xref: /netbsd/sys/uvm/uvm_amap.h (revision c4a72b64)
1 /*	$NetBSD: uvm_amap.h,v 1.20 2002/11/30 18:28:05 bouyer Exp $	*/
2 
3 /*
4  *
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Charles D. Cranor and
19  *      Washington University.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #ifndef _UVM_UVM_AMAP_H_
36 #define _UVM_UVM_AMAP_H_
37 
38 /*
39  * uvm_amap.h: general amap interface and amap implementation-specific info
40  */
41 
42 /*
43  * an amap structure contains pointers to a set of anons that are
44  * mapped together in virtual memory (an anon is a single page of
45  * anonymous virtual memory -- see uvm_anon.h).  in uvm we hide the
46  * details of the implementation of amaps behind a general amap
47  * interface.  this allows us to change the amap implementation
48  * without having to touch the rest of the code.  this file is divided
49  * into two parts: the definition of the uvm amap interface and the
50  * amap implementation-specific definitions.
51  */
52 
53 #ifdef _KERNEL
54 
55 /*
56  * part 1: amap interface
57  */
58 
59 /*
60  * forward definition of vm_amap structure.  only amap
61  * implementation-specific code should directly access the fields of
62  * this structure.
63  */
64 
65 struct vm_amap;
66 
67 /*
68  * handle inline options... we allow amap ops to be inline, but we also
69  * provide a hook to turn this off.  macros can also be used.
70  */
71 
72 #ifdef UVM_AMAP_INLINE			/* defined/undef'd in uvm_amap.c */
73 #define AMAP_INLINE static __inline	/* inline enabled */
74 #else
75 #define AMAP_INLINE			/* inline disabled */
76 #endif /* UVM_AMAP_INLINE */
77 
78 
79 /*
80  * prototypes for the amap interface
81  */
82 
83 AMAP_INLINE
84 void		amap_add 	/* add an anon to an amap */
85 			__P((struct vm_aref *, vaddr_t,
86 			     struct vm_anon *, boolean_t));
87 struct vm_amap	*amap_alloc	/* allocate a new amap */
88 			__P((vaddr_t, vaddr_t, int));
89 void		amap_copy	/* clear amap needs-copy flag */
90 			__P((struct vm_map *, struct vm_map_entry *, int,
91 			     boolean_t,	vaddr_t, vaddr_t));
92 void		amap_cow_now	/* resolve all COW faults now */
93 			__P((struct vm_map *, struct vm_map_entry *));
94 int		amap_extend	/* make amap larger */
95 			__P((struct vm_map_entry *, vsize_t, int));
96 int		amap_flags	/* get amap's flags */
97 			__P((struct vm_amap *));
98 void		amap_free	/* free amap */
99 			__P((struct vm_amap *));
100 void		amap_init	/* init amap module (at boot time) */
101 			__P((void));
102 void		amap_lock	/* lock amap */
103 			__P((struct vm_amap *));
104 AMAP_INLINE
105 struct vm_anon	*amap_lookup	/* lookup an anon @ offset in amap */
106 			__P((struct vm_aref *, vaddr_t));
107 AMAP_INLINE
108 void		amap_lookups	/* lookup multiple anons */
109 			__P((struct vm_aref *, vaddr_t,
110 			     struct vm_anon **, int));
111 AMAP_INLINE
112 void		amap_ref	/* add a reference to an amap */
113 			__P((struct vm_amap *, vaddr_t, vsize_t, int));
114 int		amap_refs	/* get number of references of amap */
115 			__P((struct vm_amap *));
116 void		amap_share_protect /* protect pages in a shared amap */
117 			__P((struct vm_map_entry *, vm_prot_t));
118 void		amap_splitref	/* split reference to amap into two */
119 			__P((struct vm_aref *, struct vm_aref *,
120 			     vaddr_t));
121 AMAP_INLINE
122 void		amap_unadd	/* remove an anon from an amap */
123 			__P((struct vm_aref *, vaddr_t));
124 void		amap_unlock	/* unlock amap */
125 			__P((struct vm_amap *));
126 AMAP_INLINE
127 void		amap_unref	/* drop reference to an amap */
128 			 __P((struct vm_amap *, vaddr_t, vsize_t, int));
129 void		amap_wipeout	/* remove all anons from amap */
130 			__P((struct vm_amap *));
131 
132 /*
133  * amap flag values
134  */
135 
136 #define AMAP_SHARED	0x1	/* amap is shared */
137 #define AMAP_REFALL	0x2	/* amap_ref: reference entire amap */
138 
139 /*
140  * amap_extend flags
141  */
142 #define AMAP_EXTEND_BACKWARDS	0x00	/* add "size" to start of map */
143 #define AMAP_EXTEND_FORWARDS	0x01	/* add "size" to end of map */
144 #define AMAP_EXTEND_NOWAIT	0x02	/* not allowed to sleep */
145 
146 #endif /* _KERNEL */
147 
148 /**********************************************************************/
149 
150 /*
151  * part 2: amap implementation-specific info
152  */
153 
154 /*
155  * we currently provide an array-based amap implementation.  in this
156  * implementation we provide the option of tracking split references
157  * so that we don't lose track of references during partial unmaps
158  * ... this is enabled with the "UVM_AMAP_PPREF" define.
159  */
160 
161 #define UVM_AMAP_PPREF		/* track partial references */
162 
163 /*
164  * here is the definition of the vm_amap structure for this implementation.
165  */
166 
167 struct vm_amap {
168 	struct simplelock am_l; /* simple lock [locks all vm_amap fields] */
169 	int am_ref;		/* reference count */
170 	int am_flags;		/* flags */
171 	int am_maxslot;		/* max # of slots allocated */
172 	int am_nslot;		/* # of slots currently in map ( <= maxslot) */
173 	int am_nused;		/* # of slots currently in use */
174 	int *am_slots;		/* contig array of active slots */
175 	int *am_bckptr;		/* back pointer array to am_slots */
176 	struct vm_anon **am_anon; /* array of anonymous pages */
177 #ifdef UVM_AMAP_PPREF
178 	int *am_ppref;		/* per page reference count (if !NULL) */
179 #endif
180 };
181 
182 /*
183  * note that am_slots, am_bckptr, and am_anon are arrays.   this allows
184  * fast lookup of pages based on their virual address at the expense of
185  * some extra memory.   in the future we should be smarter about memory
186  * usage and fall back to a non-array based implementation on systems
187  * that are short of memory (XXXCDC).
188  *
189  * the entries in the array are called slots... for example an amap that
190  * covers four pages of virtual memory is said to have four slots.   here
191  * is an example of the array usage for a four slot amap.   note that only
192  * slots one and three have anons assigned to them.  "D/C" means that we
193  * "don't care" about the value.
194  *
195  *            0     1      2     3
196  * am_anon:   NULL, anon0, NULL, anon1		(actual pointers to anons)
197  * am_bckptr: D/C,  1,     D/C,  0		(points to am_slots entry)
198  *
199  * am_slots:  3, 1, D/C, D/C    		(says slots 3 and 1 are in use)
200  *
201  * note that am_bckptr is D/C if the slot in am_anon is set to NULL.
202  * to find the entry in am_slots for an anon, look at am_bckptr[slot],
203  * thus the entry for slot 3 in am_slots[] is at am_slots[am_bckptr[3]].
204  * in general, if am_anon[X] is non-NULL, then the following must be
205  * true: am_slots[am_bckptr[X]] == X
206  *
207  * note that am_slots is always contig-packed.
208  */
209 
210 /*
211  * defines for handling of large sparce amaps:
212  *
213  * one of the problems of array-based amaps is that if you allocate a
214  * large sparcely-used area of virtual memory you end up allocating
215  * large arrays that, for the most part, don't get used.  this is a
216  * problem for BSD in that the kernel likes to make these types of
217  * allocations to "reserve" memory for possible future use.
218  *
219  * for example, the kernel allocates (reserves) a large chunk of user
220  * VM for possible stack growth.  most of the time only a page or two
221  * of this VM is actually used.  since the stack is anonymous memory
222  * it makes sense for it to live in an amap, but if we allocated an
223  * amap for the entire stack range we could end up wasting a large
224  * amount of malloc'd KVM.
225  *
226  * for example, on the i386 at boot time we allocate two amaps for the stack
227  * of /sbin/init:
228  *  1. a 7680 slot amap at protection 0 (reserve space for stack)
229  *  2. a 512 slot amap at protection 7 (top of stack)
230  *
231  * most of the array allocated for the amaps for this is never used.
232  * the amap interface provides a way for us to avoid this problem by
233  * allowing amap_copy() to break larger amaps up into smaller sized
234  * chunks (controlled by the "canchunk" option).   we use this feature
235  * to reduce our memory usage with the BSD stack management.  if we
236  * are asked to create an amap with more than UVM_AMAP_LARGE slots in it,
237  * we attempt to break it up into a UVM_AMAP_CHUNK sized amap if the
238  * "canchunk" flag is set.
239  *
240  * so, in the i386 example, the 7680 slot area is never referenced so
241  * nothing gets allocated (amap_copy is never called because the protection
242  * is zero).   the 512 slot area for the top of the stack is referenced.
243  * the chunking code breaks it up into 16 slot chunks (hopefully a single
244  * 16 slot chunk is enough to handle the whole stack).
245  */
246 
247 #define UVM_AMAP_LARGE	256	/* # of slots in "large" amap */
248 #define UVM_AMAP_CHUNK	16	/* # of slots to chunk large amaps in */
249 
250 #ifdef _KERNEL
251 
252 /*
253  * macros
254  */
255 
256 /* AMAP_B2SLOT: convert byte offset to slot */
257 #define AMAP_B2SLOT(S,B) {						\
258 	KASSERT(((B) & (PAGE_SIZE - 1)) == 0);				\
259 	(S) = (B) >> PAGE_SHIFT;					\
260 }
261 
262 /*
263  * lock/unlock/refs/flags macros
264  */
265 
266 #define amap_flags(AMAP)	((AMAP)->am_flags)
267 #define amap_lock(AMAP)		simple_lock(&(AMAP)->am_l)
268 #define amap_refs(AMAP)		((AMAP)->am_ref)
269 #define amap_unlock(AMAP)	simple_unlock(&(AMAP)->am_l)
270 
271 /*
272  * if we enable PPREF, then we have a couple of extra functions that
273  * we need to prototype here...
274  */
275 
276 #ifdef UVM_AMAP_PPREF
277 
278 #define PPREF_NONE ((int *) -1)	/* not using ppref */
279 
280 void		amap_pp_adjref		/* adjust references */
281 			 __P((struct vm_amap *, int, vsize_t, int));
282 void		amap_pp_establish	/* establish ppref */
283 			__P((struct vm_amap *));
284 void		amap_wiperange		/* wipe part of an amap */
285 			__P((struct vm_amap *, int, int));
286 #endif	/* UVM_AMAP_PPREF */
287 
288 #endif /* _KERNEL */
289 
290 #endif /* _UVM_UVM_AMAP_H_ */
291