xref: /netbsd/usr.sbin/makefs/ffs/mkfs.c (revision bf9ec67e)
1 /*	$NetBSD: mkfs.c,v 1.10 2002/02/06 14:58:15 lukem Exp $	*/
2 /* From NetBSD: mkfs.c,v 1.59 2001/12/31 07:07:58 lukem Exp $	*/
3 
4 /*
5  * Copyright (c) 1980, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include <sys/cdefs.h>
38 #if defined(__RCSID) && !defined(lint)
39 #if 0
40 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
41 #else
42 __RCSID("$NetBSD: mkfs.c,v 1.10 2002/02/06 14:58:15 lukem Exp $");
43 #endif
44 #endif /* not lint */
45 
46 #include <sys/param.h>
47 #include <sys/time.h>
48 #include <sys/resource.h>
49 
50 #include <stdio.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <unistd.h>
54 
55 #include "makefs.h"
56 
57 #include <ufs/ufs/dinode.h>
58 #include <ufs/ufs/ufs_bswap.h>
59 #include <ufs/ffs/fs.h>
60 
61 #include "ffs/ufs_inode.h"
62 #include "ffs/ffs_extern.h"
63 #include "ffs/newfs_extern.h"
64 
65 static void initcg(int, time_t, const fsinfo_t *);
66 static int32_t calcipg(int32_t, int32_t, off_t *);
67 static void swap_cg(struct cg *, struct cg *);
68 
69 static int count_digits(int);
70 
71 /*
72  * make file system for cylinder-group style file systems
73  */
74 
75 /*
76  * We limit the size of the inode map to be no more than a
77  * third of the cylinder group space, since we must leave at
78  * least an equal amount of space for the block map.
79  *
80  * N.B.: MAXIPG must be a multiple of INOPB(fs).
81  */
82 #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
83 
84 #define UMASK		0755
85 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
86 
87 union {
88 	struct fs fs;
89 	char pad[SBSIZE];
90 } fsun;
91 #define	sblock	fsun.fs
92 
93 union {
94 	struct cg cg;
95 	char pad[MAXBSIZE];
96 } cgun;
97 #define	acg	cgun.cg
98 
99 struct dinode zino[MAXBSIZE / DINODE_SIZE];
100 
101 char writebuf[MAXBSIZE];
102 
103 static	int	Oflag;		/* format as an 4.3BSD file system */
104 static	int	fssize;		/* file system size */
105 static	int	ntracks;	/* # tracks/cylinder */
106 static	int	nsectors;	/* # sectors/track */
107 static	int	nphyssectors;	/* # sectors/track including spares */
108 static	int	secpercyl;	/* sectors per cylinder */
109 static	int	sectorsize;	/* bytes/sector */
110 static	int	rpm;		/* revolutions/minute of drive */
111 static	int	interleave;	/* hardware sector interleave */
112 static	int	trackskew;	/* sector 0 skew, per track */
113 static	int	fsize;		/* fragment size */
114 static	int	bsize;		/* block size */
115 static	int	cpg;		/* cylinders/cylinder group */
116 static	int	cpgflg;		/* cylinders/cylinder group flag was given */
117 static	int	minfree;	/* free space threshold */
118 static	int	opt;		/* optimization preference (space or time) */
119 static	int	density;	/* number of bytes per inode */
120 static	int	maxcontig;	/* max contiguous blocks to allocate */
121 static	int	rotdelay;	/* rotational delay between blocks */
122 static	int	maxbpg;		/* maximum blocks per file in a cyl group */
123 static	int	nrpos;		/* # of distinguished rotational positions */
124 static	int	bbsize;		/* boot block size */
125 static	int	sbsize;		/* superblock size */
126 static	int	avgfilesize;	/* expected average file size */
127 static	int	avgfpdir;	/* expected number of files per directory */
128 
129 
130 struct fs *
131 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts)
132 {
133 	int32_t i, mincpc, mincpg, inospercg;
134 	int32_t cylno, rpos, blk, j, warned = 0;
135 	int32_t used, mincpgcnt, bpcg;
136 	off_t usedb;
137 	int32_t mapcramped, inodecramped;
138 	int32_t postblsize, rotblsize, totalsbsize;
139 	long long sizepb;
140 	void *space;
141 	int size, blks;
142 	int nprintcols, printcolwidth;
143 
144 	Oflag = 0;
145 	fssize =	fsopts->size / fsopts->sectorsize;
146 	ntracks =	fsopts->ntracks;
147 	nsectors =	fsopts->nsectors;
148 	nphyssectors =	fsopts->nsectors;	/* XXX: no trackspares */
149 	secpercyl =	nsectors * ntracks;
150 	sectorsize =	fsopts->sectorsize;
151 	rpm =		fsopts->rpm;
152 	interleave =	1;
153 	trackskew =	0;
154 	fsize =		fsopts->fsize;
155 	bsize =		fsopts->bsize;
156 	cpg =		fsopts->cpg;
157 	cpgflg =	fsopts->cpgflg;
158 	minfree =	fsopts->minfree;
159 	opt =		fsopts->optimization;
160 	density =	fsopts->density;
161 	maxcontig =	fsopts->maxcontig;
162 	rotdelay =	fsopts->rotdelay;
163 	maxbpg =	fsopts->maxbpg;
164 	nrpos =		fsopts->nrpos;
165 	bbsize =	BBSIZE;
166 	sbsize =	SBSIZE;
167 	avgfilesize = 	fsopts->avgfilesize;
168 	avgfpdir = 	fsopts->avgfpdir;
169 
170 	if (Oflag) {
171 		sblock.fs_inodefmt = FS_42INODEFMT;
172 		sblock.fs_maxsymlinklen = 0;
173 	} else {
174 		sblock.fs_inodefmt = FS_44INODEFMT;
175 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
176 	}
177 	/*
178 	 * Validate the given file system size.
179 	 * Verify that its last block can actually be accessed.
180 	 */
181 	if (fssize <= 0)
182 		printf("preposterous size %d\n", fssize), exit(13);
183 	ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts);
184 
185 	/*
186 	 * collect and verify the sector and track info
187 	 */
188 	sblock.fs_nsect = nsectors;
189 	sblock.fs_ntrak = ntracks;
190 	if (sblock.fs_ntrak <= 0)
191 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
192 	if (sblock.fs_nsect <= 0)
193 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
194 	/*
195 	 * collect and verify the filesystem density info
196 	 */
197 	sblock.fs_avgfilesize = avgfilesize;
198 	sblock.fs_avgfpdir = avgfpdir;
199 	if (sblock.fs_avgfilesize <= 0)
200 		printf("illegal expected average file size %d\n",
201 		    sblock.fs_avgfilesize), exit(14);
202 	if (sblock.fs_avgfpdir <= 0)
203 		printf("illegal expected number of files per directory %d\n",
204 		    sblock.fs_avgfpdir), exit(15);
205 	/*
206 	 * collect and verify the block and fragment sizes
207 	 */
208 	sblock.fs_bsize = bsize;
209 	sblock.fs_fsize = fsize;
210 	if (!POWEROF2(sblock.fs_bsize)) {
211 		printf("block size must be a power of 2, not %d\n",
212 		    sblock.fs_bsize);
213 		exit(16);
214 	}
215 	if (!POWEROF2(sblock.fs_fsize)) {
216 		printf("fragment size must be a power of 2, not %d\n",
217 		    sblock.fs_fsize);
218 		exit(17);
219 	}
220 	if (sblock.fs_fsize < sectorsize) {
221 		printf("fragment size %d is too small, minimum is %d\n",
222 		    sblock.fs_fsize, sectorsize);
223 		exit(18);
224 	}
225 	if (sblock.fs_bsize > MAXBSIZE) {
226 		printf("block size %d is too large, maximum is %d\n",
227 		    sblock.fs_bsize, MAXBSIZE);
228 		exit(19);
229 	}
230 	if (sblock.fs_bsize < MINBSIZE) {
231 		printf("block size %d is too small, minimum is %d\n",
232 		    sblock.fs_bsize, MINBSIZE);
233 		exit(19);
234 	}
235 	if (sblock.fs_bsize < sblock.fs_fsize) {
236 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
237 		    sblock.fs_bsize, sblock.fs_fsize);
238 		exit(20);
239 	}
240 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
241 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
242 	sblock.fs_qbmask = ~sblock.fs_bmask;
243 	sblock.fs_qfmask = ~sblock.fs_fmask;
244 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
245 		sblock.fs_bshift++;
246 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
247 		sblock.fs_fshift++;
248 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
249 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
250 		sblock.fs_fragshift++;
251 	if (sblock.fs_frag > MAXFRAG) {
252 		printf("fragment size %d is too small, "
253 			"minimum with block size %d is %d\n",
254 		    sblock.fs_fsize, sblock.fs_bsize,
255 		    sblock.fs_bsize / MAXFRAG);
256 		exit(21);
257 	}
258 	sblock.fs_nrpos = nrpos;
259 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
260 	sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
261 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
262 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
263 		sblock.fs_fsbtodb++;
264 	sblock.fs_sblkno =
265 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
266 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
267 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
268 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
269 	sblock.fs_cgoffset = roundup(
270 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
271 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
272 		sblock.fs_cgmask <<= 1;
273 	if (!POWEROF2(sblock.fs_ntrak))
274 		sblock.fs_cgmask <<= 1;
275 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
276 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
277 		sizepb *= NINDIR(&sblock);
278 		sblock.fs_maxfilesize += sizepb;
279 	}
280 	/*
281 	 * Validate specified/determined secpercyl
282 	 * and calculate minimum cylinders per group.
283 	 */
284 	sblock.fs_spc = secpercyl;
285 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
286 	     sblock.fs_cpc > 1 && (i & 1) == 0;
287 	     sblock.fs_cpc >>= 1, i >>= 1)
288 		/* void */;
289 	mincpc = sblock.fs_cpc;
290 	bpcg = sblock.fs_spc * sectorsize;
291 	inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
292 	if (inospercg > MAXIPG(&sblock))
293 		inospercg = MAXIPG(&sblock);
294 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
295 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
296 	    sblock.fs_spc);
297 	mincpg = roundup(mincpgcnt, mincpc);
298 	/*
299 	 * Ensure that cylinder group with mincpg has enough space
300 	 * for block maps.
301 	 */
302 	sblock.fs_cpg = mincpg;
303 	sblock.fs_ipg = inospercg;
304 	if (maxcontig > 1)
305 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
306 	mapcramped = 0;
307 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
308 		mapcramped = 1;
309 		if (sblock.fs_bsize < MAXBSIZE) {
310 			sblock.fs_bsize <<= 1;
311 			if ((i & 1) == 0) {
312 				i >>= 1;
313 			} else {
314 				sblock.fs_cpc <<= 1;
315 				mincpc <<= 1;
316 				mincpg = roundup(mincpgcnt, mincpc);
317 				sblock.fs_cpg = mincpg;
318 			}
319 			sblock.fs_frag <<= 1;
320 			sblock.fs_fragshift += 1;
321 			if (sblock.fs_frag <= MAXFRAG)
322 				continue;
323 		}
324 		if (sblock.fs_fsize == sblock.fs_bsize) {
325 			printf("There is no block size that");
326 			printf(" can support this disk\n");
327 			exit(22);
328 		}
329 		sblock.fs_frag >>= 1;
330 		sblock.fs_fragshift -= 1;
331 		sblock.fs_fsize <<= 1;
332 		sblock.fs_nspf <<= 1;
333 	}
334 	/*
335 	 * Ensure that cylinder group with mincpg has enough space for inodes.
336 	 */
337 	inodecramped = 0;
338 	inospercg = calcipg(mincpg, bpcg, &usedb);
339 	sblock.fs_ipg = inospercg;
340 	while (inospercg > MAXIPG(&sblock)) {
341 		inodecramped = 1;
342 		if (mincpc == 1 || sblock.fs_frag == 1 ||
343 		    sblock.fs_bsize == MINBSIZE)
344 			break;
345 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
346 		       "minimum bytes per inode is",
347 		       (int)((mincpg * (off_t)bpcg - usedb)
348 			     / MAXIPG(&sblock) + 1));
349 		sblock.fs_bsize >>= 1;
350 		sblock.fs_frag >>= 1;
351 		sblock.fs_fragshift -= 1;
352 		mincpc >>= 1;
353 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
354 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
355 			sblock.fs_bsize <<= 1;
356 			break;
357 		}
358 		mincpg = sblock.fs_cpg;
359 		inospercg = calcipg(mincpg, bpcg, &usedb);
360 		sblock.fs_ipg = inospercg;
361 	}
362 	if (inodecramped) {
363 		if (inospercg > MAXIPG(&sblock)) {
364 			printf("Minimum bytes per inode is %d\n",
365 			       (int)((mincpg * (off_t)bpcg - usedb)
366 				     / MAXIPG(&sblock) + 1));
367 		} else if (!mapcramped) {
368 			printf("With %d bytes per inode, ", density);
369 			printf("minimum cylinders per group is %d\n", mincpg);
370 		}
371 	}
372 	if (mapcramped) {
373 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
374 		printf("minimum cylinders per group is %d\n", mincpg);
375 	}
376 	if (inodecramped || mapcramped) {
377 		if (sblock.fs_bsize != bsize)
378 			printf("%s to be changed from %d to %d\n",
379 			    "This requires the block size",
380 			    bsize, sblock.fs_bsize);
381 		if (sblock.fs_fsize != fsize)
382 			printf("\t%s to be changed from %d to %d\n",
383 			    "and the fragment size",
384 			    fsize, sblock.fs_fsize);
385 		exit(23);
386 	}
387 	/*
388 	 * Calculate the number of cylinders per group
389 	 */
390 	sblock.fs_cpg = cpg;
391 	if (sblock.fs_cpg % mincpc != 0) {
392 		printf("%s groups must have a multiple of %d cylinders\n",
393 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
394 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
395 		if (!cpgflg)
396 			cpg = sblock.fs_cpg;
397 	}
398 	/*
399 	 * Must ensure there is enough space for inodes.
400 	 */
401 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
402 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
403 		inodecramped = 1;
404 		sblock.fs_cpg -= mincpc;
405 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
406 	}
407 	/*
408 	 * Must ensure there is enough space to hold block map.
409 	 */
410 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
411 		mapcramped = 1;
412 		sblock.fs_cpg -= mincpc;
413 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
414 	}
415 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
416 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
417 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
418 		exit(24);
419 	}
420 	if (sblock.fs_cpg < mincpg) {
421 		printf("cylinder groups must have at least %d cylinders\n",
422 			mincpg);
423 		exit(25);
424 	} else if (sblock.fs_cpg != cpg && cpgflg) {
425 		if (!mapcramped && !inodecramped)
426 			exit(26);
427 		if (mapcramped && inodecramped)
428 			printf("Block size and bytes per inode restrict");
429 		else if (mapcramped)
430 			printf("Block size restricts");
431 		else
432 			printf("Bytes per inode restrict");
433 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
434 		exit(27);
435 	}
436 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
437 	/*
438 	 * Now have size for file system and nsect and ntrak.
439 	 * Determine number of cylinders and blocks in the file system.
440 	 */
441 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
442 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
443 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
444 		sblock.fs_ncyl++;
445 		warned = 1;
446 	}
447 	if (sblock.fs_ncyl < 1) {
448 		printf("file systems must have at least one cylinder\n");
449 		exit(28);
450 	}
451 	/*
452 	 * Determine feasability/values of rotational layout tables.
453 	 *
454 	 * The size of the rotational layout tables is limited by the
455 	 * size of the superblock, SBSIZE. The amount of space available
456 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
457 	 * The size of these tables is inversely proportional to the block
458 	 * size of the file system. The size increases if sectors per track
459 	 * are not powers of two, because more cylinders must be described
460 	 * by the tables before the rotational pattern repeats (fs_cpc).
461 	 */
462 	sblock.fs_interleave = interleave;
463 	sblock.fs_trackskew = trackskew;
464 	sblock.fs_npsect = nphyssectors;
465 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
466 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
467 	if (sblock.fs_ntrak == 1) {
468 		sblock.fs_cpc = 0;
469 		goto next;
470 	}
471 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
472 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
473 	totalsbsize = sizeof(struct fs) + rotblsize;
474 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
475 		/* use old static table space */
476 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
477 		    (char *)(&sblock.fs_firstfield);
478 		sblock.fs_rotbloff = &sblock.fs_space[0] -
479 		    (u_char *)(&sblock.fs_firstfield);
480 	} else {
481 		/* use dynamic table space */
482 		sblock.fs_postbloff = &sblock.fs_space[0] -
483 		    (u_char *)(&sblock.fs_firstfield);
484 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
485 		totalsbsize += postblsize;
486 	}
487 	if (totalsbsize > SBSIZE ||
488 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
489 		printf("%s %s %d %s %d.%s",
490 		    "Warning: insufficient space in super block for\n",
491 		    "rotational layout tables with nsect", sblock.fs_nsect,
492 		    "and ntrak", sblock.fs_ntrak,
493 		    "\nFile system performance may be impaired.\n");
494 		sblock.fs_cpc = 0;
495 		goto next;
496 	}
497 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
498 	/*
499 	 * calculate the available blocks for each rotational position
500 	 */
501 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
502 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
503 			fs_postbl(&sblock, cylno)[rpos] = -1;
504 	for (i = (rotblsize - 1) * sblock.fs_frag;
505 	     i >= 0; i -= sblock.fs_frag) {
506 		cylno = cbtocylno(&sblock, i);
507 		rpos = cbtorpos(&sblock, i);
508 		blk = fragstoblks(&sblock, i);
509 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
510 			fs_rotbl(&sblock)[blk] = 0;
511 		else
512 			fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
513 		fs_postbl(&sblock, cylno)[rpos] = blk;
514 	}
515 next:
516 	/*
517 	 * Compute/validate number of cylinder groups.
518 	 */
519 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
520 	if (sblock.fs_ncyl % sblock.fs_cpg)
521 		sblock.fs_ncg++;
522 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
523 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
524 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
525 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
526 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
527 		    sblock.fs_fpg / sblock.fs_frag);
528 		printf("number of cylinders per cylinder group (%d) %s.\n",
529 		    sblock.fs_cpg, "must be increased");
530 		exit(29);
531 	}
532 	j = sblock.fs_ncg - 1;
533 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
534 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
535 		if (j == 0) {
536 			printf("File system must have at least %d sectors\n",
537 			    NSPF(&sblock) *
538 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
539 			exit(30);
540 		}
541 		printf("Warning: inode blocks/cyl group (%d) >= "
542 			"data blocks (%d) in last\n",
543 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
544 		    i / sblock.fs_frag);
545 		printf("    cylinder group. This implies %d sector(s) "
546 			"cannot be allocated.\n",
547 		    i * NSPF(&sblock));
548 		sblock.fs_ncg--;
549 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
550 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
551 		    NSPF(&sblock);
552 		warned = 0;
553 	}
554 	if (warned) {
555 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
556 		    sblock.fs_spc -
557 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
558 		    * sblock.fs_spc));
559 	}
560 	/*
561 	 * fill in remaining fields of the super block
562 	 */
563 	sblock.fs_csaddr = cgdmin(&sblock, 0);
564 	sblock.fs_cssize =
565 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
566 	/*
567 	 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
568 	 * longer used. However, we still initialise them so that the
569 	 * filesystem remains compatible with old kernels.
570 	 */
571 	i = sblock.fs_bsize / sizeof(struct csum);
572 	sblock.fs_csmask = ~(i - 1);
573 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
574 		sblock.fs_csshift++;
575 
576 	/*
577 	 * Setup memory for temporary in-core cylgroup summaries.
578 	 * Cribbed from ffs_mountfs().
579 	 */
580 	size = sblock.fs_cssize;
581 	blks = howmany(size, sblock.fs_fsize);
582 	if (sblock.fs_contigsumsize > 0)
583 		size += sblock.fs_ncg * sizeof(int32_t);
584 	if ((space = (char *)calloc(1, size)) == NULL)
585 		err(1, "memory allocation error for cg summaries");
586 	sblock.fs_csp = space;
587 	space = (char *)space + sblock.fs_cssize;
588 	if (sblock.fs_contigsumsize > 0) {
589 		int32_t *lp;
590 
591 		sblock.fs_maxcluster = lp = space;
592 		for (i = 0; i < sblock.fs_ncg; i++)
593 			*lp++ = sblock.fs_contigsumsize;
594 	}
595 
596 	sblock.fs_magic = FS_MAGIC;
597 	sblock.fs_rotdelay = rotdelay;
598 	sblock.fs_minfree = minfree;
599 	sblock.fs_maxcontig = maxcontig;
600 	sblock.fs_maxbpg = maxbpg;
601 	sblock.fs_rps = rpm / 60;
602 	sblock.fs_optim = opt;
603 	sblock.fs_cgrotor = 0;
604 	sblock.fs_cstotal.cs_ndir = 0;
605 	sblock.fs_cstotal.cs_nbfree = 0;
606 	sblock.fs_cstotal.cs_nifree = 0;
607 	sblock.fs_cstotal.cs_nffree = 0;
608 	sblock.fs_fmod = 0;
609 	sblock.fs_clean = FS_ISCLEAN;
610 	sblock.fs_ronly = 0;
611 
612 	/*
613 	 * Dump out summary information about file system.
614 	 */
615 	printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
616 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
617 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
618 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
619 	printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
620 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
621 		    sblock.fs_ncg, sblock.fs_cpg,
622 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
623 		    sblock.fs_ipg);
624 #undef B2MBFACTOR
625 	/*
626 	 * Now determine how wide each column will be, and calculate how
627 	 * many columns will fit in a 76 char line. 76 is the width of the
628 	 * subwindows in sysinst.
629 	 */
630 	printcolwidth = count_digits(
631 			fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
632 	nprintcols = 76 / (printcolwidth + 2);
633 	/*
634 	 * Now build the cylinders group blocks and
635 	 * then print out indices of cylinder groups.
636 	 */
637 		printf("super-block backups (for fsck -b #) at:");
638 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
639 		initcg(cylno, start_time.tv_sec, fsopts);
640 		if (cylno % nprintcols == 0)
641 			printf("\n");
642 		printf(" %*d,", printcolwidth,
643 				fsbtodb(&sblock, cgsblock(&sblock, cylno)));
644 		fflush(stdout);
645 	}
646 	printf("\n");
647 
648 	/*
649 	 * Now construct the initial file system,
650 	 * then write out the super-block.
651 	 */
652 	sblock.fs_time = start_time.tv_sec;
653 	if (fsopts->needswap)
654 		sblock.fs_flags |= FS_SWAPPED;
655 	ffs_write_superblock(&sblock, fsopts);
656 	return (&sblock);
657 }
658 
659 /*
660  * Write out the superblock and its duplicates,
661  * and the cylinder group summaries
662  */
663 void
664 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts)
665 {
666 	int	cylno, size, blks, i, saveflag;
667 	void	*space;
668 	char	*wrbuf;
669 
670 	saveflag = fs->fs_flags & FS_INTERNAL;
671 	fs->fs_flags &= ~FS_INTERNAL;
672 
673 			/* Write out the master super block */
674 	memcpy(writebuf, fs, sbsize);
675 	if (fsopts->needswap)
676 		ffs_sb_swap(fs, (struct fs*)writebuf);
677 	ffs_wtfs((int)SBOFF / sectorsize, sbsize, writebuf, fsopts);
678 
679 			/* Write out the duplicate super blocks */
680 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
681 		ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)),
682 		    sbsize, writebuf, fsopts);
683 
684 			/* Write out the cylinder group summaries */
685 	size = fs->fs_cssize;
686 	blks = howmany(size, fs->fs_fsize);
687 	space = (void *)fs->fs_csp;
688 	if ((wrbuf = malloc(size)) == NULL)
689 		err(1, "ffs_write_superblock: malloc %d", size);
690 	for (i = 0; i < blks; i+= fs->fs_frag) {
691 		size = fs->fs_bsize;
692 		if (i + fs->fs_frag > blks)
693 			size = (blks - i) * fs->fs_fsize;
694 		if (fsopts->needswap)
695 			ffs_csum_swap((struct csum *)space,
696 			    (struct csum *)wrbuf, size);
697 		else
698 			memcpy(wrbuf, space, (u_int)size);
699 		ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts);
700 		space = (char *)space + size;
701 	}
702 	free(wrbuf);
703 	fs->fs_flags |= saveflag;
704 }
705 
706 
707 /*
708  * Initialize a cylinder group.
709  */
710 static void
711 initcg(int cylno, time_t utime, const fsinfo_t *fsopts)
712 {
713 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
714 	int32_t i;
715 
716 	/*
717 	 * Determine block bounds for cylinder group.
718 	 * Allow space for super block summary information in first
719 	 * cylinder group.
720 	 */
721 	cbase = cgbase(&sblock, cylno);
722 	dmax = cbase + sblock.fs_fpg;
723 	if (dmax > sblock.fs_size)
724 		dmax = sblock.fs_size;
725 	dlower = cgsblock(&sblock, cylno) - cbase;
726 	dupper = cgdmin(&sblock, cylno) - cbase;
727 	if (cylno == 0)
728 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
729 	memset(&acg, 0, sblock.fs_cgsize);
730 	acg.cg_time = utime;
731 	acg.cg_magic = CG_MAGIC;
732 	acg.cg_cgx = cylno;
733 	if (cylno == sblock.fs_ncg - 1)
734 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
735 	else
736 		acg.cg_ncyl = sblock.fs_cpg;
737 	acg.cg_niblk = sblock.fs_ipg;
738 	acg.cg_ndblk = dmax - cbase;
739 	if (sblock.fs_contigsumsize > 0)
740 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
741 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
742 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
743 	acg.cg_iusedoff = acg.cg_boff +
744 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
745 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
746 	if (sblock.fs_contigsumsize <= 0) {
747 		acg.cg_nextfreeoff = acg.cg_freeoff +
748 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
749 	} else {
750 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
751 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
752 		    sizeof(int32_t);
753 		acg.cg_clustersumoff =
754 		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
755 		acg.cg_clusteroff = acg.cg_clustersumoff +
756 		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
757 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
758 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
759 	}
760 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
761 		printf("Panic: cylinder group too big\n");
762 		exit(37);
763 	}
764 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
765 	if (cylno == 0)
766 		for (i = 0; i < ROOTINO; i++) {
767 			setbit(cg_inosused(&acg, 0), i);
768 			acg.cg_cs.cs_nifree--;
769 		}
770 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
771 		ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
772 		    sblock.fs_bsize, (char *)zino, fsopts);
773 	if (cylno > 0) {
774 		/*
775 		 * In cylno 0, beginning space is reserved
776 		 * for boot and super blocks.
777 		 */
778 		for (d = 0; d < dlower; d += sblock.fs_frag) {
779 			blkno = d / sblock.fs_frag;
780 			ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
781 			if (sblock.fs_contigsumsize > 0)
782 				setbit(cg_clustersfree(&acg, 0), blkno);
783 			acg.cg_cs.cs_nbfree++;
784 			cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
785 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
786 			    [cbtorpos(&sblock, d)]++;
787 		}
788 		sblock.fs_dsize += dlower;
789 	}
790 	sblock.fs_dsize += acg.cg_ndblk - dupper;
791 	if ((i = (dupper % sblock.fs_frag)) != 0) {
792 		acg.cg_frsum[sblock.fs_frag - i]++;
793 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
794 			setbit(cg_blksfree(&acg, 0), dupper);
795 			acg.cg_cs.cs_nffree++;
796 		}
797 	}
798 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
799 		blkno = d / sblock.fs_frag;
800 		ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
801 		if (sblock.fs_contigsumsize > 0)
802 			setbit(cg_clustersfree(&acg, 0), blkno);
803 		acg.cg_cs.cs_nbfree++;
804 		cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
805 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
806 		    [cbtorpos(&sblock, d)]++;
807 		d += sblock.fs_frag;
808 	}
809 	if (d < dmax - cbase) {
810 		acg.cg_frsum[dmax - cbase - d]++;
811 		for (; d < dmax - cbase; d++) {
812 			setbit(cg_blksfree(&acg, 0), d);
813 			acg.cg_cs.cs_nffree++;
814 		}
815 	}
816 	if (sblock.fs_contigsumsize > 0) {
817 		int32_t *sump = cg_clustersum(&acg, 0);
818 		u_char *mapp = cg_clustersfree(&acg, 0);
819 		int map = *mapp++;
820 		int bit = 1;
821 		int run = 0;
822 
823 		for (i = 0; i < acg.cg_nclusterblks; i++) {
824 			if ((map & bit) != 0) {
825 				run++;
826 			} else if (run != 0) {
827 				if (run > sblock.fs_contigsumsize)
828 					run = sblock.fs_contigsumsize;
829 				sump[run]++;
830 				run = 0;
831 			}
832 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
833 				bit <<= 1;
834 			} else {
835 				map = *mapp++;
836 				bit = 1;
837 			}
838 		}
839 		if (run != 0) {
840 			if (run > sblock.fs_contigsumsize)
841 				run = sblock.fs_contigsumsize;
842 			sump[run]++;
843 		}
844 	}
845 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
846 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
847 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
848 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
849 	sblock.fs_cs(&sblock, cylno) = acg.cg_cs;
850 	memcpy(writebuf, &acg, sblock.fs_bsize);
851 	if (fsopts->needswap)
852 		swap_cg(&acg, (struct cg*)writebuf);
853 	ffs_wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
854 		sblock.fs_bsize,
855 		writebuf, fsopts);
856 }
857 
858 /*
859  * Calculate number of inodes per group.
860  */
861 static int32_t
862 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
863 {
864 	int i;
865 	int32_t ipg, new_ipg, ncg, ncyl;
866 	off_t usedb;
867 
868 	/*
869 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
870 	 * Note that fssize is still in sectors, not file system blocks.
871 	 */
872 	ncyl = howmany(fssize, secpercyl);
873 	ncg = howmany(ncyl, cylpg);
874 	/*
875 	 * Iterate a few times to allow for ipg depending on itself.
876 	 */
877 	ipg = 0;
878 	for (i = 0; i < 10; i++) {
879 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
880 			* NSPF(&sblock) * (off_t)sectorsize;
881 		if (cylpg * (long long)bpcg < usedb) {
882 			warnx("Too many inodes per cyl group!");
883 			return (MAXIPG(&sblock)+1);
884 		}
885 		new_ipg = (cylpg * (long long)bpcg - usedb) /
886 		    (long long)density * fssize / (ncg * secpercyl * cylpg);
887 		if (new_ipg <= 0)
888 			new_ipg = 1;		/* ensure ipg > 0 */
889 		new_ipg = roundup(new_ipg, INOPB(&sblock));
890 		if (new_ipg == ipg)
891 			break;
892 		ipg = new_ipg;
893 	}
894 	*usedbp = usedb;
895 	return (ipg);
896 }
897 
898 
899 /*
900  * read a block from the file system
901  */
902 void
903 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
904 {
905 	int n;
906 	off_t offset;
907 
908 	offset = bno;
909 	offset *= fsopts->sectorsize;
910 	if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
911 		err(1, "ffs_rdfs: seek error: %d\n", bno);
912 	n = read(fsopts->fd, bf, size);
913 	if (n == -1)
914 		err(1, "ffs_rdfs: read error bno %d size %d\n", bno, size);
915 	else if (n != size)
916 		errx(1,
917 		    "ffs_rdfs: read error bno %d size %d: short read of %d\n",
918 		    bno, size, n);
919 }
920 
921 /*
922  * write a block to the file system
923  */
924 void
925 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
926 {
927 	int n;
928 	off_t offset;
929 
930 	offset = bno;
931 	offset *= fsopts->sectorsize;
932 	if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
933 		err(1, "ffs_wtfs: seek error: %d\n", bno);
934 	n = write(fsopts->fd, bf, size);
935 	if (n == -1)
936 		err(1, "ffs_wtfs: write error bno %d size %d\n", bno, size);
937 	else if (n != size)
938 		errx(1,
939 		    "ffs_wtfs: write error bno %d size %d: short write of %d\n",
940 		    bno, size, n);
941 }
942 
943 /* swap byte order of cylinder group */
944 static void
945 swap_cg(struct cg *o, struct cg *n)
946 {
947 	int i, btotsize, fbsize;
948 	u_int32_t *n32, *o32;
949 	u_int16_t *n16, *o16;
950 
951 	n->cg_firstfield = bswap32(o->cg_firstfield);
952 	n->cg_magic = bswap32(o->cg_magic);
953 	n->cg_time = bswap32(o->cg_time);
954 	n->cg_cgx = bswap32(o->cg_cgx);
955 	n->cg_ncyl = bswap16(o->cg_ncyl);
956 	n->cg_niblk = bswap16(o->cg_niblk);
957 	n->cg_ndblk = bswap32(o->cg_ndblk);
958 	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
959 	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
960 	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
961 	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
962 	n->cg_rotor = bswap32(o->cg_rotor);
963 	n->cg_frotor = bswap32(o->cg_frotor);
964 	n->cg_irotor = bswap32(o->cg_irotor);
965 	n->cg_btotoff = bswap32(o->cg_btotoff);
966 	n->cg_boff = bswap32(o->cg_boff);
967 	n->cg_iusedoff = bswap32(o->cg_iusedoff);
968 	n->cg_freeoff = bswap32(o->cg_freeoff);
969 	n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
970 	n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
971 	n->cg_clusteroff = bswap32(o->cg_clusteroff);
972 	n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
973 	for (i=0; i < MAXFRAG; i++)
974 		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
975 
976 	/* alays new format */
977 	if (n->cg_magic == CG_MAGIC) {
978 		btotsize = n->cg_boff - n->cg_btotoff;
979 		fbsize = n->cg_iusedoff - n->cg_boff;
980 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
981 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
982 		n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
983 		o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
984 	} else {
985 		btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
986 		fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
987 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
988 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
989 		n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
990 		o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
991 	}
992 	for (i=0; i < btotsize / sizeof(u_int32_t); i++)
993 		n32[i] = bswap32(o32[i]);
994 
995 	for (i=0; i < fbsize/sizeof(u_int16_t); i++)
996 		n16[i] = bswap16(o16[i]);
997 
998 	if (n->cg_magic == CG_MAGIC) {
999 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
1000 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1001 	} else {
1002 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1003 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1004 	}
1005 	for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
1006 		n32[i] = bswap32(o32[i]);
1007 }
1008 
1009 /* Determine how many digits are needed to print a given integer */
1010 static int
1011 count_digits(int num)
1012 {
1013 	int ndig;
1014 
1015 	for(ndig = 1; num > 9; num /=10, ndig++);
1016 
1017 	return (ndig);
1018 }
1019