xref: /netbsd/sys/uvm/uvm_swap.c (revision 6550d01e)
1 /*	$NetBSD: uvm_swap.c,v 1.153 2010/11/19 06:44:47 dholland Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.153 2010/11/19 06:44:47 dholland Exp $");
34 
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/bufq.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/namei.h>
46 #include <sys/disklabel.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/vnode.h>
51 #include <sys/file.h>
52 #include <sys/vmem.h>
53 #include <sys/blist.h>
54 #include <sys/mount.h>
55 #include <sys/pool.h>
56 #include <sys/syscallargs.h>
57 #include <sys/swap.h>
58 #include <sys/kauth.h>
59 #include <sys/sysctl.h>
60 #include <sys/workqueue.h>
61 
62 #include <uvm/uvm.h>
63 
64 #include <miscfs/specfs/specdev.h>
65 
66 /*
67  * uvm_swap.c: manage configuration and i/o to swap space.
68  */
69 
70 /*
71  * swap space is managed in the following way:
72  *
73  * each swap partition or file is described by a "swapdev" structure.
74  * each "swapdev" structure contains a "swapent" structure which contains
75  * information that is passed up to the user (via system calls).
76  *
77  * each swap partition is assigned a "priority" (int) which controls
78  * swap parition usage.
79  *
80  * the system maintains a global data structure describing all swap
81  * partitions/files.   there is a sorted LIST of "swappri" structures
82  * which describe "swapdev"'s at that priority.   this LIST is headed
83  * by the "swap_priority" global var.    each "swappri" contains a
84  * CIRCLEQ of "swapdev" structures at that priority.
85  *
86  * locking:
87  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88  *    system call and prevents the swap priority list from changing
89  *    while we are in the middle of a system call (e.g. SWAP_STATS).
90  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91  *    structures including the priority list, the swapdev structures,
92  *    and the swapmap arena.
93  *
94  * each swap device has the following info:
95  *  - swap device in use (could be disabled, preventing future use)
96  *  - swap enabled (allows new allocations on swap)
97  *  - map info in /dev/drum
98  *  - vnode pointer
99  * for swap files only:
100  *  - block size
101  *  - max byte count in buffer
102  *  - buffer
103  *
104  * userland controls and configures swap with the swapctl(2) system call.
105  * the sys_swapctl performs the following operations:
106  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
107  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
108  *	(passed in via "arg") of a size passed in via "misc" ... we load
109  *	the current swap config into the array. The actual work is done
110  *	in the uvm_swap_stats(9) function.
111  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112  *	priority in "misc", start swapping on it.
113  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
115  *	"misc")
116  */
117 
118 /*
119  * swapdev: describes a single swap partition/file
120  *
121  * note the following should be true:
122  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
123  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124  */
125 struct swapdev {
126 	dev_t			swd_dev;	/* device id */
127 	int			swd_flags;	/* flags:inuse/enable/fake */
128 	int			swd_priority;	/* our priority */
129 	int			swd_nblks;	/* blocks in this device */
130 	char			*swd_path;	/* saved pathname of device */
131 	int			swd_pathlen;	/* length of pathname */
132 	int			swd_npages;	/* #pages we can use */
133 	int			swd_npginuse;	/* #pages in use */
134 	int			swd_npgbad;	/* #pages bad */
135 	int			swd_drumoffset;	/* page0 offset in drum */
136 	int			swd_drumsize;	/* #pages in drum */
137 	blist_t			swd_blist;	/* blist for this swapdev */
138 	struct vnode		*swd_vp;	/* backing vnode */
139 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
140 
141 	int			swd_bsize;	/* blocksize (bytes) */
142 	int			swd_maxactive;	/* max active i/o reqs */
143 	struct bufq_state	*swd_tab;	/* buffer list */
144 	int			swd_active;	/* number of active buffers */
145 };
146 
147 /*
148  * swap device priority entry; the list is kept sorted on `spi_priority'.
149  */
150 struct swappri {
151 	int			spi_priority;     /* priority */
152 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
153 	/* circleq of swapdevs at this priority */
154 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
155 };
156 
157 /*
158  * The following two structures are used to keep track of data transfers
159  * on swap devices associated with regular files.
160  * NOTE: this code is more or less a copy of vnd.c; we use the same
161  * structure names here to ease porting..
162  */
163 struct vndxfer {
164 	struct buf	*vx_bp;		/* Pointer to parent buffer */
165 	struct swapdev	*vx_sdp;
166 	int		vx_error;
167 	int		vx_pending;	/* # of pending aux buffers */
168 	int		vx_flags;
169 #define VX_BUSY		1
170 #define VX_DEAD		2
171 };
172 
173 struct vndbuf {
174 	struct buf	vb_buf;
175 	struct vndxfer	*vb_xfer;
176 };
177 
178 /*
179  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
180  * dev_t and has no se_path[] member.
181  */
182 struct swapent13 {
183 	int32_t	se13_dev;		/* device id */
184 	int	se13_flags;		/* flags */
185 	int	se13_nblks;		/* total blocks */
186 	int	se13_inuse;		/* blocks in use */
187 	int	se13_priority;		/* priority of this device */
188 };
189 
190 /*
191  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
192  * dev_t.
193  */
194 struct swapent50 {
195 	int32_t	se50_dev;		/* device id */
196 	int	se50_flags;		/* flags */
197 	int	se50_nblks;		/* total blocks */
198 	int	se50_inuse;		/* blocks in use */
199 	int	se50_priority;		/* priority of this device */
200 	char	se50_path[PATH_MAX+1];	/* path name */
201 };
202 
203 /*
204  * We keep a of pool vndbuf's and vndxfer structures.
205  */
206 static struct pool vndxfer_pool, vndbuf_pool;
207 
208 /*
209  * local variables
210  */
211 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
212 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
213 
214 /* list of all active swap devices [by priority] */
215 LIST_HEAD(swap_priority, swappri);
216 static struct swap_priority swap_priority;
217 
218 /* locks */
219 static krwlock_t swap_syscall_lock;
220 
221 /* workqueue and use counter for swap to regular files */
222 static int sw_reg_count = 0;
223 static struct workqueue *sw_reg_workqueue;
224 
225 /* tuneables */
226 u_int uvm_swapisfull_factor = 99;
227 
228 /*
229  * prototypes
230  */
231 static struct swapdev	*swapdrum_getsdp(int);
232 
233 static struct swapdev	*swaplist_find(struct vnode *, bool);
234 static void		 swaplist_insert(struct swapdev *,
235 					 struct swappri *, int);
236 static void		 swaplist_trim(void);
237 
238 static int swap_on(struct lwp *, struct swapdev *);
239 static int swap_off(struct lwp *, struct swapdev *);
240 
241 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
242 
243 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
244 static void sw_reg_biodone(struct buf *);
245 static void sw_reg_iodone(struct work *wk, void *dummy);
246 static void sw_reg_start(struct swapdev *);
247 
248 static int uvm_swap_io(struct vm_page **, int, int, int);
249 
250 /*
251  * uvm_swap_init: init the swap system data structures and locks
252  *
253  * => called at boot time from init_main.c after the filesystems
254  *	are brought up (which happens after uvm_init())
255  */
256 void
257 uvm_swap_init(void)
258 {
259 	UVMHIST_FUNC("uvm_swap_init");
260 
261 	UVMHIST_CALLED(pdhist);
262 	/*
263 	 * first, init the swap list, its counter, and its lock.
264 	 * then get a handle on the vnode for /dev/drum by using
265 	 * the its dev_t number ("swapdev", from MD conf.c).
266 	 */
267 
268 	LIST_INIT(&swap_priority);
269 	uvmexp.nswapdev = 0;
270 	rw_init(&swap_syscall_lock);
271 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
272 
273 	if (bdevvp(swapdev, &swapdev_vp))
274 		panic("%s: can't get vnode for swap device", __func__);
275 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
276 		panic("%s: can't lock swap device", __func__);
277 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
278 		panic("%s: can't open swap device", __func__);
279 	VOP_UNLOCK(swapdev_vp);
280 
281 	/*
282 	 * create swap block resource map to map /dev/drum.   the range
283 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
284 	 * that block 0 is reserved (used to indicate an allocation
285 	 * failure, or no allocation).
286 	 */
287 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
288 	    VM_NOSLEEP, IPL_NONE);
289 	if (swapmap == 0) {
290 		panic("%s: vmem_create failed", __func__);
291 	}
292 
293 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
294 	    NULL, IPL_BIO);
295 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
296 	    NULL, IPL_BIO);
297 
298 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
299 }
300 
301 /*
302  * swaplist functions: functions that operate on the list of swap
303  * devices on the system.
304  */
305 
306 /*
307  * swaplist_insert: insert swap device "sdp" into the global list
308  *
309  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
310  * => caller must provide a newly malloc'd swappri structure (we will
311  *	FREE it if we don't need it... this it to prevent malloc blocking
312  *	here while adding swap)
313  */
314 static void
315 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
316 {
317 	struct swappri *spp, *pspp;
318 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
319 
320 	/*
321 	 * find entry at or after which to insert the new device.
322 	 */
323 	pspp = NULL;
324 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
325 		if (priority <= spp->spi_priority)
326 			break;
327 		pspp = spp;
328 	}
329 
330 	/*
331 	 * new priority?
332 	 */
333 	if (spp == NULL || spp->spi_priority != priority) {
334 		spp = newspp;  /* use newspp! */
335 		UVMHIST_LOG(pdhist, "created new swappri = %d",
336 			    priority, 0, 0, 0);
337 
338 		spp->spi_priority = priority;
339 		CIRCLEQ_INIT(&spp->spi_swapdev);
340 
341 		if (pspp)
342 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
343 		else
344 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
345 	} else {
346 	  	/* we don't need a new priority structure, free it */
347 		free(newspp, M_VMSWAP);
348 	}
349 
350 	/*
351 	 * priority found (or created).   now insert on the priority's
352 	 * circleq list and bump the total number of swapdevs.
353 	 */
354 	sdp->swd_priority = priority;
355 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
356 	uvmexp.nswapdev++;
357 }
358 
359 /*
360  * swaplist_find: find and optionally remove a swap device from the
361  *	global list.
362  *
363  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
364  * => we return the swapdev we found (and removed)
365  */
366 static struct swapdev *
367 swaplist_find(struct vnode *vp, bool remove)
368 {
369 	struct swapdev *sdp;
370 	struct swappri *spp;
371 
372 	/*
373 	 * search the lists for the requested vp
374 	 */
375 
376 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
377 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
378 			if (sdp->swd_vp == vp) {
379 				if (remove) {
380 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
381 					    sdp, swd_next);
382 					uvmexp.nswapdev--;
383 				}
384 				return(sdp);
385 			}
386 		}
387 	}
388 	return (NULL);
389 }
390 
391 /*
392  * swaplist_trim: scan priority list for empty priority entries and kill
393  *	them.
394  *
395  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
396  */
397 static void
398 swaplist_trim(void)
399 {
400 	struct swappri *spp, *nextspp;
401 
402 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
403 		nextspp = LIST_NEXT(spp, spi_swappri);
404 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
405 		    (void *)&spp->spi_swapdev)
406 			continue;
407 		LIST_REMOVE(spp, spi_swappri);
408 		free(spp, M_VMSWAP);
409 	}
410 }
411 
412 /*
413  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
414  *	to the "swapdev" that maps that section of the drum.
415  *
416  * => each swapdev takes one big contig chunk of the drum
417  * => caller must hold uvm_swap_data_lock
418  */
419 static struct swapdev *
420 swapdrum_getsdp(int pgno)
421 {
422 	struct swapdev *sdp;
423 	struct swappri *spp;
424 
425 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
426 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
427 			if (sdp->swd_flags & SWF_FAKE)
428 				continue;
429 			if (pgno >= sdp->swd_drumoffset &&
430 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
431 				return sdp;
432 			}
433 		}
434 	}
435 	return NULL;
436 }
437 
438 
439 /*
440  * sys_swapctl: main entry point for swapctl(2) system call
441  * 	[with two helper functions: swap_on and swap_off]
442  */
443 int
444 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
445 {
446 	/* {
447 		syscallarg(int) cmd;
448 		syscallarg(void *) arg;
449 		syscallarg(int) misc;
450 	} */
451 	struct vnode *vp;
452 	struct nameidata nd;
453 	struct swappri *spp;
454 	struct swapdev *sdp;
455 	struct swapent *sep;
456 #define SWAP_PATH_MAX (PATH_MAX + 1)
457 	char	*userpath;
458 	size_t	len;
459 	int	error, misc;
460 	int	priority;
461 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
462 
463 	misc = SCARG(uap, misc);
464 
465 	/*
466 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
467 	 */
468 	rw_enter(&swap_syscall_lock, RW_WRITER);
469 
470 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
471 	/*
472 	 * we handle the non-priv NSWAP and STATS request first.
473 	 *
474 	 * SWAP_NSWAP: return number of config'd swap devices
475 	 * [can also be obtained with uvmexp sysctl]
476 	 */
477 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
478 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
479 		    0, 0, 0);
480 		*retval = uvmexp.nswapdev;
481 		error = 0;
482 		goto out;
483 	}
484 
485 	/*
486 	 * SWAP_STATS: get stats on current # of configured swap devs
487 	 *
488 	 * note that the swap_priority list can't change as long
489 	 * as we are holding the swap_syscall_lock.  we don't want
490 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
491 	 * copyout() and we don't want to be holding that lock then!
492 	 */
493 	if (SCARG(uap, cmd) == SWAP_STATS
494 #if defined(COMPAT_50)
495 	    || SCARG(uap, cmd) == SWAP_STATS50
496 #endif
497 #if defined(COMPAT_13)
498 	    || SCARG(uap, cmd) == SWAP_STATS13
499 #endif
500 	    ) {
501 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
502 			misc = uvmexp.nswapdev;
503 #if defined(COMPAT_13)
504 		if (SCARG(uap, cmd) == SWAP_STATS13)
505 			len = sizeof(struct swapent13) * misc;
506 		else
507 #endif
508 #if defined(COMPAT_50)
509 		if (SCARG(uap, cmd) == SWAP_STATS50)
510 			len = sizeof(struct swapent50) * misc;
511 		else
512 #endif
513 			len = sizeof(struct swapent) * misc;
514 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
515 
516 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
517 		error = copyout(sep, SCARG(uap, arg), len);
518 
519 		free(sep, M_TEMP);
520 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
521 		goto out;
522 	}
523 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
524 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
525 
526 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
527 		goto out;
528 	}
529 
530 	/*
531 	 * all other requests require superuser privs.   verify.
532 	 */
533 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
534 	    0, NULL, NULL, NULL)))
535 		goto out;
536 
537 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
538 		/* drop the current dump device */
539 		dumpdev = NODEV;
540 		dumpcdev = NODEV;
541 		cpu_dumpconf();
542 		goto out;
543 	}
544 
545 	/*
546 	 * at this point we expect a path name in arg.   we will
547 	 * use namei() to gain a vnode reference (vref), and lock
548 	 * the vnode (VOP_LOCK).
549 	 *
550 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
551 	 * miniroot)
552 	 */
553 	if (SCARG(uap, arg) == NULL) {
554 		vp = rootvp;		/* miniroot */
555 		vref(vp);
556 		if (vn_lock(vp, LK_EXCLUSIVE)) {
557 			vrele(vp);
558 			error = EBUSY;
559 			goto out;
560 		}
561 		if (SCARG(uap, cmd) == SWAP_ON &&
562 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
563 			panic("swapctl: miniroot copy failed");
564 	} else {
565 		struct pathbuf *pb;
566 
567 		/*
568 		 * This used to allow copying in one extra byte
569 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
570 		 * This was completely pointless because if anyone
571 		 * used that extra byte namei would fail with
572 		 * ENAMETOOLONG anyway, so I've removed the excess
573 		 * logic. - dholland 20100215
574 		 */
575 
576 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
577 		if (error) {
578 			goto out;
579 		}
580 		if (SCARG(uap, cmd) == SWAP_ON) {
581 			/* get a copy of the string */
582 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
583 			len = strlen(userpath) + 1;
584 		}
585 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
586 		if ((error = namei(&nd))) {
587 			pathbuf_destroy(pb);
588 			goto out;
589 		}
590 		vp = nd.ni_vp;
591 		pathbuf_destroy(pb);
592 	}
593 	/* note: "vp" is referenced and locked */
594 
595 	error = 0;		/* assume no error */
596 	switch(SCARG(uap, cmd)) {
597 
598 	case SWAP_DUMPDEV:
599 		if (vp->v_type != VBLK) {
600 			error = ENOTBLK;
601 			break;
602 		}
603 		if (bdevsw_lookup(vp->v_rdev)) {
604 			dumpdev = vp->v_rdev;
605 			dumpcdev = devsw_blk2chr(dumpdev);
606 		} else
607 			dumpdev = NODEV;
608 		cpu_dumpconf();
609 		break;
610 
611 	case SWAP_CTL:
612 		/*
613 		 * get new priority, remove old entry (if any) and then
614 		 * reinsert it in the correct place.  finally, prune out
615 		 * any empty priority structures.
616 		 */
617 		priority = SCARG(uap, misc);
618 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
619 		mutex_enter(&uvm_swap_data_lock);
620 		if ((sdp = swaplist_find(vp, true)) == NULL) {
621 			error = ENOENT;
622 		} else {
623 			swaplist_insert(sdp, spp, priority);
624 			swaplist_trim();
625 		}
626 		mutex_exit(&uvm_swap_data_lock);
627 		if (error)
628 			free(spp, M_VMSWAP);
629 		break;
630 
631 	case SWAP_ON:
632 
633 		/*
634 		 * check for duplicates.   if none found, then insert a
635 		 * dummy entry on the list to prevent someone else from
636 		 * trying to enable this device while we are working on
637 		 * it.
638 		 */
639 
640 		priority = SCARG(uap, misc);
641 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
642 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
643 		memset(sdp, 0, sizeof(*sdp));
644 		sdp->swd_flags = SWF_FAKE;
645 		sdp->swd_vp = vp;
646 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
647 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
648 		mutex_enter(&uvm_swap_data_lock);
649 		if (swaplist_find(vp, false) != NULL) {
650 			error = EBUSY;
651 			mutex_exit(&uvm_swap_data_lock);
652 			bufq_free(sdp->swd_tab);
653 			free(sdp, M_VMSWAP);
654 			free(spp, M_VMSWAP);
655 			break;
656 		}
657 		swaplist_insert(sdp, spp, priority);
658 		mutex_exit(&uvm_swap_data_lock);
659 
660 		sdp->swd_pathlen = len;
661 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
662 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
663 			panic("swapctl: copystr");
664 
665 		/*
666 		 * we've now got a FAKE placeholder in the swap list.
667 		 * now attempt to enable swap on it.  if we fail, undo
668 		 * what we've done and kill the fake entry we just inserted.
669 		 * if swap_on is a success, it will clear the SWF_FAKE flag
670 		 */
671 
672 		if ((error = swap_on(l, sdp)) != 0) {
673 			mutex_enter(&uvm_swap_data_lock);
674 			(void) swaplist_find(vp, true);  /* kill fake entry */
675 			swaplist_trim();
676 			mutex_exit(&uvm_swap_data_lock);
677 			bufq_free(sdp->swd_tab);
678 			free(sdp->swd_path, M_VMSWAP);
679 			free(sdp, M_VMSWAP);
680 			break;
681 		}
682 		break;
683 
684 	case SWAP_OFF:
685 		mutex_enter(&uvm_swap_data_lock);
686 		if ((sdp = swaplist_find(vp, false)) == NULL) {
687 			mutex_exit(&uvm_swap_data_lock);
688 			error = ENXIO;
689 			break;
690 		}
691 
692 		/*
693 		 * If a device isn't in use or enabled, we
694 		 * can't stop swapping from it (again).
695 		 */
696 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
697 			mutex_exit(&uvm_swap_data_lock);
698 			error = EBUSY;
699 			break;
700 		}
701 
702 		/*
703 		 * do the real work.
704 		 */
705 		error = swap_off(l, sdp);
706 		break;
707 
708 	default:
709 		error = EINVAL;
710 	}
711 
712 	/*
713 	 * done!  release the ref gained by namei() and unlock.
714 	 */
715 	vput(vp);
716 
717 out:
718 	free(userpath, M_TEMP);
719 	rw_exit(&swap_syscall_lock);
720 
721 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
722 	return (error);
723 }
724 
725 /*
726  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
727  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
728  * emulation to use it directly without going through sys_swapctl().
729  * The problem with using sys_swapctl() there is that it involves
730  * copying the swapent array to the stackgap, and this array's size
731  * is not known at build time. Hence it would not be possible to
732  * ensure it would fit in the stackgap in any case.
733  */
734 void
735 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
736 {
737 
738 	rw_enter(&swap_syscall_lock, RW_READER);
739 	uvm_swap_stats_locked(cmd, sep, sec, retval);
740 	rw_exit(&swap_syscall_lock);
741 }
742 
743 static void
744 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
745 {
746 	struct swappri *spp;
747 	struct swapdev *sdp;
748 	int count = 0;
749 
750 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
751 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
752 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
753 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
754 			int inuse;
755 
756 		  	/*
757 			 * backwards compatibility for system call.
758 			 * For NetBSD 1.3 and 5.0, we have to use
759 			 * the 32 bit dev_t.  For 5.0 and -current
760 			 * we have to add the path.
761 			 */
762 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
763 			    PAGE_SHIFT);
764 
765 #if defined(COMPAT_13) || defined(COMPAT_50)
766 			if (cmd == SWAP_STATS) {
767 #endif
768 				sep->se_dev = sdp->swd_dev;
769 				sep->se_flags = sdp->swd_flags;
770 				sep->se_nblks = sdp->swd_nblks;
771 				sep->se_inuse = inuse;
772 				sep->se_priority = sdp->swd_priority;
773 				memcpy(&sep->se_path, sdp->swd_path,
774 				       sizeof sep->se_path);
775 				sep++;
776 #if defined(COMPAT_13)
777 			} else if (cmd == SWAP_STATS13) {
778 				struct swapent13 *sep13 =
779 				    (struct swapent13 *)sep;
780 
781 				sep13->se13_dev = sdp->swd_dev;
782 				sep13->se13_flags = sdp->swd_flags;
783 				sep13->se13_nblks = sdp->swd_nblks;
784 				sep13->se13_inuse = inuse;
785 				sep13->se13_priority = sdp->swd_priority;
786 				sep = (struct swapent *)(sep13 + 1);
787 #endif
788 #if defined(COMPAT_50)
789 			} else if (cmd == SWAP_STATS50) {
790 				struct swapent50 *sep50 =
791 				    (struct swapent50 *)sep;
792 
793 				sep50->se50_dev = sdp->swd_dev;
794 				sep50->se50_flags = sdp->swd_flags;
795 				sep50->se50_nblks = sdp->swd_nblks;
796 				sep50->se50_inuse = inuse;
797 				sep50->se50_priority = sdp->swd_priority;
798 				memcpy(&sep50->se50_path, sdp->swd_path,
799 				       sizeof sep50->se50_path);
800 				sep = (struct swapent *)(sep50 + 1);
801 #endif
802 #if defined(COMPAT_13) || defined(COMPAT_50)
803 			}
804 #endif
805 			count++;
806 		}
807 	}
808 
809 	*retval = count;
810 	return;
811 }
812 
813 /*
814  * swap_on: attempt to enable a swapdev for swapping.   note that the
815  *	swapdev is already on the global list, but disabled (marked
816  *	SWF_FAKE).
817  *
818  * => we avoid the start of the disk (to protect disk labels)
819  * => we also avoid the miniroot, if we are swapping to root.
820  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
821  *	if needed.
822  */
823 static int
824 swap_on(struct lwp *l, struct swapdev *sdp)
825 {
826 	struct vnode *vp;
827 	int error, npages, nblocks, size;
828 	long addr;
829 	u_long result;
830 	struct vattr va;
831 	const struct bdevsw *bdev;
832 	dev_t dev;
833 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
834 
835 	/*
836 	 * we want to enable swapping on sdp.   the swd_vp contains
837 	 * the vnode we want (locked and ref'd), and the swd_dev
838 	 * contains the dev_t of the file, if it a block device.
839 	 */
840 
841 	vp = sdp->swd_vp;
842 	dev = sdp->swd_dev;
843 
844 	/*
845 	 * open the swap file (mostly useful for block device files to
846 	 * let device driver know what is up).
847 	 *
848 	 * we skip the open/close for root on swap because the root
849 	 * has already been opened when root was mounted (mountroot).
850 	 */
851 	if (vp != rootvp) {
852 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
853 			return (error);
854 	}
855 
856 	/* XXX this only works for block devices */
857 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
858 
859 	/*
860 	 * we now need to determine the size of the swap area.   for
861 	 * block specials we can call the d_psize function.
862 	 * for normal files, we must stat [get attrs].
863 	 *
864 	 * we put the result in nblks.
865 	 * for normal files, we also want the filesystem block size
866 	 * (which we get with statfs).
867 	 */
868 	switch (vp->v_type) {
869 	case VBLK:
870 		bdev = bdevsw_lookup(dev);
871 		if (bdev == NULL || bdev->d_psize == NULL ||
872 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
873 			error = ENXIO;
874 			goto bad;
875 		}
876 		break;
877 
878 	case VREG:
879 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
880 			goto bad;
881 		nblocks = (int)btodb(va.va_size);
882 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
883 		/*
884 		 * limit the max # of outstanding I/O requests we issue
885 		 * at any one time.   take it easy on NFS servers.
886 		 */
887 		if (vp->v_tag == VT_NFS)
888 			sdp->swd_maxactive = 2; /* XXX */
889 		else
890 			sdp->swd_maxactive = 8; /* XXX */
891 		break;
892 
893 	default:
894 		error = ENXIO;
895 		goto bad;
896 	}
897 
898 	/*
899 	 * save nblocks in a safe place and convert to pages.
900 	 */
901 
902 	sdp->swd_nblks = nblocks;
903 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
904 
905 	/*
906 	 * for block special files, we want to make sure that leave
907 	 * the disklabel and bootblocks alone, so we arrange to skip
908 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
909 	 * note that because of this the "size" can be less than the
910 	 * actual number of blocks on the device.
911 	 */
912 	if (vp->v_type == VBLK) {
913 		/* we use pages 1 to (size - 1) [inclusive] */
914 		size = npages - 1;
915 		addr = 1;
916 	} else {
917 		/* we use pages 0 to (size - 1) [inclusive] */
918 		size = npages;
919 		addr = 0;
920 	}
921 
922 	/*
923 	 * make sure we have enough blocks for a reasonable sized swap
924 	 * area.   we want at least one page.
925 	 */
926 
927 	if (size < 1) {
928 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
929 		error = EINVAL;
930 		goto bad;
931 	}
932 
933 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
934 
935 	/*
936 	 * now we need to allocate an extent to manage this swap device
937 	 */
938 
939 	sdp->swd_blist = blist_create(npages);
940 	/* mark all expect the `saved' region free. */
941 	blist_free(sdp->swd_blist, addr, size);
942 
943 	/*
944 	 * if the vnode we are swapping to is the root vnode
945 	 * (i.e. we are swapping to the miniroot) then we want
946 	 * to make sure we don't overwrite it.   do a statfs to
947 	 * find its size and skip over it.
948 	 */
949 	if (vp == rootvp) {
950 		struct mount *mp;
951 		struct statvfs *sp;
952 		int rootblocks, rootpages;
953 
954 		mp = rootvnode->v_mount;
955 		sp = &mp->mnt_stat;
956 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
957 		/*
958 		 * XXX: sp->f_blocks isn't the total number of
959 		 * blocks in the filesystem, it's the number of
960 		 * data blocks.  so, our rootblocks almost
961 		 * definitely underestimates the total size
962 		 * of the filesystem - how badly depends on the
963 		 * details of the filesystem type.  there isn't
964 		 * an obvious way to deal with this cleanly
965 		 * and perfectly, so for now we just pad our
966 		 * rootblocks estimate with an extra 5 percent.
967 		 */
968 		rootblocks += (rootblocks >> 5) +
969 			(rootblocks >> 6) +
970 			(rootblocks >> 7);
971 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
972 		if (rootpages > size)
973 			panic("swap_on: miniroot larger than swap?");
974 
975 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
976 			panic("swap_on: unable to preserve miniroot");
977 		}
978 
979 		size -= rootpages;
980 		printf("Preserved %d pages of miniroot ", rootpages);
981 		printf("leaving %d pages of swap\n", size);
982 	}
983 
984 	/*
985 	 * add a ref to vp to reflect usage as a swap device.
986 	 */
987 	vref(vp);
988 
989 	/*
990 	 * now add the new swapdev to the drum and enable.
991 	 */
992 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
993 	if (result == 0)
994 		panic("swapdrum_add");
995 	/*
996 	 * If this is the first regular swap create the workqueue.
997 	 * => Protected by swap_syscall_lock.
998 	 */
999 	if (vp->v_type != VBLK) {
1000 		if (sw_reg_count++ == 0) {
1001 			KASSERT(sw_reg_workqueue == NULL);
1002 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
1003 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1004 				panic("%s: workqueue_create failed", __func__);
1005 		}
1006 	}
1007 
1008 	sdp->swd_drumoffset = (int)result;
1009 	sdp->swd_drumsize = npages;
1010 	sdp->swd_npages = size;
1011 	mutex_enter(&uvm_swap_data_lock);
1012 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
1013 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1014 	uvmexp.swpages += size;
1015 	uvmexp.swpgavail += size;
1016 	mutex_exit(&uvm_swap_data_lock);
1017 	return (0);
1018 
1019 	/*
1020 	 * failure: clean up and return error.
1021 	 */
1022 
1023 bad:
1024 	if (sdp->swd_blist) {
1025 		blist_destroy(sdp->swd_blist);
1026 	}
1027 	if (vp != rootvp) {
1028 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1029 	}
1030 	return (error);
1031 }
1032 
1033 /*
1034  * swap_off: stop swapping on swapdev
1035  *
1036  * => swap data should be locked, we will unlock.
1037  */
1038 static int
1039 swap_off(struct lwp *l, struct swapdev *sdp)
1040 {
1041 	int npages = sdp->swd_npages;
1042 	int error = 0;
1043 
1044 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1045 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1046 
1047 	/* disable the swap area being removed */
1048 	sdp->swd_flags &= ~SWF_ENABLE;
1049 	uvmexp.swpgavail -= npages;
1050 	mutex_exit(&uvm_swap_data_lock);
1051 
1052 	/*
1053 	 * the idea is to find all the pages that are paged out to this
1054 	 * device, and page them all in.  in uvm, swap-backed pageable
1055 	 * memory can take two forms: aobjs and anons.  call the
1056 	 * swapoff hook for each subsystem to bring in pages.
1057 	 */
1058 
1059 	if (uao_swap_off(sdp->swd_drumoffset,
1060 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1061 	    amap_swap_off(sdp->swd_drumoffset,
1062 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1063 		error = ENOMEM;
1064 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1065 		error = EBUSY;
1066 	}
1067 
1068 	if (error) {
1069 		mutex_enter(&uvm_swap_data_lock);
1070 		sdp->swd_flags |= SWF_ENABLE;
1071 		uvmexp.swpgavail += npages;
1072 		mutex_exit(&uvm_swap_data_lock);
1073 
1074 		return error;
1075 	}
1076 
1077 	/*
1078 	 * If this is the last regular swap destroy the workqueue.
1079 	 * => Protected by swap_syscall_lock.
1080 	 */
1081 	if (sdp->swd_vp->v_type != VBLK) {
1082 		KASSERT(sw_reg_count > 0);
1083 		KASSERT(sw_reg_workqueue != NULL);
1084 		if (--sw_reg_count == 0) {
1085 			workqueue_destroy(sw_reg_workqueue);
1086 			sw_reg_workqueue = NULL;
1087 		}
1088 	}
1089 
1090 	/*
1091 	 * done with the vnode.
1092 	 * drop our ref on the vnode before calling VOP_CLOSE()
1093 	 * so that spec_close() can tell if this is the last close.
1094 	 */
1095 	vrele(sdp->swd_vp);
1096 	if (sdp->swd_vp != rootvp) {
1097 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1098 	}
1099 
1100 	mutex_enter(&uvm_swap_data_lock);
1101 	uvmexp.swpages -= npages;
1102 	uvmexp.swpginuse -= sdp->swd_npgbad;
1103 
1104 	if (swaplist_find(sdp->swd_vp, true) == NULL)
1105 		panic("%s: swapdev not in list", __func__);
1106 	swaplist_trim();
1107 	mutex_exit(&uvm_swap_data_lock);
1108 
1109 	/*
1110 	 * free all resources!
1111 	 */
1112 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1113 	blist_destroy(sdp->swd_blist);
1114 	bufq_free(sdp->swd_tab);
1115 	free(sdp, M_VMSWAP);
1116 	return (0);
1117 }
1118 
1119 /*
1120  * /dev/drum interface and i/o functions
1121  */
1122 
1123 /*
1124  * swstrategy: perform I/O on the drum
1125  *
1126  * => we must map the i/o request from the drum to the correct swapdev.
1127  */
1128 static void
1129 swstrategy(struct buf *bp)
1130 {
1131 	struct swapdev *sdp;
1132 	struct vnode *vp;
1133 	int pageno, bn;
1134 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1135 
1136 	/*
1137 	 * convert block number to swapdev.   note that swapdev can't
1138 	 * be yanked out from under us because we are holding resources
1139 	 * in it (i.e. the blocks we are doing I/O on).
1140 	 */
1141 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1142 	mutex_enter(&uvm_swap_data_lock);
1143 	sdp = swapdrum_getsdp(pageno);
1144 	mutex_exit(&uvm_swap_data_lock);
1145 	if (sdp == NULL) {
1146 		bp->b_error = EINVAL;
1147 		biodone(bp);
1148 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1149 		return;
1150 	}
1151 
1152 	/*
1153 	 * convert drum page number to block number on this swapdev.
1154 	 */
1155 
1156 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1157 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1158 
1159 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
1160 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
1161 		sdp->swd_drumoffset, bn, bp->b_bcount);
1162 
1163 	/*
1164 	 * for block devices we finish up here.
1165 	 * for regular files we have to do more work which we delegate
1166 	 * to sw_reg_strategy().
1167 	 */
1168 
1169 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
1170 	switch (vp->v_type) {
1171 	default:
1172 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
1173 
1174 	case VBLK:
1175 
1176 		/*
1177 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1178 		 * on the swapdev (sdp).
1179 		 */
1180 		bp->b_blkno = bn;		/* swapdev block number */
1181 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1182 
1183 		/*
1184 		 * if we are doing a write, we have to redirect the i/o on
1185 		 * drum's v_numoutput counter to the swapdevs.
1186 		 */
1187 		if ((bp->b_flags & B_READ) == 0) {
1188 			mutex_enter(bp->b_objlock);
1189 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1190 			mutex_exit(bp->b_objlock);
1191 			mutex_enter(&vp->v_interlock);
1192 			vp->v_numoutput++;	/* put it on swapdev */
1193 			mutex_exit(&vp->v_interlock);
1194 		}
1195 
1196 		/*
1197 		 * finally plug in swapdev vnode and start I/O
1198 		 */
1199 		bp->b_vp = vp;
1200 		bp->b_objlock = &vp->v_interlock;
1201 		VOP_STRATEGY(vp, bp);
1202 		return;
1203 
1204 	case VREG:
1205 		/*
1206 		 * delegate to sw_reg_strategy function.
1207 		 */
1208 		sw_reg_strategy(sdp, bp, bn);
1209 		return;
1210 	}
1211 	/* NOTREACHED */
1212 }
1213 
1214 /*
1215  * swread: the read function for the drum (just a call to physio)
1216  */
1217 /*ARGSUSED*/
1218 static int
1219 swread(dev_t dev, struct uio *uio, int ioflag)
1220 {
1221 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1222 
1223 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1224 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1225 }
1226 
1227 /*
1228  * swwrite: the write function for the drum (just a call to physio)
1229  */
1230 /*ARGSUSED*/
1231 static int
1232 swwrite(dev_t dev, struct uio *uio, int ioflag)
1233 {
1234 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1235 
1236 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1237 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1238 }
1239 
1240 const struct bdevsw swap_bdevsw = {
1241 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1242 };
1243 
1244 const struct cdevsw swap_cdevsw = {
1245 	nullopen, nullclose, swread, swwrite, noioctl,
1246 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1247 };
1248 
1249 /*
1250  * sw_reg_strategy: handle swap i/o to regular files
1251  */
1252 static void
1253 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1254 {
1255 	struct vnode	*vp;
1256 	struct vndxfer	*vnx;
1257 	daddr_t		nbn;
1258 	char 		*addr;
1259 	off_t		byteoff;
1260 	int		s, off, nra, error, sz, resid;
1261 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1262 
1263 	/*
1264 	 * allocate a vndxfer head for this transfer and point it to
1265 	 * our buffer.
1266 	 */
1267 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1268 	vnx->vx_flags = VX_BUSY;
1269 	vnx->vx_error = 0;
1270 	vnx->vx_pending = 0;
1271 	vnx->vx_bp = bp;
1272 	vnx->vx_sdp = sdp;
1273 
1274 	/*
1275 	 * setup for main loop where we read filesystem blocks into
1276 	 * our buffer.
1277 	 */
1278 	error = 0;
1279 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1280 	addr = bp->b_data;		/* current position in buffer */
1281 	byteoff = dbtob((uint64_t)bn);
1282 
1283 	for (resid = bp->b_resid; resid; resid -= sz) {
1284 		struct vndbuf	*nbp;
1285 
1286 		/*
1287 		 * translate byteoffset into block number.  return values:
1288 		 *   vp = vnode of underlying device
1289 		 *  nbn = new block number (on underlying vnode dev)
1290 		 *  nra = num blocks we can read-ahead (excludes requested
1291 		 *	block)
1292 		 */
1293 		nra = 0;
1294 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1295 				 	&vp, &nbn, &nra);
1296 
1297 		if (error == 0 && nbn == (daddr_t)-1) {
1298 			/*
1299 			 * this used to just set error, but that doesn't
1300 			 * do the right thing.  Instead, it causes random
1301 			 * memory errors.  The panic() should remain until
1302 			 * this condition doesn't destabilize the system.
1303 			 */
1304 #if 1
1305 			panic("%s: swap to sparse file", __func__);
1306 #else
1307 			error = EIO;	/* failure */
1308 #endif
1309 		}
1310 
1311 		/*
1312 		 * punt if there was an error or a hole in the file.
1313 		 * we must wait for any i/o ops we have already started
1314 		 * to finish before returning.
1315 		 *
1316 		 * XXX we could deal with holes here but it would be
1317 		 * a hassle (in the write case).
1318 		 */
1319 		if (error) {
1320 			s = splbio();
1321 			vnx->vx_error = error;	/* pass error up */
1322 			goto out;
1323 		}
1324 
1325 		/*
1326 		 * compute the size ("sz") of this transfer (in bytes).
1327 		 */
1328 		off = byteoff % sdp->swd_bsize;
1329 		sz = (1 + nra) * sdp->swd_bsize - off;
1330 		if (sz > resid)
1331 			sz = resid;
1332 
1333 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1334 			    "vp %p/%p offset 0x%x/0x%x",
1335 			    sdp->swd_vp, vp, byteoff, nbn);
1336 
1337 		/*
1338 		 * now get a buf structure.   note that the vb_buf is
1339 		 * at the front of the nbp structure so that you can
1340 		 * cast pointers between the two structure easily.
1341 		 */
1342 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1343 		buf_init(&nbp->vb_buf);
1344 		nbp->vb_buf.b_flags    = bp->b_flags;
1345 		nbp->vb_buf.b_cflags   = bp->b_cflags;
1346 		nbp->vb_buf.b_oflags   = bp->b_oflags;
1347 		nbp->vb_buf.b_bcount   = sz;
1348 		nbp->vb_buf.b_bufsize  = sz;
1349 		nbp->vb_buf.b_error    = 0;
1350 		nbp->vb_buf.b_data     = addr;
1351 		nbp->vb_buf.b_lblkno   = 0;
1352 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1353 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1354 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
1355 		nbp->vb_buf.b_vp       = vp;
1356 		nbp->vb_buf.b_objlock  = &vp->v_interlock;
1357 		if (vp->v_type == VBLK) {
1358 			nbp->vb_buf.b_dev = vp->v_rdev;
1359 		}
1360 
1361 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1362 
1363 		/*
1364 		 * Just sort by block number
1365 		 */
1366 		s = splbio();
1367 		if (vnx->vx_error != 0) {
1368 			buf_destroy(&nbp->vb_buf);
1369 			pool_put(&vndbuf_pool, nbp);
1370 			goto out;
1371 		}
1372 		vnx->vx_pending++;
1373 
1374 		/* sort it in and start I/O if we are not over our limit */
1375 		/* XXXAD locking */
1376 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
1377 		sw_reg_start(sdp);
1378 		splx(s);
1379 
1380 		/*
1381 		 * advance to the next I/O
1382 		 */
1383 		byteoff += sz;
1384 		addr += sz;
1385 	}
1386 
1387 	s = splbio();
1388 
1389 out: /* Arrive here at splbio */
1390 	vnx->vx_flags &= ~VX_BUSY;
1391 	if (vnx->vx_pending == 0) {
1392 		error = vnx->vx_error;
1393 		pool_put(&vndxfer_pool, vnx);
1394 		bp->b_error = error;
1395 		biodone(bp);
1396 	}
1397 	splx(s);
1398 }
1399 
1400 /*
1401  * sw_reg_start: start an I/O request on the requested swapdev
1402  *
1403  * => reqs are sorted by b_rawblkno (above)
1404  */
1405 static void
1406 sw_reg_start(struct swapdev *sdp)
1407 {
1408 	struct buf	*bp;
1409 	struct vnode	*vp;
1410 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1411 
1412 	/* recursion control */
1413 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1414 		return;
1415 
1416 	sdp->swd_flags |= SWF_BUSY;
1417 
1418 	while (sdp->swd_active < sdp->swd_maxactive) {
1419 		bp = bufq_get(sdp->swd_tab);
1420 		if (bp == NULL)
1421 			break;
1422 		sdp->swd_active++;
1423 
1424 		UVMHIST_LOG(pdhist,
1425 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
1426 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1427 		vp = bp->b_vp;
1428 		KASSERT(bp->b_objlock == &vp->v_interlock);
1429 		if ((bp->b_flags & B_READ) == 0) {
1430 			mutex_enter(&vp->v_interlock);
1431 			vp->v_numoutput++;
1432 			mutex_exit(&vp->v_interlock);
1433 		}
1434 		VOP_STRATEGY(vp, bp);
1435 	}
1436 	sdp->swd_flags &= ~SWF_BUSY;
1437 }
1438 
1439 /*
1440  * sw_reg_biodone: one of our i/o's has completed
1441  */
1442 static void
1443 sw_reg_biodone(struct buf *bp)
1444 {
1445 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1446 }
1447 
1448 /*
1449  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1450  *
1451  * => note that we can recover the vndbuf struct by casting the buf ptr
1452  */
1453 static void
1454 sw_reg_iodone(struct work *wk, void *dummy)
1455 {
1456 	struct vndbuf *vbp = (void *)wk;
1457 	struct vndxfer *vnx = vbp->vb_xfer;
1458 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1459 	struct swapdev	*sdp = vnx->vx_sdp;
1460 	int s, resid, error;
1461 	KASSERT(&vbp->vb_buf.b_work == wk);
1462 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1463 
1464 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
1465 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1466 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
1467 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1468 
1469 	/*
1470 	 * protect vbp at splbio and update.
1471 	 */
1472 
1473 	s = splbio();
1474 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1475 	pbp->b_resid -= resid;
1476 	vnx->vx_pending--;
1477 
1478 	if (vbp->vb_buf.b_error != 0) {
1479 		/* pass error upward */
1480 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1481 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
1482 		vnx->vx_error = error;
1483 	}
1484 
1485 	/*
1486 	 * kill vbp structure
1487 	 */
1488 	buf_destroy(&vbp->vb_buf);
1489 	pool_put(&vndbuf_pool, vbp);
1490 
1491 	/*
1492 	 * wrap up this transaction if it has run to completion or, in
1493 	 * case of an error, when all auxiliary buffers have returned.
1494 	 */
1495 	if (vnx->vx_error != 0) {
1496 		/* pass error upward */
1497 		error = vnx->vx_error;
1498 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1499 			pbp->b_error = error;
1500 			biodone(pbp);
1501 			pool_put(&vndxfer_pool, vnx);
1502 		}
1503 	} else if (pbp->b_resid == 0) {
1504 		KASSERT(vnx->vx_pending == 0);
1505 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1506 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
1507 			    pbp, vnx->vx_error, 0, 0);
1508 			biodone(pbp);
1509 			pool_put(&vndxfer_pool, vnx);
1510 		}
1511 	}
1512 
1513 	/*
1514 	 * done!   start next swapdev I/O if one is pending
1515 	 */
1516 	sdp->swd_active--;
1517 	sw_reg_start(sdp);
1518 	splx(s);
1519 }
1520 
1521 
1522 /*
1523  * uvm_swap_alloc: allocate space on swap
1524  *
1525  * => allocation is done "round robin" down the priority list, as we
1526  *	allocate in a priority we "rotate" the circle queue.
1527  * => space can be freed with uvm_swap_free
1528  * => we return the page slot number in /dev/drum (0 == invalid slot)
1529  * => we lock uvm_swap_data_lock
1530  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1531  */
1532 int
1533 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1534 {
1535 	struct swapdev *sdp;
1536 	struct swappri *spp;
1537 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1538 
1539 	/*
1540 	 * no swap devices configured yet?   definite failure.
1541 	 */
1542 	if (uvmexp.nswapdev < 1)
1543 		return 0;
1544 
1545 	/*
1546 	 * lock data lock, convert slots into blocks, and enter loop
1547 	 */
1548 	mutex_enter(&uvm_swap_data_lock);
1549 
1550 ReTry:	/* XXXMRG */
1551 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1552 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1553 			uint64_t result;
1554 
1555 			/* if it's not enabled, then we can't swap from it */
1556 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1557 				continue;
1558 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1559 				continue;
1560 			result = blist_alloc(sdp->swd_blist, *nslots);
1561 			if (result == BLIST_NONE) {
1562 				continue;
1563 			}
1564 			KASSERT(result < sdp->swd_drumsize);
1565 
1566 			/*
1567 			 * successful allocation!  now rotate the circleq.
1568 			 */
1569 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1570 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1571 			sdp->swd_npginuse += *nslots;
1572 			uvmexp.swpginuse += *nslots;
1573 			mutex_exit(&uvm_swap_data_lock);
1574 			/* done!  return drum slot number */
1575 			UVMHIST_LOG(pdhist,
1576 			    "success!  returning %d slots starting at %d",
1577 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1578 			return (result + sdp->swd_drumoffset);
1579 		}
1580 	}
1581 
1582 	/* XXXMRG: BEGIN HACK */
1583 	if (*nslots > 1 && lessok) {
1584 		*nslots = 1;
1585 		/* XXXMRG: ugh!  blist should support this for us */
1586 		goto ReTry;
1587 	}
1588 	/* XXXMRG: END HACK */
1589 
1590 	mutex_exit(&uvm_swap_data_lock);
1591 	return 0;
1592 }
1593 
1594 /*
1595  * uvm_swapisfull: return true if most of available swap is allocated
1596  * and in use.  we don't count some small portion as it may be inaccessible
1597  * to us at any given moment, for example if there is lock contention or if
1598  * pages are busy.
1599  */
1600 bool
1601 uvm_swapisfull(void)
1602 {
1603 	int swpgonly;
1604 	bool rv;
1605 
1606 	mutex_enter(&uvm_swap_data_lock);
1607 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1608 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1609 	    uvm_swapisfull_factor);
1610 	rv = (swpgonly >= uvmexp.swpgavail);
1611 	mutex_exit(&uvm_swap_data_lock);
1612 
1613 	return (rv);
1614 }
1615 
1616 /*
1617  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1618  *
1619  * => we lock uvm_swap_data_lock
1620  */
1621 void
1622 uvm_swap_markbad(int startslot, int nslots)
1623 {
1624 	struct swapdev *sdp;
1625 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1626 
1627 	mutex_enter(&uvm_swap_data_lock);
1628 	sdp = swapdrum_getsdp(startslot);
1629 	KASSERT(sdp != NULL);
1630 
1631 	/*
1632 	 * we just keep track of how many pages have been marked bad
1633 	 * in this device, to make everything add up in swap_off().
1634 	 * we assume here that the range of slots will all be within
1635 	 * one swap device.
1636 	 */
1637 
1638 	KASSERT(uvmexp.swpgonly >= nslots);
1639 	uvmexp.swpgonly -= nslots;
1640 	sdp->swd_npgbad += nslots;
1641 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1642 	mutex_exit(&uvm_swap_data_lock);
1643 }
1644 
1645 /*
1646  * uvm_swap_free: free swap slots
1647  *
1648  * => this can be all or part of an allocation made by uvm_swap_alloc
1649  * => we lock uvm_swap_data_lock
1650  */
1651 void
1652 uvm_swap_free(int startslot, int nslots)
1653 {
1654 	struct swapdev *sdp;
1655 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1656 
1657 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1658 	    startslot, 0, 0);
1659 
1660 	/*
1661 	 * ignore attempts to free the "bad" slot.
1662 	 */
1663 
1664 	if (startslot == SWSLOT_BAD) {
1665 		return;
1666 	}
1667 
1668 	/*
1669 	 * convert drum slot offset back to sdp, free the blocks
1670 	 * in the extent, and return.   must hold pri lock to do
1671 	 * lookup and access the extent.
1672 	 */
1673 
1674 	mutex_enter(&uvm_swap_data_lock);
1675 	sdp = swapdrum_getsdp(startslot);
1676 	KASSERT(uvmexp.nswapdev >= 1);
1677 	KASSERT(sdp != NULL);
1678 	KASSERT(sdp->swd_npginuse >= nslots);
1679 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1680 	sdp->swd_npginuse -= nslots;
1681 	uvmexp.swpginuse -= nslots;
1682 	mutex_exit(&uvm_swap_data_lock);
1683 }
1684 
1685 /*
1686  * uvm_swap_put: put any number of pages into a contig place on swap
1687  *
1688  * => can be sync or async
1689  */
1690 
1691 int
1692 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1693 {
1694 	int error;
1695 
1696 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1697 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1698 	return error;
1699 }
1700 
1701 /*
1702  * uvm_swap_get: get a single page from swap
1703  *
1704  * => usually a sync op (from fault)
1705  */
1706 
1707 int
1708 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1709 {
1710 	int error;
1711 
1712 	uvmexp.nswget++;
1713 	KASSERT(flags & PGO_SYNCIO);
1714 	if (swslot == SWSLOT_BAD) {
1715 		return EIO;
1716 	}
1717 
1718 	error = uvm_swap_io(&page, swslot, 1, B_READ |
1719 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1720 	if (error == 0) {
1721 
1722 		/*
1723 		 * this page is no longer only in swap.
1724 		 */
1725 
1726 		mutex_enter(&uvm_swap_data_lock);
1727 		KASSERT(uvmexp.swpgonly > 0);
1728 		uvmexp.swpgonly--;
1729 		mutex_exit(&uvm_swap_data_lock);
1730 	}
1731 	return error;
1732 }
1733 
1734 /*
1735  * uvm_swap_io: do an i/o operation to swap
1736  */
1737 
1738 static int
1739 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1740 {
1741 	daddr_t startblk;
1742 	struct	buf *bp;
1743 	vaddr_t kva;
1744 	int	error, mapinflags;
1745 	bool write, async;
1746 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1747 
1748 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1749 	    startslot, npages, flags, 0);
1750 
1751 	write = (flags & B_READ) == 0;
1752 	async = (flags & B_ASYNC) != 0;
1753 
1754 	/*
1755 	 * allocate a buf for the i/o.
1756 	 */
1757 
1758 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1759 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1760 	if (bp == NULL) {
1761 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1762 		return ENOMEM;
1763 	}
1764 
1765 	/*
1766 	 * convert starting drum slot to block number
1767 	 */
1768 
1769 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1770 
1771 	/*
1772 	 * first, map the pages into the kernel.
1773 	 */
1774 
1775 	mapinflags = !write ?
1776 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1777 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1778 	kva = uvm_pagermapin(pps, npages, mapinflags);
1779 
1780 	/*
1781 	 * fill in the bp/sbp.   we currently route our i/o through
1782 	 * /dev/drum's vnode [swapdev_vp].
1783 	 */
1784 
1785 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
1786 	bp->b_flags = (flags & (B_READ|B_ASYNC));
1787 	bp->b_proc = &proc0;	/* XXX */
1788 	bp->b_vnbufs.le_next = NOLIST;
1789 	bp->b_data = (void *)kva;
1790 	bp->b_blkno = startblk;
1791 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1792 
1793 	/*
1794 	 * bump v_numoutput (counter of number of active outputs).
1795 	 */
1796 
1797 	if (write) {
1798 		mutex_enter(&swapdev_vp->v_interlock);
1799 		swapdev_vp->v_numoutput++;
1800 		mutex_exit(&swapdev_vp->v_interlock);
1801 	}
1802 
1803 	/*
1804 	 * for async ops we must set up the iodone handler.
1805 	 */
1806 
1807 	if (async) {
1808 		bp->b_iodone = uvm_aio_biodone;
1809 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1810 		if (curlwp == uvm.pagedaemon_lwp)
1811 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1812 		else
1813 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1814 	} else {
1815 		bp->b_iodone = NULL;
1816 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1817 	}
1818 	UVMHIST_LOG(pdhist,
1819 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1820 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1821 
1822 	/*
1823 	 * now we start the I/O, and if async, return.
1824 	 */
1825 
1826 	VOP_STRATEGY(swapdev_vp, bp);
1827 	if (async)
1828 		return 0;
1829 
1830 	/*
1831 	 * must be sync i/o.   wait for it to finish
1832 	 */
1833 
1834 	error = biowait(bp);
1835 
1836 	/*
1837 	 * kill the pager mapping
1838 	 */
1839 
1840 	uvm_pagermapout(kva, npages);
1841 
1842 	/*
1843 	 * now dispose of the buf and we're done.
1844 	 */
1845 
1846 	if (write) {
1847 		mutex_enter(&swapdev_vp->v_interlock);
1848 		vwakeup(bp);
1849 		mutex_exit(&swapdev_vp->v_interlock);
1850 	}
1851 	putiobuf(bp);
1852 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
1853 
1854 	return (error);
1855 }
1856