1130 }
1131 
1132 /*
1133  * Allocate a block in a cylinder group.
1134  *
1135  * This algorithm implements the following policy:
1136  *   1) allocate the requested block.
1137  *   2) allocate a rotationally optimal block in the same cylinder.
1138  *   3) allocate the next available block on the block rotor for the
1139  *      specified cylinder group.
1140  * Note that this routine only allocates fs_bsize blocks; these
1141  * blocks may be fragmented by the routine that allocates them.
1142  */
1143 static ufs_daddr_t
1144 ffs_alloccgblk(ip, bp, bpref)
1145 	struct inode *ip;
1146 	struct buf *bp;
1147 	ufs_daddr_t bpref;
1148 {
1149 	struct cg *cgp;
1150 	ufs_daddr_t bno, blkno;
1151 	int cylno, pos, delta;
1152 	short *cylbp;
1153 	int i;
1154 	struct fs *fs = ip->i_fs;
1155 #ifdef FFS_EI
1156 	const int needswap = UFS_FSNEEDSWAP(fs);
1157 #endif
1158 
1159 	cgp = (struct cg *)bp->b_data;
1160 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1161 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
1162 		goto norot;
1163 	}
1164 	bpref = blknum(fs, bpref);
1165 	bpref = dtogd(fs, bpref);
1166 	/*
1167 	 * if the requested block is available, use it
1168 	 */
1169 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
1170 		fragstoblks(fs, bpref))) {
1171 		bno = bpref;
1172 		goto gotit;
1173 	}
1174 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1175 		/*
1176 		 * Block layout information is not available.
1177 		 * Leaving bpref unchanged means we take the
1178 		 * next available free block following the one
1179 		 * we just allocated. Hopefully this will at
1180 		 * least hit a track cache on drives of unknown
1181 		 * geometry (e.g. SCSI).
1182 		 */
1183 		goto norot;
1184 	}
1185 	/*
1186 	 * check for a block available on the same cylinder
1187 	 */
1188 	cylno = cbtocylno(fs, bpref);
1189 	if (cg_blktot(cgp, needswap)[cylno] == 0)
1190 		goto norot;
1191 	/*
1192 	 * check the summary information to see if a block is
1193 	 * available in the requested cylinder starting at the
1194 	 * requested rotational position and proceeding around.
1195 	 */
1196 	cylbp = cg_blks(fs, cgp, cylno, needswap);
1197 	pos = cbtorpos(fs, bpref);
1198 	for (i = pos; i < fs->fs_nrpos; i++)
1199 		if (ufs_rw16(cylbp[i], needswap) > 0)
1200 			break;
1201 	if (i == fs->fs_nrpos)
1202 		for (i = 0; i < pos; i++)
1203 			if (ufs_rw16(cylbp[i], needswap) > 0)
1204 				break;
1205 	if (ufs_rw16(cylbp[i], needswap) > 0) {
1206 		/*
1207 		 * found a rotational position, now find the actual
1208 		 * block. A panic if none is actually there.
1209 		 */
1210 		pos = cylno % fs->fs_cpc;
1211 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1212 		if (fs_postbl(fs, pos)[i] == -1) {
1213 			printf("pos = %d, i = %d, fs = %s\n",
1214 			    pos, i, fs->fs_fsmnt);
1215 			panic("ffs_alloccgblk: cyl groups corrupted");
1216 		}
1217 		for (i = fs_postbl(fs, pos)[i];; ) {
1218 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1219 				bno = blkstofrags(fs, (bno + i));
1220 				goto gotit;
1221 			}
1222 			delta = fs_rotbl(fs)[i];
1223 			if (delta <= 0 ||
1224 			    delta + i > fragstoblks(fs, fs->fs_fpg))
1225 				break;
1226 			i += delta;
1227 		}
1228 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1229 		panic("ffs_alloccgblk: can't find blk in cyl");
1230 	}
1231 norot:
1232 	/*
1233 	 * no blocks in the requested cylinder, so take next
1234 	 * available one in this cylinder group.
1235 	 */
1236 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1237 	if (bno < 0)
1238 		return (0);
1239 	cgp->cg_rotor = ufs_rw32(bno, needswap);
1240 gotit:
1241 	blkno = fragstoblks(fs, bno);
1242 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1243 	ffs_clusteracct(fs, cgp, blkno, -1);
1244 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1245 	fs->fs_cstotal.cs_nbfree--;
1246 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1247 	cylno = cbtocylno(fs, bno);
1248 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1249 	    needswap);
1250 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1251 	fs->fs_fmod = 1;
1252 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1253 	if (DOINGSOFTDEP(ITOV(ip)))
1254 		softdep_setup_blkmapdep(bp, fs, blkno);
1255 	return (blkno);
1256 }
1257 
1258 #ifdef XXXUBC
1259 /*
1260  * Determine whether a cluster can be allocated.
1261  *
1262  * We do not currently check for optimal rotational layout if there
1263  * are multiple choices in the same cylinder group. Instead we just
1264  * take the first one that we find following bpref.
1265  */
1266 static ufs_daddr_t
1267 ffs_clusteralloc(ip, cg, bpref, len)
1268 	struct inode *ip;
1269 	int cg;
1270 	ufs_daddr_t bpref;
1271 	int len;
1272 {
1273 	struct fs *fs;
1274 	struct cg *cgp;
1275 	struct buf *bp;
1276 	int i, got, run, bno, bit, map;
1277 	u_char *mapp;
1278 	int32_t *lp;
1279 
1280 	fs = ip->i_fs;
1281 	if (fs->fs_maxcluster[cg] < len)
1282 		return (0);
1283 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1284 	    NOCRED, &bp))
1285 		goto fail;
1286 	cgp = (struct cg *)bp->b_data;
1287 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1288 		goto fail;
1289 	/*
1290 	 * Check to see if a cluster of the needed size (or bigger) is
1291 	 * available in this cylinder group.
1292 	 */
1293 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1294 	for (i = len; i <= fs->fs_contigsumsize; i++)
1295 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1296 			break;
1297 	if (i > fs->fs_contigsumsize) {
1298 		/*
1299 		 * This is the first time looking for a cluster in this
1300 		 * cylinder group. Update the cluster summary information
1301 		 * to reflect the true maximum sized cluster so that
1302 		 * future cluster allocation requests can avoid reading
1303 		 * the cylinder group map only to find no clusters.
1304 		 */
1305 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1306 		for (i = len - 1; i > 0; i--)
1307 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1308 				break;
1309 		fs->fs_maxcluster[cg] = i;
1310 		goto fail;
1311 	}
1312 	/*
1313 	 * Search the cluster map to find a big enough cluster.
1314 	 * We take the first one that we find, even if it is larger
1315 	 * than we need as we prefer to get one close to the previous
1316 	 * block allocation. We do not search before the current
1317 	 * preference point as we do not want to allocate a block
1318 	 * that is allocated before the previous one (as we will
1319 	 * then have to wait for another pass of the elevator
1320 	 * algorithm before it will be read). We prefer to fail and
1321 	 * be recalled to try an allocation in the next cylinder group.
1322 	 */
1323 	if (dtog(fs, bpref) != cg)
1324 		bpref = 0;
1325 	else
1326 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1327 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1328 	map = *mapp++;
1329 	bit = 1 << (bpref % NBBY);
1330 	for (run = 0, got = bpref;
1331 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1332 		if ((map & bit) == 0) {
1333 			run = 0;
1334 		} else {
1335 			run++;
1336 			if (run == len)
1337 				break;
1338 		}
1339 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1340 			bit <<= 1;
1341 		} else {
1342 			map = *mapp++;
1343 			bit = 1;
1344 		}
1345 	}
1346 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1347 		goto fail;
1348 	/*
1349 	 * Allocate the cluster that we have found.
1350 	 */
1351 #ifdef DIAGNOSTIC
1352 	for (i = 1; i <= len; i++)
1353 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1354 		    got - run + i))
1355 			panic("ffs_clusteralloc: map mismatch");
1356 #endif
1357 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1358 	if (dtog(fs, bno) != cg)
1359 		panic("ffs_clusteralloc: allocated out of group");
1360 	len = blkstofrags(fs, len);
1361 	for (i = 0; i < len; i += fs->fs_frag)
1362 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1363 			panic("ffs_clusteralloc: lost block");
1364 	bdwrite(bp);
1365 	return (bno);
1366 
1367 fail:
1368 	brelse(bp);
1369 	return (0);
1370 }
1371 #endif /* XXXUBC */
1372 
1373 /*
1374  * Determine whether an inode can be allocated.
1375  *
1376  * Check to see if an inode is available, and if it is,
1377  * allocate it using the following policy:
1378  *   1) allocate the requested inode.
1379  *   2) allocate the next available inode after the requested
1380  *      inode in the specified cylinder group.
1381  */
1382 static ufs_daddr_t
1383 ffs_nodealloccg(ip, cg, ipref, mode)
1384 	struct inode *ip;
1385 	int cg;
1386 	ufs_daddr_t ipref;
1387 	int mode;
1388 {
1389 	struct cg *cgp;
1390 	struct buf *bp;
1391 	int error, start, len, loc, map, i;
1392 	struct fs *fs = ip->i_fs;
1393 #ifdef FFS_EI
1394 	const int needswap = UFS_FSNEEDSWAP(fs);
1395 #endif
1396 
1397 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1398 		return (0);
1399 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1400 		(int)fs->fs_cgsize, NOCRED, &bp);
1401 	if (error) {
1402 		brelse(bp);
1403 		return (0);
1404 	}
1405 	cgp = (struct cg *)bp->b_data;
1406 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1407 		brelse(bp);
1408 		return (0);
1409 	}
1410 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1411 	if (ipref) {
1412 		ipref %= fs->fs_ipg;
1413 		if (isclr(cg_inosused(cgp, needswap), ipref))
1414 			goto gotit;
1415 	}
1416 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1417 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1418 		NBBY);
1419 	loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1420 	if (loc == 0) {
1421 		len = start + 1;
1422 		start = 0;
1423 		loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1424 		if (loc == 0) {
1425 			printf("cg = %d, irotor = %d, fs = %s\n",
1426 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
1427 				fs->fs_fsmnt);
1428 			panic("ffs_nodealloccg: map corrupted");
1429 			/* NOTREACHED */
1430 		}
1431 	}
1432 	i = start + len - loc;
1433 	map = cg_inosused(cgp, needswap)[i];
1434 	ipref = i * NBBY;
1435 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1436 		if ((map & i) == 0) {
1437 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
1438 			goto gotit;
1439 		}
1440 	}
1441 	printf("fs = %s\n", fs->fs_fsmnt);
1442 	panic("ffs_nodealloccg: block not in map");
1443 	/* NOTREACHED */
1444 gotit:
1445 	if (DOINGSOFTDEP(ITOV(ip)))
1446 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1447 	setbit(cg_inosused(cgp, needswap), ipref);
1448 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1449 	fs->fs_cstotal.cs_nifree--;
1450 	fs->fs_cs(fs, cg).cs_nifree--;
1451 	fs->fs_fmod = 1;
1452 	if ((mode & IFMT) == IFDIR) {
1453 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1454 		fs->fs_cstotal.cs_ndir++;
1455 		fs->fs_cs(fs, cg).cs_ndir++;
1456 	}
1457 	bdwrite(bp);
1458 	return (cg * fs->fs_ipg + ipref);
1459 }
1460 
1461 /*
1462  * Free a block or fragment.
1463  *
1464  * The specified block or fragment is placed back in the
1465  * free map. If a fragment is deallocated, a possible
1466  * block reassembly is checked.
1467  */
1468 void
1469 ffs_blkfree(ip, bno, size)
1470 	struct inode *ip;
1471 	ufs_daddr_t bno;
1472 	long size;
1473 {
1474 	struct cg *cgp;
1475 	struct buf *bp;
1476 	ufs_daddr_t blkno;
1477 	int i, error, cg, blk, frags, bbase;
1478 	struct fs *fs = ip->i_fs;
1479 	const int needswap = UFS_FSNEEDSWAP(fs);
1480 
1481 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1482 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1483 		printf("dev = 0x%x, bno = %u bsize = %d, size = %ld, fs = %s\n",
1484 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1485 		panic("blkfree: bad size");
1486 	}
1487 	cg = dtog(fs, bno);
1488 	if ((u_int)bno >= fs->fs_size) {
1489 		printf("bad block %d, ino %d\n", bno, ip->i_number);
1490 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1491 		return;
1492 	}
1493 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1494 		(int)fs->fs_cgsize, NOCRED, &bp);
1495 	if (error) {
1496 		brelse(bp);
1497 		return;
1498 	}
1499 	cgp = (struct cg *)bp->b_data;
1500 	if (!cg_chkmagic(cgp, needswap)) {
1501 		brelse(bp);
1502 		return;
1503 	}
1504 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1505 	bno = dtogd(fs, bno);
1506 	if (size == fs->fs_bsize) {
1507 		blkno = fragstoblks(fs, bno);
1508 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1509 			printf("dev = 0x%x, block = %d, fs = %s\n",
1510 			    ip->i_dev, bno, fs->fs_fsmnt);
1511 			panic("blkfree: freeing free block");
1512 		}
1513 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1514 		ffs_clusteracct(fs, cgp, blkno, 1);
1515 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1516 		fs->fs_cstotal.cs_nbfree++;
1517 		fs->fs_cs(fs, cg).cs_nbfree++;
1518 		i = cbtocylno(fs, bno);
1519 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1520 		    needswap);
1521 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1522 	} else {
1523 		bbase = bno - fragnum(fs, bno);
1524 		/*
1525 		 * decrement the counts associated with the old frags
1526 		 */
1527 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1528 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1529 		/*
1530 		 * deallocate the fragment
1531 		 */
1532 		frags = numfrags(fs, size);
1533 		for (i = 0; i < frags; i++) {
1534 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1535 				printf("dev = 0x%x, block = %d, fs = %s\n",
1536 				    ip->i_dev, bno + i, fs->fs_fsmnt);
1537 				panic("blkfree: freeing free frag");
1538 			}
1539 			setbit(cg_blksfree(cgp, needswap), bno + i);
1540 		}
1541 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1542 		fs->fs_cstotal.cs_nffree += i;
1543 		fs->fs_cs(fs, cg).cs_nffree += i;
1544 		/*
1545 		 * add back in counts associated with the new frags
1546 		 */
1547 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1548 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1549 		/*
1550 		 * if a complete block has been reassembled, account for it
1551 		 */
1552 		blkno = fragstoblks(fs, bbase);
1553 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1554 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1555 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1556 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1557 			ffs_clusteracct(fs, cgp, blkno, 1);
1558 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1559 			fs->fs_cstotal.cs_nbfree++;
1560 			fs->fs_cs(fs, cg).cs_nbfree++;
1561 			i = cbtocylno(fs, bbase);
1562 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
1563 								bbase)], 1,
1564 			    needswap);
1565 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1566 		}
1567 	}
1568 	fs->fs_fmod = 1;
1569 	bdwrite(bp);
1570 }
1571 
1572 #if defined(DIAGNOSTIC) || defined(DEBUG)
1573 #ifdef XXXUBC
1574 /*
1575  * Verify allocation of a block or fragment. Returns true if block or
1576  * fragment is allocated, false if it is free.
1577  */
1578 static int
1579 ffs_checkblk(ip, bno, size)
1580 	struct inode *ip;
1581 	ufs_daddr_t bno;
1582 	long size;
1583 {
1584 	struct fs *fs;
1585 	struct cg *cgp;
1586 	struct buf *bp;
1587 	int i, error, frags, free;
1588 
1589 	fs = ip->i_fs;
1590 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1591 		printf("bsize = %d, size = %ld, fs = %s\n",
1592 		    fs->fs_bsize, size, fs->fs_fsmnt);
1593 		panic("checkblk: bad size");
1594 	}
1595 	if ((u_int)bno >= fs->fs_size)
1596 		panic("checkblk: bad block %d", bno);
1597 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1598 		(int)fs->fs_cgsize, NOCRED, &bp);
1599 	if (error) {
1600 		brelse(bp);
1601 		return 0;
1602 	}
1603 	cgp = (struct cg *)bp->b_data;
1604 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1605 		brelse(bp);
1606 		return 0;
1607 	}
1608 	bno = dtogd(fs, bno);
1609 	if (size == fs->fs_bsize) {
1610 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1611 			fragstoblks(fs, bno));
1612 	} else {
1613 		frags = numfrags(fs, size);
1614 		for (free = 0, i = 0; i < frags; i++)
1615 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1616 				free++;
1617 		if (free != 0 && free != frags)
1618 			panic("checkblk: partially free fragment");
1619 	}
1620 	brelse(bp);
1621 	return (!free);
1622 }
1623 #endif /* XXXUBC */
1624 #endif /* DIAGNOSTIC */
1625 
1626 /*
1627  * Free an inode.
1628  */
1629 int
1630 ffs_vfree(v)
1631 	void *v;
1632 {
1633 	struct vop_vfree_args /* {
1634 		struct vnode *a_pvp;
1635 		ino_t a_ino;
1636 		int a_mode;
1637 	} */ *ap = v;
1638 
1639 	if (DOINGSOFTDEP(ap->a_pvp)) {
1640 		softdep_freefile(ap);
1641 		return (0);
1642 	}
1643 	return (ffs_freefile(ap));
1644 }
1645 
1646 /*
1647  * Do the actual free operation.
1648  * The specified inode is placed back in the free map.
1649  */
1650 int
1651 ffs_freefile(v)
1652 	void *v;
1653 {
1654 	struct vop_vfree_args /* {
1655 		struct vnode *a_pvp;
1656 		ino_t a_ino;
1657 		int a_mode;
1658 	} */ *ap = v;
1659 	struct cg *cgp;
1660 	struct inode *pip = VTOI(ap->a_pvp);
1661 	struct fs *fs = pip->i_fs;
1662 	ino_t ino = ap->a_ino;
1663 	struct buf *bp;
1664 	int error, cg;
1665 #ifdef FFS_EI
1666 	const int needswap = UFS_FSNEEDSWAP(fs);
1667 #endif
1668 
1669 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1670 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s",
1671 		    pip->i_dev, ino, fs->fs_fsmnt);
1672 	cg = ino_to_cg(fs, ino);
1673 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1674 		(int)fs->fs_cgsize, NOCRED, &bp);
1675 	if (error) {
1676 		brelse(bp);
1677 		return (error);
1678 	}
1679 	cgp = (struct cg *)bp->b_data;
1680 	if (!cg_chkmagic(cgp, needswap)) {
1681 		brelse(bp);
1682 		return (0);
1683 	}
1684 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1685 	ino %= fs->fs_ipg;
1686 	if (isclr(cg_inosused(cgp, needswap), ino)) {
1687 		printf("dev = 0x%x, ino = %d, fs = %s\n",
1688 		    pip->i_dev, ino, fs->fs_fsmnt);
1689 		if (fs->fs_ronly == 0)
1690 			panic("ifree: freeing free inode");
1691 	}
1692 	clrbit(cg_inosused(cgp, needswap), ino);
1693 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1694 		cgp->cg_irotor = ufs_rw32(ino, needswap);
1695 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1696 	fs->fs_cstotal.cs_nifree++;
1697 	fs->fs_cs(fs, cg).cs_nifree++;
1698 	if ((ap->a_mode & IFMT) == IFDIR) {
1699 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1700 		fs->fs_cstotal.cs_ndir--;
1701 		fs->fs_cs(fs, cg).cs_ndir--;
1702 	}
1703 	fs->fs_fmod = 1;
1704 	bdwrite(bp);
1705 	return (0);
1706 }
1707 
1708 /*
1709  * Find a block of the specified size in the specified cylinder group.
1710  *
1711  * It is a panic if a request is made to find a block if none are
1712  * available.
1713  */
1714 static ufs_daddr_t
1715 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1716 	struct fs *fs;
1717 	struct cg *cgp;
1718 	ufs_daddr_t bpref;
1719 	int allocsiz;
1720 {
1721 	ufs_daddr_t bno;
1722 	int start, len, loc, i;
1723 	int blk, field, subfield, pos;
1724 	int ostart, olen;
1725 #ifdef FFS_EI
1726 	const int needswap = UFS_FSNEEDSWAP(fs);
1727 #endif
1728 
1729 	/*
1730 	 * find the fragment by searching through the free block
1731 	 * map for an appropriate bit pattern
1732 	 */
1733 	if (bpref)
1734 		start = dtogd(fs, bpref) / NBBY;
1735 	else
1736 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1737 	len = howmany(fs->fs_fpg, NBBY) - start;
1738 	ostart = start;
1739 	olen = len;
1740 	loc = scanc((u_int)len,
1741 		(const u_char *)&cg_blksfree(cgp, needswap)[start],
1742 		(const u_char *)fragtbl[fs->fs_frag],
1743 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1744 	if (loc == 0) {
1745 		len = start + 1;
1746 		start = 0;
1747 		loc = scanc((u_int)len,
1748 			(const u_char *)&cg_blksfree(cgp, needswap)[0],
1749 			(const u_char *)fragtbl[fs->fs_frag],
1750 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1751 		if (loc == 0) {
1752 			printf("start = %d, len = %d, fs = %s\n",
1753 			    ostart, olen, fs->fs_fsmnt);
1754 			printf("offset=%d %ld\n",
1755 				ufs_rw32(cgp->cg_freeoff, needswap),
1756 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
1757 			panic("ffs_alloccg: map corrupted");
1758 			/* NOTREACHED */
1759 		}
1760 	}
1761 	bno = (start + len - loc) * NBBY;
1762 	cgp->cg_frotor = ufs_rw32(bno, needswap);
1763 	/*
1764 	 * found the byte in the map
1765 	 * sift through the bits to find the selected frag
1766 	 */
1767 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1768 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1769 		blk <<= 1;
1770 		field = around[allocsiz];
1771 		subfield = inside[allocsiz];
1772 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1773 			if ((blk & field) == subfield)
1774 				return (bno + pos);
1775 			field <<= 1;
1776 			subfield <<= 1;
1777 		}
1778 	}
1779 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1780 	panic("ffs_alloccg: block not in map");
1781 	return (-1);
1782 }
1783 
1784 /*
1785  * Update the cluster map because of an allocation or free.
1786  *
1787  * Cnt == 1 means free; cnt == -1 means allocating.
1788  */
1789 void
1790 ffs_clusteracct(fs, cgp, blkno, cnt)
1791 	struct fs *fs;
1792 	struct cg *cgp;
1793 	ufs_daddr_t blkno;
1794 	int cnt;
1795 {
1796 	int32_t *sump;
1797 	int32_t *lp;
1798 	u_char *freemapp, *mapp;
1799 	int i, start, end, forw, back, map, bit;
1800 #ifdef FFS_EI
1801 	const int needswap = UFS_FSNEEDSWAP(fs);
1802 #endif
1803 
1804 	if (fs->fs_contigsumsize <= 0)
1805 		return;
1806 	freemapp = cg_clustersfree(cgp, needswap);
1807 	sump = cg_clustersum(cgp, needswap);
1808 	/*
1809 	 * Allocate or clear the actual block.
1810 	 */
1811 	if (cnt > 0)
1812 		setbit(freemapp, blkno);
1813 	else
1814 		clrbit(freemapp, blkno);
1815 	/*
1816 	 * Find the size of the cluster going forward.
1817 	 */
1818 	start = blkno + 1;
1819 	end = start + fs->fs_contigsumsize;
1820 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1821 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1822 	mapp = &freemapp[start / NBBY];
1823 	map = *mapp++;
1824 	bit = 1 << (start % NBBY);
1825 	for (i = start; i < end; i++) {
1826 		if ((map & bit) == 0)
1827 			break;
1828 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1829 			bit <<= 1;
1830 		} else {
1831 			map = *mapp++;
1832 			bit = 1;
1833 		}
1834 	}
1835 	forw = i - start;
1836 	/*
1837 	 * Find the size of the cluster going backward.
1838 	 */
1839 	start = blkno - 1;
1840 	end = start - fs->fs_contigsumsize;
1841 	if (end < 0)
1842 		end = -1;
1843 	mapp = &freemapp[start / NBBY];
1844 	map = *mapp--;
1845 	bit = 1 << (start % NBBY);
1846 	for (i = start; i > end; i--) {
1847 		if ((map & bit) == 0)
1848 			break;
1849 		if ((i & (NBBY - 1)) != 0) {
1850 			bit >>= 1;
1851 		} else {
1852 			map = *mapp--;
1853 			bit = 1 << (NBBY - 1);
1854 		}
1855 	}
1856 	back = start - i;
1857 	/*
1858 	 * Account for old cluster and the possibly new forward and
1859 	 * back clusters.
1860 	 */
1861 	i = back + forw + 1;
1862 	if (i > fs->fs_contigsumsize)
1863 		i = fs->fs_contigsumsize;
1864 	ufs_add32(sump[i], cnt, needswap);
1865 	if (back > 0)
1866 		ufs_add32(sump[back], -cnt, needswap);
1867 	if (forw > 0)
1868 		ufs_add32(sump[forw], -cnt, needswap);
1869 
1870 	/*
1871 	 * Update cluster summary information.
1872 	 */
1873 	lp = &sump[fs->fs_contigsumsize];
1874 	for (i = fs->fs_contigsumsize; i > 0; i--)
1875 		if (ufs_rw32(*lp--, needswap) > 0)
1876 			break;
1877 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1878 }
1879 
1880 /*
1881  * Fserr prints the name of a file system with an error diagnostic.
1882  *
1883  * The form of the error message is:
1884  *	fs: error message
1885  */
1886 static void
1887 ffs_fserr(fs, uid, cp)
1888 	struct fs *fs;
1889 	u_int uid;
1890 	char *cp;
1891 {
1892 
1893 	log(LOG_ERR, "uid %d comm %s on %s: %s\n",
1894 	    uid, curproc->p_comm, fs->fs_fsmnt, cp);
1895 }
1896