xref: /netbsd/sys/uvm/uvm_aobj.c (revision bf9ec67e)
1 /*	$NetBSD: uvm_aobj.c,v 1.51 2002/05/09 07:04:23 enami Exp $	*/
2 
3 /*
4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5  *                    Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Charles D. Cranor and
19  *      Washington University.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35  */
36 /*
37  * uvm_aobj.c: anonymous memory uvm_object pager
38  *
39  * author: Chuck Silvers <chuq@chuq.com>
40  * started: Jan-1998
41  *
42  * - design mostly from Chuck Cranor
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.51 2002/05/09 07:04:23 enami Exp $");
47 
48 #include "opt_uvmhist.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56 #include <sys/kernel.h>
57 
58 #include <uvm/uvm.h>
59 
60 /*
61  * an aobj manages anonymous-memory backed uvm_objects.   in addition
62  * to keeping the list of resident pages, it also keeps a list of
63  * allocated swap blocks.  depending on the size of the aobj this list
64  * of allocated swap blocks is either stored in an array (small objects)
65  * or in a hash table (large objects).
66  */
67 
68 /*
69  * local structures
70  */
71 
72 /*
73  * for hash tables, we break the address space of the aobj into blocks
74  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
75  * be a power of two.
76  */
77 
78 #define UAO_SWHASH_CLUSTER_SHIFT 4
79 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
80 
81 /* get the "tag" for this page index */
82 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
83 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
84 
85 /* given an ELT and a page index, find the swap slot */
86 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
87 	((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
88 
89 /* given an ELT, return its pageidx base */
90 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
91 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
92 
93 /*
94  * the swhash hash function
95  */
96 
97 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
98 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
99 			    & (AOBJ)->u_swhashmask)])
100 
101 /*
102  * the swhash threshhold determines if we will use an array or a
103  * hash table to store the list of allocated swap blocks.
104  */
105 
106 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
107 #define UAO_USES_SWHASH(AOBJ) \
108 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
109 
110 /*
111  * the number of buckets in a swhash, with an upper bound
112  */
113 
114 #define UAO_SWHASH_MAXBUCKETS 256
115 #define UAO_SWHASH_BUCKETS(AOBJ) \
116 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
117 	     UAO_SWHASH_MAXBUCKETS))
118 
119 
120 /*
121  * uao_swhash_elt: when a hash table is being used, this structure defines
122  * the format of an entry in the bucket list.
123  */
124 
125 struct uao_swhash_elt {
126 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
127 	voff_t tag;				/* our 'tag' */
128 	int count;				/* our number of active slots */
129 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
130 };
131 
132 /*
133  * uao_swhash: the swap hash table structure
134  */
135 
136 LIST_HEAD(uao_swhash, uao_swhash_elt);
137 
138 /*
139  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
140  */
141 
142 struct pool uao_swhash_elt_pool;
143 
144 /*
145  * uvm_aobj: the actual anon-backed uvm_object
146  *
147  * => the uvm_object is at the top of the structure, this allows
148  *   (struct uvm_aobj *) == (struct uvm_object *)
149  * => only one of u_swslots and u_swhash is used in any given aobj
150  */
151 
152 struct uvm_aobj {
153 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
154 	int u_pages;		 /* number of pages in entire object */
155 	int u_flags;		 /* the flags (see uvm_aobj.h) */
156 	int *u_swslots;		 /* array of offset->swapslot mappings */
157 				 /*
158 				  * hashtable of offset->swapslot mappings
159 				  * (u_swhash is an array of bucket heads)
160 				  */
161 	struct uao_swhash *u_swhash;
162 	u_long u_swhashmask;		/* mask for hashtable */
163 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
164 };
165 
166 /*
167  * uvm_aobj_pool: pool of uvm_aobj structures
168  */
169 
170 struct pool uvm_aobj_pool;
171 
172 /*
173  * local functions
174  */
175 
176 static struct uao_swhash_elt *uao_find_swhash_elt
177     __P((struct uvm_aobj *, int, boolean_t));
178 
179 static void	uao_free __P((struct uvm_aobj *));
180 static int	uao_get __P((struct uvm_object *, voff_t, struct vm_page **,
181 		    int *, int, vm_prot_t, int, int));
182 static boolean_t uao_put __P((struct uvm_object *, voff_t, voff_t, int));
183 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int));
184 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int));
185 
186 /*
187  * aobj_pager
188  *
189  * note that some functions (e.g. put) are handled elsewhere
190  */
191 
192 struct uvm_pagerops aobj_pager = {
193 	NULL,			/* init */
194 	uao_reference,		/* reference */
195 	uao_detach,		/* detach */
196 	NULL,			/* fault */
197 	uao_get,		/* get */
198 	uao_put,		/* flush */
199 };
200 
201 /*
202  * uao_list: global list of active aobjs, locked by uao_list_lock
203  */
204 
205 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
206 static struct simplelock uao_list_lock;
207 
208 /*
209  * functions
210  */
211 
212 /*
213  * hash table/array related functions
214  */
215 
216 /*
217  * uao_find_swhash_elt: find (or create) a hash table entry for a page
218  * offset.
219  *
220  * => the object should be locked by the caller
221  */
222 
223 static struct uao_swhash_elt *
224 uao_find_swhash_elt(aobj, pageidx, create)
225 	struct uvm_aobj *aobj;
226 	int pageidx;
227 	boolean_t create;
228 {
229 	struct uao_swhash *swhash;
230 	struct uao_swhash_elt *elt;
231 	voff_t page_tag;
232 
233 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
234 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
235 
236 	/*
237 	 * now search the bucket for the requested tag
238 	 */
239 
240 	LIST_FOREACH(elt, swhash, list) {
241 		if (elt->tag == page_tag) {
242 			return elt;
243 		}
244 	}
245 	if (!create) {
246 		return NULL;
247 	}
248 
249 	/*
250 	 * allocate a new entry for the bucket and init/insert it in
251 	 */
252 
253 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
254 	if (elt == NULL) {
255 		return NULL;
256 	}
257 	LIST_INSERT_HEAD(swhash, elt, list);
258 	elt->tag = page_tag;
259 	elt->count = 0;
260 	memset(elt->slots, 0, sizeof(elt->slots));
261 	return elt;
262 }
263 
264 /*
265  * uao_find_swslot: find the swap slot number for an aobj/pageidx
266  *
267  * => object must be locked by caller
268  */
269 
270 int
271 uao_find_swslot(uobj, pageidx)
272 	struct uvm_object *uobj;
273 	int pageidx;
274 {
275 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
276 	struct uao_swhash_elt *elt;
277 
278 	/*
279 	 * if noswap flag is set, then we never return a slot
280 	 */
281 
282 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
283 		return(0);
284 
285 	/*
286 	 * if hashing, look in hash table.
287 	 */
288 
289 	if (UAO_USES_SWHASH(aobj)) {
290 		elt = uao_find_swhash_elt(aobj, pageidx, FALSE);
291 		if (elt)
292 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
293 		else
294 			return(0);
295 	}
296 
297 	/*
298 	 * otherwise, look in the array
299 	 */
300 
301 	return(aobj->u_swslots[pageidx]);
302 }
303 
304 /*
305  * uao_set_swslot: set the swap slot for a page in an aobj.
306  *
307  * => setting a slot to zero frees the slot
308  * => object must be locked by caller
309  * => we return the old slot number, or -1 if we failed to allocate
310  *    memory to record the new slot number
311  */
312 
313 int
314 uao_set_swslot(uobj, pageidx, slot)
315 	struct uvm_object *uobj;
316 	int pageidx, slot;
317 {
318 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
319 	struct uao_swhash_elt *elt;
320 	int oldslot;
321 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
322 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
323 	    aobj, pageidx, slot, 0);
324 
325 	/*
326 	 * if noswap flag is set, then we can't set a non-zero slot.
327 	 */
328 
329 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
330 		if (slot == 0)
331 			return(0);
332 
333 		printf("uao_set_swslot: uobj = %p\n", uobj);
334 		panic("uao_set_swslot: NOSWAP object");
335 	}
336 
337 	/*
338 	 * are we using a hash table?  if so, add it in the hash.
339 	 */
340 
341 	if (UAO_USES_SWHASH(aobj)) {
342 
343 		/*
344 		 * Avoid allocating an entry just to free it again if
345 		 * the page had not swap slot in the first place, and
346 		 * we are freeing.
347 		 */
348 
349 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
350 		if (elt == NULL) {
351 			return slot ? -1 : 0;
352 		}
353 
354 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
355 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
356 
357 		/*
358 		 * now adjust the elt's reference counter and free it if we've
359 		 * dropped it to zero.
360 		 */
361 
362 		if (slot) {
363 			if (oldslot == 0)
364 				elt->count++;
365 		} else {
366 			if (oldslot)
367 				elt->count--;
368 
369 			if (elt->count == 0) {
370 				LIST_REMOVE(elt, list);
371 				pool_put(&uao_swhash_elt_pool, elt);
372 			}
373 		}
374 	} else {
375 		/* we are using an array */
376 		oldslot = aobj->u_swslots[pageidx];
377 		aobj->u_swslots[pageidx] = slot;
378 	}
379 	return (oldslot);
380 }
381 
382 /*
383  * end of hash/array functions
384  */
385 
386 /*
387  * uao_free: free all resources held by an aobj, and then free the aobj
388  *
389  * => the aobj should be dead
390  */
391 
392 static void
393 uao_free(aobj)
394 	struct uvm_aobj *aobj;
395 {
396 	int swpgonlydelta = 0;
397 
398 	simple_unlock(&aobj->u_obj.vmobjlock);
399 	if (UAO_USES_SWHASH(aobj)) {
400 		int i, hashbuckets = aobj->u_swhashmask + 1;
401 
402 		/*
403 		 * free the swslots from each hash bucket,
404 		 * then the hash bucket, and finally the hash table itself.
405 		 */
406 
407 		for (i = 0; i < hashbuckets; i++) {
408 			struct uao_swhash_elt *elt, *next;
409 
410 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
411 			     elt != NULL;
412 			     elt = next) {
413 				int j;
414 
415 				for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
416 					int slot = elt->slots[j];
417 
418 					if (slot == 0) {
419 						continue;
420 					}
421 					uvm_swap_free(slot, 1);
422 					swpgonlydelta++;
423 				}
424 
425 				next = LIST_NEXT(elt, list);
426 				pool_put(&uao_swhash_elt_pool, elt);
427 			}
428 		}
429 		free(aobj->u_swhash, M_UVMAOBJ);
430 	} else {
431 		int i;
432 
433 		/*
434 		 * free the array
435 		 */
436 
437 		for (i = 0; i < aobj->u_pages; i++) {
438 			int slot = aobj->u_swslots[i];
439 
440 			if (slot) {
441 				uvm_swap_free(slot, 1);
442 				swpgonlydelta++;
443 			}
444 		}
445 		free(aobj->u_swslots, M_UVMAOBJ);
446 	}
447 
448 	/*
449 	 * finally free the aobj itself
450 	 */
451 
452 	pool_put(&uvm_aobj_pool, aobj);
453 
454 	/*
455 	 * adjust the counter of pages only in swap for all
456 	 * the swap slots we've freed.
457 	 */
458 
459 	if (swpgonlydelta > 0) {
460 		simple_lock(&uvm.swap_data_lock);
461 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
462 		uvmexp.swpgonly -= swpgonlydelta;
463 		simple_unlock(&uvm.swap_data_lock);
464 	}
465 }
466 
467 /*
468  * pager functions
469  */
470 
471 /*
472  * uao_create: create an aobj of the given size and return its uvm_object.
473  *
474  * => for normal use, flags are always zero
475  * => for the kernel object, the flags are:
476  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
477  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
478  */
479 
480 struct uvm_object *
481 uao_create(size, flags)
482 	vsize_t size;
483 	int flags;
484 {
485 	static struct uvm_aobj kernel_object_store;
486 	static int kobj_alloced = 0;
487 	int pages = round_page(size) >> PAGE_SHIFT;
488 	struct uvm_aobj *aobj;
489 
490 	/*
491 	 * malloc a new aobj unless we are asked for the kernel object
492 	 */
493 
494 	if (flags & UAO_FLAG_KERNOBJ) {
495 		KASSERT(!kobj_alloced);
496 		aobj = &kernel_object_store;
497 		aobj->u_pages = pages;
498 		aobj->u_flags = UAO_FLAG_NOSWAP;
499 		aobj->u_obj.uo_refs = UVM_OBJ_KERN;
500 		kobj_alloced = UAO_FLAG_KERNOBJ;
501 	} else if (flags & UAO_FLAG_KERNSWAP) {
502 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
503 		aobj = &kernel_object_store;
504 		kobj_alloced = UAO_FLAG_KERNSWAP;
505 	} else {
506 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
507 		aobj->u_pages = pages;
508 		aobj->u_flags = 0;
509 		aobj->u_obj.uo_refs = 1;
510 	}
511 
512 	/*
513  	 * allocate hash/array if necessary
514  	 *
515  	 * note: in the KERNSWAP case no need to worry about locking since
516  	 * we are still booting we should be the only thread around.
517  	 */
518 
519 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
520 		int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
521 		    M_NOWAIT : M_WAITOK;
522 
523 		/* allocate hash table or array depending on object size */
524 		if (UAO_USES_SWHASH(aobj)) {
525 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
526 			    HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
527 			if (aobj->u_swhash == NULL)
528 				panic("uao_create: hashinit swhash failed");
529 		} else {
530 			aobj->u_swslots = malloc(pages * sizeof(int),
531 			    M_UVMAOBJ, mflags);
532 			if (aobj->u_swslots == NULL)
533 				panic("uao_create: malloc swslots failed");
534 			memset(aobj->u_swslots, 0, pages * sizeof(int));
535 		}
536 
537 		if (flags) {
538 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
539 			return(&aobj->u_obj);
540 		}
541 	}
542 
543 	/*
544  	 * init aobj fields
545  	 */
546 
547 	simple_lock_init(&aobj->u_obj.vmobjlock);
548 	aobj->u_obj.pgops = &aobj_pager;
549 	TAILQ_INIT(&aobj->u_obj.memq);
550 	aobj->u_obj.uo_npages = 0;
551 
552 	/*
553  	 * now that aobj is ready, add it to the global list
554  	 */
555 
556 	simple_lock(&uao_list_lock);
557 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
558 	simple_unlock(&uao_list_lock);
559 	return(&aobj->u_obj);
560 }
561 
562 
563 
564 /*
565  * uao_init: set up aobj pager subsystem
566  *
567  * => called at boot time from uvm_pager_init()
568  */
569 
570 void
571 uao_init(void)
572 {
573 	static int uao_initialized;
574 
575 	if (uao_initialized)
576 		return;
577 	uao_initialized = TRUE;
578 	LIST_INIT(&uao_list);
579 	simple_lock_init(&uao_list_lock);
580 
581 	/*
582 	 * NOTE: Pages fror this pool must not come from a pageable
583 	 * kernel map!
584 	 */
585 
586 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
587 	    0, 0, 0, "uaoeltpl", NULL);
588 	pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
589 	    "aobjpl", &pool_allocator_nointr);
590 }
591 
592 /*
593  * uao_reference: add a ref to an aobj
594  *
595  * => aobj must be unlocked
596  * => just lock it and call the locked version
597  */
598 
599 void
600 uao_reference(uobj)
601 	struct uvm_object *uobj;
602 {
603 	simple_lock(&uobj->vmobjlock);
604 	uao_reference_locked(uobj);
605 	simple_unlock(&uobj->vmobjlock);
606 }
607 
608 /*
609  * uao_reference_locked: add a ref to an aobj that is already locked
610  *
611  * => aobj must be locked
612  * this needs to be separate from the normal routine
613  * since sometimes we need to add a reference to an aobj when
614  * it's already locked.
615  */
616 
617 void
618 uao_reference_locked(uobj)
619 	struct uvm_object *uobj;
620 {
621 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
622 
623 	/*
624  	 * kernel_object already has plenty of references, leave it alone.
625  	 */
626 
627 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
628 		return;
629 
630 	uobj->uo_refs++;
631 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
632 		    uobj, uobj->uo_refs,0,0);
633 }
634 
635 /*
636  * uao_detach: drop a reference to an aobj
637  *
638  * => aobj must be unlocked
639  * => just lock it and call the locked version
640  */
641 
642 void
643 uao_detach(uobj)
644 	struct uvm_object *uobj;
645 {
646 	simple_lock(&uobj->vmobjlock);
647 	uao_detach_locked(uobj);
648 }
649 
650 /*
651  * uao_detach_locked: drop a reference to an aobj
652  *
653  * => aobj must be locked, and is unlocked (or freed) upon return.
654  * this needs to be separate from the normal routine
655  * since sometimes we need to detach from an aobj when
656  * it's already locked.
657  */
658 
659 void
660 uao_detach_locked(uobj)
661 	struct uvm_object *uobj;
662 {
663 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
664 	struct vm_page *pg;
665 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
666 
667 	/*
668  	 * detaching from kernel_object is a noop.
669  	 */
670 
671 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
672 		simple_unlock(&uobj->vmobjlock);
673 		return;
674 	}
675 
676 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
677 	uobj->uo_refs--;
678 	if (uobj->uo_refs) {
679 		simple_unlock(&uobj->vmobjlock);
680 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
681 		return;
682 	}
683 
684 	/*
685  	 * remove the aobj from the global list.
686  	 */
687 
688 	simple_lock(&uao_list_lock);
689 	LIST_REMOVE(aobj, u_list);
690 	simple_unlock(&uao_list_lock);
691 
692 	/*
693  	 * free all the pages left in the aobj.  for each page,
694 	 * when the page is no longer busy (and thus after any disk i/o that
695 	 * it's involved in is complete), release any swap resources and
696 	 * free the page itself.
697  	 */
698 
699 	uvm_lock_pageq();
700 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
701 		pmap_page_protect(pg, VM_PROT_NONE);
702 		if (pg->flags & PG_BUSY) {
703 			pg->flags |= PG_WANTED;
704 			uvm_unlock_pageq();
705 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, FALSE,
706 			    "uao_det", 0);
707 			simple_lock(&uobj->vmobjlock);
708 			uvm_lock_pageq();
709 			continue;
710 		}
711 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
712 		uvm_pagefree(pg);
713 	}
714 	uvm_unlock_pageq();
715 
716 	/*
717  	 * finally, free the aobj itself.
718  	 */
719 
720 	uao_free(aobj);
721 }
722 
723 /*
724  * uao_put: flush pages out of a uvm object
725  *
726  * => object should be locked by caller.  we may _unlock_ the object
727  *	if (and only if) we need to clean a page (PGO_CLEANIT).
728  *	XXXJRT Currently, however, we don't.  In the case of cleaning
729  *	XXXJRT a page, we simply just deactivate it.  Should probably
730  *	XXXJRT handle this better, in the future (although "flushing"
731  *	XXXJRT anonymous memory isn't terribly important).
732  * => if PGO_CLEANIT is not set, then we will neither unlock the object
733  *	or block.
734  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
735  *	for flushing.
736  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
737  *	that new pages are inserted on the tail end of the list.  thus,
738  *	we can make a complete pass through the object in one go by starting
739  *	at the head and working towards the tail (new pages are put in
740  *	front of us).
741  * => NOTE: we are allowed to lock the page queues, so the caller
742  *	must not be holding the lock on them [e.g. pagedaemon had
743  *	better not call us with the queues locked]
744  * => we return TRUE unless we encountered some sort of I/O error
745  *	XXXJRT currently never happens, as we never directly initiate
746  *	XXXJRT I/O
747  *
748  * note on page traversal:
749  *	we can traverse the pages in an object either by going down the
750  *	linked list in "uobj->memq", or we can go over the address range
751  *	by page doing hash table lookups for each address.  depending
752  *	on how many pages are in the object it may be cheaper to do one
753  *	or the other.  we set "by_list" to true if we are using memq.
754  *	if the cost of a hash lookup was equal to the cost of the list
755  *	traversal we could compare the number of pages in the start->stop
756  *	range to the total number of pages in the object.  however, it
757  *	seems that a hash table lookup is more expensive than the linked
758  *	list traversal, so we multiply the number of pages in the
759  *	start->stop range by a penalty which we define below.
760  */
761 
762 int
763 uao_put(uobj, start, stop, flags)
764 	struct uvm_object *uobj;
765 	voff_t start, stop;
766 	int flags;
767 {
768 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
769 	struct vm_page *pg, *nextpg, curmp, endmp;
770 	boolean_t by_list;
771 	voff_t curoff;
772 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
773 
774 	curoff = 0;
775 	if (flags & PGO_ALLPAGES) {
776 		start = 0;
777 		stop = aobj->u_pages << PAGE_SHIFT;
778 		by_list = TRUE;		/* always go by the list */
779 	} else {
780 		start = trunc_page(start);
781 		stop = round_page(stop);
782 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
783 			printf("uao_flush: strange, got an out of range "
784 			    "flush (fixed)\n");
785 			stop = aobj->u_pages << PAGE_SHIFT;
786 		}
787 		by_list = (uobj->uo_npages <=
788 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
789 	}
790 	UVMHIST_LOG(maphist,
791 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
792 	    start, stop, by_list, flags);
793 
794 	/*
795 	 * Don't need to do any work here if we're not freeing
796 	 * or deactivating pages.
797 	 */
798 
799 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
800 		simple_unlock(&uobj->vmobjlock);
801 		return 0;
802 	}
803 
804 	/*
805 	 * Initialize the marker pages.  See the comment in
806 	 * genfs_putpages() also.
807 	 */
808 
809 	curmp.uobject = uobj;
810 	curmp.offset = (voff_t)-1;
811 	curmp.flags = PG_BUSY;
812 	endmp.uobject = uobj;
813 	endmp.offset = (voff_t)-1;
814 	endmp.flags = PG_BUSY;
815 
816 	/*
817 	 * now do it.  note: we must update nextpg in the body of loop or we
818 	 * will get stuck.  we need to use nextpg if we'll traverse the list
819 	 * because we may free "pg" before doing the next loop.
820 	 */
821 
822 	if (by_list) {
823 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
824 		nextpg = TAILQ_FIRST(&uobj->memq);
825 		PHOLD(curproc);
826 	} else {
827 		curoff = start;
828 	}
829 
830 	uvm_lock_pageq();
831 
832 	/* locked: both page queues and uobj */
833 	for (;;) {
834 		if (by_list) {
835 			pg = nextpg;
836 			if (pg == &endmp)
837 				break;
838 			nextpg = TAILQ_NEXT(pg, listq);
839 			if (pg->offset < start || pg->offset >= stop)
840 				continue;
841 		} else {
842 			if (curoff < stop) {
843 				pg = uvm_pagelookup(uobj, curoff);
844 				curoff += PAGE_SIZE;
845 			} else
846 				break;
847 			if (pg == NULL)
848 				continue;
849 		}
850 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
851 
852 		/*
853 		 * XXX In these first 3 cases, we always just
854 		 * XXX deactivate the page.  We may want to
855 		 * XXX handle the different cases more specifically
856 		 * XXX in the future.
857 		 */
858 
859 		case PGO_CLEANIT|PGO_FREE:
860 		case PGO_CLEANIT|PGO_DEACTIVATE:
861 		case PGO_DEACTIVATE:
862  deactivate_it:
863 			/* skip the page if it's loaned or wired */
864 			if (pg->loan_count != 0 || pg->wire_count != 0)
865 				continue;
866 
867 			/* ...and deactivate the page. */
868 			pmap_clear_reference(pg);
869 			uvm_pagedeactivate(pg);
870 			continue;
871 
872 		case PGO_FREE:
873 
874 			/*
875 			 * If there are multiple references to
876 			 * the object, just deactivate the page.
877 			 */
878 
879 			if (uobj->uo_refs > 1)
880 				goto deactivate_it;
881 
882 			/* XXX skip the page if it's loaned or wired */
883 			if (pg->loan_count != 0 || pg->wire_count != 0)
884 				continue;
885 
886 			/*
887 			 * wait and try again if the page is busy.
888 			 * otherwise free the swap slot and the page.
889 			 */
890 
891 			pmap_page_protect(pg, VM_PROT_NONE);
892 			if (pg->flags & PG_BUSY) {
893 				if (by_list) {
894 					TAILQ_INSERT_BEFORE(pg, &curmp, listq);
895 				}
896 				pg->flags |= PG_WANTED;
897 				uvm_unlock_pageq();
898 				UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
899 				    "uao_put", 0);
900 				simple_lock(&uobj->vmobjlock);
901 				uvm_lock_pageq();
902 				if (by_list) {
903 					nextpg = TAILQ_NEXT(&curmp, listq);
904 					TAILQ_REMOVE(&uobj->memq, &curmp,
905 					    listq);
906 				} else
907 					curoff -= PAGE_SIZE;
908 				continue;
909 			}
910 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
911 			uvm_pagefree(pg);
912 			continue;
913 		}
914 	}
915 	uvm_unlock_pageq();
916 	simple_unlock(&uobj->vmobjlock);
917 	if (by_list) {
918 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
919 		PRELE(curproc);
920 	}
921 	return 0;
922 }
923 
924 /*
925  * uao_get: fetch me a page
926  *
927  * we have three cases:
928  * 1: page is resident     -> just return the page.
929  * 2: page is zero-fill    -> allocate a new page and zero it.
930  * 3: page is swapped out  -> fetch the page from swap.
931  *
932  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
933  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
934  * then we will need to return EBUSY.
935  *
936  * => prefer map unlocked (not required)
937  * => object must be locked!  we will _unlock_ it before starting any I/O.
938  * => flags: PGO_ALLPAGES: get all of the pages
939  *           PGO_LOCKED: fault data structures are locked
940  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
941  * => NOTE: caller must check for released pages!!
942  */
943 
944 static int
945 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
946 	struct uvm_object *uobj;
947 	voff_t offset;
948 	struct vm_page **pps;
949 	int *npagesp;
950 	int centeridx, advice, flags;
951 	vm_prot_t access_type;
952 {
953 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
954 	voff_t current_offset;
955 	struct vm_page *ptmp;
956 	int lcv, gotpages, maxpages, swslot, error, pageidx;
957 	boolean_t done;
958 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
959 
960 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
961 		    aobj, offset, flags,0);
962 
963 	/*
964  	 * get number of pages
965  	 */
966 
967 	maxpages = *npagesp;
968 
969 	/*
970  	 * step 1: handled the case where fault data structures are locked.
971  	 */
972 
973 	if (flags & PGO_LOCKED) {
974 
975 		/*
976  		 * step 1a: get pages that are already resident.   only do
977 		 * this if the data structures are locked (i.e. the first
978 		 * time through).
979  		 */
980 
981 		done = TRUE;	/* be optimistic */
982 		gotpages = 0;	/* # of pages we got so far */
983 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
984 		    lcv++, current_offset += PAGE_SIZE) {
985 			/* do we care about this page?  if not, skip it */
986 			if (pps[lcv] == PGO_DONTCARE)
987 				continue;
988 			ptmp = uvm_pagelookup(uobj, current_offset);
989 
990 			/*
991  			 * if page is new, attempt to allocate the page,
992 			 * zero-fill'd.
993  			 */
994 
995 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
996 			    current_offset >> PAGE_SHIFT) == 0) {
997 				ptmp = uvm_pagealloc(uobj, current_offset,
998 				    NULL, UVM_PGA_ZERO);
999 				if (ptmp) {
1000 					/* new page */
1001 					ptmp->flags &= ~(PG_FAKE);
1002 					ptmp->pqflags |= PQ_AOBJ;
1003 					goto gotpage;
1004 				}
1005 			}
1006 
1007 			/*
1008 			 * to be useful must get a non-busy page
1009 			 */
1010 
1011 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
1012 				if (lcv == centeridx ||
1013 				    (flags & PGO_ALLPAGES) != 0)
1014 					/* need to do a wait or I/O! */
1015 					done = FALSE;
1016 					continue;
1017 			}
1018 
1019 			/*
1020 			 * useful page: busy/lock it and plug it in our
1021 			 * result array
1022 			 */
1023 
1024 			/* caller must un-busy this page */
1025 			ptmp->flags |= PG_BUSY;
1026 			UVM_PAGE_OWN(ptmp, "uao_get1");
1027 gotpage:
1028 			pps[lcv] = ptmp;
1029 			gotpages++;
1030 		}
1031 
1032 		/*
1033  		 * step 1b: now we've either done everything needed or we
1034 		 * to unlock and do some waiting or I/O.
1035  		 */
1036 
1037 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1038 		*npagesp = gotpages;
1039 		if (done)
1040 			return 0;
1041 		else
1042 			return EBUSY;
1043 	}
1044 
1045 	/*
1046  	 * step 2: get non-resident or busy pages.
1047  	 * object is locked.   data structures are unlocked.
1048  	 */
1049 
1050 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1051 	    lcv++, current_offset += PAGE_SIZE) {
1052 
1053 		/*
1054 		 * - skip over pages we've already gotten or don't want
1055 		 * - skip over pages we don't _have_ to get
1056 		 */
1057 
1058 		if (pps[lcv] != NULL ||
1059 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1060 			continue;
1061 
1062 		pageidx = current_offset >> PAGE_SHIFT;
1063 
1064 		/*
1065  		 * we have yet to locate the current page (pps[lcv]).   we
1066 		 * first look for a page that is already at the current offset.
1067 		 * if we find a page, we check to see if it is busy or
1068 		 * released.  if that is the case, then we sleep on the page
1069 		 * until it is no longer busy or released and repeat the lookup.
1070 		 * if the page we found is neither busy nor released, then we
1071 		 * busy it (so we own it) and plug it into pps[lcv].   this
1072 		 * 'break's the following while loop and indicates we are
1073 		 * ready to move on to the next page in the "lcv" loop above.
1074  		 *
1075  		 * if we exit the while loop with pps[lcv] still set to NULL,
1076 		 * then it means that we allocated a new busy/fake/clean page
1077 		 * ptmp in the object and we need to do I/O to fill in the data.
1078  		 */
1079 
1080 		/* top of "pps" while loop */
1081 		while (pps[lcv] == NULL) {
1082 			/* look for a resident page */
1083 			ptmp = uvm_pagelookup(uobj, current_offset);
1084 
1085 			/* not resident?   allocate one now (if we can) */
1086 			if (ptmp == NULL) {
1087 
1088 				ptmp = uvm_pagealloc(uobj, current_offset,
1089 				    NULL, 0);
1090 
1091 				/* out of RAM? */
1092 				if (ptmp == NULL) {
1093 					simple_unlock(&uobj->vmobjlock);
1094 					UVMHIST_LOG(pdhist,
1095 					    "sleeping, ptmp == NULL\n",0,0,0,0);
1096 					uvm_wait("uao_getpage");
1097 					simple_lock(&uobj->vmobjlock);
1098 					continue;
1099 				}
1100 
1101 				/*
1102 				 * safe with PQ's unlocked: because we just
1103 				 * alloc'd the page
1104 				 */
1105 
1106 				ptmp->pqflags |= PQ_AOBJ;
1107 
1108 				/*
1109 				 * got new page ready for I/O.  break pps while
1110 				 * loop.  pps[lcv] is still NULL.
1111 				 */
1112 
1113 				break;
1114 			}
1115 
1116 			/* page is there, see if we need to wait on it */
1117 			if ((ptmp->flags & PG_BUSY) != 0) {
1118 				ptmp->flags |= PG_WANTED;
1119 				UVMHIST_LOG(pdhist,
1120 				    "sleeping, ptmp->flags 0x%x\n",
1121 				    ptmp->flags,0,0,0);
1122 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1123 				    FALSE, "uao_get", 0);
1124 				simple_lock(&uobj->vmobjlock);
1125 				continue;
1126 			}
1127 
1128 			/*
1129  			 * if we get here then the page has become resident and
1130 			 * unbusy between steps 1 and 2.  we busy it now (so we
1131 			 * own it) and set pps[lcv] (so that we exit the while
1132 			 * loop).
1133  			 */
1134 
1135 			/* we own it, caller must un-busy */
1136 			ptmp->flags |= PG_BUSY;
1137 			UVM_PAGE_OWN(ptmp, "uao_get2");
1138 			pps[lcv] = ptmp;
1139 		}
1140 
1141 		/*
1142  		 * if we own the valid page at the correct offset, pps[lcv] will
1143  		 * point to it.   nothing more to do except go to the next page.
1144  		 */
1145 
1146 		if (pps[lcv])
1147 			continue;			/* next lcv */
1148 
1149 		/*
1150  		 * we have a "fake/busy/clean" page that we just allocated.
1151  		 * do the needed "i/o", either reading from swap or zeroing.
1152  		 */
1153 
1154 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1155 
1156 		/*
1157  		 * just zero the page if there's nothing in swap.
1158  		 */
1159 
1160 		if (swslot == 0) {
1161 
1162 			/*
1163 			 * page hasn't existed before, just zero it.
1164 			 */
1165 
1166 			uvm_pagezero(ptmp);
1167 		} else {
1168 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
1169 			     swslot, 0,0,0);
1170 
1171 			/*
1172 			 * page in the swapped-out page.
1173 			 * unlock object for i/o, relock when done.
1174 			 */
1175 
1176 			simple_unlock(&uobj->vmobjlock);
1177 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1178 			simple_lock(&uobj->vmobjlock);
1179 
1180 			/*
1181 			 * I/O done.  check for errors.
1182 			 */
1183 
1184 			if (error != 0) {
1185 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
1186 				    error,0,0,0);
1187 				if (ptmp->flags & PG_WANTED)
1188 					wakeup(ptmp);
1189 
1190 				/*
1191 				 * remove the swap slot from the aobj
1192 				 * and mark the aobj as having no real slot.
1193 				 * don't free the swap slot, thus preventing
1194 				 * it from being used again.
1195 				 */
1196 
1197 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1198 							SWSLOT_BAD);
1199 				if (swslot != -1) {
1200 					uvm_swap_markbad(swslot, 1);
1201 				}
1202 
1203 				uvm_lock_pageq();
1204 				uvm_pagefree(ptmp);
1205 				uvm_unlock_pageq();
1206 				simple_unlock(&uobj->vmobjlock);
1207 				return error;
1208 			}
1209 		}
1210 
1211 		/*
1212  		 * we got the page!   clear the fake flag (indicates valid
1213 		 * data now in page) and plug into our result array.   note
1214 		 * that page is still busy.
1215  		 *
1216  		 * it is the callers job to:
1217  		 * => check if the page is released
1218  		 * => unbusy the page
1219  		 * => activate the page
1220  		 */
1221 
1222 		ptmp->flags &= ~PG_FAKE;
1223 		pps[lcv] = ptmp;
1224 	}
1225 
1226 	/*
1227  	 * finally, unlock object and return.
1228  	 */
1229 
1230 	simple_unlock(&uobj->vmobjlock);
1231 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1232 	return 0;
1233 }
1234 
1235 /*
1236  * uao_dropswap:  release any swap resources from this aobj page.
1237  *
1238  * => aobj must be locked or have a reference count of 0.
1239  */
1240 
1241 void
1242 uao_dropswap(uobj, pageidx)
1243 	struct uvm_object *uobj;
1244 	int pageidx;
1245 {
1246 	int slot;
1247 
1248 	slot = uao_set_swslot(uobj, pageidx, 0);
1249 	if (slot) {
1250 		uvm_swap_free(slot, 1);
1251 	}
1252 }
1253 
1254 /*
1255  * page in every page in every aobj that is paged-out to a range of swslots.
1256  *
1257  * => nothing should be locked.
1258  * => returns TRUE if pagein was aborted due to lack of memory.
1259  */
1260 
1261 boolean_t
1262 uao_swap_off(startslot, endslot)
1263 	int startslot, endslot;
1264 {
1265 	struct uvm_aobj *aobj, *nextaobj;
1266 	boolean_t rv;
1267 
1268 	/*
1269 	 * walk the list of all aobjs.
1270 	 */
1271 
1272 restart:
1273 	simple_lock(&uao_list_lock);
1274 	for (aobj = LIST_FIRST(&uao_list);
1275 	     aobj != NULL;
1276 	     aobj = nextaobj) {
1277 
1278 		/*
1279 		 * try to get the object lock, start all over if we fail.
1280 		 * most of the time we'll get the aobj lock,
1281 		 * so this should be a rare case.
1282 		 */
1283 
1284 		if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1285 			simple_unlock(&uao_list_lock);
1286 			goto restart;
1287 		}
1288 
1289 		/*
1290 		 * add a ref to the aobj so it doesn't disappear
1291 		 * while we're working.
1292 		 */
1293 
1294 		uao_reference_locked(&aobj->u_obj);
1295 
1296 		/*
1297 		 * now it's safe to unlock the uao list.
1298 		 */
1299 
1300 		simple_unlock(&uao_list_lock);
1301 
1302 		/*
1303 		 * page in any pages in the swslot range.
1304 		 * if there's an error, abort and return the error.
1305 		 */
1306 
1307 		rv = uao_pagein(aobj, startslot, endslot);
1308 		if (rv) {
1309 			uao_detach_locked(&aobj->u_obj);
1310 			return rv;
1311 		}
1312 
1313 		/*
1314 		 * we're done with this aobj.
1315 		 * relock the list and drop our ref on the aobj.
1316 		 */
1317 
1318 		simple_lock(&uao_list_lock);
1319 		nextaobj = LIST_NEXT(aobj, u_list);
1320 		uao_detach_locked(&aobj->u_obj);
1321 	}
1322 
1323 	/*
1324 	 * done with traversal, unlock the list
1325 	 */
1326 	simple_unlock(&uao_list_lock);
1327 	return FALSE;
1328 }
1329 
1330 
1331 /*
1332  * page in any pages from aobj in the given range.
1333  *
1334  * => aobj must be locked and is returned locked.
1335  * => returns TRUE if pagein was aborted due to lack of memory.
1336  */
1337 static boolean_t
1338 uao_pagein(aobj, startslot, endslot)
1339 	struct uvm_aobj *aobj;
1340 	int startslot, endslot;
1341 {
1342 	boolean_t rv;
1343 
1344 	if (UAO_USES_SWHASH(aobj)) {
1345 		struct uao_swhash_elt *elt;
1346 		int bucket;
1347 
1348 restart:
1349 		for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1350 			for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1351 			     elt != NULL;
1352 			     elt = LIST_NEXT(elt, list)) {
1353 				int i;
1354 
1355 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1356 					int slot = elt->slots[i];
1357 
1358 					/*
1359 					 * if the slot isn't in range, skip it.
1360 					 */
1361 
1362 					if (slot < startslot ||
1363 					    slot >= endslot) {
1364 						continue;
1365 					}
1366 
1367 					/*
1368 					 * process the page,
1369 					 * the start over on this object
1370 					 * since the swhash elt
1371 					 * may have been freed.
1372 					 */
1373 
1374 					rv = uao_pagein_page(aobj,
1375 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1376 					if (rv) {
1377 						return rv;
1378 					}
1379 					goto restart;
1380 				}
1381 			}
1382 		}
1383 	} else {
1384 		int i;
1385 
1386 		for (i = 0; i < aobj->u_pages; i++) {
1387 			int slot = aobj->u_swslots[i];
1388 
1389 			/*
1390 			 * if the slot isn't in range, skip it
1391 			 */
1392 
1393 			if (slot < startslot || slot >= endslot) {
1394 				continue;
1395 			}
1396 
1397 			/*
1398 			 * process the page.
1399 			 */
1400 
1401 			rv = uao_pagein_page(aobj, i);
1402 			if (rv) {
1403 				return rv;
1404 			}
1405 		}
1406 	}
1407 
1408 	return FALSE;
1409 }
1410 
1411 /*
1412  * page in a page from an aobj.  used for swap_off.
1413  * returns TRUE if pagein was aborted due to lack of memory.
1414  *
1415  * => aobj must be locked and is returned locked.
1416  */
1417 
1418 static boolean_t
1419 uao_pagein_page(aobj, pageidx)
1420 	struct uvm_aobj *aobj;
1421 	int pageidx;
1422 {
1423 	struct vm_page *pg;
1424 	int rv, slot, npages;
1425 
1426 	pg = NULL;
1427 	npages = 1;
1428 	/* locked: aobj */
1429 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1430 		     &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1431 	/* unlocked: aobj */
1432 
1433 	/*
1434 	 * relock and finish up.
1435 	 */
1436 
1437 	simple_lock(&aobj->u_obj.vmobjlock);
1438 	switch (rv) {
1439 	case 0:
1440 		break;
1441 
1442 	case EIO:
1443 	case ERESTART:
1444 
1445 		/*
1446 		 * nothing more to do on errors.
1447 		 * ERESTART can only mean that the anon was freed,
1448 		 * so again there's nothing to do.
1449 		 */
1450 
1451 		return FALSE;
1452 	}
1453 
1454 	/*
1455 	 * ok, we've got the page now.
1456 	 * mark it as dirty, clear its swslot and un-busy it.
1457 	 */
1458 
1459 	slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1460 	uvm_swap_free(slot, 1);
1461 	pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1462 	UVM_PAGE_OWN(pg, NULL);
1463 
1464 	/*
1465 	 * deactivate the page (to make sure it's on a page queue).
1466 	 */
1467 
1468 	uvm_lock_pageq();
1469 	uvm_pagedeactivate(pg);
1470 	uvm_unlock_pageq();
1471 	return FALSE;
1472 }
1473