xref: /netbsd/sys/uvm/uvm_pdaemon.c (revision 6550d01e)
1 /*	$NetBSD: uvm_pdaemon.c,v 1.102 2011/02/02 15:25:27 chuck Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
37  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
38  *
39  *
40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41  * All rights reserved.
42  *
43  * Permission to use, copy, modify and distribute this software and
44  * its documentation is hereby granted, provided that both the copyright
45  * notice and this permission notice appear in all copies of the
46  * software, derivative works or modified versions, and any portions
47  * thereof, and that both notices appear in supporting documentation.
48  *
49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52  *
53  * Carnegie Mellon requests users of this software to return to
54  *
55  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
56  *  School of Computer Science
57  *  Carnegie Mellon University
58  *  Pittsburgh PA 15213-3890
59  *
60  * any improvements or extensions that they make and grant Carnegie the
61  * rights to redistribute these changes.
62  */
63 
64 /*
65  * uvm_pdaemon.c: the page daemon
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.102 2011/02/02 15:25:27 chuck Exp $");
70 
71 #include "opt_uvmhist.h"
72 #include "opt_readahead.h"
73 
74 #include <sys/param.h>
75 #include <sys/proc.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/pool.h>
79 #include <sys/buf.h>
80 #include <sys/module.h>
81 #include <sys/atomic.h>
82 
83 #include <uvm/uvm.h>
84 #include <uvm/uvm_pdpolicy.h>
85 
86 /*
87  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
88  * in a pass thru the inactive list when swap is full.  the value should be
89  * "small"... if it's too large we'll cycle the active pages thru the inactive
90  * queue too quickly to for them to be referenced and avoid being freed.
91  */
92 
93 #define	UVMPD_NUMDIRTYREACTS	16
94 
95 #define	UVMPD_NUMTRYLOCKOWNER	16
96 
97 /*
98  * local prototypes
99  */
100 
101 static void	uvmpd_scan(void);
102 static void	uvmpd_scan_queue(void);
103 static void	uvmpd_tune(void);
104 
105 static unsigned int uvm_pagedaemon_waiters;
106 
107 /*
108  * XXX hack to avoid hangs when large processes fork.
109  */
110 u_int uvm_extrapages;
111 
112 static kmutex_t uvm_reclaim_lock;
113 
114 SLIST_HEAD(uvm_reclaim_hooks, uvm_reclaim_hook) uvm_reclaim_list;
115 
116 /*
117  * uvm_wait: wait (sleep) for the page daemon to free some pages
118  *
119  * => should be called with all locks released
120  * => should _not_ be called by the page daemon (to avoid deadlock)
121  */
122 
123 void
124 uvm_wait(const char *wmsg)
125 {
126 	int timo = 0;
127 
128 	mutex_spin_enter(&uvm_fpageqlock);
129 
130 	/*
131 	 * check for page daemon going to sleep (waiting for itself)
132 	 */
133 
134 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
135 		/*
136 		 * now we have a problem: the pagedaemon wants to go to
137 		 * sleep until it frees more memory.   but how can it
138 		 * free more memory if it is asleep?  that is a deadlock.
139 		 * we have two options:
140 		 *  [1] panic now
141 		 *  [2] put a timeout on the sleep, thus causing the
142 		 *      pagedaemon to only pause (rather than sleep forever)
143 		 *
144 		 * note that option [2] will only help us if we get lucky
145 		 * and some other process on the system breaks the deadlock
146 		 * by exiting or freeing memory (thus allowing the pagedaemon
147 		 * to continue).  for now we panic if DEBUG is defined,
148 		 * otherwise we hope for the best with option [2] (better
149 		 * yet, this should never happen in the first place!).
150 		 */
151 
152 		printf("pagedaemon: deadlock detected!\n");
153 		timo = hz >> 3;		/* set timeout */
154 #if defined(DEBUG)
155 		/* DEBUG: panic so we can debug it */
156 		panic("pagedaemon deadlock");
157 #endif
158 	}
159 
160 	uvm_pagedaemon_waiters++;
161 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
162 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
163 }
164 
165 /*
166  * uvm_kick_pdaemon: perform checks to determine if we need to
167  * give the pagedaemon a nudge, and do so if necessary.
168  *
169  * => called with uvm_fpageqlock held.
170  */
171 
172 void
173 uvm_kick_pdaemon(void)
174 {
175 
176 	KASSERT(mutex_owned(&uvm_fpageqlock));
177 
178 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
179 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
180 	     uvmpdpol_needsscan_p())) {
181 		wakeup(&uvm.pagedaemon);
182 	}
183 }
184 
185 /*
186  * uvmpd_tune: tune paging parameters
187  *
188  * => called when ever memory is added (or removed?) to the system
189  * => caller must call with page queues locked
190  */
191 
192 static void
193 uvmpd_tune(void)
194 {
195 	int val;
196 
197 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
198 
199 	/*
200 	 * try to keep 0.5% of available RAM free, but limit to between
201 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
202 	 */
203 	val = uvmexp.npages / 200;
204 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
205 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
206 	val *= ncpu;
207 
208 	/* Make sure there's always a user page free. */
209 	if (val < uvmexp.reserve_kernel + 1)
210 		val = uvmexp.reserve_kernel + 1;
211 	uvmexp.freemin = val;
212 
213 	/* Calculate free target. */
214 	val = (uvmexp.freemin * 4) / 3;
215 	if (val <= uvmexp.freemin)
216 		val = uvmexp.freemin + 1;
217 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
218 
219 	uvmexp.wiredmax = uvmexp.npages / 3;
220 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
221 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
222 }
223 
224 /*
225  * uvm_pageout: the main loop for the pagedaemon
226  */
227 
228 void
229 uvm_pageout(void *arg)
230 {
231 	int bufcnt, npages = 0;
232 	int extrapages = 0;
233 	struct pool *pp;
234 	uint64_t where;
235 	struct uvm_reclaim_hook *hook;
236 
237 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
238 
239 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
240 
241 	/*
242 	 * ensure correct priority and set paging parameters...
243 	 */
244 
245 	uvm.pagedaemon_lwp = curlwp;
246 	mutex_enter(&uvm_pageqlock);
247 	npages = uvmexp.npages;
248 	uvmpd_tune();
249 	mutex_exit(&uvm_pageqlock);
250 
251 	/*
252 	 * main loop
253 	 */
254 
255 	for (;;) {
256 		bool needsscan, needsfree;
257 
258 		mutex_spin_enter(&uvm_fpageqlock);
259 		if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
260 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
261 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
262 			    &uvm_fpageqlock, false, "pgdaemon", 0);
263 			uvmexp.pdwoke++;
264 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
265 		} else {
266 			mutex_spin_exit(&uvm_fpageqlock);
267 		}
268 
269 		/*
270 		 * now lock page queues and recompute inactive count
271 		 */
272 
273 		mutex_enter(&uvm_pageqlock);
274 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
275 			npages = uvmexp.npages;
276 			extrapages = uvm_extrapages;
277 			mutex_spin_enter(&uvm_fpageqlock);
278 			uvmpd_tune();
279 			mutex_spin_exit(&uvm_fpageqlock);
280 		}
281 
282 		uvmpdpol_tune();
283 
284 		/*
285 		 * Estimate a hint.  Note that bufmem are returned to
286 		 * system only when entire pool page is empty.
287 		 */
288 		mutex_spin_enter(&uvm_fpageqlock);
289 		bufcnt = uvmexp.freetarg - uvmexp.free;
290 		if (bufcnt < 0)
291 			bufcnt = 0;
292 
293 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d",
294 		    uvmexp.free, uvmexp.freetarg, 0,0);
295 
296 		needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
297 		needsscan = needsfree || uvmpdpol_needsscan_p();
298 
299 		/*
300 		 * scan if needed
301 		 */
302 		if (needsscan) {
303 			mutex_spin_exit(&uvm_fpageqlock);
304 			uvmpd_scan();
305 			mutex_spin_enter(&uvm_fpageqlock);
306 		}
307 
308 		/*
309 		 * if there's any free memory to be had,
310 		 * wake up any waiters.
311 		 */
312 		if (uvmexp.free > uvmexp.reserve_kernel ||
313 		    uvmexp.paging == 0) {
314 			wakeup(&uvmexp.free);
315 			uvm_pagedaemon_waiters = 0;
316 		}
317 		mutex_spin_exit(&uvm_fpageqlock);
318 
319 		/*
320 		 * scan done.  unlock page queues (the only lock we are holding)
321 		 */
322 		mutex_exit(&uvm_pageqlock);
323 
324 		/*
325 		 * if we don't need free memory, we're done.
326 		 */
327 
328 		if (!needsfree)
329 			continue;
330 
331 		/*
332 		 * start draining pool resources now that we're not
333 		 * holding any locks.
334 		 */
335 		pool_drain_start(&pp, &where);
336 
337 		/*
338 		 * kill unused metadata buffers.
339 		 */
340 		mutex_enter(&bufcache_lock);
341 		buf_drain(bufcnt << PAGE_SHIFT);
342 		mutex_exit(&bufcache_lock);
343 
344 		mutex_enter(&uvm_reclaim_lock);
345 		SLIST_FOREACH(hook, &uvm_reclaim_list, uvm_reclaim_next) {
346 			(*hook->uvm_reclaim_hook)();
347 		}
348 		mutex_exit(&uvm_reclaim_lock);
349 
350 		/*
351 		 * complete draining the pools.
352 		 */
353 		pool_drain_end(pp, where);
354 	}
355 	/*NOTREACHED*/
356 }
357 
358 
359 /*
360  * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
361  */
362 
363 void
364 uvm_aiodone_worker(struct work *wk, void *dummy)
365 {
366 	struct buf *bp = (void *)wk;
367 
368 	KASSERT(&bp->b_work == wk);
369 
370 	/*
371 	 * process an i/o that's done.
372 	 */
373 
374 	(*bp->b_iodone)(bp);
375 }
376 
377 void
378 uvm_pageout_start(int npages)
379 {
380 
381 	mutex_spin_enter(&uvm_fpageqlock);
382 	uvmexp.paging += npages;
383 	mutex_spin_exit(&uvm_fpageqlock);
384 }
385 
386 void
387 uvm_pageout_done(int npages)
388 {
389 
390 	mutex_spin_enter(&uvm_fpageqlock);
391 	KASSERT(uvmexp.paging >= npages);
392 	uvmexp.paging -= npages;
393 
394 	/*
395 	 * wake up either of pagedaemon or LWPs waiting for it.
396 	 */
397 
398 	if (uvmexp.free <= uvmexp.reserve_kernel) {
399 		wakeup(&uvm.pagedaemon);
400 	} else {
401 		wakeup(&uvmexp.free);
402 		uvm_pagedaemon_waiters = 0;
403 	}
404 	mutex_spin_exit(&uvm_fpageqlock);
405 }
406 
407 /*
408  * uvmpd_trylockowner: trylock the page's owner.
409  *
410  * => called with pageq locked.
411  * => resolve orphaned O->A loaned page.
412  * => return the locked mutex on success.  otherwise, return NULL.
413  */
414 
415 kmutex_t *
416 uvmpd_trylockowner(struct vm_page *pg)
417 {
418 	struct uvm_object *uobj = pg->uobject;
419 	kmutex_t *slock;
420 
421 	KASSERT(mutex_owned(&uvm_pageqlock));
422 
423 	if (uobj != NULL) {
424 		slock = &uobj->vmobjlock;
425 	} else {
426 		struct vm_anon *anon = pg->uanon;
427 
428 		KASSERT(anon != NULL);
429 		slock = &anon->an_lock;
430 	}
431 
432 	if (!mutex_tryenter(slock)) {
433 		return NULL;
434 	}
435 
436 	if (uobj == NULL) {
437 
438 		/*
439 		 * set PQ_ANON if it isn't set already.
440 		 */
441 
442 		if ((pg->pqflags & PQ_ANON) == 0) {
443 			KASSERT(pg->loan_count > 0);
444 			pg->loan_count--;
445 			pg->pqflags |= PQ_ANON;
446 			/* anon now owns it */
447 		}
448 	}
449 
450 	return slock;
451 }
452 
453 #if defined(VMSWAP)
454 struct swapcluster {
455 	int swc_slot;
456 	int swc_nallocated;
457 	int swc_nused;
458 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
459 };
460 
461 static void
462 swapcluster_init(struct swapcluster *swc)
463 {
464 
465 	swc->swc_slot = 0;
466 	swc->swc_nused = 0;
467 }
468 
469 static int
470 swapcluster_allocslots(struct swapcluster *swc)
471 {
472 	int slot;
473 	int npages;
474 
475 	if (swc->swc_slot != 0) {
476 		return 0;
477 	}
478 
479 	/* Even with strange MAXPHYS, the shift
480 	   implicitly rounds down to a page. */
481 	npages = MAXPHYS >> PAGE_SHIFT;
482 	slot = uvm_swap_alloc(&npages, true);
483 	if (slot == 0) {
484 		return ENOMEM;
485 	}
486 	swc->swc_slot = slot;
487 	swc->swc_nallocated = npages;
488 	swc->swc_nused = 0;
489 
490 	return 0;
491 }
492 
493 static int
494 swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
495 {
496 	int slot;
497 	struct uvm_object *uobj;
498 
499 	KASSERT(swc->swc_slot != 0);
500 	KASSERT(swc->swc_nused < swc->swc_nallocated);
501 	KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
502 
503 	slot = swc->swc_slot + swc->swc_nused;
504 	uobj = pg->uobject;
505 	if (uobj == NULL) {
506 		KASSERT(mutex_owned(&pg->uanon->an_lock));
507 		pg->uanon->an_swslot = slot;
508 	} else {
509 		int result;
510 
511 		KASSERT(mutex_owned(&uobj->vmobjlock));
512 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
513 		if (result == -1) {
514 			return ENOMEM;
515 		}
516 	}
517 	swc->swc_pages[swc->swc_nused] = pg;
518 	swc->swc_nused++;
519 
520 	return 0;
521 }
522 
523 static void
524 swapcluster_flush(struct swapcluster *swc, bool now)
525 {
526 	int slot;
527 	int nused;
528 	int nallocated;
529 	int error;
530 
531 	if (swc->swc_slot == 0) {
532 		return;
533 	}
534 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
535 
536 	slot = swc->swc_slot;
537 	nused = swc->swc_nused;
538 	nallocated = swc->swc_nallocated;
539 
540 	/*
541 	 * if this is the final pageout we could have a few
542 	 * unused swap blocks.  if so, free them now.
543 	 */
544 
545 	if (nused < nallocated) {
546 		if (!now) {
547 			return;
548 		}
549 		uvm_swap_free(slot + nused, nallocated - nused);
550 	}
551 
552 	/*
553 	 * now start the pageout.
554 	 */
555 
556 	if (nused > 0) {
557 		uvmexp.pdpageouts++;
558 		uvm_pageout_start(nused);
559 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
560 		KASSERT(error == 0 || error == ENOMEM);
561 	}
562 
563 	/*
564 	 * zero swslot to indicate that we are
565 	 * no longer building a swap-backed cluster.
566 	 */
567 
568 	swc->swc_slot = 0;
569 	swc->swc_nused = 0;
570 }
571 
572 static int
573 swapcluster_nused(struct swapcluster *swc)
574 {
575 
576 	return swc->swc_nused;
577 }
578 
579 /*
580  * uvmpd_dropswap: free any swap allocated to this page.
581  *
582  * => called with owner locked.
583  * => return true if a page had an associated slot.
584  */
585 
586 static bool
587 uvmpd_dropswap(struct vm_page *pg)
588 {
589 	bool result = false;
590 	struct vm_anon *anon = pg->uanon;
591 
592 	if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
593 		uvm_swap_free(anon->an_swslot, 1);
594 		anon->an_swslot = 0;
595 		pg->flags &= ~PG_CLEAN;
596 		result = true;
597 	} else if (pg->pqflags & PQ_AOBJ) {
598 		int slot = uao_set_swslot(pg->uobject,
599 		    pg->offset >> PAGE_SHIFT, 0);
600 		if (slot) {
601 			uvm_swap_free(slot, 1);
602 			pg->flags &= ~PG_CLEAN;
603 			result = true;
604 		}
605 	}
606 
607 	return result;
608 }
609 
610 /*
611  * uvmpd_trydropswap: try to free any swap allocated to this page.
612  *
613  * => return true if a slot is successfully freed.
614  */
615 
616 bool
617 uvmpd_trydropswap(struct vm_page *pg)
618 {
619 	kmutex_t *slock;
620 	bool result;
621 
622 	if ((pg->flags & PG_BUSY) != 0) {
623 		return false;
624 	}
625 
626 	/*
627 	 * lock the page's owner.
628 	 */
629 
630 	slock = uvmpd_trylockowner(pg);
631 	if (slock == NULL) {
632 		return false;
633 	}
634 
635 	/*
636 	 * skip this page if it's busy.
637 	 */
638 
639 	if ((pg->flags & PG_BUSY) != 0) {
640 		mutex_exit(slock);
641 		return false;
642 	}
643 
644 	result = uvmpd_dropswap(pg);
645 
646 	mutex_exit(slock);
647 
648 	return result;
649 }
650 
651 #endif /* defined(VMSWAP) */
652 
653 /*
654  * uvmpd_scan_queue: scan an replace candidate list for pages
655  * to clean or free.
656  *
657  * => called with page queues locked
658  * => we work on meeting our free target by converting inactive pages
659  *    into free pages.
660  * => we handle the building of swap-backed clusters
661  */
662 
663 static void
664 uvmpd_scan_queue(void)
665 {
666 	struct vm_page *p;
667 	struct uvm_object *uobj;
668 	struct vm_anon *anon;
669 #if defined(VMSWAP)
670 	struct swapcluster swc;
671 #endif /* defined(VMSWAP) */
672 	int dirtyreacts;
673 	int lockownerfail;
674 	kmutex_t *slock;
675 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
676 
677 	/*
678 	 * swslot is non-zero if we are building a swap cluster.  we want
679 	 * to stay in the loop while we have a page to scan or we have
680 	 * a swap-cluster to build.
681 	 */
682 
683 #if defined(VMSWAP)
684 	swapcluster_init(&swc);
685 #endif /* defined(VMSWAP) */
686 
687 	dirtyreacts = 0;
688 	lockownerfail = 0;
689 	uvmpdpol_scaninit();
690 
691 	while (/* CONSTCOND */ 1) {
692 
693 		/*
694 		 * see if we've met the free target.
695 		 */
696 
697 		if (uvmexp.free + uvmexp.paging
698 #if defined(VMSWAP)
699 		    + swapcluster_nused(&swc)
700 #endif /* defined(VMSWAP) */
701 		    >= uvmexp.freetarg << 2 ||
702 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
703 			UVMHIST_LOG(pdhist,"  met free target: "
704 				    "exit loop", 0, 0, 0, 0);
705 			break;
706 		}
707 
708 		p = uvmpdpol_selectvictim();
709 		if (p == NULL) {
710 			break;
711 		}
712 		KASSERT(uvmpdpol_pageisqueued_p(p));
713 		KASSERT(p->wire_count == 0);
714 
715 		/*
716 		 * we are below target and have a new page to consider.
717 		 */
718 
719 		anon = p->uanon;
720 		uobj = p->uobject;
721 
722 		/*
723 		 * first we attempt to lock the object that this page
724 		 * belongs to.  if our attempt fails we skip on to
725 		 * the next page (no harm done).  it is important to
726 		 * "try" locking the object as we are locking in the
727 		 * wrong order (pageq -> object) and we don't want to
728 		 * deadlock.
729 		 *
730 		 * the only time we expect to see an ownerless page
731 		 * (i.e. a page with no uobject and !PQ_ANON) is if an
732 		 * anon has loaned a page from a uvm_object and the
733 		 * uvm_object has dropped the ownership.  in that
734 		 * case, the anon can "take over" the loaned page
735 		 * and make it its own.
736 		 */
737 
738 		slock = uvmpd_trylockowner(p);
739 		if (slock == NULL) {
740 			/*
741 			 * yield cpu to make a chance for an LWP holding
742 			 * the lock run.  otherwise we can busy-loop too long
743 			 * if the page queue is filled with a lot of pages
744 			 * from few objects.
745 			 */
746 			lockownerfail++;
747 			if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
748 				mutex_exit(&uvm_pageqlock);
749 				/* XXX Better than yielding but inadequate. */
750 				kpause("livelock", false, 1, NULL);
751 				mutex_enter(&uvm_pageqlock);
752 				lockownerfail = 0;
753 			}
754 			continue;
755 		}
756 		if (p->flags & PG_BUSY) {
757 			mutex_exit(slock);
758 			uvmexp.pdbusy++;
759 			continue;
760 		}
761 
762 		/* does the page belong to an object? */
763 		if (uobj != NULL) {
764 			uvmexp.pdobscan++;
765 		} else {
766 #if defined(VMSWAP)
767 			KASSERT(anon != NULL);
768 			uvmexp.pdanscan++;
769 #else /* defined(VMSWAP) */
770 			panic("%s: anon", __func__);
771 #endif /* defined(VMSWAP) */
772 		}
773 
774 
775 		/*
776 		 * we now have the object and the page queues locked.
777 		 * if the page is not swap-backed, call the object's
778 		 * pager to flush and free the page.
779 		 */
780 
781 #if defined(READAHEAD_STATS)
782 		if ((p->pqflags & PQ_READAHEAD) != 0) {
783 			p->pqflags &= ~PQ_READAHEAD;
784 			uvm_ra_miss.ev_count++;
785 		}
786 #endif /* defined(READAHEAD_STATS) */
787 
788 		if ((p->pqflags & PQ_SWAPBACKED) == 0) {
789 			KASSERT(uobj != NULL);
790 			mutex_exit(&uvm_pageqlock);
791 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
792 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
793 			mutex_enter(&uvm_pageqlock);
794 			continue;
795 		}
796 
797 		/*
798 		 * the page is swap-backed.  remove all the permissions
799 		 * from the page so we can sync the modified info
800 		 * without any race conditions.  if the page is clean
801 		 * we can free it now and continue.
802 		 */
803 
804 		pmap_page_protect(p, VM_PROT_NONE);
805 		if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
806 			p->flags &= ~(PG_CLEAN);
807 		}
808 		if (p->flags & PG_CLEAN) {
809 			int slot;
810 			int pageidx;
811 
812 			pageidx = p->offset >> PAGE_SHIFT;
813 			uvm_pagefree(p);
814 			uvmexp.pdfreed++;
815 
816 			/*
817 			 * for anons, we need to remove the page
818 			 * from the anon ourselves.  for aobjs,
819 			 * pagefree did that for us.
820 			 */
821 
822 			if (anon) {
823 				KASSERT(anon->an_swslot != 0);
824 				anon->an_page = NULL;
825 				slot = anon->an_swslot;
826 			} else {
827 				slot = uao_find_swslot(uobj, pageidx);
828 			}
829 			mutex_exit(slock);
830 
831 			if (slot > 0) {
832 				/* this page is now only in swap. */
833 				mutex_enter(&uvm_swap_data_lock);
834 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
835 				uvmexp.swpgonly++;
836 				mutex_exit(&uvm_swap_data_lock);
837 			}
838 			continue;
839 		}
840 
841 #if defined(VMSWAP)
842 		/*
843 		 * this page is dirty, skip it if we'll have met our
844 		 * free target when all the current pageouts complete.
845 		 */
846 
847 		if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
848 			mutex_exit(slock);
849 			continue;
850 		}
851 
852 		/*
853 		 * free any swap space allocated to the page since
854 		 * we'll have to write it again with its new data.
855 		 */
856 
857 		uvmpd_dropswap(p);
858 
859 		/*
860 		 * start new swap pageout cluster (if necessary).
861 		 *
862 		 * if swap is full reactivate this page so that
863 		 * we eventually cycle all pages through the
864 		 * inactive queue.
865 		 */
866 
867 		if (swapcluster_allocslots(&swc)) {
868 			dirtyreacts++;
869 			uvm_pageactivate(p);
870 			mutex_exit(slock);
871 			continue;
872 		}
873 
874 		/*
875 		 * at this point, we're definitely going reuse this
876 		 * page.  mark the page busy and delayed-free.
877 		 * we should remove the page from the page queues
878 		 * so we don't ever look at it again.
879 		 * adjust counters and such.
880 		 */
881 
882 		p->flags |= PG_BUSY;
883 		UVM_PAGE_OWN(p, "scan_queue");
884 
885 		p->flags |= PG_PAGEOUT;
886 		uvm_pagedequeue(p);
887 
888 		uvmexp.pgswapout++;
889 		mutex_exit(&uvm_pageqlock);
890 
891 		/*
892 		 * add the new page to the cluster.
893 		 */
894 
895 		if (swapcluster_add(&swc, p)) {
896 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
897 			UVM_PAGE_OWN(p, NULL);
898 			mutex_enter(&uvm_pageqlock);
899 			dirtyreacts++;
900 			uvm_pageactivate(p);
901 			mutex_exit(slock);
902 			continue;
903 		}
904 		mutex_exit(slock);
905 
906 		swapcluster_flush(&swc, false);
907 		mutex_enter(&uvm_pageqlock);
908 
909 		/*
910 		 * the pageout is in progress.  bump counters and set up
911 		 * for the next loop.
912 		 */
913 
914 		uvmexp.pdpending++;
915 
916 #else /* defined(VMSWAP) */
917 		uvm_pageactivate(p);
918 		mutex_exit(slock);
919 #endif /* defined(VMSWAP) */
920 	}
921 
922 #if defined(VMSWAP)
923 	mutex_exit(&uvm_pageqlock);
924 	swapcluster_flush(&swc, true);
925 	mutex_enter(&uvm_pageqlock);
926 #endif /* defined(VMSWAP) */
927 }
928 
929 /*
930  * uvmpd_scan: scan the page queues and attempt to meet our targets.
931  *
932  * => called with pageq's locked
933  */
934 
935 static void
936 uvmpd_scan(void)
937 {
938 	int swap_shortage, pages_freed;
939 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
940 
941 	uvmexp.pdrevs++;
942 
943 	/*
944 	 * work on meeting our targets.   first we work on our free target
945 	 * by converting inactive pages into free pages.  then we work on
946 	 * meeting our inactive target by converting active pages to
947 	 * inactive ones.
948 	 */
949 
950 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
951 
952 	pages_freed = uvmexp.pdfreed;
953 	uvmpd_scan_queue();
954 	pages_freed = uvmexp.pdfreed - pages_freed;
955 
956 	/*
957 	 * detect if we're not going to be able to page anything out
958 	 * until we free some swap resources from active pages.
959 	 */
960 
961 	swap_shortage = 0;
962 	if (uvmexp.free < uvmexp.freetarg &&
963 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
964 	    !uvm_swapisfull() &&
965 	    pages_freed == 0) {
966 		swap_shortage = uvmexp.freetarg - uvmexp.free;
967 	}
968 
969 	uvmpdpol_balancequeue(swap_shortage);
970 
971 	/*
972 	 * if still below the minimum target, try unloading kernel
973 	 * modules.
974 	 */
975 
976 	if (uvmexp.free < uvmexp.freemin) {
977 		module_thread_kick();
978 	}
979 }
980 
981 /*
982  * uvm_reclaimable: decide whether to wait for pagedaemon.
983  *
984  * => return true if it seems to be worth to do uvm_wait.
985  *
986  * XXX should be tunable.
987  * XXX should consider pools, etc?
988  */
989 
990 bool
991 uvm_reclaimable(void)
992 {
993 	int filepages;
994 	int active, inactive;
995 
996 	/*
997 	 * if swap is not full, no problem.
998 	 */
999 
1000 	if (!uvm_swapisfull()) {
1001 		return true;
1002 	}
1003 
1004 	/*
1005 	 * file-backed pages can be reclaimed even when swap is full.
1006 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
1007 	 *
1008 	 * XXX assume the worst case, ie. all wired pages are file-backed.
1009 	 *
1010 	 * XXX should consider about other reclaimable memory.
1011 	 * XXX ie. pools, traditional buffer cache.
1012 	 */
1013 
1014 	filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
1015 	uvm_estimatepageable(&active, &inactive);
1016 	if (filepages >= MIN((active + inactive) >> 4,
1017 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
1018 		return true;
1019 	}
1020 
1021 	/*
1022 	 * kill the process, fail allocation, etc..
1023 	 */
1024 
1025 	return false;
1026 }
1027 
1028 void
1029 uvm_estimatepageable(int *active, int *inactive)
1030 {
1031 
1032 	uvmpdpol_estimatepageable(active, inactive);
1033 }
1034 
1035 void
1036 uvm_reclaim_init(void)
1037 {
1038 
1039 	/* Initialize UVM reclaim hooks. */
1040 	mutex_init(&uvm_reclaim_lock, MUTEX_DEFAULT, IPL_NONE);
1041 	SLIST_INIT(&uvm_reclaim_list);
1042 }
1043 
1044 void
1045 uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook)
1046 {
1047 
1048 	KASSERT(hook != NULL);
1049 
1050 	mutex_enter(&uvm_reclaim_lock);
1051 	SLIST_INSERT_HEAD(&uvm_reclaim_list, hook, uvm_reclaim_next);
1052 	mutex_exit(&uvm_reclaim_lock);
1053 }
1054 
1055 void
1056 uvm_reclaim_hook_del(struct uvm_reclaim_hook *hook_entry)
1057 {
1058 	struct uvm_reclaim_hook *hook;
1059 
1060 	KASSERT(hook_entry != NULL);
1061 
1062 	mutex_enter(&uvm_reclaim_lock);
1063 	SLIST_FOREACH(hook, &uvm_reclaim_list, uvm_reclaim_next) {
1064 		if (hook != hook_entry) {
1065 			continue;
1066 		}
1067 
1068 		SLIST_REMOVE(&uvm_reclaim_list, hook, uvm_reclaim_hook,
1069 		    uvm_reclaim_next);
1070 		break;
1071 	}
1072 
1073 	mutex_exit(&uvm_reclaim_lock);
1074 }
1075