xref: /netbsd/sys/ufs/lfs/lfs_segment.c (revision 6550d01e)
1 /*	$NetBSD: lfs_segment.c,v 1.217 2010/07/21 17:52:13 hannken Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Konrad E. Schroder <perseant@hhhh.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*
32  * Copyright (c) 1991, 1993
33  *	The Regents of the University of California.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. Neither the name of the University nor the names of its contributors
44  *    may be used to endorse or promote products derived from this software
45  *    without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
60  */
61 
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.217 2010/07/21 17:52:13 hannken Exp $");
64 
65 #ifdef DEBUG
66 # define vndebug(vp, str) do {						\
67 	if (VTOI(vp)->i_flag & IN_CLEANING)				\
68 		DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 		     VTOI(vp)->i_number, (str), op));			\
70 } while(0)
71 #else
72 # define vndebug(vp, str)
73 #endif
74 #define ivndebug(vp, str) \
75 	DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
76 
77 #if defined(_KERNEL_OPT)
78 #include "opt_ddb.h"
79 #endif
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
86 #include <sys/file.h>
87 #include <sys/stat.h>
88 #include <sys/buf.h>
89 #include <sys/proc.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
94 
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
97 
98 #include <ufs/ufs/inode.h>
99 #include <ufs/ufs/dir.h>
100 #include <ufs/ufs/ufsmount.h>
101 #include <ufs/ufs/ufs_extern.h>
102 
103 #include <ufs/lfs/lfs.h>
104 #include <ufs/lfs/lfs_extern.h>
105 
106 #include <uvm/uvm.h>
107 #include <uvm/uvm_extern.h>
108 
109 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
110 
111 extern int count_lock_queue(void);
112 extern kmutex_t vnode_free_list_lock;		/* XXX */
113 
114 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
115 static void lfs_free_aiodone(struct buf *);
116 static void lfs_super_aiodone(struct buf *);
117 static void lfs_cluster_aiodone(struct buf *);
118 static void lfs_cluster_callback(struct buf *);
119 
120 /*
121  * Determine if it's OK to start a partial in this segment, or if we need
122  * to go on to a new segment.
123  */
124 #define	LFS_PARTIAL_FITS(fs) \
125 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
126 	(fs)->lfs_frag)
127 
128 /*
129  * Figure out whether we should do a checkpoint write or go ahead with
130  * an ordinary write.
131  */
132 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
133         ((flags & SEGM_CLEAN) == 0 &&					\
134 	  ((fs->lfs_nactive > LFS_MAX_ACTIVE ||				\
135 	    (flags & SEGM_CKP) ||					\
136 	    fs->lfs_nclean < LFS_MAX_ACTIVE)))
137 
138 int	 lfs_match_fake(struct lfs *, struct buf *);
139 void	 lfs_newseg(struct lfs *);
140 /* XXX ondisk32 */
141 void	 lfs_shellsort(struct buf **, int32_t *, int, int);
142 void	 lfs_supercallback(struct buf *);
143 void	 lfs_updatemeta(struct segment *);
144 void	 lfs_writesuper(struct lfs *, daddr_t);
145 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
146 	    struct segment *sp, int dirops);
147 
148 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
149 int	lfs_writeindir = 1;		/* whether to flush indir on non-ckp */
150 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
151 int	lfs_dirvcount = 0;		/* # active dirops */
152 
153 /* Statistics Counters */
154 int lfs_dostats = 1;
155 struct lfs_stats lfs_stats;
156 
157 /* op values to lfs_writevnodes */
158 #define	VN_REG		0
159 #define	VN_DIROP	1
160 #define	VN_EMPTY	2
161 #define VN_CLEAN	3
162 
163 /*
164  * XXX KS - Set modification time on the Ifile, so the cleaner can
165  * read the fs mod time off of it.  We don't set IN_UPDATE here,
166  * since we don't really need this to be flushed to disk (and in any
167  * case that wouldn't happen to the Ifile until we checkpoint).
168  */
169 void
170 lfs_imtime(struct lfs *fs)
171 {
172 	struct timespec ts;
173 	struct inode *ip;
174 
175 	ASSERT_MAYBE_SEGLOCK(fs);
176 	vfs_timestamp(&ts);
177 	ip = VTOI(fs->lfs_ivnode);
178 	ip->i_ffs1_mtime = ts.tv_sec;
179 	ip->i_ffs1_mtimensec = ts.tv_nsec;
180 }
181 
182 /*
183  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
184  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
185  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
186  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
187  */
188 
189 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
190 
191 int
192 lfs_vflush(struct vnode *vp)
193 {
194 	struct inode *ip;
195 	struct lfs *fs;
196 	struct segment *sp;
197 	struct buf *bp, *nbp, *tbp, *tnbp;
198 	int error;
199 	int flushed;
200 	int relock;
201 	int loopcount;
202 
203 	ip = VTOI(vp);
204 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
205 	relock = 0;
206 
207     top:
208 	ASSERT_NO_SEGLOCK(fs);
209 	if (ip->i_flag & IN_CLEANING) {
210 		ivndebug(vp,"vflush/in_cleaning");
211 		mutex_enter(&lfs_lock);
212 		LFS_CLR_UINO(ip, IN_CLEANING);
213 		LFS_SET_UINO(ip, IN_MODIFIED);
214 		mutex_exit(&lfs_lock);
215 
216 		/*
217 		 * Toss any cleaning buffers that have real counterparts
218 		 * to avoid losing new data.
219 		 */
220 		mutex_enter(&vp->v_interlock);
221 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
222 			nbp = LIST_NEXT(bp, b_vnbufs);
223 			if (!LFS_IS_MALLOC_BUF(bp))
224 				continue;
225 			/*
226 			 * Look for pages matching the range covered
227 			 * by cleaning blocks.  It's okay if more dirty
228 			 * pages appear, so long as none disappear out
229 			 * from under us.
230 			 */
231 			if (bp->b_lblkno > 0 && vp->v_type == VREG &&
232 			    vp != fs->lfs_ivnode) {
233 				struct vm_page *pg;
234 				voff_t off;
235 
236 				for (off = lblktosize(fs, bp->b_lblkno);
237 				     off < lblktosize(fs, bp->b_lblkno + 1);
238 				     off += PAGE_SIZE) {
239 					pg = uvm_pagelookup(&vp->v_uobj, off);
240 					if (pg == NULL)
241 						continue;
242 					if ((pg->flags & PG_CLEAN) == 0 ||
243 					    pmap_is_modified(pg)) {
244 						fs->lfs_avail += btofsb(fs,
245 							bp->b_bcount);
246 						wakeup(&fs->lfs_avail);
247 						mutex_exit(&vp->v_interlock);
248 						lfs_freebuf(fs, bp);
249 						mutex_enter(&vp->v_interlock);
250 						bp = NULL;
251 						break;
252 					}
253 				}
254 			}
255 			for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
256 			    tbp = tnbp)
257 			{
258 				tnbp = LIST_NEXT(tbp, b_vnbufs);
259 				if (tbp->b_vp == bp->b_vp
260 				   && tbp->b_lblkno == bp->b_lblkno
261 				   && tbp != bp)
262 				{
263 					fs->lfs_avail += btofsb(fs,
264 						bp->b_bcount);
265 					wakeup(&fs->lfs_avail);
266 					mutex_exit(&vp->v_interlock);
267 					lfs_freebuf(fs, bp);
268 					mutex_enter(&vp->v_interlock);
269 					bp = NULL;
270 					break;
271 				}
272 			}
273 		}
274 	} else {
275 		mutex_enter(&vp->v_interlock);
276 	}
277 
278 	/* If the node is being written, wait until that is done */
279 	while (WRITEINPROG(vp)) {
280 		ivndebug(vp,"vflush/writeinprog");
281 		cv_wait(&vp->v_cv, &vp->v_interlock);
282 	}
283 	mutex_exit(&vp->v_interlock);
284 
285 	/* Protect against VI_XLOCK deadlock in vinvalbuf() */
286 	lfs_seglock(fs, SEGM_SYNC);
287 
288 	/* If we're supposed to flush a freed inode, just toss it */
289 	if (ip->i_lfs_iflags & LFSI_DELETED) {
290 		DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
291 		      ip->i_number));
292 		/* Drain v_numoutput */
293 		mutex_enter(&vp->v_interlock);
294 		while (vp->v_numoutput > 0) {
295 			cv_wait(&vp->v_cv, &vp->v_interlock);
296 		}
297 		KASSERT(vp->v_numoutput == 0);
298 		mutex_exit(&vp->v_interlock);
299 
300 		mutex_enter(&bufcache_lock);
301 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
302 			nbp = LIST_NEXT(bp, b_vnbufs);
303 
304 			KASSERT((bp->b_flags & B_GATHERED) == 0);
305 			if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
306 				fs->lfs_avail += btofsb(fs, bp->b_bcount);
307 				wakeup(&fs->lfs_avail);
308 			}
309 			/* Copied from lfs_writeseg */
310 			if (bp->b_iodone != NULL) {
311 				mutex_exit(&bufcache_lock);
312 				biodone(bp);
313 				mutex_enter(&bufcache_lock);
314 			} else {
315 				bremfree(bp);
316 				LFS_UNLOCK_BUF(bp);
317 				mutex_enter(&vp->v_interlock);
318 				bp->b_flags &= ~(B_READ | B_GATHERED);
319 				bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
320 				bp->b_error = 0;
321 				reassignbuf(bp, vp);
322 				mutex_exit(&vp->v_interlock);
323 				brelse(bp, 0);
324 			}
325 		}
326 		mutex_exit(&bufcache_lock);
327 		LFS_CLR_UINO(ip, IN_CLEANING);
328 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
329 		ip->i_flag &= ~IN_ALLMOD;
330 		DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
331 		      ip->i_number));
332 		lfs_segunlock(fs);
333 
334 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
335 
336 		return 0;
337 	}
338 
339 	fs->lfs_flushvp = vp;
340 	if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
341 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
342 		fs->lfs_flushvp = NULL;
343 		KASSERT(fs->lfs_flushvp_fakevref == 0);
344 		lfs_segunlock(fs);
345 
346 		/* Make sure that any pending buffers get written */
347 		mutex_enter(&vp->v_interlock);
348 		while (vp->v_numoutput > 0) {
349 			cv_wait(&vp->v_cv, &vp->v_interlock);
350 		}
351 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
352 		KASSERT(vp->v_numoutput == 0);
353 		mutex_exit(&vp->v_interlock);
354 
355 		return error;
356 	}
357 	sp = fs->lfs_sp;
358 
359 	flushed = 0;
360 	if (VPISEMPTY(vp)) {
361 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
362 		++flushed;
363 	} else if ((ip->i_flag & IN_CLEANING) &&
364 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
365 		ivndebug(vp,"vflush/clean");
366 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
367 		++flushed;
368 	} else if (lfs_dostats) {
369 		if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
370 			++lfs_stats.vflush_invoked;
371 		ivndebug(vp,"vflush");
372 	}
373 
374 #ifdef DIAGNOSTIC
375 	if (vp->v_uflag & VU_DIROP) {
376 		DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
377 		/* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
378 	}
379 #endif
380 
381 	do {
382 		loopcount = 0;
383 		do {
384 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
385 				relock = lfs_writefile(fs, sp, vp);
386 				if (relock) {
387 					/*
388 					 * Might have to wait for the
389 					 * cleaner to run; but we're
390 					 * still not done with this vnode.
391 					 */
392 					KDASSERT(ip->i_number != LFS_IFILE_INUM);
393 					lfs_writeinode(fs, sp, ip);
394 					mutex_enter(&lfs_lock);
395 					LFS_SET_UINO(ip, IN_MODIFIED);
396 					mutex_exit(&lfs_lock);
397 					lfs_writeseg(fs, sp);
398 					lfs_segunlock(fs);
399 					lfs_segunlock_relock(fs);
400 					goto top;
401 				}
402 			}
403 			/*
404 			 * If we begin a new segment in the middle of writing
405 			 * the Ifile, it creates an inconsistent checkpoint,
406 			 * since the Ifile information for the new segment
407 			 * is not up-to-date.  Take care of this here by
408 			 * sending the Ifile through again in case there
409 			 * are newly dirtied blocks.  But wait, there's more!
410 			 * This second Ifile write could *also* cross a segment
411 			 * boundary, if the first one was large.  The second
412 			 * one is guaranteed to be no more than 8 blocks,
413 			 * though (two segment blocks and supporting indirects)
414 			 * so the third write *will not* cross the boundary.
415 			 */
416 			if (vp == fs->lfs_ivnode) {
417 				lfs_writefile(fs, sp, vp);
418 				lfs_writefile(fs, sp, vp);
419 			}
420 #ifdef DEBUG
421 			if (++loopcount > 2)
422 				log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
423 #endif
424 		} while (lfs_writeinode(fs, sp, ip));
425 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
426 
427 	if (lfs_dostats) {
428 		++lfs_stats.nwrites;
429 		if (sp->seg_flags & SEGM_SYNC)
430 			++lfs_stats.nsync_writes;
431 		if (sp->seg_flags & SEGM_CKP)
432 			++lfs_stats.ncheckpoints;
433 	}
434 	/*
435 	 * If we were called from somewhere that has already held the seglock
436 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
437 	 * the write to complete because we are still locked.
438 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
439 	 * we must explicitly wait, if that is the case.
440 	 *
441 	 * We compare the iocount against 1, not 0, because it is
442 	 * artificially incremented by lfs_seglock().
443 	 */
444 	mutex_enter(&lfs_lock);
445 	if (fs->lfs_seglock > 1) {
446 		while (fs->lfs_iocount > 1)
447 			(void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
448 				     "lfs_vflush", 0, &lfs_lock);
449 	}
450 	mutex_exit(&lfs_lock);
451 
452 	lfs_segunlock(fs);
453 
454 	/* Wait for these buffers to be recovered by aiodoned */
455 	mutex_enter(&vp->v_interlock);
456 	while (vp->v_numoutput > 0) {
457 		cv_wait(&vp->v_cv, &vp->v_interlock);
458 	}
459 	KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
460 	KASSERT(vp->v_numoutput == 0);
461 	mutex_exit(&vp->v_interlock);
462 
463 	fs->lfs_flushvp = NULL;
464 	KASSERT(fs->lfs_flushvp_fakevref == 0);
465 
466 	return (0);
467 }
468 
469 int
470 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
471 {
472 	struct inode *ip;
473 	struct vnode *vp;
474 	int inodes_written = 0, only_cleaning;
475 	int error = 0;
476 
477 	ASSERT_SEGLOCK(fs);
478  loop:
479 	/* start at last (newest) vnode. */
480 	mutex_enter(&mntvnode_lock);
481 	TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
482 		/*
483 		 * If the vnode that we are about to sync is no longer
484 		 * associated with this mount point, start over.
485 		 */
486 		if (vp->v_mount != mp) {
487 			DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
488 			/*
489 			 * After this, pages might be busy
490 			 * due to our own previous putpages.
491 			 * Start actual segment write here to avoid deadlock.
492 			 */
493 			mutex_exit(&mntvnode_lock);
494 			(void)lfs_writeseg(fs, sp);
495 			goto loop;
496 		}
497 
498 		mutex_enter(&vp->v_interlock);
499 		if (vp->v_type == VNON || vismarker(vp) ||
500 		    (vp->v_iflag & VI_CLEAN) != 0) {
501 			mutex_exit(&vp->v_interlock);
502 			continue;
503 		}
504 
505 		ip = VTOI(vp);
506 		if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
507 		    (op != VN_DIROP && op != VN_CLEAN &&
508 		    (vp->v_uflag & VU_DIROP))) {
509 			mutex_exit(&vp->v_interlock);
510 			vndebug(vp,"dirop");
511 			continue;
512 		}
513 
514 		if (op == VN_EMPTY && !VPISEMPTY(vp)) {
515 			mutex_exit(&vp->v_interlock);
516 			vndebug(vp,"empty");
517 			continue;
518 		}
519 
520 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
521 		   && vp != fs->lfs_flushvp
522 		   && !(ip->i_flag & IN_CLEANING)) {
523 			mutex_exit(&vp->v_interlock);
524 			vndebug(vp,"cleaning");
525 			continue;
526 		}
527 
528 		mutex_exit(&mntvnode_lock);
529 		if (lfs_vref(vp)) {
530 			vndebug(vp,"vref");
531 			mutex_enter(&mntvnode_lock);
532 			continue;
533 		}
534 
535 		only_cleaning = 0;
536 		/*
537 		 * Write the inode/file if dirty and it's not the IFILE.
538 		 */
539 		if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
540 			only_cleaning =
541 			    ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
542 
543 			if (ip->i_number != LFS_IFILE_INUM) {
544 				error = lfs_writefile(fs, sp, vp);
545 				if (error) {
546 					lfs_vunref(vp);
547 					if (error == EAGAIN) {
548 						/*
549 						 * This error from lfs_putpages
550 						 * indicates we need to drop
551 						 * the segment lock and start
552 						 * over after the cleaner has
553 						 * had a chance to run.
554 						 */
555 						lfs_writeinode(fs, sp, ip);
556 						lfs_writeseg(fs, sp);
557 						if (!VPISEMPTY(vp) &&
558 						    !WRITEINPROG(vp) &&
559 						    !(ip->i_flag & IN_ALLMOD)) {
560 							mutex_enter(&lfs_lock);
561 							LFS_SET_UINO(ip, IN_MODIFIED);
562 							mutex_exit(&lfs_lock);
563 						}
564 						mutex_enter(&mntvnode_lock);
565 						break;
566 					}
567 					error = 0; /* XXX not quite right */
568 					mutex_enter(&mntvnode_lock);
569 					continue;
570 				}
571 
572 				if (!VPISEMPTY(vp)) {
573 					if (WRITEINPROG(vp)) {
574 						ivndebug(vp,"writevnodes/write2");
575 					} else if (!(ip->i_flag & IN_ALLMOD)) {
576 						mutex_enter(&lfs_lock);
577 						LFS_SET_UINO(ip, IN_MODIFIED);
578 						mutex_exit(&lfs_lock);
579 					}
580 				}
581 				(void) lfs_writeinode(fs, sp, ip);
582 				inodes_written++;
583 			}
584 		}
585 
586 		if (lfs_clean_vnhead && only_cleaning)
587 			lfs_vunref_head(vp);
588 		else
589 			lfs_vunref(vp);
590 
591 		mutex_enter(&mntvnode_lock);
592 	}
593 	mutex_exit(&mntvnode_lock);
594 	return error;
595 }
596 
597 /*
598  * Do a checkpoint.
599  */
600 int
601 lfs_segwrite(struct mount *mp, int flags)
602 {
603 	struct buf *bp;
604 	struct inode *ip;
605 	struct lfs *fs;
606 	struct segment *sp;
607 	struct vnode *vp;
608 	SEGUSE *segusep;
609 	int do_ckp, did_ckp, error;
610 	unsigned n, segleft, maxseg, sn, i, curseg;
611 	int writer_set = 0;
612 	int dirty;
613 	int redo;
614 	int um_error;
615 	int loopcount;
616 
617 	fs = VFSTOUFS(mp)->um_lfs;
618 	ASSERT_MAYBE_SEGLOCK(fs);
619 
620 	if (fs->lfs_ronly)
621 		return EROFS;
622 
623 	lfs_imtime(fs);
624 
625 	/*
626 	 * Allocate a segment structure and enough space to hold pointers to
627 	 * the maximum possible number of buffers which can be described in a
628 	 * single summary block.
629 	 */
630 	do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
631 
632 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
633 	sp = fs->lfs_sp;
634 	if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
635 		do_ckp = 1;
636 
637 	/*
638 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
639 	 * in which case we have to flush *all* buffers off of this vnode.
640 	 * We don't care about other nodes, but write any non-dirop nodes
641 	 * anyway in anticipation of another getnewvnode().
642 	 *
643 	 * If we're cleaning we only write cleaning and ifile blocks, and
644 	 * no dirops, since otherwise we'd risk corruption in a crash.
645 	 */
646 	if (sp->seg_flags & SEGM_CLEAN)
647 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
648 	else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
649 		do {
650 			um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
651 
652 			if (do_ckp || fs->lfs_dirops == 0) {
653 				if (!writer_set) {
654 					lfs_writer_enter(fs, "lfs writer");
655 					writer_set = 1;
656 				}
657 				error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
658 				if (um_error == 0)
659 					um_error = error;
660 				/* In case writevnodes errored out */
661 				lfs_flush_dirops(fs);
662 				((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
663 				lfs_finalize_fs_seguse(fs);
664 			}
665 			if (do_ckp && um_error) {
666 				lfs_segunlock_relock(fs);
667 				sp = fs->lfs_sp;
668 			}
669 		} while (do_ckp && um_error != 0);
670 	}
671 
672 	/*
673 	 * If we are doing a checkpoint, mark everything since the
674 	 * last checkpoint as no longer ACTIVE.
675 	 */
676 	if (do_ckp || fs->lfs_doifile) {
677 		segleft = fs->lfs_nseg;
678 		curseg = 0;
679 		for (n = 0; n < fs->lfs_segtabsz; n++) {
680 			dirty = 0;
681 			if (bread(fs->lfs_ivnode, fs->lfs_cleansz + n,
682 			    fs->lfs_bsize, NOCRED, B_MODIFY, &bp))
683 				panic("lfs_segwrite: ifile read");
684 			segusep = (SEGUSE *)bp->b_data;
685 			maxseg = min(segleft, fs->lfs_sepb);
686 			for (i = 0; i < maxseg; i++) {
687 				sn = curseg + i;
688 				if (sn != dtosn(fs, fs->lfs_curseg) &&
689 				    segusep->su_flags & SEGUSE_ACTIVE) {
690 					segusep->su_flags &= ~SEGUSE_ACTIVE;
691 					--fs->lfs_nactive;
692 					++dirty;
693 				}
694 				fs->lfs_suflags[fs->lfs_activesb][sn] =
695 					segusep->su_flags;
696 				if (fs->lfs_version > 1)
697 					++segusep;
698 				else
699 					segusep = (SEGUSE *)
700 						((SEGUSE_V1 *)segusep + 1);
701 			}
702 
703 			if (dirty)
704 				error = LFS_BWRITE_LOG(bp); /* Ifile */
705 			else
706 				brelse(bp, 0);
707 			segleft -= fs->lfs_sepb;
708 			curseg += fs->lfs_sepb;
709 		}
710 	}
711 
712 	KASSERT(LFS_SEGLOCK_HELD(fs));
713 
714 	did_ckp = 0;
715 	if (do_ckp || fs->lfs_doifile) {
716 		vp = fs->lfs_ivnode;
717 		vn_lock(vp, LK_EXCLUSIVE);
718 		loopcount = 0;
719 		do {
720 #ifdef DEBUG
721 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
722 #endif
723 			mutex_enter(&lfs_lock);
724 			fs->lfs_flags &= ~LFS_IFDIRTY;
725 			mutex_exit(&lfs_lock);
726 
727 			ip = VTOI(vp);
728 
729 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
730 				/*
731 				 * Ifile has no pages, so we don't need
732 				 * to check error return here.
733 				 */
734 				lfs_writefile(fs, sp, vp);
735 				/*
736 				 * Ensure the Ifile takes the current segment
737 				 * into account.  See comment in lfs_vflush.
738 				 */
739 				lfs_writefile(fs, sp, vp);
740 				lfs_writefile(fs, sp, vp);
741 			}
742 
743 			if (ip->i_flag & IN_ALLMOD)
744 				++did_ckp;
745 #if 0
746 			redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
747 #else
748 			redo = lfs_writeinode(fs, sp, ip);
749 #endif
750 			redo += lfs_writeseg(fs, sp);
751 			mutex_enter(&lfs_lock);
752 			redo += (fs->lfs_flags & LFS_IFDIRTY);
753 			mutex_exit(&lfs_lock);
754 #ifdef DEBUG
755 			if (++loopcount > 2)
756 				log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
757 					loopcount);
758 #endif
759 		} while (redo && do_ckp);
760 
761 		/*
762 		 * Unless we are unmounting, the Ifile may continue to have
763 		 * dirty blocks even after a checkpoint, due to changes to
764 		 * inodes' atime.  If we're checkpointing, it's "impossible"
765 		 * for other parts of the Ifile to be dirty after the loop
766 		 * above, since we hold the segment lock.
767 		 */
768 		mutex_enter(&vp->v_interlock);
769 		if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
770 			LFS_CLR_UINO(ip, IN_ALLMOD);
771 		}
772 #ifdef DIAGNOSTIC
773 		else if (do_ckp) {
774 			int do_panic = 0;
775 			LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
776 				if (bp->b_lblkno < fs->lfs_cleansz +
777 				    fs->lfs_segtabsz &&
778 				    !(bp->b_flags & B_GATHERED)) {
779 					printf("ifile lbn %ld still dirty (flags %lx)\n",
780 						(long)bp->b_lblkno,
781 						(long)bp->b_flags);
782 					++do_panic;
783 				}
784 			}
785 			if (do_panic)
786 				panic("dirty blocks");
787 		}
788 #endif
789 		mutex_exit(&vp->v_interlock);
790 		VOP_UNLOCK(vp);
791 	} else {
792 		(void) lfs_writeseg(fs, sp);
793 	}
794 
795 	/* Note Ifile no longer needs to be written */
796 	fs->lfs_doifile = 0;
797 	if (writer_set)
798 		lfs_writer_leave(fs);
799 
800 	/*
801 	 * If we didn't write the Ifile, we didn't really do anything.
802 	 * That means that (1) there is a checkpoint on disk and (2)
803 	 * nothing has changed since it was written.
804 	 *
805 	 * Take the flags off of the segment so that lfs_segunlock
806 	 * doesn't have to write the superblock either.
807 	 */
808 	if (do_ckp && !did_ckp) {
809 		sp->seg_flags &= ~SEGM_CKP;
810 	}
811 
812 	if (lfs_dostats) {
813 		++lfs_stats.nwrites;
814 		if (sp->seg_flags & SEGM_SYNC)
815 			++lfs_stats.nsync_writes;
816 		if (sp->seg_flags & SEGM_CKP)
817 			++lfs_stats.ncheckpoints;
818 	}
819 	lfs_segunlock(fs);
820 	return (0);
821 }
822 
823 /*
824  * Write the dirty blocks associated with a vnode.
825  */
826 int
827 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
828 {
829 	struct finfo *fip;
830 	struct inode *ip;
831 	int i, frag;
832 	int error;
833 
834 	ASSERT_SEGLOCK(fs);
835 	error = 0;
836 	ip = VTOI(vp);
837 
838 	fip = sp->fip;
839 	lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
840 
841 	if (vp->v_uflag & VU_DIROP)
842 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
843 
844 	if (sp->seg_flags & SEGM_CLEAN) {
845 		lfs_gather(fs, sp, vp, lfs_match_fake);
846 		/*
847 		 * For a file being flushed, we need to write *all* blocks.
848 		 * This means writing the cleaning blocks first, and then
849 		 * immediately following with any non-cleaning blocks.
850 		 * The same is true of the Ifile since checkpoints assume
851 		 * that all valid Ifile blocks are written.
852 		 */
853 		if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
854 			lfs_gather(fs, sp, vp, lfs_match_data);
855 			/*
856 			 * Don't call VOP_PUTPAGES: if we're flushing,
857 			 * we've already done it, and the Ifile doesn't
858 			 * use the page cache.
859 			 */
860 		}
861 	} else {
862 		lfs_gather(fs, sp, vp, lfs_match_data);
863 		/*
864 		 * If we're flushing, we've already called VOP_PUTPAGES
865 		 * so don't do it again.  Otherwise, we want to write
866 		 * everything we've got.
867 		 */
868 		if (!IS_FLUSHING(fs, vp)) {
869 			mutex_enter(&vp->v_interlock);
870 			error = VOP_PUTPAGES(vp, 0, 0,
871 				PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
872 		}
873 	}
874 
875 	/*
876 	 * It may not be necessary to write the meta-data blocks at this point,
877 	 * as the roll-forward recovery code should be able to reconstruct the
878 	 * list.
879 	 *
880 	 * We have to write them anyway, though, under two conditions: (1) the
881 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
882 	 * checkpointing.
883 	 *
884 	 * BUT if we are cleaning, we might have indirect blocks that refer to
885 	 * new blocks not being written yet, in addition to fragments being
886 	 * moved out of a cleaned segment.  If that is the case, don't
887 	 * write the indirect blocks, or the finfo will have a small block
888 	 * in the middle of it!
889 	 * XXX in this case isn't the inode size wrong too?
890 	 */
891 	frag = 0;
892 	if (sp->seg_flags & SEGM_CLEAN) {
893 		for (i = 0; i < NDADDR; i++)
894 			if (ip->i_lfs_fragsize[i] > 0 &&
895 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
896 				++frag;
897 	}
898 #ifdef DIAGNOSTIC
899 	if (frag > 1)
900 		panic("lfs_writefile: more than one fragment!");
901 #endif
902 	if (IS_FLUSHING(fs, vp) ||
903 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
904 		lfs_gather(fs, sp, vp, lfs_match_indir);
905 		lfs_gather(fs, sp, vp, lfs_match_dindir);
906 		lfs_gather(fs, sp, vp, lfs_match_tindir);
907 	}
908 	fip = sp->fip;
909 	lfs_release_finfo(fs);
910 
911 	return error;
912 }
913 
914 /*
915  * Update segment accounting to reflect this inode's change of address.
916  */
917 static int
918 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
919 {
920 	struct buf *bp;
921 	daddr_t daddr;
922 	IFILE *ifp;
923 	SEGUSE *sup;
924 	ino_t ino;
925 	int redo_ifile, error;
926 	u_int32_t sn;
927 
928 	redo_ifile = 0;
929 
930 	/*
931 	 * If updating the ifile, update the super-block.  Update the disk
932 	 * address and access times for this inode in the ifile.
933 	 */
934 	ino = ip->i_number;
935 	if (ino == LFS_IFILE_INUM) {
936 		daddr = fs->lfs_idaddr;
937 		fs->lfs_idaddr = dbtofsb(fs, ndaddr);
938 	} else {
939 		LFS_IENTRY(ifp, fs, ino, bp);
940 		daddr = ifp->if_daddr;
941 		ifp->if_daddr = dbtofsb(fs, ndaddr);
942 		error = LFS_BWRITE_LOG(bp); /* Ifile */
943 	}
944 
945 	/*
946 	 * If this is the Ifile and lfs_offset is set to the first block
947 	 * in the segment, dirty the new segment's accounting block
948 	 * (XXX should already be dirty?) and tell the caller to do it again.
949 	 */
950 	if (ip->i_number == LFS_IFILE_INUM) {
951 		sn = dtosn(fs, fs->lfs_offset);
952 		if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
953 		    fs->lfs_offset) {
954 			LFS_SEGENTRY(sup, fs, sn, bp);
955 			KASSERT(bp->b_oflags & BO_DELWRI);
956 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
957 			/* fs->lfs_flags |= LFS_IFDIRTY; */
958 			redo_ifile |= 1;
959 		}
960 	}
961 
962 	/*
963 	 * The inode's last address should not be in the current partial
964 	 * segment, except under exceptional circumstances (lfs_writevnodes
965 	 * had to start over, and in the meantime more blocks were written
966 	 * to a vnode).	 Both inodes will be accounted to this segment
967 	 * in lfs_writeseg so we need to subtract the earlier version
968 	 * here anyway.	 The segment count can temporarily dip below
969 	 * zero here; keep track of how many duplicates we have in
970 	 * "dupino" so we don't panic below.
971 	 */
972 	if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
973 		++sp->ndupino;
974 		DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
975 		      "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
976 		      (long long)daddr, sp->ndupino));
977 	}
978 	/*
979 	 * Account the inode: it no longer belongs to its former segment,
980 	 * though it will not belong to the new segment until that segment
981 	 * is actually written.
982 	 */
983 	if (daddr != LFS_UNUSED_DADDR) {
984 		u_int32_t oldsn = dtosn(fs, daddr);
985 #ifdef DIAGNOSTIC
986 		int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
987 #endif
988 		LFS_SEGENTRY(sup, fs, oldsn, bp);
989 #ifdef DIAGNOSTIC
990 		if (sup->su_nbytes +
991 		    sizeof (struct ufs1_dinode) * ndupino
992 		      < sizeof (struct ufs1_dinode)) {
993 			printf("lfs_writeinode: negative bytes "
994 			       "(segment %" PRIu32 " short by %d, "
995 			       "oldsn=%" PRIu32 ", cursn=%" PRIu32
996 			       ", daddr=%" PRId64 ", su_nbytes=%u, "
997 			       "ndupino=%d)\n",
998 			       dtosn(fs, daddr),
999 			       (int)sizeof (struct ufs1_dinode) *
1000 				   (1 - sp->ndupino) - sup->su_nbytes,
1001 			       oldsn, sp->seg_number, daddr,
1002 			       (unsigned int)sup->su_nbytes,
1003 			       sp->ndupino);
1004 			panic("lfs_writeinode: negative bytes");
1005 			sup->su_nbytes = sizeof (struct ufs1_dinode);
1006 		}
1007 #endif
1008 		DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1009 		      dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1010 		sup->su_nbytes -= sizeof (struct ufs1_dinode);
1011 		redo_ifile |=
1012 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1013 		if (redo_ifile) {
1014 			mutex_enter(&lfs_lock);
1015 			fs->lfs_flags |= LFS_IFDIRTY;
1016 			mutex_exit(&lfs_lock);
1017 			/* Don't double-account */
1018 			fs->lfs_idaddr = 0x0;
1019 		}
1020 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1021 	}
1022 
1023 	return redo_ifile;
1024 }
1025 
1026 int
1027 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1028 {
1029 	struct buf *bp;
1030 	struct ufs1_dinode *cdp;
1031 	daddr_t daddr;
1032 	int32_t *daddrp;	/* XXX ondisk32 */
1033 	int i, ndx;
1034 	int redo_ifile = 0;
1035 	int gotblk = 0;
1036 	int count;
1037 
1038 	ASSERT_SEGLOCK(fs);
1039 	if (!(ip->i_flag & IN_ALLMOD))
1040 		return (0);
1041 
1042 	/* Can't write ifile when writer is not set */
1043 	KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1044 		(sp->seg_flags & SEGM_CLEAN));
1045 
1046 	/*
1047 	 * If this is the Ifile, see if writing it here will generate a
1048 	 * temporary misaccounting.  If it will, do the accounting and write
1049 	 * the blocks, postponing the inode write until the accounting is
1050 	 * solid.
1051 	 */
1052 	count = 0;
1053 	while (ip->i_number == LFS_IFILE_INUM) {
1054 		int redo = 0;
1055 
1056 		if (sp->idp == NULL && sp->ibp == NULL &&
1057 		    (sp->seg_bytes_left < fs->lfs_ibsize ||
1058 		     sp->sum_bytes_left < sizeof(int32_t))) {
1059 			(void) lfs_writeseg(fs, sp);
1060 			continue;
1061 		}
1062 
1063 		/* Look for dirty Ifile blocks */
1064 		LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1065 			if (!(bp->b_flags & B_GATHERED)) {
1066 				redo = 1;
1067 				break;
1068 			}
1069 		}
1070 
1071 		if (redo == 0)
1072 			redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1073 		if (redo == 0)
1074 			break;
1075 
1076 		if (sp->idp) {
1077 			sp->idp->di_inumber = 0;
1078 			sp->idp = NULL;
1079 		}
1080 		++count;
1081 		if (count > 2)
1082 			log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1083 		lfs_writefile(fs, sp, fs->lfs_ivnode);
1084 	}
1085 
1086 	/* Allocate a new inode block if necessary. */
1087 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1088 	    sp->ibp == NULL) {
1089 		/* Allocate a new segment if necessary. */
1090 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
1091 		    sp->sum_bytes_left < sizeof(int32_t))
1092 			(void) lfs_writeseg(fs, sp);
1093 
1094 		/* Get next inode block. */
1095 		daddr = fs->lfs_offset;
1096 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1097 		sp->ibp = *sp->cbpp++ =
1098 			getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1099 			    fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1100 		gotblk++;
1101 
1102 		/* Zero out inode numbers */
1103 		for (i = 0; i < INOPB(fs); ++i)
1104 			((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1105 			    0;
1106 
1107 		++sp->start_bpp;
1108 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1109 		/* Set remaining space counters. */
1110 		sp->seg_bytes_left -= fs->lfs_ibsize;
1111 		sp->sum_bytes_left -= sizeof(int32_t);
1112 		ndx = fs->lfs_sumsize / sizeof(int32_t) -
1113 			sp->ninodes / INOPB(fs) - 1;
1114 		((int32_t *)(sp->segsum))[ndx] = daddr;
1115 	}
1116 
1117 	/* Check VU_DIROP in case there is a new file with no data blocks */
1118 	if (ITOV(ip)->v_uflag & VU_DIROP)
1119 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1120 
1121 	/* Update the inode times and copy the inode onto the inode page. */
1122 	/* XXX kludge --- don't redirty the ifile just to put times on it */
1123 	if (ip->i_number != LFS_IFILE_INUM)
1124 		LFS_ITIMES(ip, NULL, NULL, NULL);
1125 
1126 	/*
1127 	 * If this is the Ifile, and we've already written the Ifile in this
1128 	 * partial segment, just overwrite it (it's not on disk yet) and
1129 	 * continue.
1130 	 *
1131 	 * XXX we know that the bp that we get the second time around has
1132 	 * already been gathered.
1133 	 */
1134 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1135 		*(sp->idp) = *ip->i_din.ffs1_din;
1136 		ip->i_lfs_osize = ip->i_size;
1137 		return 0;
1138 	}
1139 
1140 	bp = sp->ibp;
1141 	cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1142 	*cdp = *ip->i_din.ffs1_din;
1143 
1144 	/*
1145 	 * If cleaning, link counts and directory file sizes cannot change,
1146 	 * since those would be directory operations---even if the file
1147 	 * we are writing is marked VU_DIROP we should write the old values.
1148 	 * If we're not cleaning, of course, update the values so we get
1149 	 * current values the next time we clean.
1150 	 */
1151 	if (sp->seg_flags & SEGM_CLEAN) {
1152 		if (ITOV(ip)->v_uflag & VU_DIROP) {
1153 			cdp->di_nlink = ip->i_lfs_odnlink;
1154 			/* if (ITOV(ip)->v_type == VDIR) */
1155 			cdp->di_size = ip->i_lfs_osize;
1156 		}
1157 	} else {
1158 		ip->i_lfs_odnlink = cdp->di_nlink;
1159 		ip->i_lfs_osize = ip->i_size;
1160 	}
1161 
1162 
1163 	/* We can finish the segment accounting for truncations now */
1164 	lfs_finalize_ino_seguse(fs, ip);
1165 
1166 	/*
1167 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1168 	 * addresses to disk; possibly change the on-disk record of
1169 	 * the inode size, either by reverting to the previous size
1170 	 * (in the case of cleaning) or by verifying the inode's block
1171 	 * holdings (in the case of files being allocated as they are being
1172 	 * written).
1173 	 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1174 	 * XXX count on disk wrong by the same amount.	We should be
1175 	 * XXX able to "borrow" from lfs_avail and return it after the
1176 	 * XXX Ifile is written.  See also in lfs_writeseg.
1177 	 */
1178 
1179 	/* Check file size based on highest allocated block */
1180 	if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1181 	     (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1182 	    ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1183 		cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1184 		DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1185 		      PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1186 	}
1187 	if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1188 		DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1189 		      " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1190 		      ip->i_ffs1_blocks, fs->lfs_offset));
1191 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1192 		     daddrp++) {
1193 			if (*daddrp == UNWRITTEN) {
1194 				DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1195 				*daddrp = 0;
1196 			}
1197 		}
1198 	}
1199 
1200 #ifdef DIAGNOSTIC
1201 	/*
1202 	 * Check dinode held blocks against dinode size.
1203 	 * This should be identical to the check in lfs_vget().
1204 	 */
1205 	for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1206 	     i < NDADDR; i++) {
1207 		KASSERT(i >= 0);
1208 		if ((cdp->di_mode & IFMT) == IFLNK)
1209 			continue;
1210 		if (((cdp->di_mode & IFMT) == IFBLK ||
1211 		     (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1212 			continue;
1213 		if (cdp->di_db[i] != 0) {
1214 # ifdef DEBUG
1215 			lfs_dump_dinode(cdp);
1216 # endif
1217 			panic("writing inconsistent inode");
1218 		}
1219 	}
1220 #endif /* DIAGNOSTIC */
1221 
1222 	if (ip->i_flag & IN_CLEANING)
1223 		LFS_CLR_UINO(ip, IN_CLEANING);
1224 	else {
1225 		/* XXX IN_ALLMOD */
1226 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1227 			     IN_UPDATE | IN_MODIFY);
1228 		if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1229 			LFS_CLR_UINO(ip, IN_MODIFIED);
1230 		else {
1231 			DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1232 			    "blks=%d, eff=%d\n", ip->i_number,
1233 			    ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1234 		}
1235 	}
1236 
1237 	if (ip->i_number == LFS_IFILE_INUM) {
1238 		/* We know sp->idp == NULL */
1239 		sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1240 			(sp->ninodes % INOPB(fs));
1241 
1242 		/* Not dirty any more */
1243 		mutex_enter(&lfs_lock);
1244 		fs->lfs_flags &= ~LFS_IFDIRTY;
1245 		mutex_exit(&lfs_lock);
1246 	}
1247 
1248 	if (gotblk) {
1249 		mutex_enter(&bufcache_lock);
1250 		LFS_LOCK_BUF(bp);
1251 		brelsel(bp, 0);
1252 		mutex_exit(&bufcache_lock);
1253 	}
1254 
1255 	/* Increment inode count in segment summary block. */
1256 	++((SEGSUM *)(sp->segsum))->ss_ninos;
1257 
1258 	/* If this page is full, set flag to allocate a new page. */
1259 	if (++sp->ninodes % INOPB(fs) == 0)
1260 		sp->ibp = NULL;
1261 
1262 	redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1263 
1264 	KASSERT(redo_ifile == 0);
1265 	return (redo_ifile);
1266 }
1267 
1268 int
1269 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1270 {
1271 	struct lfs *fs;
1272 	int vers;
1273 	int j, blksinblk;
1274 
1275 	ASSERT_SEGLOCK(sp->fs);
1276 	/*
1277 	 * If full, finish this segment.  We may be doing I/O, so
1278 	 * release and reacquire the splbio().
1279 	 */
1280 #ifdef DIAGNOSTIC
1281 	if (sp->vp == NULL)
1282 		panic ("lfs_gatherblock: Null vp in segment");
1283 #endif
1284 	fs = sp->fs;
1285 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1286 	if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1287 	    sp->seg_bytes_left < bp->b_bcount) {
1288 		if (mptr)
1289 			mutex_exit(mptr);
1290 		lfs_updatemeta(sp);
1291 
1292 		vers = sp->fip->fi_version;
1293 		(void) lfs_writeseg(fs, sp);
1294 
1295 		/* Add the current file to the segment summary. */
1296 		lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1297 
1298 		if (mptr)
1299 			mutex_enter(mptr);
1300 		return (1);
1301 	}
1302 
1303 	if (bp->b_flags & B_GATHERED) {
1304 		DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1305 		      " lbn %" PRId64 "\n",
1306 		      sp->fip->fi_ino, bp->b_lblkno));
1307 		return (0);
1308 	}
1309 
1310 	/* Insert into the buffer list, update the FINFO block. */
1311 	bp->b_flags |= B_GATHERED;
1312 
1313 	*sp->cbpp++ = bp;
1314 	for (j = 0; j < blksinblk; j++) {
1315 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1316 		/* This block's accounting moves from lfs_favail to lfs_avail */
1317 		lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1318 	}
1319 
1320 	sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1321 	sp->seg_bytes_left -= bp->b_bcount;
1322 	return (0);
1323 }
1324 
1325 int
1326 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1327     int (*match)(struct lfs *, struct buf *))
1328 {
1329 	struct buf *bp, *nbp;
1330 	int count = 0;
1331 
1332 	ASSERT_SEGLOCK(fs);
1333 	if (vp->v_type == VBLK)
1334 		return 0;
1335 	KASSERT(sp->vp == NULL);
1336 	sp->vp = vp;
1337 	mutex_enter(&bufcache_lock);
1338 
1339 #ifndef LFS_NO_BACKBUF_HACK
1340 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1341 # define	BUF_OFFSET	\
1342 	(((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1343 # define	BACK_BUF(BP)	\
1344 	((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1345 # define	BEG_OF_LIST	\
1346 	((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1347 
1348 loop:
1349 	/* Find last buffer. */
1350 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1351 	     bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1352 	     bp = LIST_NEXT(bp, b_vnbufs))
1353 		/* nothing */;
1354 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1355 		nbp = BACK_BUF(bp);
1356 #else /* LFS_NO_BACKBUF_HACK */
1357 loop:
1358 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1359 		nbp = LIST_NEXT(bp, b_vnbufs);
1360 #endif /* LFS_NO_BACKBUF_HACK */
1361 		if ((bp->b_cflags & BC_BUSY) != 0 ||
1362 		    (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1363 #ifdef DEBUG
1364 			if (vp == fs->lfs_ivnode &&
1365 			    (bp->b_cflags & BC_BUSY) != 0 &&
1366 			    (bp->b_flags & B_GATHERED) == 0)
1367 				log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1368 				      PRId64 " busy (%x) at 0x%x",
1369 				      bp->b_lblkno, bp->b_flags,
1370 				      (unsigned)fs->lfs_offset);
1371 #endif
1372 			continue;
1373 		}
1374 #ifdef DIAGNOSTIC
1375 # ifdef LFS_USE_B_INVAL
1376 		if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1377 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1378 			      " is BC_INVAL\n", bp->b_lblkno));
1379 			VOP_PRINT(bp->b_vp);
1380 		}
1381 # endif /* LFS_USE_B_INVAL */
1382 		if (!(bp->b_oflags & BO_DELWRI))
1383 			panic("lfs_gather: bp not BO_DELWRI");
1384 		if (!(bp->b_flags & B_LOCKED)) {
1385 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1386 			      " blk %" PRId64 " not B_LOCKED\n",
1387 			      bp->b_lblkno,
1388 			      dbtofsb(fs, bp->b_blkno)));
1389 			VOP_PRINT(bp->b_vp);
1390 			panic("lfs_gather: bp not B_LOCKED");
1391 		}
1392 #endif
1393 		if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1394 			goto loop;
1395 		}
1396 		count++;
1397 	}
1398 	mutex_exit(&bufcache_lock);
1399 	lfs_updatemeta(sp);
1400 	KASSERT(sp->vp == vp);
1401 	sp->vp = NULL;
1402 	return count;
1403 }
1404 
1405 #if DEBUG
1406 # define DEBUG_OOFF(n) do {						\
1407 	if (ooff == 0) {						\
1408 		DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1409 			"ino %d lbn %" PRId64 " at 0x%" PRIx32		\
1410 			", was 0x0 (or %" PRId64 ")\n",			\
1411 			(n), ip->i_number, lbn, ndaddr, daddr));	\
1412 	}								\
1413 } while (0)
1414 #else
1415 # define DEBUG_OOFF(n)
1416 #endif
1417 
1418 /*
1419  * Change the given block's address to ndaddr, finding its previous
1420  * location using ufs_bmaparray().
1421  *
1422  * Account for this change in the segment table.
1423  *
1424  * called with sp == NULL by roll-forwarding code.
1425  */
1426 void
1427 lfs_update_single(struct lfs *fs, struct segment *sp,
1428     struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1429 {
1430 	SEGUSE *sup;
1431 	struct buf *bp;
1432 	struct indir a[NIADDR + 2], *ap;
1433 	struct inode *ip;
1434 	daddr_t daddr, ooff;
1435 	int num, error;
1436 	int bb, osize, obb;
1437 
1438 	ASSERT_SEGLOCK(fs);
1439 	KASSERT(sp == NULL || sp->vp == vp);
1440 	ip = VTOI(vp);
1441 
1442 	error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1443 	if (error)
1444 		panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1445 
1446 	daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1447 	KASSERT(daddr <= LFS_MAX_DADDR);
1448 	if (daddr > 0)
1449 		daddr = dbtofsb(fs, daddr);
1450 
1451 	bb = numfrags(fs, size);
1452 	switch (num) {
1453 	    case 0:
1454 		    ooff = ip->i_ffs1_db[lbn];
1455 		    DEBUG_OOFF(0);
1456 		    if (ooff == UNWRITTEN)
1457 			    ip->i_ffs1_blocks += bb;
1458 		    else {
1459 			    /* possible fragment truncation or extension */
1460 			    obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1461 			    ip->i_ffs1_blocks += (bb - obb);
1462 		    }
1463 		    ip->i_ffs1_db[lbn] = ndaddr;
1464 		    break;
1465 	    case 1:
1466 		    ooff = ip->i_ffs1_ib[a[0].in_off];
1467 		    DEBUG_OOFF(1);
1468 		    if (ooff == UNWRITTEN)
1469 			    ip->i_ffs1_blocks += bb;
1470 		    ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1471 		    break;
1472 	    default:
1473 		    ap = &a[num - 1];
1474 		    if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED,
1475 			B_MODIFY, &bp))
1476 			    panic("lfs_updatemeta: bread bno %" PRId64,
1477 				  ap->in_lbn);
1478 
1479 		    /* XXX ondisk32 */
1480 		    ooff = ((int32_t *)bp->b_data)[ap->in_off];
1481 		    DEBUG_OOFF(num);
1482 		    if (ooff == UNWRITTEN)
1483 			    ip->i_ffs1_blocks += bb;
1484 		    /* XXX ondisk32 */
1485 		    ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1486 		    (void) VOP_BWRITE(bp);
1487 	}
1488 
1489 	KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1490 
1491 	/* Update hiblk when extending the file */
1492 	if (lbn > ip->i_lfs_hiblk)
1493 		ip->i_lfs_hiblk = lbn;
1494 
1495 	/*
1496 	 * Though we'd rather it couldn't, this *can* happen right now
1497 	 * if cleaning blocks and regular blocks coexist.
1498 	 */
1499 	/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1500 
1501 	/*
1502 	 * Update segment usage information, based on old size
1503 	 * and location.
1504 	 */
1505 	if (daddr > 0) {
1506 		u_int32_t oldsn = dtosn(fs, daddr);
1507 #ifdef DIAGNOSTIC
1508 		int ndupino;
1509 
1510 		if (sp && sp->seg_number == oldsn) {
1511 			ndupino = sp->ndupino;
1512 		} else {
1513 			ndupino = 0;
1514 		}
1515 #endif
1516 		KASSERT(oldsn < fs->lfs_nseg);
1517 		if (lbn >= 0 && lbn < NDADDR)
1518 			osize = ip->i_lfs_fragsize[lbn];
1519 		else
1520 			osize = fs->lfs_bsize;
1521 		LFS_SEGENTRY(sup, fs, oldsn, bp);
1522 #ifdef DIAGNOSTIC
1523 		if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1524 		    < osize) {
1525 			printf("lfs_updatemeta: negative bytes "
1526 			       "(segment %" PRIu32 " short by %" PRId64
1527 			       ")\n", dtosn(fs, daddr),
1528 			       (int64_t)osize -
1529 			       (sizeof (struct ufs1_dinode) * ndupino +
1530 				sup->su_nbytes));
1531 			printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1532 			       ", addr = 0x%" PRIx64 "\n",
1533 			       (unsigned long long)ip->i_number, lbn, daddr);
1534 			printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1535 			panic("lfs_updatemeta: negative bytes");
1536 			sup->su_nbytes = osize -
1537 			    sizeof (struct ufs1_dinode) * ndupino;
1538 		}
1539 #endif
1540 		DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1541 		      " db 0x%" PRIx64 "\n",
1542 		      dtosn(fs, daddr), osize,
1543 		      ip->i_number, lbn, daddr));
1544 		sup->su_nbytes -= osize;
1545 		if (!(bp->b_flags & B_GATHERED)) {
1546 			mutex_enter(&lfs_lock);
1547 			fs->lfs_flags |= LFS_IFDIRTY;
1548 			mutex_exit(&lfs_lock);
1549 		}
1550 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1551 	}
1552 	/*
1553 	 * Now that this block has a new address, and its old
1554 	 * segment no longer owns it, we can forget about its
1555 	 * old size.
1556 	 */
1557 	if (lbn >= 0 && lbn < NDADDR)
1558 		ip->i_lfs_fragsize[lbn] = size;
1559 }
1560 
1561 /*
1562  * Update the metadata that points to the blocks listed in the FINFO
1563  * array.
1564  */
1565 void
1566 lfs_updatemeta(struct segment *sp)
1567 {
1568 	struct buf *sbp;
1569 	struct lfs *fs;
1570 	struct vnode *vp;
1571 	daddr_t lbn;
1572 	int i, nblocks, num;
1573 	int bb;
1574 	int bytesleft, size;
1575 
1576 	ASSERT_SEGLOCK(sp->fs);
1577 	vp = sp->vp;
1578 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1579 	KASSERT(nblocks >= 0);
1580 	KASSERT(vp != NULL);
1581 	if (nblocks == 0)
1582 		return;
1583 
1584 	/*
1585 	 * This count may be high due to oversize blocks from lfs_gop_write.
1586 	 * Correct for this. (XXX we should be able to keep track of these.)
1587 	 */
1588 	fs = sp->fs;
1589 	for (i = 0; i < nblocks; i++) {
1590 		if (sp->start_bpp[i] == NULL) {
1591 			DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1592 			nblocks = i;
1593 			break;
1594 		}
1595 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1596 		KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1597 		nblocks -= num - 1;
1598 	}
1599 
1600 	KASSERT(vp->v_type == VREG ||
1601 	   nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1602 	KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1603 
1604 	/*
1605 	 * Sort the blocks.
1606 	 *
1607 	 * We have to sort even if the blocks come from the
1608 	 * cleaner, because there might be other pending blocks on the
1609 	 * same inode...and if we don't sort, and there are fragments
1610 	 * present, blocks may be written in the wrong place.
1611 	 */
1612 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1613 
1614 	/*
1615 	 * Record the length of the last block in case it's a fragment.
1616 	 * If there are indirect blocks present, they sort last.  An
1617 	 * indirect block will be lfs_bsize and its presence indicates
1618 	 * that you cannot have fragments.
1619 	 *
1620 	 * XXX This last is a lie.  A cleaned fragment can coexist with
1621 	 * XXX a later indirect block.	This will continue to be
1622 	 * XXX true until lfs_markv is fixed to do everything with
1623 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
1624 	 */
1625 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1626 		fs->lfs_bmask) + 1;
1627 
1628 	/*
1629 	 * Assign disk addresses, and update references to the logical
1630 	 * block and the segment usage information.
1631 	 */
1632 	for (i = nblocks; i--; ++sp->start_bpp) {
1633 		sbp = *sp->start_bpp;
1634 		lbn = *sp->start_lbp;
1635 		KASSERT(sbp->b_lblkno == lbn);
1636 
1637 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1638 
1639 		/*
1640 		 * If we write a frag in the wrong place, the cleaner won't
1641 		 * be able to correctly identify its size later, and the
1642 		 * segment will be uncleanable.	 (Even worse, it will assume
1643 		 * that the indirect block that actually ends the list
1644 		 * is of a smaller size!)
1645 		 */
1646 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1647 			panic("lfs_updatemeta: fragment is not last block");
1648 
1649 		/*
1650 		 * For each subblock in this possibly oversized block,
1651 		 * update its address on disk.
1652 		 */
1653 		KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1654 		KASSERT(vp == sbp->b_vp);
1655 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
1656 		     bytesleft -= fs->lfs_bsize) {
1657 			size = MIN(bytesleft, fs->lfs_bsize);
1658 			bb = numfrags(fs, size);
1659 			lbn = *sp->start_lbp++;
1660 			lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1661 			    size);
1662 			fs->lfs_offset += bb;
1663 		}
1664 
1665 	}
1666 
1667 	/* This inode has been modified */
1668 	LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1669 }
1670 
1671 /*
1672  * Move lfs_offset to a segment earlier than sn.
1673  */
1674 int
1675 lfs_rewind(struct lfs *fs, int newsn)
1676 {
1677 	int sn, osn, isdirty;
1678 	struct buf *bp;
1679 	SEGUSE *sup;
1680 
1681 	ASSERT_SEGLOCK(fs);
1682 
1683 	osn = dtosn(fs, fs->lfs_offset);
1684 	if (osn < newsn)
1685 		return 0;
1686 
1687 	/* lfs_avail eats the remaining space in this segment */
1688 	fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1689 
1690 	/* Find a low-numbered segment */
1691 	for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1692 		LFS_SEGENTRY(sup, fs, sn, bp);
1693 		isdirty = sup->su_flags & SEGUSE_DIRTY;
1694 		brelse(bp, 0);
1695 
1696 		if (!isdirty)
1697 			break;
1698 	}
1699 	if (sn == fs->lfs_nseg)
1700 		panic("lfs_rewind: no clean segments");
1701 	if (newsn >= 0 && sn >= newsn)
1702 		return ENOENT;
1703 	fs->lfs_nextseg = sn;
1704 	lfs_newseg(fs);
1705 	fs->lfs_offset = fs->lfs_curseg;
1706 
1707 	return 0;
1708 }
1709 
1710 /*
1711  * Start a new partial segment.
1712  *
1713  * Return 1 when we entered to a new segment.
1714  * Otherwise, return 0.
1715  */
1716 int
1717 lfs_initseg(struct lfs *fs)
1718 {
1719 	struct segment *sp = fs->lfs_sp;
1720 	SEGSUM *ssp;
1721 	struct buf *sbp;	/* buffer for SEGSUM */
1722 	int repeat = 0;		/* return value */
1723 
1724 	ASSERT_SEGLOCK(fs);
1725 	/* Advance to the next segment. */
1726 	if (!LFS_PARTIAL_FITS(fs)) {
1727 		SEGUSE *sup;
1728 		struct buf *bp;
1729 
1730 		/* lfs_avail eats the remaining space */
1731 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1732 						   fs->lfs_curseg);
1733 		/* Wake up any cleaning procs waiting on this file system. */
1734 		lfs_wakeup_cleaner(fs);
1735 		lfs_newseg(fs);
1736 		repeat = 1;
1737 		fs->lfs_offset = fs->lfs_curseg;
1738 
1739 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
1740 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1741 
1742 		/*
1743 		 * If the segment contains a superblock, update the offset
1744 		 * and summary address to skip over it.
1745 		 */
1746 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1747 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1748 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1749 			sp->seg_bytes_left -= LFS_SBPAD;
1750 		}
1751 		brelse(bp, 0);
1752 		/* Segment zero could also contain the labelpad */
1753 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1754 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1755 			fs->lfs_offset +=
1756 			    btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1757 			sp->seg_bytes_left -=
1758 			    LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1759 		}
1760 	} else {
1761 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
1762 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1763 				      (fs->lfs_offset - fs->lfs_curseg));
1764 	}
1765 	fs->lfs_lastpseg = fs->lfs_offset;
1766 
1767 	/* Record first address of this partial segment */
1768 	if (sp->seg_flags & SEGM_CLEAN) {
1769 		fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1770 		if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1771 			/* "1" is the artificial inc in lfs_seglock */
1772 			mutex_enter(&lfs_lock);
1773 			while (fs->lfs_iocount > 1) {
1774 				mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1775 				    "lfs_initseg", 0, &lfs_lock);
1776 			}
1777 			mutex_exit(&lfs_lock);
1778 			fs->lfs_cleanind = 0;
1779 		}
1780 	}
1781 
1782 	sp->fs = fs;
1783 	sp->ibp = NULL;
1784 	sp->idp = NULL;
1785 	sp->ninodes = 0;
1786 	sp->ndupino = 0;
1787 
1788 	sp->cbpp = sp->bpp;
1789 
1790 	/* Get a new buffer for SEGSUM */
1791 	sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1792 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1793 
1794 	/* ... and enter it into the buffer list. */
1795 	*sp->cbpp = sbp;
1796 	sp->cbpp++;
1797 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1798 
1799 	sp->start_bpp = sp->cbpp;
1800 
1801 	/* Set point to SEGSUM, initialize it. */
1802 	ssp = sp->segsum = sbp->b_data;
1803 	memset(ssp, 0, fs->lfs_sumsize);
1804 	ssp->ss_next = fs->lfs_nextseg;
1805 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
1806 	ssp->ss_magic = SS_MAGIC;
1807 
1808 	/* Set pointer to first FINFO, initialize it. */
1809 	sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1810 	sp->fip->fi_nblocks = 0;
1811 	sp->start_lbp = &sp->fip->fi_blocks[0];
1812 	sp->fip->fi_lastlength = 0;
1813 
1814 	sp->seg_bytes_left -= fs->lfs_sumsize;
1815 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1816 
1817 	return (repeat);
1818 }
1819 
1820 /*
1821  * Remove SEGUSE_INVAL from all segments.
1822  */
1823 void
1824 lfs_unset_inval_all(struct lfs *fs)
1825 {
1826 	SEGUSE *sup;
1827 	struct buf *bp;
1828 	int i;
1829 
1830 	for (i = 0; i < fs->lfs_nseg; i++) {
1831 		LFS_SEGENTRY(sup, fs, i, bp);
1832 		if (sup->su_flags & SEGUSE_INVAL) {
1833 			sup->su_flags &= ~SEGUSE_INVAL;
1834 			LFS_WRITESEGENTRY(sup, fs, i, bp);
1835 		} else
1836 			brelse(bp, 0);
1837 	}
1838 }
1839 
1840 /*
1841  * Return the next segment to write.
1842  */
1843 void
1844 lfs_newseg(struct lfs *fs)
1845 {
1846 	CLEANERINFO *cip;
1847 	SEGUSE *sup;
1848 	struct buf *bp;
1849 	int curseg, isdirty, sn, skip_inval;
1850 
1851 	ASSERT_SEGLOCK(fs);
1852 
1853 	/* Honor LFCNWRAPSTOP */
1854 	mutex_enter(&lfs_lock);
1855 	while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1856 		if (fs->lfs_wrappass) {
1857 			log(LOG_NOTICE, "%s: wrappass=%d\n",
1858 				fs->lfs_fsmnt, fs->lfs_wrappass);
1859 			fs->lfs_wrappass = 0;
1860 			break;
1861 		}
1862 		fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1863 		wakeup(&fs->lfs_nowrap);
1864 		log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1865 		mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1866 			&lfs_lock);
1867 	}
1868 	fs->lfs_wrapstatus = LFS_WRAP_GOING;
1869 	mutex_exit(&lfs_lock);
1870 
1871 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1872 	DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1873 	      dtosn(fs, fs->lfs_nextseg)));
1874 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1875 	sup->su_nbytes = 0;
1876 	sup->su_nsums = 0;
1877 	sup->su_ninos = 0;
1878 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1879 
1880 	LFS_CLEANERINFO(cip, fs, bp);
1881 	--cip->clean;
1882 	++cip->dirty;
1883 	fs->lfs_nclean = cip->clean;
1884 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1885 
1886 	fs->lfs_lastseg = fs->lfs_curseg;
1887 	fs->lfs_curseg = fs->lfs_nextseg;
1888 	skip_inval = 1;
1889 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1890 		sn = (sn + 1) % fs->lfs_nseg;
1891 
1892 		if (sn == curseg) {
1893 			if (skip_inval)
1894 				skip_inval = 0;
1895 			else
1896 				panic("lfs_nextseg: no clean segments");
1897 		}
1898 		LFS_SEGENTRY(sup, fs, sn, bp);
1899 		isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1900 		/* Check SEGUSE_EMPTY as we go along */
1901 		if (isdirty && sup->su_nbytes == 0 &&
1902 		    !(sup->su_flags & SEGUSE_EMPTY))
1903 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
1904 		else
1905 			brelse(bp, 0);
1906 
1907 		if (!isdirty)
1908 			break;
1909 	}
1910 	if (skip_inval == 0)
1911 		lfs_unset_inval_all(fs);
1912 
1913 	++fs->lfs_nactive;
1914 	fs->lfs_nextseg = sntod(fs, sn);
1915 	if (lfs_dostats) {
1916 		++lfs_stats.segsused;
1917 	}
1918 }
1919 
1920 static struct buf *
1921 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1922     int n)
1923 {
1924 	struct lfs_cluster *cl;
1925 	struct buf **bpp, *bp;
1926 
1927 	ASSERT_SEGLOCK(fs);
1928 	cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1929 	bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1930 	memset(cl, 0, sizeof(*cl));
1931 	cl->fs = fs;
1932 	cl->bpp = bpp;
1933 	cl->bufcount = 0;
1934 	cl->bufsize = 0;
1935 
1936 	/* If this segment is being written synchronously, note that */
1937 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1938 		cl->flags |= LFS_CL_SYNC;
1939 		cl->seg = fs->lfs_sp;
1940 		++cl->seg->seg_iocount;
1941 	}
1942 
1943 	/* Get an empty buffer header, or maybe one with something on it */
1944 	bp = getiobuf(vp, true);
1945 	bp->b_dev = NODEV;
1946 	bp->b_blkno = bp->b_lblkno = addr;
1947 	bp->b_iodone = lfs_cluster_callback;
1948 	bp->b_private = cl;
1949 
1950 	return bp;
1951 }
1952 
1953 int
1954 lfs_writeseg(struct lfs *fs, struct segment *sp)
1955 {
1956 	struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
1957 	SEGUSE *sup;
1958 	SEGSUM *ssp;
1959 	int i;
1960 	int do_again, nblocks, byteoffset;
1961 	size_t el_size;
1962 	struct lfs_cluster *cl;
1963 	u_short ninos;
1964 	struct vnode *devvp;
1965 	char *p = NULL;
1966 	struct vnode *vp;
1967 	int32_t *daddrp;	/* XXX ondisk32 */
1968 	int changed;
1969 	u_int32_t sum;
1970 #ifdef DEBUG
1971 	FINFO *fip;
1972 	int findex;
1973 #endif
1974 
1975 	ASSERT_SEGLOCK(fs);
1976 
1977 	ssp = (SEGSUM *)sp->segsum;
1978 
1979 	/*
1980 	 * If there are no buffers other than the segment summary to write,
1981 	 * don't do anything.  If we are the end of a dirop sequence, however,
1982 	 * write the empty segment summary anyway, to help out the
1983 	 * roll-forward agent.
1984 	 */
1985 	if ((nblocks = sp->cbpp - sp->bpp) == 1) {
1986 		if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
1987 			return 0;
1988 	}
1989 
1990 	/* Note if partial segment is being written by the cleaner */
1991 	if (sp->seg_flags & SEGM_CLEAN)
1992 		ssp->ss_flags |= SS_CLEAN;
1993 
1994 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1995 
1996 	/* Update the segment usage information. */
1997 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1998 
1999 	/* Loop through all blocks, except the segment summary. */
2000 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2001 		if ((*bpp)->b_vp != devvp) {
2002 			sup->su_nbytes += (*bpp)->b_bcount;
2003 			DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2004 			      " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2005 			      sp->seg_number, (*bpp)->b_bcount,
2006 			      VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2007 			      (*bpp)->b_blkno));
2008 		}
2009 	}
2010 
2011 #ifdef DEBUG
2012 	/* Check for zero-length and zero-version FINFO entries. */
2013 	fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2014 	for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2015 		KDASSERT(fip->fi_nblocks > 0);
2016 		KDASSERT(fip->fi_version > 0);
2017 		fip = (FINFO *)((char *)fip + FINFOSIZE +
2018 			sizeof(int32_t) * fip->fi_nblocks);
2019 	}
2020 #endif /* DEBUG */
2021 
2022 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2023 	DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2024 	      sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2025 	      ssp->ss_ninos));
2026 	sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2027 	/* sup->su_nbytes += fs->lfs_sumsize; */
2028 	if (fs->lfs_version == 1)
2029 		sup->su_olastmod = time_second;
2030 	else
2031 		sup->su_lastmod = time_second;
2032 	sup->su_ninos += ninos;
2033 	++sup->su_nsums;
2034 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2035 
2036 	do_again = !(bp->b_flags & B_GATHERED);
2037 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2038 
2039 	/*
2040 	 * Mark blocks B_BUSY, to prevent then from being changed between
2041 	 * the checksum computation and the actual write.
2042 	 *
2043 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2044 	 * there are any, replace them with copies that have UNASSIGNED
2045 	 * instead.
2046 	 */
2047 	mutex_enter(&bufcache_lock);
2048 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2049 		++bpp;
2050 		bp = *bpp;
2051 		if (bp->b_iodone != NULL) {	 /* UBC or malloced buffer */
2052 			bp->b_cflags |= BC_BUSY;
2053 			continue;
2054 		}
2055 
2056 		while (bp->b_cflags & BC_BUSY) {
2057 			DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2058 			      " data summary corruption for ino %d, lbn %"
2059 			      PRId64 "\n",
2060 			      VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2061 			bp->b_cflags |= BC_WANTED;
2062 			cv_wait(&bp->b_busy, &bufcache_lock);
2063 		}
2064 		bp->b_cflags |= BC_BUSY;
2065 		mutex_exit(&bufcache_lock);
2066 		unbusybp = NULL;
2067 
2068 		/*
2069 		 * Check and replace indirect block UNWRITTEN bogosity.
2070 		 * XXX See comment in lfs_writefile.
2071 		 */
2072 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2073 		   VTOI(bp->b_vp)->i_ffs1_blocks !=
2074 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
2075 			DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2076 			      VTOI(bp->b_vp)->i_number,
2077 			      VTOI(bp->b_vp)->i_lfs_effnblks,
2078 			      VTOI(bp->b_vp)->i_ffs1_blocks));
2079 			/* Make a copy we'll make changes to */
2080 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2081 					   bp->b_bcount, LFS_NB_IBLOCK);
2082 			newbp->b_blkno = bp->b_blkno;
2083 			memcpy(newbp->b_data, bp->b_data,
2084 			       newbp->b_bcount);
2085 
2086 			changed = 0;
2087 			/* XXX ondisk32 */
2088 			for (daddrp = (int32_t *)(newbp->b_data);
2089 			     daddrp < (int32_t *)((char *)newbp->b_data +
2090 						  newbp->b_bcount); daddrp++) {
2091 				if (*daddrp == UNWRITTEN) {
2092 					++changed;
2093 					*daddrp = 0;
2094 				}
2095 			}
2096 			/*
2097 			 * Get rid of the old buffer.  Don't mark it clean,
2098 			 * though, if it still has dirty data on it.
2099 			 */
2100 			if (changed) {
2101 				DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2102 				      " bp = %p newbp = %p\n", changed, bp,
2103 				      newbp));
2104 				*bpp = newbp;
2105 				bp->b_flags &= ~B_GATHERED;
2106 				bp->b_error = 0;
2107 				if (bp->b_iodone != NULL) {
2108 					DLOG((DLOG_SEG, "lfs_writeseg: "
2109 					      "indir bp should not be B_CALL\n"));
2110 					biodone(bp);
2111 					bp = NULL;
2112 				} else {
2113 					/* Still on free list, leave it there */
2114 					unbusybp = bp;
2115 					/*
2116 					 * We have to re-decrement lfs_avail
2117 					 * since this block is going to come
2118 					 * back around to us in the next
2119 					 * segment.
2120 					 */
2121 					fs->lfs_avail -=
2122 					    btofsb(fs, bp->b_bcount);
2123 				}
2124 			} else {
2125 				lfs_freebuf(fs, newbp);
2126 			}
2127 		}
2128 		mutex_enter(&bufcache_lock);
2129 		if (unbusybp != NULL) {
2130 			unbusybp->b_cflags &= ~BC_BUSY;
2131 			if (unbusybp->b_cflags & BC_WANTED)
2132 				cv_broadcast(&bp->b_busy);
2133 		}
2134 	}
2135 	mutex_exit(&bufcache_lock);
2136 
2137 	/*
2138 	 * Compute checksum across data and then across summary; the first
2139 	 * block (the summary block) is skipped.  Set the create time here
2140 	 * so that it's guaranteed to be later than the inode mod times.
2141 	 */
2142 	sum = 0;
2143 	if (fs->lfs_version == 1)
2144 		el_size = sizeof(u_long);
2145 	else
2146 		el_size = sizeof(u_int32_t);
2147 	for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2148 		++bpp;
2149 		/* Loop through gop_write cluster blocks */
2150 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2151 		     byteoffset += fs->lfs_bsize) {
2152 #ifdef LFS_USE_B_INVAL
2153 			if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2154 			    (*bpp)->b_iodone != NULL) {
2155 				if (copyin((void *)(*bpp)->b_saveaddr +
2156 					   byteoffset, dp, el_size)) {
2157 					panic("lfs_writeseg: copyin failed [1]:"
2158 						" ino %d blk %" PRId64,
2159 						VTOI((*bpp)->b_vp)->i_number,
2160 						(*bpp)->b_lblkno);
2161 				}
2162 			} else
2163 #endif /* LFS_USE_B_INVAL */
2164 			{
2165 				sum = lfs_cksum_part((char *)
2166 				    (*bpp)->b_data + byteoffset, el_size, sum);
2167 			}
2168 		}
2169 	}
2170 	if (fs->lfs_version == 1)
2171 		ssp->ss_ocreate = time_second;
2172 	else {
2173 		ssp->ss_create = time_second;
2174 		ssp->ss_serial = ++fs->lfs_serial;
2175 		ssp->ss_ident  = fs->lfs_ident;
2176 	}
2177 	ssp->ss_datasum = lfs_cksum_fold(sum);
2178 	ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2179 	    fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2180 
2181 	mutex_enter(&lfs_lock);
2182 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2183 			  btofsb(fs, fs->lfs_sumsize));
2184 	fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2185 			  btofsb(fs, fs->lfs_sumsize));
2186 	mutex_exit(&lfs_lock);
2187 
2188 	/*
2189 	 * When we simply write the blocks we lose a rotation for every block
2190 	 * written.  To avoid this problem, we cluster the buffers into a
2191 	 * chunk and write the chunk.  MAXPHYS is the largest size I/O
2192 	 * devices can handle, use that for the size of the chunks.
2193 	 *
2194 	 * Blocks that are already clusters (from GOP_WRITE), however, we
2195 	 * don't bother to copy into other clusters.
2196 	 */
2197 
2198 #define CHUNKSIZE MAXPHYS
2199 
2200 	if (devvp == NULL)
2201 		panic("devvp is NULL");
2202 	for (bpp = sp->bpp, i = nblocks; i;) {
2203 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2204 		cl = cbp->b_private;
2205 
2206 		cbp->b_flags |= B_ASYNC;
2207 		cbp->b_cflags |= BC_BUSY;
2208 		cbp->b_bcount = 0;
2209 
2210 #if defined(DEBUG) && defined(DIAGNOSTIC)
2211 		if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2212 		    / sizeof(int32_t)) {
2213 			panic("lfs_writeseg: real bpp overwrite");
2214 		}
2215 		if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2216 			panic("lfs_writeseg: theoretical bpp overwrite");
2217 		}
2218 #endif
2219 
2220 		/*
2221 		 * Construct the cluster.
2222 		 */
2223 		mutex_enter(&lfs_lock);
2224 		++fs->lfs_iocount;
2225 		mutex_exit(&lfs_lock);
2226 		while (i && cbp->b_bcount < CHUNKSIZE) {
2227 			bp = *bpp;
2228 
2229 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2230 				break;
2231 			if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2232 				break;
2233 
2234 			/* Clusters from GOP_WRITE are expedited */
2235 			if (bp->b_bcount > fs->lfs_bsize) {
2236 				if (cbp->b_bcount > 0)
2237 					/* Put in its own buffer */
2238 					break;
2239 				else {
2240 					cbp->b_data = bp->b_data;
2241 				}
2242 			} else if (cbp->b_bcount == 0) {
2243 				p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2244 							     LFS_NB_CLUSTER);
2245 				cl->flags |= LFS_CL_MALLOC;
2246 			}
2247 #ifdef DIAGNOSTIC
2248 			if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2249 					      btodb(bp->b_bcount - 1))) !=
2250 			    sp->seg_number) {
2251 				printf("blk size %d daddr %" PRIx64
2252 				    " not in seg %d\n",
2253 				    bp->b_bcount, bp->b_blkno,
2254 				    sp->seg_number);
2255 				panic("segment overwrite");
2256 			}
2257 #endif
2258 
2259 #ifdef LFS_USE_B_INVAL
2260 			/*
2261 			 * Fake buffers from the cleaner are marked as B_INVAL.
2262 			 * We need to copy the data from user space rather than
2263 			 * from the buffer indicated.
2264 			 * XXX == what do I do on an error?
2265 			 */
2266 			if ((bp->b_cflags & BC_INVAL) != 0 &&
2267 			    bp->b_iodone != NULL) {
2268 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2269 					panic("lfs_writeseg: "
2270 					    "copyin failed [2]");
2271 			} else
2272 #endif /* LFS_USE_B_INVAL */
2273 			if (cl->flags & LFS_CL_MALLOC) {
2274 				/* copy data into our cluster. */
2275 				memcpy(p, bp->b_data, bp->b_bcount);
2276 				p += bp->b_bcount;
2277 			}
2278 
2279 			cbp->b_bcount += bp->b_bcount;
2280 			cl->bufsize += bp->b_bcount;
2281 
2282 			bp->b_flags &= ~B_READ;
2283 			bp->b_error = 0;
2284 			cl->bpp[cl->bufcount++] = bp;
2285 
2286 			vp = bp->b_vp;
2287 			mutex_enter(&bufcache_lock);
2288 			mutex_enter(&vp->v_interlock);
2289 			bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2290 			reassignbuf(bp, vp);
2291 			vp->v_numoutput++;
2292 			mutex_exit(&vp->v_interlock);
2293 			mutex_exit(&bufcache_lock);
2294 
2295 			bpp++;
2296 			i--;
2297 		}
2298 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2299 			BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2300 		else
2301 			BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2302 		mutex_enter(&devvp->v_interlock);
2303 		devvp->v_numoutput++;
2304 		mutex_exit(&devvp->v_interlock);
2305 		VOP_STRATEGY(devvp, cbp);
2306 		curlwp->l_ru.ru_oublock++;
2307 	}
2308 
2309 	if (lfs_dostats) {
2310 		++lfs_stats.psegwrites;
2311 		lfs_stats.blocktot += nblocks - 1;
2312 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2313 			++lfs_stats.psyncwrites;
2314 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2315 			++lfs_stats.pcleanwrites;
2316 			lfs_stats.cleanblocks += nblocks - 1;
2317 		}
2318 	}
2319 
2320 	return (lfs_initseg(fs) || do_again);
2321 }
2322 
2323 void
2324 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2325 {
2326 	struct buf *bp;
2327 	struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2328 	int s;
2329 
2330 	ASSERT_MAYBE_SEGLOCK(fs);
2331 #ifdef DIAGNOSTIC
2332 	KASSERT(fs->lfs_magic == LFS_MAGIC);
2333 #endif
2334 	/*
2335 	 * If we can write one superblock while another is in
2336 	 * progress, we risk not having a complete checkpoint if we crash.
2337 	 * So, block here if a superblock write is in progress.
2338 	 */
2339 	mutex_enter(&lfs_lock);
2340 	s = splbio();
2341 	while (fs->lfs_sbactive) {
2342 		mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2343 			&lfs_lock);
2344 	}
2345 	fs->lfs_sbactive = daddr;
2346 	splx(s);
2347 	mutex_exit(&lfs_lock);
2348 
2349 	/* Set timestamp of this version of the superblock */
2350 	if (fs->lfs_version == 1)
2351 		fs->lfs_otstamp = time_second;
2352 	fs->lfs_tstamp = time_second;
2353 
2354 	/* Checksum the superblock and copy it into a buffer. */
2355 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2356 	bp = lfs_newbuf(fs, devvp,
2357 	    fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2358 	memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2359 	    LFS_SBPAD - sizeof(struct dlfs));
2360 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2361 
2362 	bp->b_cflags |= BC_BUSY;
2363 	bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2364 	bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2365 	bp->b_error = 0;
2366 	bp->b_iodone = lfs_supercallback;
2367 
2368 	if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2369 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2370 	else
2371 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2372 	curlwp->l_ru.ru_oublock++;
2373 
2374 	mutex_enter(&devvp->v_interlock);
2375 	devvp->v_numoutput++;
2376 	mutex_exit(&devvp->v_interlock);
2377 
2378 	mutex_enter(&lfs_lock);
2379 	++fs->lfs_iocount;
2380 	mutex_exit(&lfs_lock);
2381 	VOP_STRATEGY(devvp, bp);
2382 }
2383 
2384 /*
2385  * Logical block number match routines used when traversing the dirty block
2386  * chain.
2387  */
2388 int
2389 lfs_match_fake(struct lfs *fs, struct buf *bp)
2390 {
2391 
2392 	ASSERT_SEGLOCK(fs);
2393 	return LFS_IS_MALLOC_BUF(bp);
2394 }
2395 
2396 #if 0
2397 int
2398 lfs_match_real(struct lfs *fs, struct buf *bp)
2399 {
2400 
2401 	ASSERT_SEGLOCK(fs);
2402 	return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2403 }
2404 #endif
2405 
2406 int
2407 lfs_match_data(struct lfs *fs, struct buf *bp)
2408 {
2409 
2410 	ASSERT_SEGLOCK(fs);
2411 	return (bp->b_lblkno >= 0);
2412 }
2413 
2414 int
2415 lfs_match_indir(struct lfs *fs, struct buf *bp)
2416 {
2417 	daddr_t lbn;
2418 
2419 	ASSERT_SEGLOCK(fs);
2420 	lbn = bp->b_lblkno;
2421 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2422 }
2423 
2424 int
2425 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2426 {
2427 	daddr_t lbn;
2428 
2429 	ASSERT_SEGLOCK(fs);
2430 	lbn = bp->b_lblkno;
2431 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2432 }
2433 
2434 int
2435 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2436 {
2437 	daddr_t lbn;
2438 
2439 	ASSERT_SEGLOCK(fs);
2440 	lbn = bp->b_lblkno;
2441 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2442 }
2443 
2444 static void
2445 lfs_free_aiodone(struct buf *bp)
2446 {
2447 	struct lfs *fs;
2448 
2449 	KERNEL_LOCK(1, curlwp);
2450 	fs = bp->b_private;
2451 	ASSERT_NO_SEGLOCK(fs);
2452 	lfs_freebuf(fs, bp);
2453 	KERNEL_UNLOCK_LAST(curlwp);
2454 }
2455 
2456 static void
2457 lfs_super_aiodone(struct buf *bp)
2458 {
2459 	struct lfs *fs;
2460 
2461 	KERNEL_LOCK(1, curlwp);
2462 	fs = bp->b_private;
2463 	ASSERT_NO_SEGLOCK(fs);
2464 	mutex_enter(&lfs_lock);
2465 	fs->lfs_sbactive = 0;
2466 	if (--fs->lfs_iocount <= 1)
2467 		wakeup(&fs->lfs_iocount);
2468 	wakeup(&fs->lfs_sbactive);
2469 	mutex_exit(&lfs_lock);
2470 	lfs_freebuf(fs, bp);
2471 	KERNEL_UNLOCK_LAST(curlwp);
2472 }
2473 
2474 static void
2475 lfs_cluster_aiodone(struct buf *bp)
2476 {
2477 	struct lfs_cluster *cl;
2478 	struct lfs *fs;
2479 	struct buf *tbp, *fbp;
2480 	struct vnode *vp, *devvp, *ovp;
2481 	struct inode *ip;
2482 	int error;
2483 
2484 	KERNEL_LOCK(1, curlwp);
2485 
2486 	error = bp->b_error;
2487 	cl = bp->b_private;
2488 	fs = cl->fs;
2489 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2490 	ASSERT_NO_SEGLOCK(fs);
2491 
2492 	/* Put the pages back, and release the buffer */
2493 	while (cl->bufcount--) {
2494 		tbp = cl->bpp[cl->bufcount];
2495 		KASSERT(tbp->b_cflags & BC_BUSY);
2496 		if (error) {
2497 			tbp->b_error = error;
2498 		}
2499 
2500 		/*
2501 		 * We're done with tbp.	 If it has not been re-dirtied since
2502 		 * the cluster was written, free it.  Otherwise, keep it on
2503 		 * the locked list to be written again.
2504 		 */
2505 		vp = tbp->b_vp;
2506 
2507 		tbp->b_flags &= ~B_GATHERED;
2508 
2509 		LFS_BCLEAN_LOG(fs, tbp);
2510 
2511 		mutex_enter(&bufcache_lock);
2512 		if (tbp->b_iodone == NULL) {
2513 			KASSERT(tbp->b_flags & B_LOCKED);
2514 			bremfree(tbp);
2515 			if (vp) {
2516 				mutex_enter(&vp->v_interlock);
2517 				reassignbuf(tbp, vp);
2518 				mutex_exit(&vp->v_interlock);
2519 			}
2520 			tbp->b_flags |= B_ASYNC; /* for biodone */
2521 		}
2522 
2523 		if (((tbp->b_flags | tbp->b_oflags) &
2524 		    (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2525 			LFS_UNLOCK_BUF(tbp);
2526 
2527 		if (tbp->b_oflags & BO_DONE) {
2528 			DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2529 				cl->bufcount, (long)tbp->b_flags));
2530 		}
2531 
2532 		if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2533 			/*
2534 			 * A buffer from the page daemon.
2535 			 * We use the same iodone as it does,
2536 			 * so we must manually disassociate its
2537 			 * buffers from the vp.
2538 			 */
2539 			if ((ovp = tbp->b_vp) != NULL) {
2540 				/* This is just silly */
2541 				mutex_enter(&ovp->v_interlock);
2542 				brelvp(tbp);
2543 				mutex_exit(&ovp->v_interlock);
2544 				tbp->b_vp = vp;
2545 				tbp->b_objlock = &vp->v_interlock;
2546 			}
2547 			/* Put it back the way it was */
2548 			tbp->b_flags |= B_ASYNC;
2549 			/* Master buffers have BC_AGE */
2550 			if (tbp->b_private == tbp)
2551 				tbp->b_cflags |= BC_AGE;
2552 		}
2553 		mutex_exit(&bufcache_lock);
2554 
2555 		biodone(tbp);
2556 
2557 		/*
2558 		 * If this is the last block for this vnode, but
2559 		 * there are other blocks on its dirty list,
2560 		 * set IN_MODIFIED/IN_CLEANING depending on what
2561 		 * sort of block.  Only do this for our mount point,
2562 		 * not for, e.g., inode blocks that are attached to
2563 		 * the devvp.
2564 		 * XXX KS - Shouldn't we set *both* if both types
2565 		 * of blocks are present (traverse the dirty list?)
2566 		 */
2567 		mutex_enter(&lfs_lock);
2568 		mutex_enter(&vp->v_interlock);
2569 		if (vp != devvp && vp->v_numoutput == 0 &&
2570 		    (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2571 			ip = VTOI(vp);
2572 			DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2573 			       ip->i_number));
2574 			if (LFS_IS_MALLOC_BUF(fbp))
2575 				LFS_SET_UINO(ip, IN_CLEANING);
2576 			else
2577 				LFS_SET_UINO(ip, IN_MODIFIED);
2578 		}
2579 		cv_broadcast(&vp->v_cv);
2580 		mutex_exit(&vp->v_interlock);
2581 		mutex_exit(&lfs_lock);
2582 	}
2583 
2584 	/* Fix up the cluster buffer, and release it */
2585 	if (cl->flags & LFS_CL_MALLOC)
2586 		lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2587 	putiobuf(bp);
2588 
2589 	/* Note i/o done */
2590 	if (cl->flags & LFS_CL_SYNC) {
2591 		if (--cl->seg->seg_iocount == 0)
2592 			wakeup(&cl->seg->seg_iocount);
2593 	}
2594 	mutex_enter(&lfs_lock);
2595 #ifdef DIAGNOSTIC
2596 	if (fs->lfs_iocount == 0)
2597 		panic("lfs_cluster_aiodone: zero iocount");
2598 #endif
2599 	if (--fs->lfs_iocount <= 1)
2600 		wakeup(&fs->lfs_iocount);
2601 	mutex_exit(&lfs_lock);
2602 
2603 	KERNEL_UNLOCK_LAST(curlwp);
2604 
2605 	pool_put(&fs->lfs_bpppool, cl->bpp);
2606 	cl->bpp = NULL;
2607 	pool_put(&fs->lfs_clpool, cl);
2608 }
2609 
2610 static void
2611 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2612 {
2613 	/* reset b_iodone for when this is a single-buf i/o. */
2614 	bp->b_iodone = aiodone;
2615 
2616 	workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2617 }
2618 
2619 static void
2620 lfs_cluster_callback(struct buf *bp)
2621 {
2622 
2623 	lfs_generic_callback(bp, lfs_cluster_aiodone);
2624 }
2625 
2626 void
2627 lfs_supercallback(struct buf *bp)
2628 {
2629 
2630 	lfs_generic_callback(bp, lfs_super_aiodone);
2631 }
2632 
2633 /*
2634  * The only buffers that are going to hit these functions are the
2635  * segment write blocks, or the segment summaries, or the superblocks.
2636  *
2637  * All of the above are created by lfs_newbuf, and so do not need to be
2638  * released via brelse.
2639  */
2640 void
2641 lfs_callback(struct buf *bp)
2642 {
2643 
2644 	lfs_generic_callback(bp, lfs_free_aiodone);
2645 }
2646 
2647 /*
2648  * Shellsort (diminishing increment sort) from Data Structures and
2649  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2650  * see also Knuth Vol. 3, page 84.  The increments are selected from
2651  * formula (8), page 95.  Roughly O(N^3/2).
2652  */
2653 /*
2654  * This is our own private copy of shellsort because we want to sort
2655  * two parallel arrays (the array of buffer pointers and the array of
2656  * logical block numbers) simultaneously.  Note that we cast the array
2657  * of logical block numbers to a unsigned in this routine so that the
2658  * negative block numbers (meta data blocks) sort AFTER the data blocks.
2659  */
2660 
2661 void
2662 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2663 {
2664 	static int __rsshell_increments[] = { 4, 1, 0 };
2665 	int incr, *incrp, t1, t2;
2666 	struct buf *bp_temp;
2667 
2668 #ifdef DEBUG
2669 	incr = 0;
2670 	for (t1 = 0; t1 < nmemb; t1++) {
2671 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2672 			if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2673 				/* dump before panic */
2674 				printf("lfs_shellsort: nmemb=%d, size=%d\n",
2675 				    nmemb, size);
2676 				incr = 0;
2677 				for (t1 = 0; t1 < nmemb; t1++) {
2678 					const struct buf *bp = bp_array[t1];
2679 
2680 					printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2681 					    PRIu64 "\n", t1,
2682 					    (uint64_t)bp->b_bcount,
2683 					    (uint64_t)bp->b_lblkno);
2684 					printf("lbns:");
2685 					for (t2 = 0; t2 * size < bp->b_bcount;
2686 					    t2++) {
2687 						printf(" %" PRId32,
2688 						    lb_array[incr++]);
2689 					}
2690 					printf("\n");
2691 				}
2692 				panic("lfs_shellsort: inconsistent input");
2693 			}
2694 		}
2695 	}
2696 #endif
2697 
2698 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2699 		for (t1 = incr; t1 < nmemb; ++t1)
2700 			for (t2 = t1 - incr; t2 >= 0;)
2701 				if ((u_int32_t)bp_array[t2]->b_lblkno >
2702 				    (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2703 					bp_temp = bp_array[t2];
2704 					bp_array[t2] = bp_array[t2 + incr];
2705 					bp_array[t2 + incr] = bp_temp;
2706 					t2 -= incr;
2707 				} else
2708 					break;
2709 
2710 	/* Reform the list of logical blocks */
2711 	incr = 0;
2712 	for (t1 = 0; t1 < nmemb; t1++) {
2713 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2714 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2715 		}
2716 	}
2717 }
2718 
2719 /*
2720  * Call vget with LK_NOWAIT.  If we are the one who holds VI_XLOCK,
2721  * however, we must press on.  Just fake success in that case.
2722  */
2723 int
2724 lfs_vref(struct vnode *vp)
2725 {
2726 	int error;
2727 	struct lfs *fs;
2728 
2729 	KASSERT(mutex_owned(&vp->v_interlock));
2730 
2731 	fs = VTOI(vp)->i_lfs;
2732 
2733 	ASSERT_MAYBE_SEGLOCK(fs);
2734 
2735 	/*
2736 	 * If we return 1 here during a flush, we risk vinvalbuf() not
2737 	 * being able to flush all of the pages from this vnode, which
2738 	 * will cause it to panic.  So, return 0 if a flush is in progress.
2739 	 */
2740 	error = vget(vp, LK_NOWAIT);
2741 	if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2742 		++fs->lfs_flushvp_fakevref;
2743 		return 0;
2744 	}
2745 	return error;
2746 }
2747 
2748 /*
2749  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2750  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2751  */
2752 void
2753 lfs_vunref(struct vnode *vp)
2754 {
2755 	struct lfs *fs;
2756 
2757 	fs = VTOI(vp)->i_lfs;
2758 	ASSERT_MAYBE_SEGLOCK(fs);
2759 
2760 	/*
2761 	 * Analogous to lfs_vref, if the node is flushing, fake it.
2762 	 */
2763 	if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2764 		--fs->lfs_flushvp_fakevref;
2765 		return;
2766 	}
2767 
2768 	/* does not call inactive */
2769 	mutex_enter(&vp->v_interlock);
2770 	vrelel(vp, VRELEL_NOINACTIVE);
2771 }
2772 
2773 /*
2774  * We use this when we have vnodes that were loaded in solely for cleaning.
2775  * There is no reason to believe that these vnodes will be referenced again
2776  * soon, since the cleaning process is unrelated to normal filesystem
2777  * activity.  Putting cleaned vnodes at the tail of the list has the effect
2778  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
2779  * cleaning at the head of the list, instead.
2780  */
2781 void
2782 lfs_vunref_head(struct vnode *vp)
2783 {
2784 
2785 	ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2786 
2787 	/* does not call inactive, inserts non-held vnode at head of freelist */
2788 	mutex_enter(&vp->v_interlock);
2789 	vrelel(vp, VRELEL_NOINACTIVE | VRELEL_ONHEAD);
2790 }
2791 
2792 
2793 /*
2794  * Set up an FINFO entry for a new file.  The fip pointer is assumed to
2795  * point at uninitialized space.
2796  */
2797 void
2798 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2799 {
2800 	struct segment *sp = fs->lfs_sp;
2801 
2802 	KASSERT(vers > 0);
2803 
2804 	if (sp->seg_bytes_left < fs->lfs_bsize ||
2805 	    sp->sum_bytes_left < sizeof(struct finfo))
2806 		(void) lfs_writeseg(fs, fs->lfs_sp);
2807 
2808 	sp->sum_bytes_left -= FINFOSIZE;
2809 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2810 	sp->fip->fi_nblocks = 0;
2811 	sp->fip->fi_ino = ino;
2812 	sp->fip->fi_version = vers;
2813 }
2814 
2815 /*
2816  * Release the FINFO entry, either clearing out an unused entry or
2817  * advancing us to the next available entry.
2818  */
2819 void
2820 lfs_release_finfo(struct lfs *fs)
2821 {
2822 	struct segment *sp = fs->lfs_sp;
2823 
2824 	if (sp->fip->fi_nblocks != 0) {
2825 		sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2826 			sizeof(int32_t) * sp->fip->fi_nblocks);
2827 		sp->start_lbp = &sp->fip->fi_blocks[0];
2828 	} else {
2829 		sp->sum_bytes_left += FINFOSIZE;
2830 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
2831 	}
2832 }
2833