xref: /netbsd/sys/ufs/ffs/ffs_inode.c (revision bf9ec67e)
1 /*	$NetBSD: ffs_inode.c,v 1.51 2001/12/18 10:57:21 fvdl Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)ffs_inode.c	8.13 (Berkeley) 4/21/95
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ffs_inode.c,v 1.51 2001/12/18 10:57:21 fvdl Exp $");
40 
41 #if defined(_KERNEL_OPT)
42 #include "opt_ffs.h"
43 #include "opt_quota.h"
44 #endif
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/mount.h>
49 #include <sys/proc.h>
50 #include <sys/file.h>
51 #include <sys/buf.h>
52 #include <sys/vnode.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/trace.h>
56 #include <sys/resourcevar.h>
57 
58 #include <ufs/ufs/quota.h>
59 #include <ufs/ufs/inode.h>
60 #include <ufs/ufs/ufsmount.h>
61 #include <ufs/ufs/ufs_extern.h>
62 #include <ufs/ufs/ufs_bswap.h>
63 
64 #include <ufs/ffs/fs.h>
65 #include <ufs/ffs/ffs_extern.h>
66 
67 static int ffs_indirtrunc __P((struct inode *, ufs_daddr_t, ufs_daddr_t,
68 			       ufs_daddr_t, int, long *));
69 
70 /*
71  * Update the access, modified, and inode change times as specified
72  * by the IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively.
73  * The IN_MODIFIED flag is used to specify that the inode needs to be
74  * updated but that the times have already been set. The access
75  * and modified times are taken from the second and third parameters;
76  * the inode change time is always taken from the current time. If
77  * UPDATE_WAIT flag is set, or UPDATE_DIROP is set and we are not doing
78  * softupdates, then wait for the disk write of the inode to complete.
79  */
80 
81 int
82 ffs_update(v)
83 	void *v;
84 {
85 	struct vop_update_args /* {
86 		struct vnode *a_vp;
87 		struct timespec *a_access;
88 		struct timespec *a_modify;
89 		int a_flags;
90 	} */ *ap = v;
91 	struct fs *fs;
92 	struct buf *bp;
93 	struct inode *ip;
94 	int error;
95 	struct timespec ts;
96 	caddr_t cp;
97 	int waitfor, flags;
98 
99 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
100 		return (0);
101 	ip = VTOI(ap->a_vp);
102 	TIMEVAL_TO_TIMESPEC(&time, &ts);
103 	FFS_ITIMES(ip,
104 	    ap->a_access ? ap->a_access : &ts,
105 	    ap->a_modify ? ap->a_modify : &ts, &ts);
106 	flags = ip->i_flag & (IN_MODIFIED | IN_ACCESSED);
107 	if (flags == 0)
108 		return (0);
109 	fs = ip->i_fs;
110 
111 	if ((flags & IN_MODIFIED) != 0 &&
112 	    (ap->a_vp->v_mount->mnt_flag & MNT_ASYNC) == 0) {
113 		waitfor = ap->a_flags & UPDATE_WAIT;
114 		if ((ap->a_flags & UPDATE_DIROP) && !DOINGSOFTDEP(ap->a_vp))
115 			waitfor |= UPDATE_WAIT;
116 	} else
117 		waitfor = 0;
118 
119 	/*
120 	 * Ensure that uid and gid are correct. This is a temporary
121 	 * fix until fsck has been changed to do the update.
122 	 */
123 	if (fs->fs_inodefmt < FS_44INODEFMT) {			/* XXX */
124 		ip->i_din.ffs_din.di_ouid = ip->i_ffs_uid;	/* XXX */
125 		ip->i_din.ffs_din.di_ogid = ip->i_ffs_gid;	/* XXX */
126 	}							/* XXX */
127 	error = bread(ip->i_devvp,
128 		      fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
129 		      (int)fs->fs_bsize, NOCRED, &bp);
130 	if (error) {
131 		brelse(bp);
132 		return (error);
133 	}
134 	ip->i_flag &= ~(IN_MODIFIED | IN_ACCESSED);
135 	if (DOINGSOFTDEP(ap->a_vp))
136 		softdep_update_inodeblock(ip, bp, waitfor);
137 	else if (ip->i_ffs_effnlink != ip->i_ffs_nlink)
138 		panic("ffs_update: bad link cnt");
139 	cp = (caddr_t)bp->b_data +
140 	    (ino_to_fsbo(fs, ip->i_number) * DINODE_SIZE);
141 #ifdef FFS_EI
142 	if (UFS_FSNEEDSWAP(fs))
143 		ffs_dinode_swap(&ip->i_din.ffs_din, (struct dinode *)cp);
144 	else
145 #endif
146 		memcpy(cp, &ip->i_din.ffs_din, DINODE_SIZE);
147 	if (waitfor) {
148 		return (bwrite(bp));
149 	} else {
150 		bdwrite(bp);
151 		return (0);
152 	}
153 }
154 
155 #define	SINGLE	0	/* index of single indirect block */
156 #define	DOUBLE	1	/* index of double indirect block */
157 #define	TRIPLE	2	/* index of triple indirect block */
158 /*
159  * Truncate the inode oip to at most length size, freeing the
160  * disk blocks.
161  */
162 int
163 ffs_truncate(v)
164 	void *v;
165 {
166 	struct vop_truncate_args /* {
167 		struct vnode *a_vp;
168 		off_t a_length;
169 		int a_flags;
170 		struct ucred *a_cred;
171 		struct proc *a_p;
172 	} */ *ap = v;
173 	struct vnode *ovp = ap->a_vp;
174 	struct genfs_node *gp = VTOG(ovp);
175 	ufs_daddr_t lastblock;
176 	struct inode *oip;
177 	ufs_daddr_t bn, lastiblock[NIADDR], indir_lbn[NIADDR];
178 	ufs_daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR];
179 	off_t length = ap->a_length;
180 	struct fs *fs;
181 	int offset, size, level;
182 	long count, nblocks, blocksreleased = 0;
183 	int i, ioflag, aflag;
184 	int error, allerror = 0;
185 	off_t osize;
186 
187 	if (length < 0)
188 		return (EINVAL);
189 	oip = VTOI(ovp);
190 	if (ovp->v_type == VLNK &&
191 	    (oip->i_ffs_size < ovp->v_mount->mnt_maxsymlinklen ||
192 	     (ovp->v_mount->mnt_maxsymlinklen == 0 &&
193 	      oip->i_din.ffs_din.di_blocks == 0))) {
194 		KDASSERT(length == 0);
195 		memset(&oip->i_ffs_shortlink, 0, (size_t)oip->i_ffs_size);
196 		oip->i_ffs_size = 0;
197 		oip->i_flag |= IN_CHANGE | IN_UPDATE;
198 		return (VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT));
199 	}
200 	if (oip->i_ffs_size == length) {
201 		oip->i_flag |= IN_CHANGE | IN_UPDATE;
202 		return (VOP_UPDATE(ovp, NULL, NULL, 0));
203 	}
204 #ifdef QUOTA
205 	if ((error = getinoquota(oip)) != 0)
206 		return (error);
207 #endif
208 	fs = oip->i_fs;
209 	if (length > fs->fs_maxfilesize)
210 		return (EFBIG);
211 
212 	osize = oip->i_ffs_size;
213 	ioflag = ap->a_flags;
214 	aflag = ioflag & IO_SYNC ? B_SYNC : 0;
215 
216 	/*
217 	 * Lengthen the size of the file. We must ensure that the
218 	 * last byte of the file is allocated. Since the smallest
219 	 * value of osize is 0, length will be at least 1.
220 	 */
221 
222 	if (osize < length) {
223 		if (lblkno(fs, osize) < NDADDR &&
224 		    lblkno(fs, osize) != lblkno(fs, length) &&
225 		    blkroundup(fs, osize) != osize) {
226 			error = ufs_balloc_range(ovp, osize,
227 			    blkroundup(fs, osize) - osize, ap->a_cred, aflag);
228 			if (error) {
229 				return error;
230 			}
231 			if (ioflag & IO_SYNC) {
232 				ovp->v_size = blkroundup(fs, osize);
233 				simple_lock(&ovp->v_interlock);
234 				VOP_PUTPAGES(ovp,
235 				    trunc_page(osize & ~(fs->fs_bsize - 1)),
236 				    round_page(ovp->v_size),
237 				    PGO_CLEANIT | PGO_SYNCIO);
238 			}
239 		}
240 		error = ufs_balloc_range(ovp, length - 1, 1, ap->a_cred,
241 		    aflag);
242 		if (error) {
243 			(void) VOP_TRUNCATE(ovp, osize, ioflag & IO_SYNC,
244 			    ap->a_cred, ap->a_p);
245 			return error;
246 		}
247 		uvm_vnp_setsize(ovp, length);
248 		oip->i_flag |= IN_CHANGE | IN_UPDATE;
249 		KASSERT(ovp->v_size == oip->i_ffs_size);
250 		return (VOP_UPDATE(ovp, NULL, NULL, 1));
251 	}
252 
253 	/*
254 	 * When truncating a regular file down to a non-block-aligned size,
255 	 * we must zero the part of last block which is past the new EOF.
256 	 * We must synchronously flush the zeroed pages to disk
257 	 * since the new pages will be invalidated as soon as we
258 	 * inform the VM system of the new, smaller size.
259 	 * We must do this before acquiring the GLOCK, since fetching
260 	 * the pages will acquire the GLOCK internally.
261 	 * So there is a window where another thread could see a whole
262 	 * zeroed page past EOF, but that's life.
263 	 */
264 
265 	offset = blkoff(fs, length);
266 	if (ovp->v_type == VREG && length < osize && offset != 0) {
267 		voff_t eoz;
268 
269 		error = ufs_balloc_range(ovp, length - 1, 1, ap->a_cred,
270 		    aflag);
271 		if (error) {
272 			return error;
273 		}
274 		size = blksize(fs, oip, lblkno(fs, length));
275 		eoz = MIN(lblktosize(fs, lblkno(fs, length)) + size, osize);
276 		uvm_vnp_zerorange(ovp, length, eoz - length);
277 		simple_lock(&ovp->v_interlock);
278 		error = VOP_PUTPAGES(ovp, trunc_page(length), round_page(eoz),
279 		    PGO_CLEANIT | PGO_DEACTIVATE | PGO_SYNCIO);
280 		if (error) {
281 			return error;
282 		}
283 	}
284 
285 	lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
286 
287 	if (DOINGSOFTDEP(ovp)) {
288 		if (length > 0) {
289 			/*
290 			 * If a file is only partially truncated, then
291 			 * we have to clean up the data structures
292 			 * describing the allocation past the truncation
293 			 * point. Finding and deallocating those structures
294 			 * is a lot of work. Since partial truncation occurs
295 			 * rarely, we solve the problem by syncing the file
296 			 * so that it will have no data structures left.
297 			 */
298 			if ((error = VOP_FSYNC(ovp, ap->a_cred, FSYNC_WAIT,
299 			    0, 0, ap->a_p)) != 0) {
300 				lockmgr(&gp->g_glock, LK_RELEASE, NULL);
301 				return (error);
302 			if (oip->i_flag & IN_SPACECOUNTED)
303 				fs->fs_pendingblocks -= oip->i_ffs_blocks;
304 			}
305 		} else {
306 			uvm_vnp_setsize(ovp, length);
307 #ifdef QUOTA
308  			(void) chkdq(oip, -oip->i_ffs_blocks, NOCRED, 0);
309 #endif
310 			softdep_setup_freeblocks(oip, length);
311 			(void) vinvalbuf(ovp, 0, ap->a_cred, ap->a_p, 0, 0);
312 			lockmgr(&gp->g_glock, LK_RELEASE, NULL);
313 			oip->i_flag |= IN_CHANGE | IN_UPDATE;
314 			return (VOP_UPDATE(ovp, NULL, NULL, 0));
315 		}
316 	}
317 	oip->i_ffs_size = length;
318 	uvm_vnp_setsize(ovp, length);
319 	/*
320 	 * Calculate index into inode's block list of
321 	 * last direct and indirect blocks (if any)
322 	 * which we want to keep.  Lastblock is -1 when
323 	 * the file is truncated to 0.
324 	 */
325 	lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
326 	lastiblock[SINGLE] = lastblock - NDADDR;
327 	lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
328 	lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
329 	nblocks = btodb(fs->fs_bsize);
330 	/*
331 	 * Update file and block pointers on disk before we start freeing
332 	 * blocks.  If we crash before free'ing blocks below, the blocks
333 	 * will be returned to the free list.  lastiblock values are also
334 	 * normalized to -1 for calls to ffs_indirtrunc below.
335 	 */
336 	memcpy((caddr_t)oldblks, (caddr_t)&oip->i_ffs_db[0], sizeof oldblks);
337 	for (level = TRIPLE; level >= SINGLE; level--)
338 		if (lastiblock[level] < 0) {
339 			oip->i_ffs_ib[level] = 0;
340 			lastiblock[level] = -1;
341 		}
342 	for (i = NDADDR - 1; i > lastblock; i--)
343 		oip->i_ffs_db[i] = 0;
344 	oip->i_flag |= IN_CHANGE | IN_UPDATE;
345 	error = VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT);
346 	if (error && !allerror)
347 		allerror = error;
348 
349 	/*
350 	 * Having written the new inode to disk, save its new configuration
351 	 * and put back the old block pointers long enough to process them.
352 	 * Note that we save the new block configuration so we can check it
353 	 * when we are done.
354 	 */
355 	memcpy((caddr_t)newblks, (caddr_t)&oip->i_ffs_db[0], sizeof newblks);
356 	memcpy((caddr_t)&oip->i_ffs_db[0], (caddr_t)oldblks, sizeof oldblks);
357 	oip->i_ffs_size = osize;
358 	error = vtruncbuf(ovp, lastblock + 1, 0, 0);
359 	if (error && !allerror)
360 		allerror = error;
361 
362 	/*
363 	 * Indirect blocks first.
364 	 */
365 	indir_lbn[SINGLE] = -NDADDR;
366 	indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
367 	indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
368 	for (level = TRIPLE; level >= SINGLE; level--) {
369 		bn = ufs_rw32(oip->i_ffs_ib[level], UFS_FSNEEDSWAP(fs));
370 		if (bn != 0) {
371 			error = ffs_indirtrunc(oip, indir_lbn[level],
372 			    fsbtodb(fs, bn), lastiblock[level], level, &count);
373 			if (error)
374 				allerror = error;
375 			blocksreleased += count;
376 			if (lastiblock[level] < 0) {
377 				oip->i_ffs_ib[level] = 0;
378 				ffs_blkfree(oip, bn, fs->fs_bsize);
379 				blocksreleased += nblocks;
380 			}
381 		}
382 		if (lastiblock[level] >= 0)
383 			goto done;
384 	}
385 
386 	/*
387 	 * All whole direct blocks or frags.
388 	 */
389 	for (i = NDADDR - 1; i > lastblock; i--) {
390 		long bsize;
391 
392 		bn = ufs_rw32(oip->i_ffs_db[i], UFS_FSNEEDSWAP(fs));
393 		if (bn == 0)
394 			continue;
395 		oip->i_ffs_db[i] = 0;
396 		bsize = blksize(fs, oip, i);
397 		ffs_blkfree(oip, bn, bsize);
398 		blocksreleased += btodb(bsize);
399 	}
400 	if (lastblock < 0)
401 		goto done;
402 
403 	/*
404 	 * Finally, look for a change in size of the
405 	 * last direct block; release any frags.
406 	 */
407 	bn = ufs_rw32(oip->i_ffs_db[lastblock], UFS_FSNEEDSWAP(fs));
408 	if (bn != 0) {
409 		long oldspace, newspace;
410 
411 		/*
412 		 * Calculate amount of space we're giving
413 		 * back as old block size minus new block size.
414 		 */
415 		oldspace = blksize(fs, oip, lastblock);
416 		oip->i_ffs_size = length;
417 		newspace = blksize(fs, oip, lastblock);
418 		if (newspace == 0)
419 			panic("itrunc: newspace");
420 		if (oldspace - newspace > 0) {
421 			/*
422 			 * Block number of space to be free'd is
423 			 * the old block # plus the number of frags
424 			 * required for the storage we're keeping.
425 			 */
426 			bn += numfrags(fs, newspace);
427 			ffs_blkfree(oip, bn, oldspace - newspace);
428 			blocksreleased += btodb(oldspace - newspace);
429 		}
430 	}
431 
432 done:
433 #ifdef DIAGNOSTIC
434 	for (level = SINGLE; level <= TRIPLE; level++)
435 		if (newblks[NDADDR + level] != oip->i_ffs_ib[level])
436 			panic("itrunc1");
437 	for (i = 0; i < NDADDR; i++)
438 		if (newblks[i] != oip->i_ffs_db[i])
439 			panic("itrunc2");
440 	if (length == 0 &&
441 	    (!LIST_EMPTY(&ovp->v_cleanblkhd) || !LIST_EMPTY(&ovp->v_dirtyblkhd)))
442 		panic("itrunc3");
443 #endif /* DIAGNOSTIC */
444 	/*
445 	 * Put back the real size.
446 	 */
447 	oip->i_ffs_size = length;
448 	oip->i_ffs_blocks -= blocksreleased;
449 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
450 	oip->i_flag |= IN_CHANGE;
451 #ifdef QUOTA
452 	(void) chkdq(oip, -blocksreleased, NOCRED, 0);
453 #endif
454 	KASSERT(ovp->v_type != VREG || ovp->v_size == oip->i_ffs_size);
455 	return (allerror);
456 }
457 
458 /*
459  * Release blocks associated with the inode ip and stored in the indirect
460  * block bn.  Blocks are free'd in LIFO order up to (but not including)
461  * lastbn.  If level is greater than SINGLE, the block is an indirect block
462  * and recursive calls to indirtrunc must be used to cleanse other indirect
463  * blocks.
464  *
465  * NB: triple indirect blocks are untested.
466  */
467 static int
468 ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp)
469 	struct inode *ip;
470 	ufs_daddr_t lbn, lastbn;
471 	ufs_daddr_t dbn;
472 	int level;
473 	long *countp;
474 {
475 	int i;
476 	struct buf *bp;
477 	struct fs *fs = ip->i_fs;
478 	ufs_daddr_t *bap;
479 	struct vnode *vp;
480 	ufs_daddr_t *copy = NULL, nb, nlbn, last;
481 	long blkcount, factor;
482 	int nblocks, blocksreleased = 0;
483 	int error = 0, allerror = 0;
484 
485 	/*
486 	 * Calculate index in current block of last
487 	 * block to be kept.  -1 indicates the entire
488 	 * block so we need not calculate the index.
489 	 */
490 	factor = 1;
491 	for (i = SINGLE; i < level; i++)
492 		factor *= NINDIR(fs);
493 	last = lastbn;
494 	if (lastbn > 0)
495 		last /= factor;
496 	nblocks = btodb(fs->fs_bsize);
497 	/*
498 	 * Get buffer of block pointers, zero those entries corresponding
499 	 * to blocks to be free'd, and update on disk copy first.  Since
500 	 * double(triple) indirect before single(double) indirect, calls
501 	 * to bmap on these blocks will fail.  However, we already have
502 	 * the on disk address, so we have to set the b_blkno field
503 	 * explicitly instead of letting bread do everything for us.
504 	 */
505 	vp = ITOV(ip);
506 	bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0);
507 	if (bp->b_flags & (B_DONE | B_DELWRI)) {
508 		/* Braces must be here in case trace evaluates to nothing. */
509 		trace(TR_BREADHIT, pack(vp, fs->fs_bsize), lbn);
510 	} else {
511 		trace(TR_BREADMISS, pack(vp, fs->fs_bsize), lbn);
512 		curproc->p_stats->p_ru.ru_inblock++;	/* pay for read */
513 		bp->b_flags |= B_READ;
514 		if (bp->b_bcount > bp->b_bufsize)
515 			panic("ffs_indirtrunc: bad buffer size");
516 		bp->b_blkno = dbn;
517 		VOP_STRATEGY(bp);
518 		error = biowait(bp);
519 	}
520 	if (error) {
521 		brelse(bp);
522 		*countp = 0;
523 		return (error);
524 	}
525 
526 	bap = (ufs_daddr_t *)bp->b_data;
527 	if (lastbn >= 0) {
528 		copy = (ufs_daddr_t *) malloc(fs->fs_bsize, M_TEMP, M_WAITOK);
529 		memcpy((caddr_t)copy, (caddr_t)bap, (u_int)fs->fs_bsize);
530 		memset((caddr_t)&bap[last + 1], 0,
531 		  (u_int)(NINDIR(fs) - (last + 1)) * sizeof (ufs_daddr_t));
532 		error = bwrite(bp);
533 		if (error)
534 			allerror = error;
535 		bap = copy;
536 	}
537 
538 	/*
539 	 * Recursively free totally unused blocks.
540 	 */
541 	for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
542 	    i--, nlbn += factor) {
543 		nb = ufs_rw32(bap[i], UFS_FSNEEDSWAP(fs));
544 		if (nb == 0)
545 			continue;
546 		if (level > SINGLE) {
547 			error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
548 					       (ufs_daddr_t)-1, level - 1,
549 					       &blkcount);
550 			if (error)
551 				allerror = error;
552 			blocksreleased += blkcount;
553 		}
554 		ffs_blkfree(ip, nb, fs->fs_bsize);
555 		blocksreleased += nblocks;
556 	}
557 
558 	/*
559 	 * Recursively free last partial block.
560 	 */
561 	if (level > SINGLE && lastbn >= 0) {
562 		last = lastbn % factor;
563 		nb = ufs_rw32(bap[i], UFS_FSNEEDSWAP(fs));
564 		if (nb != 0) {
565 			error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
566 					       last, level - 1, &blkcount);
567 			if (error)
568 				allerror = error;
569 			blocksreleased += blkcount;
570 		}
571 	}
572 
573 	if (copy != NULL) {
574 		FREE(copy, M_TEMP);
575 	} else {
576 		bp->b_flags |= B_INVAL;
577 		brelse(bp);
578 	}
579 
580 	*countp = blocksreleased;
581 	return (allerror);
582 }
583