xref: /netbsd/sys/ufs/ffs/ffs_vfsops.c (revision 6550d01e)
1 /*	$NetBSD: ffs_vfsops.c,v 1.263 2010/12/27 18:49:42 hannken Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Wasabi Systems, Inc, and by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1989, 1991, 1993, 1994
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)ffs_vfsops.c	8.31 (Berkeley) 5/20/95
61  */
62 
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.263 2010/12/27 18:49:42 hannken Exp $");
65 
66 #if defined(_KERNEL_OPT)
67 #include "opt_ffs.h"
68 #include "opt_quota.h"
69 #include "opt_wapbl.h"
70 #endif
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/proc.h>
76 #include <sys/kernel.h>
77 #include <sys/vnode.h>
78 #include <sys/socket.h>
79 #include <sys/mount.h>
80 #include <sys/buf.h>
81 #include <sys/device.h>
82 #include <sys/mbuf.h>
83 #include <sys/file.h>
84 #include <sys/disklabel.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/lock.h>
90 #include <sys/sysctl.h>
91 #include <sys/conf.h>
92 #include <sys/kauth.h>
93 #include <sys/wapbl.h>
94 #include <sys/fstrans.h>
95 #include <sys/module.h>
96 
97 #include <miscfs/genfs/genfs.h>
98 #include <miscfs/specfs/specdev.h>
99 
100 #include <ufs/ufs/quota.h>
101 #include <ufs/ufs/ufsmount.h>
102 #include <ufs/ufs/inode.h>
103 #include <ufs/ufs/dir.h>
104 #include <ufs/ufs/ufs_extern.h>
105 #include <ufs/ufs/ufs_bswap.h>
106 #include <ufs/ufs/ufs_wapbl.h>
107 
108 #include <ufs/ffs/fs.h>
109 #include <ufs/ffs/ffs_extern.h>
110 
111 MODULE(MODULE_CLASS_VFS, ffs, NULL);
112 
113 static int	ffs_vfs_fsync(vnode_t *, int);
114 
115 static struct sysctllog *ffs_sysctl_log;
116 
117 /* how many times ffs_init() was called */
118 int ffs_initcount = 0;
119 
120 extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
121 extern const struct vnodeopv_desc ffs_specop_opv_desc;
122 extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
123 
124 const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
125 	&ffs_vnodeop_opv_desc,
126 	&ffs_specop_opv_desc,
127 	&ffs_fifoop_opv_desc,
128 	NULL,
129 };
130 
131 struct vfsops ffs_vfsops = {
132 	MOUNT_FFS,
133 	sizeof (struct ufs_args),
134 	ffs_mount,
135 	ufs_start,
136 	ffs_unmount,
137 	ufs_root,
138 	ufs_quotactl,
139 	ffs_statvfs,
140 	ffs_sync,
141 	ffs_vget,
142 	ffs_fhtovp,
143 	ffs_vptofh,
144 	ffs_init,
145 	ffs_reinit,
146 	ffs_done,
147 	ffs_mountroot,
148 	ffs_snapshot,
149 	ffs_extattrctl,
150 	ffs_suspendctl,
151 	genfs_renamelock_enter,
152 	genfs_renamelock_exit,
153 	ffs_vfs_fsync,
154 	ffs_vnodeopv_descs,
155 	0,
156 	{ NULL, NULL },
157 };
158 
159 static const struct genfs_ops ffs_genfsops = {
160 	.gop_size = ffs_gop_size,
161 	.gop_alloc = ufs_gop_alloc,
162 	.gop_write = genfs_gop_write,
163 	.gop_markupdate = ufs_gop_markupdate,
164 };
165 
166 static const struct ufs_ops ffs_ufsops = {
167 	.uo_itimes = ffs_itimes,
168 	.uo_update = ffs_update,
169 	.uo_truncate = ffs_truncate,
170 	.uo_valloc = ffs_valloc,
171 	.uo_vfree = ffs_vfree,
172 	.uo_balloc = ffs_balloc,
173 	.uo_unmark_vnode = (void (*)(vnode_t *))nullop,
174 };
175 
176 static int
177 ffs_modcmd(modcmd_t cmd, void *arg)
178 {
179 	int error;
180 
181 #if 0
182 	extern int doasyncfree;
183 #endif
184 	extern int ffs_log_changeopt;
185 
186 	switch (cmd) {
187 	case MODULE_CMD_INIT:
188 		error = vfs_attach(&ffs_vfsops);
189 		if (error != 0)
190 			break;
191 
192 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
193 			       CTLFLAG_PERMANENT,
194 			       CTLTYPE_NODE, "vfs", NULL,
195 			       NULL, 0, NULL, 0,
196 			       CTL_VFS, CTL_EOL);
197 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
198 			       CTLFLAG_PERMANENT,
199 			       CTLTYPE_NODE, "ffs",
200 			       SYSCTL_DESCR("Berkeley Fast File System"),
201 			       NULL, 0, NULL, 0,
202 			       CTL_VFS, 1, CTL_EOL);
203 
204 		/*
205 		 * @@@ should we even bother with these first three?
206 		 */
207 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
208 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
209 			       CTLTYPE_INT, "doclusterread", NULL,
210 			       sysctl_notavail, 0, NULL, 0,
211 			       CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
212 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
213 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
214 			       CTLTYPE_INT, "doclusterwrite", NULL,
215 			       sysctl_notavail, 0, NULL, 0,
216 			       CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
217 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
218 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
219 			       CTLTYPE_INT, "doreallocblks", NULL,
220 			       sysctl_notavail, 0, NULL, 0,
221 			       CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
222 #if 0
223 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
224 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
225 			       CTLTYPE_INT, "doasyncfree",
226 			       SYSCTL_DESCR("Release dirty blocks asynchronously"),
227 			       NULL, 0, &doasyncfree, 0,
228 			       CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
229 #endif
230 		sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
231 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
232 			       CTLTYPE_INT, "log_changeopt",
233 			       SYSCTL_DESCR("Log changes in optimization strategy"),
234 			       NULL, 0, &ffs_log_changeopt, 0,
235 			       CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
236 		break;
237 	case MODULE_CMD_FINI:
238 		error = vfs_detach(&ffs_vfsops);
239 		if (error != 0)
240 			break;
241 		sysctl_teardown(&ffs_sysctl_log);
242 		break;
243 	default:
244 		error = ENOTTY;
245 		break;
246 	}
247 
248 	return (error);
249 }
250 
251 pool_cache_t ffs_inode_cache;
252 pool_cache_t ffs_dinode1_cache;
253 pool_cache_t ffs_dinode2_cache;
254 
255 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
256 static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
257 
258 /*
259  * Called by main() when ffs is going to be mounted as root.
260  */
261 
262 int
263 ffs_mountroot(void)
264 {
265 	struct fs *fs;
266 	struct mount *mp;
267 	struct lwp *l = curlwp;			/* XXX */
268 	struct ufsmount *ump;
269 	int error;
270 
271 	if (device_class(root_device) != DV_DISK)
272 		return (ENODEV);
273 
274 	if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
275 		vrele(rootvp);
276 		return (error);
277 	}
278 
279 	/*
280 	 * We always need to be able to mount the root file system.
281 	 */
282 	mp->mnt_flag |= MNT_FORCE;
283 	if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
284 		vfs_unbusy(mp, false, NULL);
285 		vfs_destroy(mp);
286 		return (error);
287 	}
288 	mp->mnt_flag &= ~MNT_FORCE;
289 	mutex_enter(&mountlist_lock);
290 	CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
291 	mutex_exit(&mountlist_lock);
292 	ump = VFSTOUFS(mp);
293 	fs = ump->um_fs;
294 	memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
295 	(void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
296 	(void)ffs_statvfs(mp, &mp->mnt_stat);
297 	vfs_unbusy(mp, false, NULL);
298 	setrootfstime((time_t)fs->fs_time);
299 	return (0);
300 }
301 
302 /*
303  * VFS Operations.
304  *
305  * mount system call
306  */
307 int
308 ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
309 {
310 	struct lwp *l = curlwp;
311 	struct vnode *devvp = NULL;
312 	struct ufs_args *args = data;
313 	struct ufsmount *ump = NULL;
314 	struct fs *fs;
315 	int error = 0, flags, update;
316 	mode_t accessmode;
317 
318 	if (*data_len < sizeof *args)
319 		return EINVAL;
320 
321 	if (mp->mnt_flag & MNT_GETARGS) {
322 		ump = VFSTOUFS(mp);
323 		if (ump == NULL)
324 			return EIO;
325 		args->fspec = NULL;
326 		*data_len = sizeof *args;
327 		return 0;
328 	}
329 
330 	update = mp->mnt_flag & MNT_UPDATE;
331 
332 	/* Check arguments */
333 	if (args->fspec != NULL) {
334 		/*
335 		 * Look up the name and verify that it's sane.
336 		 */
337 		error = namei_simple_user(args->fspec,
338 					NSM_FOLLOW_NOEMULROOT, &devvp);
339 		if (error != 0)
340 			return (error);
341 
342 		if (!update) {
343 			/*
344 			 * Be sure this is a valid block device
345 			 */
346 			if (devvp->v_type != VBLK)
347 				error = ENOTBLK;
348 			else if (bdevsw_lookup(devvp->v_rdev) == NULL)
349 				error = ENXIO;
350 		} else {
351 			/*
352 			 * Be sure we're still naming the same device
353 			 * used for our initial mount
354 			 */
355 			ump = VFSTOUFS(mp);
356 			if (devvp != ump->um_devvp) {
357 				if (devvp->v_rdev != ump->um_devvp->v_rdev)
358 					error = EINVAL;
359 				else {
360 					vrele(devvp);
361 					devvp = ump->um_devvp;
362 					vref(devvp);
363 				}
364 			}
365 		}
366 	} else {
367 		if (!update) {
368 			/* New mounts must have a filename for the device */
369 			return (EINVAL);
370 		} else {
371 			/* Use the extant mount */
372 			ump = VFSTOUFS(mp);
373 			devvp = ump->um_devvp;
374 			vref(devvp);
375 		}
376 	}
377 
378 	/*
379 	 * If mount by non-root, then verify that user has necessary
380 	 * permissions on the device.
381 	 *
382 	 * Permission to update a mount is checked higher, so here we presume
383 	 * updating the mount is okay (for example, as far as securelevel goes)
384 	 * which leaves us with the normal check.
385 	 */
386 	if (error == 0) {
387 		accessmode = VREAD;
388 		if (update ?
389 		    (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
390 		    (mp->mnt_flag & MNT_RDONLY) == 0)
391 			accessmode |= VWRITE;
392 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
393 		error = genfs_can_mount(devvp, accessmode, l->l_cred);
394 		VOP_UNLOCK(devvp);
395 	}
396 
397 	if (error) {
398 		vrele(devvp);
399 		return (error);
400 	}
401 
402 #ifdef WAPBL
403 	/* WAPBL can only be enabled on a r/w mount. */
404 	if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) {
405 		mp->mnt_flag &= ~MNT_LOG;
406 	}
407 #else /* !WAPBL */
408 	mp->mnt_flag &= ~MNT_LOG;
409 #endif /* !WAPBL */
410 
411 	if (!update) {
412 		int xflags;
413 
414 		if (mp->mnt_flag & MNT_RDONLY)
415 			xflags = FREAD;
416 		else
417 			xflags = FREAD | FWRITE;
418 		error = VOP_OPEN(devvp, xflags, FSCRED);
419 		if (error)
420 			goto fail;
421 		error = ffs_mountfs(devvp, mp, l);
422 		if (error) {
423 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
424 			(void)VOP_CLOSE(devvp, xflags, NOCRED);
425 			VOP_UNLOCK(devvp);
426 			goto fail;
427 		}
428 
429 		ump = VFSTOUFS(mp);
430 		fs = ump->um_fs;
431 	} else {
432 		/*
433 		 * Update the mount.
434 		 */
435 
436 		/*
437 		 * The initial mount got a reference on this
438 		 * device, so drop the one obtained via
439 		 * namei(), above.
440 		 */
441 		vrele(devvp);
442 
443 		ump = VFSTOUFS(mp);
444 		fs = ump->um_fs;
445 		if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
446 			/*
447 			 * Changing from r/w to r/o
448 			 */
449 			flags = WRITECLOSE;
450 			if (mp->mnt_flag & MNT_FORCE)
451 				flags |= FORCECLOSE;
452 			error = ffs_flushfiles(mp, flags, l);
453 			if (error == 0)
454 				error = UFS_WAPBL_BEGIN(mp);
455 			if (error == 0 &&
456 			    ffs_cgupdate(ump, MNT_WAIT) == 0 &&
457 			    fs->fs_clean & FS_WASCLEAN) {
458 				if (mp->mnt_flag & MNT_SOFTDEP)
459 					fs->fs_flags &= ~FS_DOSOFTDEP;
460 				fs->fs_clean = FS_ISCLEAN;
461 				(void) ffs_sbupdate(ump, MNT_WAIT);
462 			}
463 			if (error == 0)
464 				UFS_WAPBL_END(mp);
465 			if (error)
466 				return (error);
467 		}
468 
469 #ifdef WAPBL
470 		if ((mp->mnt_flag & MNT_LOG) == 0) {
471 			error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
472 			if (error)
473 				return error;
474 		}
475 #endif /* WAPBL */
476 
477 		if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
478 			/*
479 			 * Finish change from r/w to r/o
480 			 */
481 			fs->fs_ronly = 1;
482 			fs->fs_fmod = 0;
483 		}
484 
485 		if (mp->mnt_flag & MNT_RELOAD) {
486 			error = ffs_reload(mp, l->l_cred, l);
487 			if (error)
488 				return (error);
489 		}
490 
491 		if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
492 			/*
493 			 * Changing from read-only to read/write
494 			 */
495 			fs->fs_ronly = 0;
496 			fs->fs_clean <<= 1;
497 			fs->fs_fmod = 1;
498 #ifdef WAPBL
499 			if (fs->fs_flags & FS_DOWAPBL) {
500 				printf("%s: replaying log to disk\n",
501 				    fs->fs_fsmnt);
502 				KDASSERT(mp->mnt_wapbl_replay);
503 				error = wapbl_replay_write(mp->mnt_wapbl_replay,
504 							   devvp);
505 				if (error) {
506 					return error;
507 				}
508 				wapbl_replay_stop(mp->mnt_wapbl_replay);
509 				fs->fs_clean = FS_WASCLEAN;
510 			}
511 #endif /* WAPBL */
512 			if (fs->fs_snapinum[0] != 0)
513 				ffs_snapshot_mount(mp);
514 		}
515 
516 #ifdef WAPBL
517 		error = ffs_wapbl_start(mp);
518 		if (error)
519 			return error;
520 #endif /* WAPBL */
521 
522 		if (args->fspec == NULL)
523 			return 0;
524 	}
525 
526 	error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
527 	    UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
528 	if (error == 0)
529 		(void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
530 		    sizeof(fs->fs_fsmnt));
531 	fs->fs_flags &= ~FS_DOSOFTDEP;
532 	if (fs->fs_fmod != 0) {	/* XXX */
533 		int err;
534 
535 		fs->fs_fmod = 0;
536 		if (fs->fs_clean & FS_WASCLEAN)
537 			fs->fs_time = time_second;
538 		else {
539 			printf("%s: file system not clean (fs_clean=%#x); "
540 			    "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
541 			    fs->fs_clean);
542 			printf("%s: lost blocks %" PRId64 " files %d\n",
543 			    mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
544 			    fs->fs_pendinginodes);
545 		}
546 		err = UFS_WAPBL_BEGIN(mp);
547 		if (err == 0) {
548 			(void) ffs_cgupdate(ump, MNT_WAIT);
549 			UFS_WAPBL_END(mp);
550 		}
551 	}
552 	if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
553 		printf("%s: `-o softdep' is no longer supported, "
554 		    "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
555 		mp->mnt_flag &= ~MNT_SOFTDEP;
556 	}
557 
558 	return (error);
559 
560 fail:
561 	vrele(devvp);
562 	return (error);
563 }
564 
565 /*
566  * Reload all incore data for a filesystem (used after running fsck on
567  * the root filesystem and finding things to fix). The filesystem must
568  * be mounted read-only.
569  *
570  * Things to do to update the mount:
571  *	1) invalidate all cached meta-data.
572  *	2) re-read superblock from disk.
573  *	3) re-read summary information from disk.
574  *	4) invalidate all inactive vnodes.
575  *	5) invalidate all cached file data.
576  *	6) re-read inode data for all active vnodes.
577  */
578 int
579 ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
580 {
581 	struct vnode *vp, *mvp, *devvp;
582 	struct inode *ip;
583 	void *space;
584 	struct buf *bp;
585 	struct fs *fs, *newfs;
586 	struct partinfo dpart;
587 	int i, bsize, blks, error;
588 	int32_t *lp;
589 	struct ufsmount *ump;
590 	daddr_t sblockloc;
591 
592 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
593 		return (EINVAL);
594 
595 	ump = VFSTOUFS(mp);
596 	/*
597 	 * Step 1: invalidate all cached meta-data.
598 	 */
599 	devvp = ump->um_devvp;
600 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
601 	error = vinvalbuf(devvp, 0, cred, l, 0, 0);
602 	VOP_UNLOCK(devvp);
603 	if (error)
604 		panic("ffs_reload: dirty1");
605 	/*
606 	 * Step 2: re-read superblock from disk.
607 	 */
608 	fs = ump->um_fs;
609 
610 	/* XXX we don't handle possibility that superblock moved. */
611 	error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs->fs_sbsize,
612 		      NOCRED, 0, &bp);
613 	if (error) {
614 		brelse(bp, 0);
615 		return (error);
616 	}
617 	newfs = malloc(fs->fs_sbsize, M_UFSMNT, M_WAITOK);
618 	memcpy(newfs, bp->b_data, fs->fs_sbsize);
619 #ifdef FFS_EI
620 	if (ump->um_flags & UFS_NEEDSWAP) {
621 		ffs_sb_swap((struct fs*)bp->b_data, newfs);
622 		fs->fs_flags |= FS_SWAPPED;
623 	} else
624 #endif
625 		fs->fs_flags &= ~FS_SWAPPED;
626 	if ((newfs->fs_magic != FS_UFS1_MAGIC &&
627 	     newfs->fs_magic != FS_UFS2_MAGIC)||
628 	     newfs->fs_bsize > MAXBSIZE ||
629 	     newfs->fs_bsize < sizeof(struct fs)) {
630 		brelse(bp, 0);
631 		free(newfs, M_UFSMNT);
632 		return (EIO);		/* XXX needs translation */
633 	}
634 	/* Store off old fs_sblockloc for fs_oldfscompat_read. */
635 	sblockloc = fs->fs_sblockloc;
636 	/*
637 	 * Copy pointer fields back into superblock before copying in	XXX
638 	 * new superblock. These should really be in the ufsmount.	XXX
639 	 * Note that important parameters (eg fs_ncg) are unchanged.
640 	 */
641 	newfs->fs_csp = fs->fs_csp;
642 	newfs->fs_maxcluster = fs->fs_maxcluster;
643 	newfs->fs_contigdirs = fs->fs_contigdirs;
644 	newfs->fs_ronly = fs->fs_ronly;
645 	newfs->fs_active = fs->fs_active;
646 	memcpy(fs, newfs, (u_int)fs->fs_sbsize);
647 	brelse(bp, 0);
648 	free(newfs, M_UFSMNT);
649 
650 	/* Recheck for apple UFS filesystem */
651 	ump->um_flags &= ~UFS_ISAPPLEUFS;
652 	/* First check to see if this is tagged as an Apple UFS filesystem
653 	 * in the disklabel
654 	 */
655 	if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
656 		(dpart.part->p_fstype == FS_APPLEUFS)) {
657 		ump->um_flags |= UFS_ISAPPLEUFS;
658 	}
659 #ifdef APPLE_UFS
660 	else {
661 		/* Manually look for an apple ufs label, and if a valid one
662 		 * is found, then treat it like an Apple UFS filesystem anyway
663 		 */
664 		error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
665 			APPLEUFS_LABEL_SIZE, cred, 0, &bp);
666 		if (error) {
667 			brelse(bp, 0);
668 			return (error);
669 		}
670 		error = ffs_appleufs_validate(fs->fs_fsmnt,
671 			(struct appleufslabel *)bp->b_data, NULL);
672 		if (error == 0)
673 			ump->um_flags |= UFS_ISAPPLEUFS;
674 		brelse(bp, 0);
675 		bp = NULL;
676 	}
677 #else
678 	if (ump->um_flags & UFS_ISAPPLEUFS)
679 		return (EIO);
680 #endif
681 
682 	if (UFS_MPISAPPLEUFS(ump)) {
683 		/* see comment about NeXT below */
684 		ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
685 		ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
686 		mp->mnt_iflag |= IMNT_DTYPE;
687 	} else {
688 		ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
689 		ump->um_dirblksiz = DIRBLKSIZ;
690 		if (ump->um_maxsymlinklen > 0)
691 			mp->mnt_iflag |= IMNT_DTYPE;
692 		else
693 			mp->mnt_iflag &= ~IMNT_DTYPE;
694 	}
695 	ffs_oldfscompat_read(fs, ump, sblockloc);
696 
697 	mutex_enter(&ump->um_lock);
698 	ump->um_maxfilesize = fs->fs_maxfilesize;
699 	if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
700 		uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
701 		    mp->mnt_stat.f_mntonname, fs->fs_flags,
702 		    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
703 		if ((mp->mnt_flag & MNT_FORCE) == 0) {
704 			mutex_exit(&ump->um_lock);
705 			return (EINVAL);
706 		}
707 	}
708 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
709 		fs->fs_pendingblocks = 0;
710 		fs->fs_pendinginodes = 0;
711 	}
712 	mutex_exit(&ump->um_lock);
713 
714 	ffs_statvfs(mp, &mp->mnt_stat);
715 	/*
716 	 * Step 3: re-read summary information from disk.
717 	 */
718 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
719 	space = fs->fs_csp;
720 	for (i = 0; i < blks; i += fs->fs_frag) {
721 		bsize = fs->fs_bsize;
722 		if (i + fs->fs_frag > blks)
723 			bsize = (blks - i) * fs->fs_fsize;
724 		error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize,
725 			      NOCRED, 0, &bp);
726 		if (error) {
727 			brelse(bp, 0);
728 			return (error);
729 		}
730 #ifdef FFS_EI
731 		if (UFS_FSNEEDSWAP(fs))
732 			ffs_csum_swap((struct csum *)bp->b_data,
733 			    (struct csum *)space, bsize);
734 		else
735 #endif
736 			memcpy(space, bp->b_data, (size_t)bsize);
737 		space = (char *)space + bsize;
738 		brelse(bp, 0);
739 	}
740 	if (fs->fs_snapinum[0] != 0)
741 		ffs_snapshot_mount(mp);
742 	/*
743 	 * We no longer know anything about clusters per cylinder group.
744 	 */
745 	if (fs->fs_contigsumsize > 0) {
746 		lp = fs->fs_maxcluster;
747 		for (i = 0; i < fs->fs_ncg; i++)
748 			*lp++ = fs->fs_contigsumsize;
749 	}
750 
751 	/* Allocate a marker vnode. */
752 	if ((mvp = vnalloc(mp)) == NULL)
753 		return ENOMEM;
754 	/*
755 	 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
756 	 * and vclean() can be called indirectly
757 	 */
758 	mutex_enter(&mntvnode_lock);
759  loop:
760 	for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = vunmark(mvp)) {
761 		vmark(mvp, vp);
762 		if (vp->v_mount != mp || vismarker(vp))
763 			continue;
764 		/*
765 		 * Step 4: invalidate all inactive vnodes.
766 		 */
767 		if (vrecycle(vp, &mntvnode_lock, l)) {
768 			mutex_enter(&mntvnode_lock);
769 			(void)vunmark(mvp);
770 			goto loop;
771 		}
772 		/*
773 		 * Step 5: invalidate all cached file data.
774 		 */
775 		mutex_enter(&vp->v_interlock);
776 		mutex_exit(&mntvnode_lock);
777 		if (vget(vp, LK_EXCLUSIVE)) {
778 			(void)vunmark(mvp);
779 			goto loop;
780 		}
781 		if (vinvalbuf(vp, 0, cred, l, 0, 0))
782 			panic("ffs_reload: dirty2");
783 		/*
784 		 * Step 6: re-read inode data for all active vnodes.
785 		 */
786 		ip = VTOI(vp);
787 		error = bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
788 			      (int)fs->fs_bsize, NOCRED, 0, &bp);
789 		if (error) {
790 			brelse(bp, 0);
791 			vput(vp);
792 			(void)vunmark(mvp);
793 			break;
794 		}
795 		ffs_load_inode(bp, ip, fs, ip->i_number);
796 		brelse(bp, 0);
797 		vput(vp);
798 		mutex_enter(&mntvnode_lock);
799 	}
800 	mutex_exit(&mntvnode_lock);
801 	vnfree(mvp);
802 	return (error);
803 }
804 
805 /*
806  * Possible superblock locations ordered from most to least likely.
807  */
808 static const int sblock_try[] = SBLOCKSEARCH;
809 
810 /*
811  * Common code for mount and mountroot
812  */
813 int
814 ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
815 {
816 	struct ufsmount *ump;
817 	struct buf *bp;
818 	struct fs *fs;
819 	dev_t dev;
820 	struct partinfo dpart;
821 	void *space;
822 	daddr_t sblockloc, fsblockloc;
823 	int blks, fstype;
824 	int error, i, bsize, ronly, bset = 0;
825 #ifdef FFS_EI
826 	int needswap = 0;		/* keep gcc happy */
827 #endif
828 	int32_t *lp;
829 	kauth_cred_t cred;
830 	u_int32_t sbsize = 8192;	/* keep gcc happy*/
831 	int32_t fsbsize;
832 
833 	dev = devvp->v_rdev;
834 	cred = l ? l->l_cred : NOCRED;
835 
836 	/* Flush out any old buffers remaining from a previous use. */
837 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
838 	error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
839 	VOP_UNLOCK(devvp);
840 	if (error)
841 		return (error);
842 
843 	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
844 
845 	bp = NULL;
846 	ump = NULL;
847 	fs = NULL;
848 	sblockloc = 0;
849 	fstype = 0;
850 
851 	error = fstrans_mount(mp);
852 	if (error)
853 		return error;
854 
855 	ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK);
856 	memset(ump, 0, sizeof *ump);
857 	mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
858 	error = ffs_snapshot_init(ump);
859 	if (error)
860 		goto out;
861 	ump->um_ops = &ffs_ufsops;
862 
863 #ifdef WAPBL
864  sbagain:
865 #endif
866 	/*
867 	 * Try reading the superblock in each of its possible locations.
868 	 */
869 	for (i = 0; ; i++) {
870 		if (bp != NULL) {
871 			brelse(bp, BC_NOCACHE);
872 			bp = NULL;
873 		}
874 		if (sblock_try[i] == -1) {
875 			error = EINVAL;
876 			fs = NULL;
877 			goto out;
878 		}
879 		error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE, cred,
880 			      0, &bp);
881 		if (error) {
882 			fs = NULL;
883 			goto out;
884 		}
885 		fs = (struct fs*)bp->b_data;
886 		fsblockloc = sblockloc = sblock_try[i];
887 		if (fs->fs_magic == FS_UFS1_MAGIC) {
888 			sbsize = fs->fs_sbsize;
889 			fstype = UFS1;
890 			fsbsize = fs->fs_bsize;
891 #ifdef FFS_EI
892 			needswap = 0;
893 		} else if (fs->fs_magic == bswap32(FS_UFS1_MAGIC)) {
894 			sbsize = bswap32(fs->fs_sbsize);
895 			fstype = UFS1;
896 			fsbsize = bswap32(fs->fs_bsize);
897 			needswap = 1;
898 #endif
899 		} else if (fs->fs_magic == FS_UFS2_MAGIC) {
900 			sbsize = fs->fs_sbsize;
901 			fstype = UFS2;
902 			fsbsize = fs->fs_bsize;
903 #ifdef FFS_EI
904 			needswap = 0;
905 		} else if (fs->fs_magic == bswap32(FS_UFS2_MAGIC)) {
906 			sbsize = bswap32(fs->fs_sbsize);
907 			fstype = UFS2;
908 			fsbsize = bswap32(fs->fs_bsize);
909 			needswap = 1;
910 #endif
911 		} else
912 			continue;
913 
914 
915 		/* fs->fs_sblockloc isn't defined for old filesystems */
916 		if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
917 			if (sblockloc == SBLOCK_UFS2)
918 				/*
919 				 * This is likely to be the first alternate
920 				 * in a filesystem with 64k blocks.
921 				 * Don't use it.
922 				 */
923 				continue;
924 			fsblockloc = sblockloc;
925 		} else {
926 			fsblockloc = fs->fs_sblockloc;
927 #ifdef FFS_EI
928 			if (needswap)
929 				fsblockloc = bswap64(fsblockloc);
930 #endif
931 		}
932 
933 		/* Check we haven't found an alternate superblock */
934 		if (fsblockloc != sblockloc)
935 			continue;
936 
937 		/* Validate size of superblock */
938 		if (sbsize > MAXBSIZE || sbsize < sizeof(struct fs))
939 			continue;
940 
941 		/* Check that we can handle the file system blocksize */
942 		if (fsbsize > MAXBSIZE) {
943 			printf("ffs_mountfs: block size (%d) > MAXBSIZE (%d)\n",
944 			    fsbsize, MAXBSIZE);
945 			continue;
946 		}
947 
948 		/* Ok seems to be a good superblock */
949 		break;
950 	}
951 
952 	fs = malloc((u_long)sbsize, M_UFSMNT, M_WAITOK);
953 	memcpy(fs, bp->b_data, sbsize);
954 	ump->um_fs = fs;
955 
956 #ifdef FFS_EI
957 	if (needswap) {
958 		ffs_sb_swap((struct fs*)bp->b_data, fs);
959 		fs->fs_flags |= FS_SWAPPED;
960 	} else
961 #endif
962 		fs->fs_flags &= ~FS_SWAPPED;
963 
964 #ifdef WAPBL
965 	if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
966 		error = ffs_wapbl_replay_start(mp, fs, devvp);
967 		if (error && (mp->mnt_flag & MNT_FORCE) == 0)
968 			goto out;
969 		if (!error) {
970 			if (!ronly) {
971 				/* XXX fsmnt may be stale. */
972 				printf("%s: replaying log to disk\n",
973 				    fs->fs_fsmnt);
974 				error = wapbl_replay_write(mp->mnt_wapbl_replay,
975 				    devvp);
976 				if (error)
977 					goto out;
978 				wapbl_replay_stop(mp->mnt_wapbl_replay);
979 				fs->fs_clean = FS_WASCLEAN;
980 			} else {
981 				/* XXX fsmnt may be stale */
982 				printf("%s: replaying log to memory\n",
983 				    fs->fs_fsmnt);
984 			}
985 
986 			/* Force a re-read of the superblock */
987 			brelse(bp, BC_INVAL);
988 			bp = NULL;
989 			free(fs, M_UFSMNT);
990 			fs = NULL;
991 			goto sbagain;
992 		}
993 	}
994 #else /* !WAPBL */
995 	if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
996 		error = EPERM;
997 		goto out;
998 	}
999 #endif /* !WAPBL */
1000 
1001 	ffs_oldfscompat_read(fs, ump, sblockloc);
1002 	ump->um_maxfilesize = fs->fs_maxfilesize;
1003 
1004 	if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
1005 		uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
1006 		    mp->mnt_stat.f_mntonname, fs->fs_flags,
1007 		    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
1008 		if ((mp->mnt_flag & MNT_FORCE) == 0) {
1009 			error = EINVAL;
1010 			goto out;
1011 		}
1012 	}
1013 
1014 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
1015 		fs->fs_pendingblocks = 0;
1016 		fs->fs_pendinginodes = 0;
1017 	}
1018 
1019 	ump->um_fstype = fstype;
1020 	if (fs->fs_sbsize < SBLOCKSIZE)
1021 		brelse(bp, BC_INVAL);
1022 	else
1023 		brelse(bp, 0);
1024 	bp = NULL;
1025 
1026 	/* First check to see if this is tagged as an Apple UFS filesystem
1027 	 * in the disklabel
1028 	 */
1029 	if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
1030 		(dpart.part->p_fstype == FS_APPLEUFS)) {
1031 		ump->um_flags |= UFS_ISAPPLEUFS;
1032 	}
1033 #ifdef APPLE_UFS
1034 	else {
1035 		/* Manually look for an apple ufs label, and if a valid one
1036 		 * is found, then treat it like an Apple UFS filesystem anyway
1037 		 */
1038 		error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
1039 			APPLEUFS_LABEL_SIZE, cred, 0, &bp);
1040 		if (error)
1041 			goto out;
1042 		error = ffs_appleufs_validate(fs->fs_fsmnt,
1043 			(struct appleufslabel *)bp->b_data, NULL);
1044 		if (error == 0) {
1045 			ump->um_flags |= UFS_ISAPPLEUFS;
1046 		}
1047 		brelse(bp, 0);
1048 		bp = NULL;
1049 	}
1050 #else
1051 	if (ump->um_flags & UFS_ISAPPLEUFS) {
1052 		error = EINVAL;
1053 		goto out;
1054 	}
1055 #endif
1056 
1057 #if 0
1058 /*
1059  * XXX This code changes the behaviour of mounting dirty filesystems, to
1060  * XXX require "mount -f ..." to mount them.  This doesn't match what
1061  * XXX mount(8) describes and is disabled for now.
1062  */
1063 	/*
1064 	 * If the file system is not clean, don't allow it to be mounted
1065 	 * unless MNT_FORCE is specified.  (Note: MNT_FORCE is always set
1066 	 * for the root file system.)
1067 	 */
1068 	if (fs->fs_flags & FS_DOWAPBL) {
1069 		/*
1070 		 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
1071 		 * bit is set, although there's a window in unmount where it
1072 		 * could be FS_ISCLEAN
1073 		 */
1074 		if ((mp->mnt_flag & MNT_FORCE) == 0 &&
1075 		    (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
1076 			error = EPERM;
1077 			goto out;
1078 		}
1079 	} else
1080 		if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
1081 		    (mp->mnt_flag & MNT_FORCE) == 0) {
1082 			error = EPERM;
1083 			goto out;
1084 		}
1085 #endif
1086 
1087 	/*
1088 	 * verify that we can access the last block in the fs
1089 	 * if we're mounting read/write.
1090 	 */
1091 
1092 	if (!ronly) {
1093 		error = bread(devvp, fsbtodb(fs, fs->fs_size - 1), fs->fs_fsize,
1094 		    cred, 0, &bp);
1095 		if (bp->b_bcount != fs->fs_fsize)
1096 			error = EINVAL;
1097 		if (error) {
1098 			bset = BC_INVAL;
1099 			goto out;
1100 		}
1101 		brelse(bp, BC_INVAL);
1102 		bp = NULL;
1103 	}
1104 
1105 	fs->fs_ronly = ronly;
1106 	/* Don't bump fs_clean if we're replaying journal */
1107 	if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN)))
1108 		if (ronly == 0) {
1109 			fs->fs_clean <<= 1;
1110 			fs->fs_fmod = 1;
1111 		}
1112 	bsize = fs->fs_cssize;
1113 	blks = howmany(bsize, fs->fs_fsize);
1114 	if (fs->fs_contigsumsize > 0)
1115 		bsize += fs->fs_ncg * sizeof(int32_t);
1116 	bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1117 	space = malloc((u_long)bsize, M_UFSMNT, M_WAITOK);
1118 	fs->fs_csp = space;
1119 	for (i = 0; i < blks; i += fs->fs_frag) {
1120 		bsize = fs->fs_bsize;
1121 		if (i + fs->fs_frag > blks)
1122 			bsize = (blks - i) * fs->fs_fsize;
1123 		error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize,
1124 			      cred, 0, &bp);
1125 		if (error) {
1126 			free(fs->fs_csp, M_UFSMNT);
1127 			goto out;
1128 		}
1129 #ifdef FFS_EI
1130 		if (needswap)
1131 			ffs_csum_swap((struct csum *)bp->b_data,
1132 				(struct csum *)space, bsize);
1133 		else
1134 #endif
1135 			memcpy(space, bp->b_data, (u_int)bsize);
1136 
1137 		space = (char *)space + bsize;
1138 		brelse(bp, 0);
1139 		bp = NULL;
1140 	}
1141 	if (fs->fs_contigsumsize > 0) {
1142 		fs->fs_maxcluster = lp = space;
1143 		for (i = 0; i < fs->fs_ncg; i++)
1144 			*lp++ = fs->fs_contigsumsize;
1145 		space = lp;
1146 	}
1147 	bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1148 	fs->fs_contigdirs = space;
1149 	space = (char *)space + bsize;
1150 	memset(fs->fs_contigdirs, 0, bsize);
1151 		/* Compatibility for old filesystems - XXX */
1152 	if (fs->fs_avgfilesize <= 0)
1153 		fs->fs_avgfilesize = AVFILESIZ;
1154 	if (fs->fs_avgfpdir <= 0)
1155 		fs->fs_avgfpdir = AFPDIR;
1156 	fs->fs_active = NULL;
1157 	mp->mnt_data = ump;
1158 	mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
1159 	mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
1160 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
1161 	mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
1162 	if (UFS_MPISAPPLEUFS(ump)) {
1163 		/* NeXT used to keep short symlinks in the inode even
1164 		 * when using FS_42INODEFMT.  In that case fs->fs_maxsymlinklen
1165 		 * is probably -1, but we still need to be able to identify
1166 		 * short symlinks.
1167 		 */
1168 		ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
1169 		ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
1170 		mp->mnt_iflag |= IMNT_DTYPE;
1171 	} else {
1172 		ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
1173 		ump->um_dirblksiz = DIRBLKSIZ;
1174 		if (ump->um_maxsymlinklen > 0)
1175 			mp->mnt_iflag |= IMNT_DTYPE;
1176 		else
1177 			mp->mnt_iflag &= ~IMNT_DTYPE;
1178 	}
1179 	mp->mnt_fs_bshift = fs->fs_bshift;
1180 	mp->mnt_dev_bshift = DEV_BSHIFT;	/* XXX */
1181 	mp->mnt_flag |= MNT_LOCAL;
1182 	mp->mnt_iflag |= IMNT_MPSAFE;
1183 #ifdef FFS_EI
1184 	if (needswap)
1185 		ump->um_flags |= UFS_NEEDSWAP;
1186 #endif
1187 	ump->um_mountp = mp;
1188 	ump->um_dev = dev;
1189 	ump->um_devvp = devvp;
1190 	ump->um_nindir = fs->fs_nindir;
1191 	ump->um_lognindir = ffs(fs->fs_nindir) - 1;
1192 	ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT;
1193 	ump->um_seqinc = fs->fs_frag;
1194 	for (i = 0; i < MAXQUOTAS; i++)
1195 		ump->um_quotas[i] = NULLVP;
1196 	devvp->v_specmountpoint = mp;
1197 	if (ronly == 0 && fs->fs_snapinum[0] != 0)
1198 		ffs_snapshot_mount(mp);
1199 
1200 #ifdef WAPBL
1201 	if (!ronly) {
1202 		KDASSERT(fs->fs_ronly == 0);
1203 		/*
1204 		 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
1205 		 * needs to create a new log file in-filesystem.
1206 		 */
1207 		ffs_statvfs(mp, &mp->mnt_stat);
1208 
1209 		error = ffs_wapbl_start(mp);
1210 		if (error) {
1211 			free(fs->fs_csp, M_UFSMNT);
1212 			goto out;
1213 		}
1214 	}
1215 #endif /* WAPBL */
1216 #ifdef UFS_EXTATTR
1217 	/*
1218 	 * Initialize file-backed extended attributes on UFS1 file
1219 	 * systems.
1220 	 */
1221 	if (ump->um_fstype == UFS1) {
1222 		ufs_extattr_uepm_init(&ump->um_extattr);
1223 #ifdef UFS_EXTATTR_AUTOSTART
1224 		/*
1225 		 * XXX Just ignore errors.  Not clear that we should
1226 		 * XXX fail the mount in this case.
1227 		 */
1228 		(void) ufs_extattr_autostart(mp, l);
1229 #endif
1230 	}
1231 #endif /* UFS_EXTATTR */
1232 	return (0);
1233 out:
1234 #ifdef WAPBL
1235 	if (mp->mnt_wapbl_replay) {
1236 		wapbl_replay_stop(mp->mnt_wapbl_replay);
1237 		wapbl_replay_free(mp->mnt_wapbl_replay);
1238 		mp->mnt_wapbl_replay = 0;
1239 	}
1240 #endif
1241 
1242 	fstrans_unmount(mp);
1243 	if (fs)
1244 		free(fs, M_UFSMNT);
1245 	devvp->v_specmountpoint = NULL;
1246 	if (bp)
1247 		brelse(bp, bset);
1248 	if (ump) {
1249 		if (ump->um_oldfscompat)
1250 			free(ump->um_oldfscompat, M_UFSMNT);
1251 		mutex_destroy(&ump->um_lock);
1252 		free(ump, M_UFSMNT);
1253 		mp->mnt_data = NULL;
1254 	}
1255 	return (error);
1256 }
1257 
1258 /*
1259  * Sanity checks for loading old filesystem superblocks.
1260  * See ffs_oldfscompat_write below for unwound actions.
1261  *
1262  * XXX - Parts get retired eventually.
1263  * Unfortunately new bits get added.
1264  */
1265 static void
1266 ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
1267 {
1268 	off_t maxfilesize;
1269 	int32_t *extrasave;
1270 
1271 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1272 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
1273 		return;
1274 
1275 	if (!ump->um_oldfscompat)
1276 		ump->um_oldfscompat = malloc(512 + 3*sizeof(int32_t),
1277 		    M_UFSMNT, M_WAITOK);
1278 
1279 	memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
1280 	extrasave = ump->um_oldfscompat;
1281 	extrasave += 512/sizeof(int32_t);
1282 	extrasave[0] = fs->fs_old_npsect;
1283 	extrasave[1] = fs->fs_old_interleave;
1284 	extrasave[2] = fs->fs_old_trackskew;
1285 
1286 	/* These fields will be overwritten by their
1287 	 * original values in fs_oldfscompat_write, so it is harmless
1288 	 * to modify them here.
1289 	 */
1290 	fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
1291 	fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
1292 	fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
1293 	fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
1294 
1295 	fs->fs_maxbsize = fs->fs_bsize;
1296 	fs->fs_time = fs->fs_old_time;
1297 	fs->fs_size = fs->fs_old_size;
1298 	fs->fs_dsize = fs->fs_old_dsize;
1299 	fs->fs_csaddr = fs->fs_old_csaddr;
1300 	fs->fs_sblockloc = sblockloc;
1301 
1302 	fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
1303 
1304 	if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
1305 		fs->fs_old_nrpos = 8;
1306 		fs->fs_old_npsect = fs->fs_old_nsect;
1307 		fs->fs_old_interleave = 1;
1308 		fs->fs_old_trackskew = 0;
1309 	}
1310 
1311 	if (fs->fs_old_inodefmt < FS_44INODEFMT) {
1312 		fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
1313 		fs->fs_qbmask = ~fs->fs_bmask;
1314 		fs->fs_qfmask = ~fs->fs_fmask;
1315 	}
1316 
1317 	maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
1318 	if (fs->fs_maxfilesize > maxfilesize)
1319 		fs->fs_maxfilesize = maxfilesize;
1320 
1321 	/* Compatibility for old filesystems */
1322 	if (fs->fs_avgfilesize <= 0)
1323 		fs->fs_avgfilesize = AVFILESIZ;
1324 	if (fs->fs_avgfpdir <= 0)
1325 		fs->fs_avgfpdir = AFPDIR;
1326 
1327 #if 0
1328 	if (bigcgs) {
1329 		fs->fs_save_cgsize = fs->fs_cgsize;
1330 		fs->fs_cgsize = fs->fs_bsize;
1331 	}
1332 #endif
1333 }
1334 
1335 /*
1336  * Unwinding superblock updates for old filesystems.
1337  * See ffs_oldfscompat_read above for details.
1338  *
1339  * XXX - Parts get retired eventually.
1340  * Unfortunately new bits get added.
1341  */
1342 static void
1343 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
1344 {
1345 	int32_t *extrasave;
1346 
1347 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1348 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
1349 		return;
1350 
1351 	fs->fs_old_time = fs->fs_time;
1352 	fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
1353 	fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
1354 	fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
1355 	fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
1356 	fs->fs_old_flags = fs->fs_flags;
1357 
1358 #if 0
1359 	if (bigcgs) {
1360 		fs->fs_cgsize = fs->fs_save_cgsize;
1361 	}
1362 #endif
1363 
1364 	memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
1365 	extrasave = ump->um_oldfscompat;
1366 	extrasave += 512/sizeof(int32_t);
1367 	fs->fs_old_npsect = extrasave[0];
1368 	fs->fs_old_interleave = extrasave[1];
1369 	fs->fs_old_trackskew = extrasave[2];
1370 
1371 }
1372 
1373 /*
1374  * unmount vfs operation
1375  */
1376 int
1377 ffs_unmount(struct mount *mp, int mntflags)
1378 {
1379 	struct lwp *l = curlwp;
1380 	struct ufsmount *ump = VFSTOUFS(mp);
1381 	struct fs *fs = ump->um_fs;
1382 	int error, flags;
1383 #ifdef WAPBL
1384 	extern int doforce;
1385 #endif
1386 
1387 	flags = 0;
1388 	if (mntflags & MNT_FORCE)
1389 		flags |= FORCECLOSE;
1390 	if ((error = ffs_flushfiles(mp, flags, l)) != 0)
1391 		return (error);
1392 	error = UFS_WAPBL_BEGIN(mp);
1393 	if (error == 0)
1394 		if (fs->fs_ronly == 0 &&
1395 		    ffs_cgupdate(ump, MNT_WAIT) == 0 &&
1396 		    fs->fs_clean & FS_WASCLEAN) {
1397 			fs->fs_clean = FS_ISCLEAN;
1398 			fs->fs_fmod = 0;
1399 			(void) ffs_sbupdate(ump, MNT_WAIT);
1400 		}
1401 	if (error == 0)
1402 		UFS_WAPBL_END(mp);
1403 #ifdef WAPBL
1404 	KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
1405 	if (mp->mnt_wapbl_replay) {
1406 		KDASSERT(fs->fs_ronly);
1407 		wapbl_replay_stop(mp->mnt_wapbl_replay);
1408 		wapbl_replay_free(mp->mnt_wapbl_replay);
1409 		mp->mnt_wapbl_replay = 0;
1410 	}
1411 	error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
1412 	if (error) {
1413 		return error;
1414 	}
1415 #endif /* WAPBL */
1416 #ifdef UFS_EXTATTR
1417 	if (ump->um_fstype == UFS1) {
1418 		ufs_extattr_stop(mp, l);
1419 		ufs_extattr_uepm_destroy(&ump->um_extattr);
1420 	}
1421 #endif /* UFS_EXTATTR */
1422 
1423 	if (ump->um_devvp->v_type != VBAD)
1424 		ump->um_devvp->v_specmountpoint = NULL;
1425 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1426 	(void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
1427 		NOCRED);
1428 	vput(ump->um_devvp);
1429 	free(fs->fs_csp, M_UFSMNT);
1430 	free(fs, M_UFSMNT);
1431 	if (ump->um_oldfscompat != NULL)
1432 		free(ump->um_oldfscompat, M_UFSMNT);
1433 	mutex_destroy(&ump->um_lock);
1434 	ffs_snapshot_fini(ump);
1435 	free(ump, M_UFSMNT);
1436 	mp->mnt_data = NULL;
1437 	mp->mnt_flag &= ~MNT_LOCAL;
1438 	fstrans_unmount(mp);
1439 	return (0);
1440 }
1441 
1442 /*
1443  * Flush out all the files in a filesystem.
1444  */
1445 int
1446 ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
1447 {
1448 	extern int doforce;
1449 	struct ufsmount *ump;
1450 	int error;
1451 
1452 	if (!doforce)
1453 		flags &= ~FORCECLOSE;
1454 	ump = VFSTOUFS(mp);
1455 #ifdef QUOTA
1456 	if (mp->mnt_flag & MNT_QUOTA) {
1457 		int i;
1458 		if ((error = vflush(mp, NULLVP, SKIPSYSTEM | flags)) != 0)
1459 			return (error);
1460 		for (i = 0; i < MAXQUOTAS; i++) {
1461 			if (ump->um_quotas[i] == NULLVP)
1462 				continue;
1463 			quotaoff(l, mp, i);
1464 		}
1465 		/*
1466 		 * Here we fall through to vflush again to ensure
1467 		 * that we have gotten rid of all the system vnodes.
1468 		 */
1469 	}
1470 #endif
1471 	if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
1472 		return (error);
1473 	ffs_snapshot_unmount(mp);
1474 	/*
1475 	 * Flush all the files.
1476 	 */
1477 	error = vflush(mp, NULLVP, flags);
1478 	if (error)
1479 		return (error);
1480 	/*
1481 	 * Flush filesystem metadata.
1482 	 */
1483 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1484 	error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
1485 	VOP_UNLOCK(ump->um_devvp);
1486 	if (flags & FORCECLOSE) /* XXXDBJ */
1487 		error = 0;
1488 
1489 #ifdef WAPBL
1490 	if (error)
1491 		return error;
1492 	if (mp->mnt_wapbl) {
1493 		error = wapbl_flush(mp->mnt_wapbl, 1);
1494 		if (flags & FORCECLOSE)
1495 			error = 0;
1496 	}
1497 #endif
1498 
1499 	return (error);
1500 }
1501 
1502 /*
1503  * Get file system statistics.
1504  */
1505 int
1506 ffs_statvfs(struct mount *mp, struct statvfs *sbp)
1507 {
1508 	struct ufsmount *ump;
1509 	struct fs *fs;
1510 
1511 	ump = VFSTOUFS(mp);
1512 	fs = ump->um_fs;
1513 	mutex_enter(&ump->um_lock);
1514 	sbp->f_bsize = fs->fs_bsize;
1515 	sbp->f_frsize = fs->fs_fsize;
1516 	sbp->f_iosize = fs->fs_bsize;
1517 	sbp->f_blocks = fs->fs_dsize;
1518 	sbp->f_bfree = blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
1519 	    fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks);
1520 	sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
1521 	    fs->fs_minfree) / (u_int64_t) 100;
1522 	if (sbp->f_bfree > sbp->f_bresvd)
1523 		sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1524 	else
1525 		sbp->f_bavail = 0;
1526 	sbp->f_files =  fs->fs_ncg * fs->fs_ipg - ROOTINO;
1527 	sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
1528 	sbp->f_favail = sbp->f_ffree;
1529 	sbp->f_fresvd = 0;
1530 	mutex_exit(&ump->um_lock);
1531 	copy_statvfs_info(sbp, mp);
1532 
1533 	return (0);
1534 }
1535 
1536 /*
1537  * Go through the disk queues to initiate sandbagged IO;
1538  * go through the inodes to write those that have been modified;
1539  * initiate the writing of the super block if it has been modified.
1540  *
1541  * Note: we are always called with the filesystem marked `MPBUSY'.
1542  */
1543 int
1544 ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1545 {
1546 	struct vnode *vp, *mvp, *nvp;
1547 	struct inode *ip;
1548 	struct ufsmount *ump = VFSTOUFS(mp);
1549 	struct fs *fs;
1550 	int error, allerror = 0;
1551 	bool is_suspending;
1552 
1553 	fs = ump->um_fs;
1554 	if (fs->fs_fmod != 0 && fs->fs_ronly != 0) {		/* XXX */
1555 		printf("fs = %s\n", fs->fs_fsmnt);
1556 		panic("update: rofs mod");
1557 	}
1558 
1559 	/* Allocate a marker vnode. */
1560 	if ((mvp = vnalloc(mp)) == NULL)
1561 		return (ENOMEM);
1562 
1563 	fstrans_start(mp, FSTRANS_SHARED);
1564 	is_suspending = (fstrans_getstate(mp) == FSTRANS_SUSPENDING);
1565 	/*
1566 	 * Write back each (modified) inode.
1567 	 */
1568 	mutex_enter(&mntvnode_lock);
1569 loop:
1570 	/*
1571 	 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
1572 	 * and vclean() can be called indirectly
1573 	 */
1574 	for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
1575 		nvp = TAILQ_NEXT(vp, v_mntvnodes);
1576 		/*
1577 		 * If the vnode that we are about to sync is no longer
1578 		 * associated with this mount point, start over.
1579 		 */
1580 		if (vp->v_mount != mp)
1581 			goto loop;
1582 		/*
1583 		 * Don't interfere with concurrent scans of this FS.
1584 		 */
1585 		if (vismarker(vp))
1586 			continue;
1587 		mutex_enter(&vp->v_interlock);
1588 		ip = VTOI(vp);
1589 
1590 		/*
1591 		 * Skip the vnode/inode if inaccessible.
1592 		 */
1593 		if (ip == NULL || (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0 ||
1594 		    vp->v_type == VNON) {
1595 			mutex_exit(&vp->v_interlock);
1596 			continue;
1597 		}
1598 
1599 		/*
1600 		 * We deliberately update inode times here.  This will
1601 		 * prevent a massive queue of updates accumulating, only
1602 		 * to be handled by a call to unmount.
1603 		 *
1604 		 * XXX It would be better to have the syncer trickle these
1605 		 * out.  Adjustment needed to allow registering vnodes for
1606 		 * sync when the vnode is clean, but the inode dirty.  Or
1607 		 * have ufs itself trickle out inode updates.
1608 		 *
1609 		 * If doing a lazy sync, we don't care about metadata or
1610 		 * data updates, because they are handled by each vnode's
1611 		 * synclist entry.  In this case we are only interested in
1612 		 * writing back modified inodes.
1613 		 */
1614 		if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
1615 		    IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
1616 		    (waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
1617 		    UVM_OBJ_IS_CLEAN(&vp->v_uobj)))) {
1618 			mutex_exit(&vp->v_interlock);
1619 			continue;
1620 		}
1621 		if (vp->v_type == VBLK && is_suspending) {
1622 			mutex_exit(&vp->v_interlock);
1623 			continue;
1624 		}
1625 		vmark(mvp, vp);
1626 		mutex_exit(&mntvnode_lock);
1627 		error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT);
1628 		if (error) {
1629 			mutex_enter(&mntvnode_lock);
1630 			nvp = vunmark(mvp);
1631 			if (error == ENOENT) {
1632 				goto loop;
1633 			}
1634 			continue;
1635 		}
1636 		if (waitfor == MNT_LAZY) {
1637 			error = UFS_WAPBL_BEGIN(vp->v_mount);
1638 			if (!error) {
1639 				error = ffs_update(vp, NULL, NULL,
1640 				    UPDATE_CLOSE);
1641 				UFS_WAPBL_END(vp->v_mount);
1642 			}
1643 		} else {
1644 			error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
1645 			    (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
1646 		}
1647 		if (error)
1648 			allerror = error;
1649 		vput(vp);
1650 		mutex_enter(&mntvnode_lock);
1651 		nvp = vunmark(mvp);
1652 	}
1653 	mutex_exit(&mntvnode_lock);
1654 	/*
1655 	 * Force stale file system control information to be flushed.
1656 	 */
1657 	if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
1658 	    !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
1659 		vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1660 		if ((error = VOP_FSYNC(ump->um_devvp, cred,
1661 		    (waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
1662 		    0, 0)) != 0)
1663 			allerror = error;
1664 		VOP_UNLOCK(ump->um_devvp);
1665 		if (allerror == 0 && waitfor == MNT_WAIT && !mp->mnt_wapbl) {
1666 			mutex_enter(&mntvnode_lock);
1667 			goto loop;
1668 		}
1669 	}
1670 #ifdef QUOTA
1671 	qsync(mp);
1672 #endif
1673 	/*
1674 	 * Write back modified superblock.
1675 	 */
1676 	if (fs->fs_fmod != 0) {
1677 		fs->fs_fmod = 0;
1678 		fs->fs_time = time_second;
1679 		error = UFS_WAPBL_BEGIN(mp);
1680 		if (error)
1681 			allerror = error;
1682 		else {
1683 			if ((error = ffs_cgupdate(ump, waitfor)))
1684 				allerror = error;
1685 			UFS_WAPBL_END(mp);
1686 		}
1687 	}
1688 
1689 #ifdef WAPBL
1690 	if (mp->mnt_wapbl) {
1691 		error = wapbl_flush(mp->mnt_wapbl, 0);
1692 		if (error)
1693 			allerror = error;
1694 	}
1695 #endif
1696 
1697 	fstrans_done(mp);
1698 	vnfree(mvp);
1699 	return (allerror);
1700 }
1701 
1702 /*
1703  * Look up a FFS dinode number to find its incore vnode, otherwise read it
1704  * in from disk.  If it is in core, wait for the lock bit to clear, then
1705  * return the inode locked.  Detection and handling of mount points must be
1706  * done by the calling routine.
1707  */
1708 int
1709 ffs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
1710 {
1711 	struct fs *fs;
1712 	struct inode *ip;
1713 	struct ufsmount *ump;
1714 	struct buf *bp;
1715 	struct vnode *vp;
1716 	dev_t dev;
1717 	int error;
1718 
1719 	ump = VFSTOUFS(mp);
1720 	dev = ump->um_dev;
1721 
1722  retry:
1723 	if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
1724 		return (0);
1725 
1726 	/* Allocate a new vnode/inode. */
1727 	if ((error = getnewvnode(VT_UFS, mp, ffs_vnodeop_p, &vp)) != 0) {
1728 		*vpp = NULL;
1729 		return (error);
1730 	}
1731 	ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
1732 
1733 	/*
1734 	 * If someone beat us to it, put back the freshly allocated
1735 	 * vnode/inode pair and retry.
1736 	 */
1737 	mutex_enter(&ufs_hashlock);
1738 	if (ufs_ihashget(dev, ino, 0) != NULL) {
1739 		mutex_exit(&ufs_hashlock);
1740 		ungetnewvnode(vp);
1741 		pool_cache_put(ffs_inode_cache, ip);
1742 		goto retry;
1743 	}
1744 
1745 	vp->v_vflag |= VV_LOCKSWORK;
1746 
1747 	/*
1748 	 * XXX MFS ends up here, too, to allocate an inode.  Should we
1749 	 * XXX create another pool for MFS inodes?
1750 	 */
1751 
1752 	memset(ip, 0, sizeof(struct inode));
1753 	vp->v_data = ip;
1754 	ip->i_vnode = vp;
1755 	ip->i_ump = ump;
1756 	ip->i_fs = fs = ump->um_fs;
1757 	ip->i_dev = dev;
1758 	ip->i_number = ino;
1759 #ifdef QUOTA
1760 	ufsquota_init(ip);
1761 #endif
1762 
1763 	/*
1764 	 * Initialize genfs node, we might proceed to destroy it in
1765 	 * error branches.
1766 	 */
1767 	genfs_node_init(vp, &ffs_genfsops);
1768 
1769 	/*
1770 	 * Put it onto its hash chain and lock it so that other requests for
1771 	 * this inode will block if they arrive while we are sleeping waiting
1772 	 * for old data structures to be purged or for the contents of the
1773 	 * disk portion of this inode to be read.
1774 	 */
1775 
1776 	ufs_ihashins(ip);
1777 	mutex_exit(&ufs_hashlock);
1778 
1779 	/* Read in the disk contents for the inode, copy into the inode. */
1780 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
1781 		      (int)fs->fs_bsize, NOCRED, 0, &bp);
1782 	if (error) {
1783 
1784 		/*
1785 		 * The inode does not contain anything useful, so it would
1786 		 * be misleading to leave it on its hash chain. With mode
1787 		 * still zero, it will be unlinked and returned to the free
1788 		 * list by vput().
1789 		 */
1790 
1791 		vput(vp);
1792 		brelse(bp, 0);
1793 		*vpp = NULL;
1794 		return (error);
1795 	}
1796 	if (ip->i_ump->um_fstype == UFS1)
1797 		ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
1798 		    PR_WAITOK);
1799 	else
1800 		ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
1801 		    PR_WAITOK);
1802 	ffs_load_inode(bp, ip, fs, ino);
1803 	brelse(bp, 0);
1804 
1805 	/*
1806 	 * Initialize the vnode from the inode, check for aliases.
1807 	 * Note that the underlying vnode may have changed.
1808 	 */
1809 
1810 	ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
1811 
1812 	/*
1813 	 * Finish inode initialization now that aliasing has been resolved.
1814 	 */
1815 
1816 	ip->i_devvp = ump->um_devvp;
1817 	vref(ip->i_devvp);
1818 
1819 	/*
1820 	 * Ensure that uid and gid are correct. This is a temporary
1821 	 * fix until fsck has been changed to do the update.
1822 	 */
1823 
1824 	if (fs->fs_old_inodefmt < FS_44INODEFMT) {		/* XXX */
1825 		ip->i_uid = ip->i_ffs1_ouid;			/* XXX */
1826 		ip->i_gid = ip->i_ffs1_ogid;			/* XXX */
1827 	}							/* XXX */
1828 	uvm_vnp_setsize(vp, ip->i_size);
1829 	*vpp = vp;
1830 	return (0);
1831 }
1832 
1833 /*
1834  * File handle to vnode
1835  *
1836  * Have to be really careful about stale file handles:
1837  * - check that the inode number is valid
1838  * - call ffs_vget() to get the locked inode
1839  * - check for an unallocated inode (i_mode == 0)
1840  * - check that the given client host has export rights and return
1841  *   those rights via. exflagsp and credanonp
1842  */
1843 int
1844 ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1845 {
1846 	struct ufid ufh;
1847 	struct fs *fs;
1848 
1849 	if (fhp->fid_len != sizeof(struct ufid))
1850 		return EINVAL;
1851 
1852 	memcpy(&ufh, fhp, sizeof(ufh));
1853 	fs = VFSTOUFS(mp)->um_fs;
1854 	if (ufh.ufid_ino < ROOTINO ||
1855 	    ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg)
1856 		return (ESTALE);
1857 	return (ufs_fhtovp(mp, &ufh, vpp));
1858 }
1859 
1860 /*
1861  * Vnode pointer to File handle
1862  */
1863 /* ARGSUSED */
1864 int
1865 ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
1866 {
1867 	struct inode *ip;
1868 	struct ufid ufh;
1869 
1870 	if (*fh_size < sizeof(struct ufid)) {
1871 		*fh_size = sizeof(struct ufid);
1872 		return E2BIG;
1873 	}
1874 	ip = VTOI(vp);
1875 	*fh_size = sizeof(struct ufid);
1876 	memset(&ufh, 0, sizeof(ufh));
1877 	ufh.ufid_len = sizeof(struct ufid);
1878 	ufh.ufid_ino = ip->i_number;
1879 	ufh.ufid_gen = ip->i_gen;
1880 	memcpy(fhp, &ufh, sizeof(ufh));
1881 	return (0);
1882 }
1883 
1884 void
1885 ffs_init(void)
1886 {
1887 	if (ffs_initcount++ > 0)
1888 		return;
1889 
1890 	ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
1891 	    "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
1892 	ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
1893 	    "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
1894 	ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
1895 	    "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
1896 	ufs_init();
1897 }
1898 
1899 void
1900 ffs_reinit(void)
1901 {
1902 
1903 	ufs_reinit();
1904 }
1905 
1906 void
1907 ffs_done(void)
1908 {
1909 	if (--ffs_initcount > 0)
1910 		return;
1911 
1912 	ufs_done();
1913 	pool_cache_destroy(ffs_dinode2_cache);
1914 	pool_cache_destroy(ffs_dinode1_cache);
1915 	pool_cache_destroy(ffs_inode_cache);
1916 }
1917 
1918 /*
1919  * Write a superblock and associated information back to disk.
1920  */
1921 int
1922 ffs_sbupdate(struct ufsmount *mp, int waitfor)
1923 {
1924 	struct fs *fs = mp->um_fs;
1925 	struct buf *bp;
1926 	int error = 0;
1927 	u_int32_t saveflag;
1928 
1929 	error = ffs_getblk(mp->um_devvp,
1930 	    fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK,
1931 	    fs->fs_sbsize, false, &bp);
1932 	if (error)
1933 		return error;
1934 	saveflag = fs->fs_flags & FS_INTERNAL;
1935 	fs->fs_flags &= ~FS_INTERNAL;
1936 
1937 	memcpy(bp->b_data, fs, fs->fs_sbsize);
1938 
1939 	ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
1940 #ifdef FFS_EI
1941 	if (mp->um_flags & UFS_NEEDSWAP)
1942 		ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data);
1943 #endif
1944 	fs->fs_flags |= saveflag;
1945 
1946 	if (waitfor == MNT_WAIT)
1947 		error = bwrite(bp);
1948 	else
1949 		bawrite(bp);
1950 	return (error);
1951 }
1952 
1953 int
1954 ffs_cgupdate(struct ufsmount *mp, int waitfor)
1955 {
1956 	struct fs *fs = mp->um_fs;
1957 	struct buf *bp;
1958 	int blks;
1959 	void *space;
1960 	int i, size, error = 0, allerror = 0;
1961 
1962 	allerror = ffs_sbupdate(mp, waitfor);
1963 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
1964 	space = fs->fs_csp;
1965 	for (i = 0; i < blks; i += fs->fs_frag) {
1966 		size = fs->fs_bsize;
1967 		if (i + fs->fs_frag > blks)
1968 			size = (blks - i) * fs->fs_fsize;
1969 		error = ffs_getblk(mp->um_devvp, fsbtodb(fs, fs->fs_csaddr + i),
1970 		    FFS_NOBLK, size, false, &bp);
1971 		if (error)
1972 			break;
1973 #ifdef FFS_EI
1974 		if (mp->um_flags & UFS_NEEDSWAP)
1975 			ffs_csum_swap((struct csum*)space,
1976 			    (struct csum*)bp->b_data, size);
1977 		else
1978 #endif
1979 			memcpy(bp->b_data, space, (u_int)size);
1980 		space = (char *)space + size;
1981 		if (waitfor == MNT_WAIT)
1982 			error = bwrite(bp);
1983 		else
1984 			bawrite(bp);
1985 	}
1986 	if (!allerror && error)
1987 		allerror = error;
1988 	return (allerror);
1989 }
1990 
1991 int
1992 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
1993     int attrnamespace, const char *attrname)
1994 {
1995 #ifdef UFS_EXTATTR
1996 	/*
1997 	 * File-backed extended attributes are only supported on UFS1.
1998 	 * UFS2 has native extended attributes.
1999 	 */
2000 	if (VFSTOUFS(mp)->um_fstype == UFS1)
2001 		return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
2002 #endif
2003 	return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
2004 }
2005 
2006 int
2007 ffs_suspendctl(struct mount *mp, int cmd)
2008 {
2009 	int error;
2010 	struct lwp *l = curlwp;
2011 
2012 	switch (cmd) {
2013 	case SUSPEND_SUSPEND:
2014 		if ((error = fstrans_setstate(mp, FSTRANS_SUSPENDING)) != 0)
2015 			return error;
2016 		error = ffs_sync(mp, MNT_WAIT, l->l_proc->p_cred);
2017 		if (error == 0)
2018 			error = fstrans_setstate(mp, FSTRANS_SUSPENDED);
2019 #ifdef WAPBL
2020 		if (error == 0 && mp->mnt_wapbl)
2021 			error = wapbl_flush(mp->mnt_wapbl, 1);
2022 #endif
2023 		if (error != 0) {
2024 			(void) fstrans_setstate(mp, FSTRANS_NORMAL);
2025 			return error;
2026 		}
2027 		return 0;
2028 
2029 	case SUSPEND_RESUME:
2030 		return fstrans_setstate(mp, FSTRANS_NORMAL);
2031 
2032 	default:
2033 		return EINVAL;
2034 	}
2035 }
2036 
2037 /*
2038  * Synch vnode for a mounted file system.  This is called for foreign
2039  * vnodes, i.e. non-ffs.
2040  */
2041 static int
2042 ffs_vfs_fsync(vnode_t *vp, int flags)
2043 {
2044 	int error, passes, skipmeta, i, pflags;
2045 	buf_t *bp, *nbp;
2046 #ifdef WAPBL
2047 	struct mount *mp;
2048 #endif
2049 
2050 	KASSERT(vp->v_type == VBLK);
2051 	KASSERT(vp->v_specmountpoint != NULL);
2052 
2053 	/*
2054 	 * Flush all dirty data associated with the vnode.
2055 	 */
2056 	pflags = PGO_ALLPAGES | PGO_CLEANIT;
2057 	if ((flags & FSYNC_WAIT) != 0)
2058 		pflags |= PGO_SYNCIO;
2059 	mutex_enter(&vp->v_interlock);
2060 	error = VOP_PUTPAGES(vp, 0, 0, pflags);
2061 	if (error)
2062 		return error;
2063 
2064 #ifdef WAPBL
2065 	mp = vp->v_specmountpoint;
2066 	if (mp && mp->mnt_wapbl) {
2067 		/*
2068 		 * Don't bother writing out metadata if the syncer is
2069 		 * making the request.  We will let the sync vnode
2070 		 * write it out in a single burst through a call to
2071 		 * VFS_SYNC().
2072 		 */
2073 		if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
2074 			return 0;
2075 
2076 		/*
2077 		 * Don't flush the log if the vnode being flushed
2078 		 * contains no dirty buffers that could be in the log.
2079 		 */
2080 		if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
2081 			error = wapbl_flush(mp->mnt_wapbl, 0);
2082 			if (error)
2083 				return error;
2084 		}
2085 
2086 		if ((flags & FSYNC_WAIT) != 0) {
2087 			mutex_enter(&vp->v_interlock);
2088 			while (vp->v_numoutput)
2089 				cv_wait(&vp->v_cv, &vp->v_interlock);
2090 			mutex_exit(&vp->v_interlock);
2091 		}
2092 
2093 		return 0;
2094 	}
2095 #endif /* WAPBL */
2096 
2097 	/*
2098 	 * Write out metadata for non-logging file systems. XXX This block
2099 	 * should be simplified now that softdep is gone.
2100 	 */
2101 	passes = NIADDR + 1;
2102 	skipmeta = 0;
2103 	if (flags & FSYNC_WAIT)
2104 		skipmeta = 1;
2105 
2106 loop:
2107 	mutex_enter(&bufcache_lock);
2108 	LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
2109 		bp->b_cflags &= ~BC_SCANNED;
2110 	}
2111 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
2112 		nbp = LIST_NEXT(bp, b_vnbufs);
2113 		if (bp->b_cflags & (BC_BUSY | BC_SCANNED))
2114 			continue;
2115 		if ((bp->b_oflags & BO_DELWRI) == 0)
2116 			panic("ffs_fsync: not dirty");
2117 		if (skipmeta && bp->b_lblkno < 0)
2118 			continue;
2119 		bp->b_cflags |= BC_BUSY | BC_VFLUSH | BC_SCANNED;
2120 		mutex_exit(&bufcache_lock);
2121 		/*
2122 		 * On our final pass through, do all I/O synchronously
2123 		 * so that we can find out if our flush is failing
2124 		 * because of write errors.
2125 		 */
2126 		if (passes > 0 || !(flags & FSYNC_WAIT))
2127 			(void) bawrite(bp);
2128 		else if ((error = bwrite(bp)) != 0)
2129 			return (error);
2130 		/*
2131 		 * Since we unlocked during the I/O, we need
2132 		 * to start from a known point.
2133 		 */
2134 		mutex_enter(&bufcache_lock);
2135 		nbp = LIST_FIRST(&vp->v_dirtyblkhd);
2136 	}
2137 	mutex_exit(&bufcache_lock);
2138 	if (skipmeta) {
2139 		skipmeta = 0;
2140 		goto loop;
2141 	}
2142 
2143 	if ((flags & FSYNC_WAIT) != 0) {
2144 		mutex_enter(&vp->v_interlock);
2145 		while (vp->v_numoutput) {
2146 			cv_wait(&vp->v_cv, &vp->v_interlock);
2147 		}
2148 		mutex_exit(&vp->v_interlock);
2149 
2150 		if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
2151 			/*
2152 			* Block devices associated with filesystems may
2153 			* have new I/O requests posted for them even if
2154 			* the vnode is locked, so no amount of trying will
2155 			* get them clean. Thus we give block devices a
2156 			* good effort, then just give up. For all other file
2157 			* types, go around and try again until it is clean.
2158 			*/
2159 			if (passes > 0) {
2160 				passes--;
2161 				goto loop;
2162 			}
2163 #ifdef DIAGNOSTIC
2164 			if (vp->v_type != VBLK)
2165 				vprint("ffs_fsync: dirty", vp);
2166 #endif
2167 		}
2168 	}
2169 
2170 	if (error == 0 && (flags & FSYNC_CACHE) != 0) {
2171 		(void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
2172 		    kauth_cred_get());
2173 	}
2174 
2175 	return error;
2176 }
2177