xref: /netbsd/sys/uvm/uvm_pdaemon.c (revision c4a72b64)
1 /*	$NetBSD: uvm_pdaemon.c,v 1.48 2002/11/24 11:50:32 scw Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Charles D. Cranor,
23  *      Washington University, the University of California, Berkeley and
24  *      its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
42  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 /*
70  * uvm_pdaemon.c: the page daemon
71  */
72 
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.48 2002/11/24 11:50:32 scw Exp $");
75 
76 #include "opt_uvmhist.h"
77 
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/pool.h>
83 #include <sys/buf.h>
84 #include <sys/vnode.h>
85 
86 #include <uvm/uvm.h>
87 
88 /*
89  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
90  * in a pass thru the inactive list when swap is full.  the value should be
91  * "small"... if it's too large we'll cycle the active pages thru the inactive
92  * queue too quickly to for them to be referenced and avoid being freed.
93  */
94 
95 #define UVMPD_NUMDIRTYREACTS 16
96 
97 
98 /*
99  * local prototypes
100  */
101 
102 void		uvmpd_scan __P((void));
103 void		uvmpd_scan_inactive __P((struct pglist *));
104 void		uvmpd_tune __P((void));
105 
106 /*
107  * uvm_wait: wait (sleep) for the page daemon to free some pages
108  *
109  * => should be called with all locks released
110  * => should _not_ be called by the page daemon (to avoid deadlock)
111  */
112 
113 void
114 uvm_wait(wmsg)
115 	const char *wmsg;
116 {
117 	int timo = 0;
118 	int s = splbio();
119 
120 	/*
121 	 * check for page daemon going to sleep (waiting for itself)
122 	 */
123 
124 	if (curproc == uvm.pagedaemon_proc && uvmexp.paging == 0) {
125 		/*
126 		 * now we have a problem: the pagedaemon wants to go to
127 		 * sleep until it frees more memory.   but how can it
128 		 * free more memory if it is asleep?  that is a deadlock.
129 		 * we have two options:
130 		 *  [1] panic now
131 		 *  [2] put a timeout on the sleep, thus causing the
132 		 *      pagedaemon to only pause (rather than sleep forever)
133 		 *
134 		 * note that option [2] will only help us if we get lucky
135 		 * and some other process on the system breaks the deadlock
136 		 * by exiting or freeing memory (thus allowing the pagedaemon
137 		 * to continue).  for now we panic if DEBUG is defined,
138 		 * otherwise we hope for the best with option [2] (better
139 		 * yet, this should never happen in the first place!).
140 		 */
141 
142 		printf("pagedaemon: deadlock detected!\n");
143 		timo = hz >> 3;		/* set timeout */
144 #if defined(DEBUG)
145 		/* DEBUG: panic so we can debug it */
146 		panic("pagedaemon deadlock");
147 #endif
148 	}
149 
150 	simple_lock(&uvm.pagedaemon_lock);
151 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
152 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
153 	    timo);
154 
155 	splx(s);
156 }
157 
158 
159 /*
160  * uvmpd_tune: tune paging parameters
161  *
162  * => called when ever memory is added (or removed?) to the system
163  * => caller must call with page queues locked
164  */
165 
166 void
167 uvmpd_tune(void)
168 {
169 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
170 
171 	uvmexp.freemin = uvmexp.npages / 20;
172 
173 	/* between 16k and 256k */
174 	/* XXX:  what are these values good for? */
175 	uvmexp.freemin = MAX(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
176 	uvmexp.freemin = MIN(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
177 
178 	/* Make sure there's always a user page free. */
179 	if (uvmexp.freemin < uvmexp.reserve_kernel + 1)
180 		uvmexp.freemin = uvmexp.reserve_kernel + 1;
181 
182 	uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
183 	if (uvmexp.freetarg <= uvmexp.freemin)
184 		uvmexp.freetarg = uvmexp.freemin + 1;
185 
186 	/* uvmexp.inactarg: computed in main daemon loop */
187 
188 	uvmexp.wiredmax = uvmexp.npages / 3;
189 	UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
190 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
191 }
192 
193 /*
194  * uvm_pageout: the main loop for the pagedaemon
195  */
196 
197 void
198 uvm_pageout(void *arg)
199 {
200 	int npages = 0;
201 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
202 
203 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
204 
205 	/*
206 	 * ensure correct priority and set paging parameters...
207 	 */
208 
209 	uvm.pagedaemon_proc = curproc;
210 	uvm_lock_pageq();
211 	npages = uvmexp.npages;
212 	uvmpd_tune();
213 	uvm_unlock_pageq();
214 
215 	/*
216 	 * main loop
217 	 */
218 
219 	for (;;) {
220 		simple_lock(&uvm.pagedaemon_lock);
221 
222 		UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
223 		UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
224 		    &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
225 		uvmexp.pdwoke++;
226 		UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
227 
228 		/*
229 		 * now lock page queues and recompute inactive count
230 		 */
231 
232 		uvm_lock_pageq();
233 		if (npages != uvmexp.npages) {	/* check for new pages? */
234 			npages = uvmexp.npages;
235 			uvmpd_tune();
236 		}
237 
238 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
239 		if (uvmexp.inactarg <= uvmexp.freetarg) {
240 			uvmexp.inactarg = uvmexp.freetarg + 1;
241 		}
242 
243 		UVMHIST_LOG(pdhist,"  free/ftarg=%d/%d, inact/itarg=%d/%d",
244 		    uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
245 		    uvmexp.inactarg);
246 
247 		/*
248 		 * scan if needed
249 		 */
250 
251 		if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
252 		    uvmexp.inactive < uvmexp.inactarg) {
253 			uvmpd_scan();
254 		}
255 
256 		/*
257 		 * if there's any free memory to be had,
258 		 * wake up any waiters.
259 		 */
260 
261 		if (uvmexp.free > uvmexp.reserve_kernel ||
262 		    uvmexp.paging == 0) {
263 			wakeup(&uvmexp.free);
264 		}
265 
266 		/*
267 		 * scan done.  unlock page queues (the only lock we are holding)
268 		 */
269 
270 		uvm_unlock_pageq();
271 
272 		/*
273 		 * drain pool resources now that we're not holding any locks
274 		 */
275 
276 		pool_drain(0);
277 	}
278 	/*NOTREACHED*/
279 }
280 
281 
282 /*
283  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
284  */
285 
286 void
287 uvm_aiodone_daemon(void *arg)
288 {
289 	int s, free;
290 	struct buf *bp, *nbp;
291 	UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
292 
293 	for (;;) {
294 
295 		/*
296 		 * carefully attempt to go to sleep (without losing "wakeups"!).
297 		 * we need splbio because we want to make sure the aio_done list
298 		 * is totally empty before we go to sleep.
299 		 */
300 
301 		s = splbio();
302 		simple_lock(&uvm.aiodoned_lock);
303 		if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
304 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
305 			UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
306 			    &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
307 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
308 
309 			/* relock aiodoned_lock, still at splbio */
310 			simple_lock(&uvm.aiodoned_lock);
311 		}
312 
313 		/*
314 		 * check for done aio structures
315 		 */
316 
317 		bp = TAILQ_FIRST(&uvm.aio_done);
318 		if (bp) {
319 			TAILQ_INIT(&uvm.aio_done);
320 		}
321 
322 		simple_unlock(&uvm.aiodoned_lock);
323 		splx(s);
324 
325 		/*
326 		 * process each i/o that's done.
327 		 */
328 
329 		free = uvmexp.free;
330 		while (bp != NULL) {
331 			nbp = TAILQ_NEXT(bp, b_freelist);
332 			(*bp->b_iodone)(bp);
333 			bp = nbp;
334 		}
335 		if (free <= uvmexp.reserve_kernel) {
336 			s = uvm_lock_fpageq();
337 			wakeup(&uvm.pagedaemon);
338 			uvm_unlock_fpageq(s);
339 		} else {
340 			simple_lock(&uvm.pagedaemon_lock);
341 			wakeup(&uvmexp.free);
342 			simple_unlock(&uvm.pagedaemon_lock);
343 		}
344 	}
345 }
346 
347 /*
348  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
349  *
350  * => called with page queues locked
351  * => we work on meeting our free target by converting inactive pages
352  *    into free pages.
353  * => we handle the building of swap-backed clusters
354  * => we return TRUE if we are exiting because we met our target
355  */
356 
357 void
358 uvmpd_scan_inactive(pglst)
359 	struct pglist *pglst;
360 {
361 	int error;
362 	struct vm_page *p, *nextpg = NULL; /* Quell compiler warning */
363 	struct uvm_object *uobj;
364 	struct vm_anon *anon;
365 	struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT];
366 	struct simplelock *slock;
367 	int swnpages, swcpages;
368 	int swslot;
369 	int dirtyreacts, t, result;
370 	boolean_t anonunder, fileunder, execunder;
371 	boolean_t anonover, fileover, execover;
372 	boolean_t anonreact, filereact, execreact;
373 	UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
374 
375 	/*
376 	 * swslot is non-zero if we are building a swap cluster.  we want
377 	 * to stay in the loop while we have a page to scan or we have
378 	 * a swap-cluster to build.
379 	 */
380 
381 	swslot = 0;
382 	swnpages = swcpages = 0;
383 	dirtyreacts = 0;
384 
385 	/*
386 	 * decide which types of pages we want to reactivate instead of freeing
387 	 * to keep usage within the minimum and maximum usage limits.
388 	 */
389 
390 	t = uvmexp.active + uvmexp.inactive + uvmexp.free;
391 	anonunder = (uvmexp.anonpages <= (t * uvmexp.anonmin) >> 8);
392 	fileunder = (uvmexp.filepages <= (t * uvmexp.filemin) >> 8);
393 	execunder = (uvmexp.execpages <= (t * uvmexp.execmin) >> 8);
394 	anonover = uvmexp.anonpages > ((t * uvmexp.anonmax) >> 8);
395 	fileover = uvmexp.filepages > ((t * uvmexp.filemax) >> 8);
396 	execover = uvmexp.execpages > ((t * uvmexp.execmax) >> 8);
397 	anonreact = anonunder || (!anonover && (fileover || execover));
398 	filereact = fileunder || (!fileover && (anonover || execover));
399 	execreact = execunder || (!execover && (anonover || fileover));
400 	for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
401 		uobj = NULL;
402 		anon = NULL;
403 		if (p) {
404 
405 			/*
406 			 * see if we've met the free target.
407 			 */
408 
409 			if (uvmexp.free + uvmexp.paging >=
410 			    uvmexp.freetarg << 2 ||
411 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
412 				UVMHIST_LOG(pdhist,"  met free target: "
413 					    "exit loop", 0, 0, 0, 0);
414 
415 				if (swslot == 0) {
416 					/* exit now if no swap-i/o pending */
417 					break;
418 				}
419 
420 				/* set p to null to signal final swap i/o */
421 				p = NULL;
422 				nextpg = NULL;
423 			}
424 		}
425 		if (p) {	/* if (we have a new page to consider) */
426 
427 			/*
428 			 * we are below target and have a new page to consider.
429 			 */
430 
431 			uvmexp.pdscans++;
432 			nextpg = TAILQ_NEXT(p, pageq);
433 
434 			/*
435 			 * move referenced pages back to active queue and
436 			 * skip to next page.
437 			 */
438 
439 			if (pmap_clear_reference(p)) {
440 				uvm_pageactivate(p);
441 				uvmexp.pdreact++;
442 				continue;
443 			}
444 			anon = p->uanon;
445 			uobj = p->uobject;
446 
447 			/*
448 			 * enforce the minimum thresholds on different
449 			 * types of memory usage.  if reusing the current
450 			 * page would reduce that type of usage below its
451 			 * minimum, reactivate the page instead and move
452 			 * on to the next page.
453 			 */
454 
455 			if (uobj && UVM_OBJ_IS_VTEXT(uobj) && execreact) {
456 				uvm_pageactivate(p);
457 				uvmexp.pdreexec++;
458 				continue;
459 			}
460 			if (uobj && UVM_OBJ_IS_VNODE(uobj) &&
461 			    !UVM_OBJ_IS_VTEXT(uobj) && filereact) {
462 				uvm_pageactivate(p);
463 				uvmexp.pdrefile++;
464 				continue;
465 			}
466 			if ((anon || UVM_OBJ_IS_AOBJ(uobj)) && anonreact) {
467 				uvm_pageactivate(p);
468 				uvmexp.pdreanon++;
469 				continue;
470 			}
471 
472 			/*
473 			 * first we attempt to lock the object that this page
474 			 * belongs to.  if our attempt fails we skip on to
475 			 * the next page (no harm done).  it is important to
476 			 * "try" locking the object as we are locking in the
477 			 * wrong order (pageq -> object) and we don't want to
478 			 * deadlock.
479 			 *
480 			 * the only time we expect to see an ownerless page
481 			 * (i.e. a page with no uobject and !PQ_ANON) is if an
482 			 * anon has loaned a page from a uvm_object and the
483 			 * uvm_object has dropped the ownership.  in that
484 			 * case, the anon can "take over" the loaned page
485 			 * and make it its own.
486 			 */
487 
488 			/* does the page belong to an object? */
489 			if (uobj != NULL) {
490 				slock = &uobj->vmobjlock;
491 				if (!simple_lock_try(slock)) {
492 					continue;
493 				}
494 				if (p->flags & PG_BUSY) {
495 					simple_unlock(slock);
496 					uvmexp.pdbusy++;
497 					continue;
498 				}
499 				uvmexp.pdobscan++;
500 			} else {
501 				KASSERT(anon != NULL);
502 				slock = &anon->an_lock;
503 				if (!simple_lock_try(slock)) {
504 					continue;
505 				}
506 
507 				/*
508 				 * set PQ_ANON if it isn't set already.
509 				 */
510 
511 				if ((p->pqflags & PQ_ANON) == 0) {
512 					KASSERT(p->loan_count > 0);
513 					p->loan_count--;
514 					p->pqflags |= PQ_ANON;
515 					/* anon now owns it */
516 				}
517 				if (p->flags & PG_BUSY) {
518 					simple_unlock(slock);
519 					uvmexp.pdbusy++;
520 					continue;
521 				}
522 				uvmexp.pdanscan++;
523 			}
524 
525 
526 			/*
527 			 * we now have the object and the page queues locked.
528 			 * if the page is not swap-backed, call the object's
529 			 * pager to flush and free the page.
530 			 */
531 
532 			if ((p->pqflags & PQ_SWAPBACKED) == 0) {
533 				uvm_unlock_pageq();
534 				error = (uobj->pgops->pgo_put)(uobj, p->offset,
535 				    p->offset + PAGE_SIZE,
536 				    PGO_CLEANIT|PGO_FREE);
537 				uvm_lock_pageq();
538 				if (nextpg &&
539 				    (nextpg->pqflags & PQ_INACTIVE) == 0) {
540 					nextpg = TAILQ_FIRST(pglst);
541 				}
542 				continue;
543 			}
544 
545 			/*
546 			 * the page is swap-backed.  remove all the permissions
547 			 * from the page so we can sync the modified info
548 			 * without any race conditions.  if the page is clean
549 			 * we can free it now and continue.
550 			 */
551 
552 			pmap_page_protect(p, VM_PROT_NONE);
553 			if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
554 				p->flags &= ~(PG_CLEAN);
555 			}
556 			if (p->flags & PG_CLEAN) {
557 				uvm_pagefree(p);
558 				uvmexp.pdfreed++;
559 
560 				/*
561 				 * for anons, we need to remove the page
562 				 * from the anon ourselves.  for aobjs,
563 				 * pagefree did that for us.
564 				 */
565 
566 				if (anon) {
567 					KASSERT(anon->an_swslot != 0);
568 					anon->u.an_page = NULL;
569 				}
570 				simple_unlock(slock);
571 
572 				/* this page is now only in swap. */
573 				simple_lock(&uvm.swap_data_lock);
574 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
575 				uvmexp.swpgonly++;
576 				simple_unlock(&uvm.swap_data_lock);
577 				continue;
578 			}
579 
580 			/*
581 			 * this page is dirty, skip it if we'll have met our
582 			 * free target when all the current pageouts complete.
583 			 */
584 
585 			if (uvmexp.free + uvmexp.paging >
586 			    uvmexp.freetarg << 2) {
587 				simple_unlock(slock);
588 				continue;
589 			}
590 
591 			/*
592 			 * free any swap space allocated to the page since
593 			 * we'll have to write it again with its new data.
594 			 */
595 
596 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
597 				uvm_swap_free(anon->an_swslot, 1);
598 				anon->an_swslot = 0;
599 			} else if (p->pqflags & PQ_AOBJ) {
600 				uao_dropswap(uobj, p->offset >> PAGE_SHIFT);
601 			}
602 
603 			/*
604 			 * if all pages in swap are only in swap,
605 			 * the swap space is full and we can't page out
606 			 * any more swap-backed pages.  reactivate this page
607 			 * so that we eventually cycle all pages through
608 			 * the inactive queue.
609 			 */
610 
611 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
612 			if (uvmexp.swpgonly == uvmexp.swpages) {
613 				dirtyreacts++;
614 				uvm_pageactivate(p);
615 				simple_unlock(slock);
616 				continue;
617 			}
618 
619 			/*
620 			 * start new swap pageout cluster (if necessary).
621 			 */
622 
623 			if (swslot == 0) {
624 				swnpages = MAXBSIZE >> PAGE_SHIFT;
625 				swslot = uvm_swap_alloc(&swnpages, TRUE);
626 				if (swslot == 0) {
627 					simple_unlock(slock);
628 					continue;
629 				}
630 				swcpages = 0;
631 			}
632 
633 			/*
634 			 * at this point, we're definitely going reuse this
635 			 * page.  mark the page busy and delayed-free.
636 			 * we should remove the page from the page queues
637 			 * so we don't ever look at it again.
638 			 * adjust counters and such.
639 			 */
640 
641 			p->flags |= PG_BUSY;
642 			UVM_PAGE_OWN(p, "scan_inactive");
643 
644 			p->flags |= PG_PAGEOUT;
645 			uvmexp.paging++;
646 			uvm_pagedequeue(p);
647 
648 			uvmexp.pgswapout++;
649 
650 			/*
651 			 * add the new page to the cluster.
652 			 */
653 
654 			if (anon) {
655 				anon->an_swslot = swslot + swcpages;
656 				simple_unlock(slock);
657 			} else {
658 				result = uao_set_swslot(uobj,
659 				    p->offset >> PAGE_SHIFT, swslot + swcpages);
660 				if (result == -1) {
661 					p->flags &= ~(PG_BUSY|PG_PAGEOUT);
662 					UVM_PAGE_OWN(p, NULL);
663 					uvmexp.paging--;
664 					uvm_pageactivate(p);
665 					simple_unlock(slock);
666 					continue;
667 				}
668 				simple_unlock(slock);
669 			}
670 			swpps[swcpages] = p;
671 			swcpages++;
672 
673 			/*
674 			 * if the cluster isn't full, look for more pages
675 			 * before starting the i/o.
676 			 */
677 
678 			if (swcpages < swnpages) {
679 				continue;
680 			}
681 		}
682 
683 		/*
684 		 * if this is the final pageout we could have a few
685 		 * unused swap blocks.  if so, free them now.
686 		 */
687 
688 		if (swcpages < swnpages) {
689 			uvm_swap_free(swslot + swcpages, (swnpages - swcpages));
690 		}
691 
692 		/*
693 		 * now start the pageout.
694 		 */
695 
696 		uvm_unlock_pageq();
697 		uvmexp.pdpageouts++;
698 		error = uvm_swap_put(swslot, swpps, swcpages, 0);
699 		KASSERT(error == 0);
700 		uvm_lock_pageq();
701 
702 		/*
703 		 * zero swslot to indicate that we are
704 		 * no longer building a swap-backed cluster.
705 		 */
706 
707 		swslot = 0;
708 
709 		/*
710 		 * the pageout is in progress.  bump counters and set up
711 		 * for the next loop.
712 		 */
713 
714 		uvmexp.pdpending++;
715 		if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
716 			nextpg = TAILQ_FIRST(pglst);
717 		}
718 	}
719 }
720 
721 /*
722  * uvmpd_scan: scan the page queues and attempt to meet our targets.
723  *
724  * => called with pageq's locked
725  */
726 
727 void
728 uvmpd_scan(void)
729 {
730 	int inactive_shortage, swap_shortage, pages_freed;
731 	struct vm_page *p, *nextpg;
732 	struct uvm_object *uobj;
733 	struct vm_anon *anon;
734 	struct simplelock *slock;
735 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
736 
737 	uvmexp.pdrevs++;
738 	uobj = NULL;
739 	anon = NULL;
740 
741 #ifndef __SWAP_BROKEN
742 
743 	/*
744 	 * swap out some processes if we are below our free target.
745 	 * we need to unlock the page queues for this.
746 	 */
747 
748 	if (uvmexp.free < uvmexp.freetarg && uvmexp.nswapdev != 0) {
749 		uvmexp.pdswout++;
750 		UVMHIST_LOG(pdhist,"  free %d < target %d: swapout",
751 		    uvmexp.free, uvmexp.freetarg, 0, 0);
752 		uvm_unlock_pageq();
753 		uvm_swapout_threads();
754 		uvm_lock_pageq();
755 
756 	}
757 #endif
758 
759 	/*
760 	 * now we want to work on meeting our targets.   first we work on our
761 	 * free target by converting inactive pages into free pages.  then
762 	 * we work on meeting our inactive target by converting active pages
763 	 * to inactive ones.
764 	 */
765 
766 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
767 
768 	/*
769 	 * alternate starting queue between swap and object based on the
770 	 * low bit of uvmexp.pdrevs (which we bump by one each call).
771 	 */
772 
773 	pages_freed = uvmexp.pdfreed;
774 	uvmpd_scan_inactive(&uvm.page_inactive);
775 	pages_freed = uvmexp.pdfreed - pages_freed;
776 
777 	/*
778 	 * we have done the scan to get free pages.   now we work on meeting
779 	 * our inactive target.
780 	 */
781 
782 	inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
783 
784 	/*
785 	 * detect if we're not going to be able to page anything out
786 	 * until we free some swap resources from active pages.
787 	 */
788 
789 	swap_shortage = 0;
790 	if (uvmexp.free < uvmexp.freetarg &&
791 	    uvmexp.swpginuse == uvmexp.swpages &&
792 	    uvmexp.swpgonly < uvmexp.swpages &&
793 	    pages_freed == 0) {
794 		swap_shortage = uvmexp.freetarg - uvmexp.free;
795 	}
796 
797 	UVMHIST_LOG(pdhist, "  loop 2: inactive_shortage=%d swap_shortage=%d",
798 		    inactive_shortage, swap_shortage,0,0);
799 	for (p = TAILQ_FIRST(&uvm.page_active);
800 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
801 	     p = nextpg) {
802 		nextpg = TAILQ_NEXT(p, pageq);
803 		if (p->flags & PG_BUSY) {
804 			continue;
805 		}
806 
807 		/*
808 		 * lock the page's owner.
809 		 */
810 
811 		if (p->uobject != NULL) {
812 			uobj = p->uobject;
813 			slock = &uobj->vmobjlock;
814 			if (!simple_lock_try(slock)) {
815 				continue;
816 			}
817 		} else {
818 			anon = p->uanon;
819 			KASSERT(anon != NULL);
820 			slock = &anon->an_lock;
821 			if (!simple_lock_try(slock)) {
822 				continue;
823 			}
824 
825 			/* take over the page? */
826 			if ((p->pqflags & PQ_ANON) == 0) {
827 				KASSERT(p->loan_count > 0);
828 				p->loan_count--;
829 				p->pqflags |= PQ_ANON;
830 			}
831 		}
832 
833 		/*
834 		 * skip this page if it's busy.
835 		 */
836 
837 		if ((p->flags & PG_BUSY) != 0) {
838 			simple_unlock(slock);
839 			continue;
840 		}
841 
842 		/*
843 		 * if there's a shortage of swap, free any swap allocated
844 		 * to this page so that other pages can be paged out.
845 		 */
846 
847 		if (swap_shortage > 0) {
848 			if ((p->pqflags & PQ_ANON) && anon->an_swslot) {
849 				uvm_swap_free(anon->an_swslot, 1);
850 				anon->an_swslot = 0;
851 				p->flags &= ~PG_CLEAN;
852 				swap_shortage--;
853 			} else if (p->pqflags & PQ_AOBJ) {
854 				int slot = uao_set_swslot(uobj,
855 					p->offset >> PAGE_SHIFT, 0);
856 				if (slot) {
857 					uvm_swap_free(slot, 1);
858 					p->flags &= ~PG_CLEAN;
859 					swap_shortage--;
860 				}
861 			}
862 		}
863 
864 		/*
865 		 * if there's a shortage of inactive pages, deactivate.
866 		 */
867 
868 		if (inactive_shortage > 0) {
869 			/* no need to check wire_count as pg is "active" */
870 			uvm_pagedeactivate(p);
871 			uvmexp.pddeact++;
872 			inactive_shortage--;
873 		}
874 
875 		/*
876 		 * we're done with this page.
877 		 */
878 
879 		simple_unlock(slock);
880 	}
881 }
882