1 /* Alias analysis for GNU C 2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 3 Free Software Foundation, Inc. 4 Contributed by John Carr (jfc@mit.edu). 5 6 This file is part of GCC. 7 8 GCC is free software; you can redistribute it and/or modify it under 9 the terms of the GNU General Public License as published by the Free 10 Software Foundation; either version 2, or (at your option) any later 11 version. 12 13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 14 WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GCC; see the file COPYING. If not, write to the Free 20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 21 02110-1301, USA. */ 22 23 #include "config.h" 24 #include "system.h" 25 #include "coretypes.h" 26 #include "tm.h" 27 #include "rtl.h" 28 #include "tree.h" 29 #include "tm_p.h" 30 #include "function.h" 31 #include "alias.h" 32 #include "emit-rtl.h" 33 #include "regs.h" 34 #include "hard-reg-set.h" 35 #include "basic-block.h" 36 #include "flags.h" 37 #include "output.h" 38 #include "toplev.h" 39 #include "cselib.h" 40 #include "splay-tree.h" 41 #include "ggc.h" 42 #include "langhooks.h" 43 #include "timevar.h" 44 #include "target.h" 45 #include "cgraph.h" 46 #include "varray.h" 47 #include "tree-pass.h" 48 #include "ipa-type-escape.h" 49 50 /* The aliasing API provided here solves related but different problems: 51 52 Say there exists (in c) 53 54 struct X { 55 struct Y y1; 56 struct Z z2; 57 } x1, *px1, *px2; 58 59 struct Y y2, *py; 60 struct Z z2, *pz; 61 62 63 py = &px1.y1; 64 px2 = &x1; 65 66 Consider the four questions: 67 68 Can a store to x1 interfere with px2->y1? 69 Can a store to x1 interfere with px2->z2? 70 (*px2).z2 71 Can a store to x1 change the value pointed to by with py? 72 Can a store to x1 change the value pointed to by with pz? 73 74 The answer to these questions can be yes, yes, yes, and maybe. 75 76 The first two questions can be answered with a simple examination 77 of the type system. If structure X contains a field of type Y then 78 a store thru a pointer to an X can overwrite any field that is 79 contained (recursively) in an X (unless we know that px1 != px2). 80 81 The last two of the questions can be solved in the same way as the 82 first two questions but this is too conservative. The observation 83 is that in some cases analysis we can know if which (if any) fields 84 are addressed and if those addresses are used in bad ways. This 85 analysis may be language specific. In C, arbitrary operations may 86 be applied to pointers. However, there is some indication that 87 this may be too conservative for some C++ types. 88 89 The pass ipa-type-escape does this analysis for the types whose 90 instances do not escape across the compilation boundary. 91 92 Historically in GCC, these two problems were combined and a single 93 data structure was used to represent the solution to these 94 problems. We now have two similar but different data structures, 95 The data structure to solve the last two question is similar to the 96 first, but does not contain have the fields in it whose address are 97 never taken. For types that do escape the compilation unit, the 98 data structures will have identical information. 99 */ 100 101 /* The alias sets assigned to MEMs assist the back-end in determining 102 which MEMs can alias which other MEMs. In general, two MEMs in 103 different alias sets cannot alias each other, with one important 104 exception. Consider something like: 105 106 struct S { int i; double d; }; 107 108 a store to an `S' can alias something of either type `int' or type 109 `double'. (However, a store to an `int' cannot alias a `double' 110 and vice versa.) We indicate this via a tree structure that looks 111 like: 112 struct S 113 / \ 114 / \ 115 |/_ _\| 116 int double 117 118 (The arrows are directed and point downwards.) 119 In this situation we say the alias set for `struct S' is the 120 `superset' and that those for `int' and `double' are `subsets'. 121 122 To see whether two alias sets can point to the same memory, we must 123 see if either alias set is a subset of the other. We need not trace 124 past immediate descendants, however, since we propagate all 125 grandchildren up one level. 126 127 Alias set zero is implicitly a superset of all other alias sets. 128 However, this is no actual entry for alias set zero. It is an 129 error to attempt to explicitly construct a subset of zero. */ 130 131 struct alias_set_entry GTY(()) 132 { 133 /* The alias set number, as stored in MEM_ALIAS_SET. */ 134 HOST_WIDE_INT alias_set; 135 136 /* The children of the alias set. These are not just the immediate 137 children, but, in fact, all descendants. So, if we have: 138 139 struct T { struct S s; float f; } 140 141 continuing our example above, the children here will be all of 142 `int', `double', `float', and `struct S'. */ 143 splay_tree GTY((param1_is (int), param2_is (int))) children; 144 145 /* Nonzero if would have a child of zero: this effectively makes this 146 alias set the same as alias set zero. */ 147 int has_zero_child; 148 }; 149 typedef struct alias_set_entry *alias_set_entry; 150 151 static int rtx_equal_for_memref_p (rtx, rtx); 152 static rtx find_symbolic_term (rtx); 153 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT); 154 static void record_set (rtx, rtx, void *); 155 static int base_alias_check (rtx, rtx, enum machine_mode, 156 enum machine_mode); 157 static rtx find_base_value (rtx); 158 static int mems_in_disjoint_alias_sets_p (rtx, rtx); 159 static int insert_subset_children (splay_tree_node, void*); 160 static tree find_base_decl (tree); 161 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT); 162 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx, 163 int (*) (rtx, int)); 164 static int aliases_everything_p (rtx); 165 static bool nonoverlapping_component_refs_p (tree, tree); 166 static tree decl_for_component_ref (tree); 167 static rtx adjust_offset_for_component_ref (tree, rtx); 168 static int nonoverlapping_memrefs_p (rtx, rtx); 169 static int write_dependence_p (rtx, rtx, int); 170 171 static void memory_modified_1 (rtx, rtx, void *); 172 static void record_alias_subset (HOST_WIDE_INT, HOST_WIDE_INT); 173 174 /* Set up all info needed to perform alias analysis on memory references. */ 175 176 /* Returns the size in bytes of the mode of X. */ 177 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X))) 178 179 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in 180 different alias sets. We ignore alias sets in functions making use 181 of variable arguments because the va_arg macros on some systems are 182 not legal ANSI C. */ 183 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \ 184 mems_in_disjoint_alias_sets_p (MEM1, MEM2) 185 186 /* Cap the number of passes we make over the insns propagating alias 187 information through set chains. 10 is a completely arbitrary choice. */ 188 #define MAX_ALIAS_LOOP_PASSES 10 189 190 /* reg_base_value[N] gives an address to which register N is related. 191 If all sets after the first add or subtract to the current value 192 or otherwise modify it so it does not point to a different top level 193 object, reg_base_value[N] is equal to the address part of the source 194 of the first set. 195 196 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS 197 expressions represent certain special values: function arguments and 198 the stack, frame, and argument pointers. 199 200 The contents of an ADDRESS is not normally used, the mode of the 201 ADDRESS determines whether the ADDRESS is a function argument or some 202 other special value. Pointer equality, not rtx_equal_p, determines whether 203 two ADDRESS expressions refer to the same base address. 204 205 The only use of the contents of an ADDRESS is for determining if the 206 current function performs nonlocal memory memory references for the 207 purposes of marking the function as a constant function. */ 208 209 static GTY(()) VEC(rtx,gc) *reg_base_value; 210 static rtx *new_reg_base_value; 211 212 /* We preserve the copy of old array around to avoid amount of garbage 213 produced. About 8% of garbage produced were attributed to this 214 array. */ 215 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value; 216 217 /* Static hunks of RTL used by the aliasing code; these are initialized 218 once per function to avoid unnecessary RTL allocations. */ 219 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER]; 220 221 #define REG_BASE_VALUE(X) \ 222 (REGNO (X) < VEC_length (rtx, reg_base_value) \ 223 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0) 224 225 /* Vector indexed by N giving the initial (unchanging) value known for 226 pseudo-register N. This array is initialized in init_alias_analysis, 227 and does not change until end_alias_analysis is called. */ 228 static GTY((length("reg_known_value_size"))) rtx *reg_known_value; 229 230 /* Indicates number of valid entries in reg_known_value. */ 231 static GTY(()) unsigned int reg_known_value_size; 232 233 /* Vector recording for each reg_known_value whether it is due to a 234 REG_EQUIV note. Future passes (viz., reload) may replace the 235 pseudo with the equivalent expression and so we account for the 236 dependences that would be introduced if that happens. 237 238 The REG_EQUIV notes created in assign_parms may mention the arg 239 pointer, and there are explicit insns in the RTL that modify the 240 arg pointer. Thus we must ensure that such insns don't get 241 scheduled across each other because that would invalidate the 242 REG_EQUIV notes. One could argue that the REG_EQUIV notes are 243 wrong, but solving the problem in the scheduler will likely give 244 better code, so we do it here. */ 245 static bool *reg_known_equiv_p; 246 247 /* True when scanning insns from the start of the rtl to the 248 NOTE_INSN_FUNCTION_BEG note. */ 249 static bool copying_arguments; 250 251 DEF_VEC_P(alias_set_entry); 252 DEF_VEC_ALLOC_P(alias_set_entry,gc); 253 254 /* The splay-tree used to store the various alias set entries. */ 255 static GTY (()) VEC(alias_set_entry,gc) *alias_sets; 256 257 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is 258 such an entry, or NULL otherwise. */ 259 260 static inline alias_set_entry 261 get_alias_set_entry (HOST_WIDE_INT alias_set) 262 { 263 return VEC_index (alias_set_entry, alias_sets, alias_set); 264 } 265 266 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that 267 the two MEMs cannot alias each other. */ 268 269 static inline int 270 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2) 271 { 272 /* Perform a basic sanity check. Namely, that there are no alias sets 273 if we're not using strict aliasing. This helps to catch bugs 274 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or 275 where a MEM is allocated in some way other than by the use of 276 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to 277 use alias sets to indicate that spilled registers cannot alias each 278 other, we might need to remove this check. */ 279 gcc_assert (flag_strict_aliasing 280 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2))); 281 282 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2)); 283 } 284 285 /* Insert the NODE into the splay tree given by DATA. Used by 286 record_alias_subset via splay_tree_foreach. */ 287 288 static int 289 insert_subset_children (splay_tree_node node, void *data) 290 { 291 splay_tree_insert ((splay_tree) data, node->key, node->value); 292 293 return 0; 294 } 295 296 /* Return 1 if the two specified alias sets may conflict. */ 297 298 int 299 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2) 300 { 301 alias_set_entry ase; 302 303 /* If have no alias set information for one of the operands, we have 304 to assume it can alias anything. */ 305 if (set1 == 0 || set2 == 0 306 /* If the two alias sets are the same, they may alias. */ 307 || set1 == set2) 308 return 1; 309 310 /* See if the first alias set is a subset of the second. */ 311 ase = get_alias_set_entry (set1); 312 if (ase != 0 313 && (ase->has_zero_child 314 || splay_tree_lookup (ase->children, 315 (splay_tree_key) set2))) 316 return 1; 317 318 /* Now do the same, but with the alias sets reversed. */ 319 ase = get_alias_set_entry (set2); 320 if (ase != 0 321 && (ase->has_zero_child 322 || splay_tree_lookup (ase->children, 323 (splay_tree_key) set1))) 324 return 1; 325 326 /* The two alias sets are distinct and neither one is the 327 child of the other. Therefore, they cannot alias. */ 328 return 0; 329 } 330 331 /* Return 1 if the two specified alias sets might conflict, or if any subtype 332 of these alias sets might conflict. */ 333 334 int 335 alias_sets_might_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2) 336 { 337 if (set1 == 0 || set2 == 0 || set1 == set2) 338 return 1; 339 340 return 0; 341 } 342 343 344 /* Return 1 if any MEM object of type T1 will always conflict (using the 345 dependency routines in this file) with any MEM object of type T2. 346 This is used when allocating temporary storage. If T1 and/or T2 are 347 NULL_TREE, it means we know nothing about the storage. */ 348 349 int 350 objects_must_conflict_p (tree t1, tree t2) 351 { 352 HOST_WIDE_INT set1, set2; 353 354 /* If neither has a type specified, we don't know if they'll conflict 355 because we may be using them to store objects of various types, for 356 example the argument and local variables areas of inlined functions. */ 357 if (t1 == 0 && t2 == 0) 358 return 0; 359 360 /* If they are the same type, they must conflict. */ 361 if (t1 == t2 362 /* Likewise if both are volatile. */ 363 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))) 364 return 1; 365 366 set1 = t1 ? get_alias_set (t1) : 0; 367 set2 = t2 ? get_alias_set (t2) : 0; 368 369 /* Otherwise they conflict if they have no alias set or the same. We 370 can't simply use alias_sets_conflict_p here, because we must make 371 sure that every subtype of t1 will conflict with every subtype of 372 t2 for which a pair of subobjects of these respective subtypes 373 overlaps on the stack. */ 374 return set1 == 0 || set2 == 0 || set1 == set2; 375 } 376 377 /* T is an expression with pointer type. Find the DECL on which this 378 expression is based. (For example, in `a[i]' this would be `a'.) 379 If there is no such DECL, or a unique decl cannot be determined, 380 NULL_TREE is returned. */ 381 382 static tree 383 find_base_decl (tree t) 384 { 385 tree d0, d1; 386 387 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t))) 388 return 0; 389 390 /* If this is a declaration, return it. If T is based on a restrict 391 qualified decl, return that decl. */ 392 if (DECL_P (t)) 393 { 394 if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t)) 395 t = DECL_GET_RESTRICT_BASE (t); 396 return t; 397 } 398 399 /* Handle general expressions. It would be nice to deal with 400 COMPONENT_REFs here. If we could tell that `a' and `b' were the 401 same, then `a->f' and `b->f' are also the same. */ 402 switch (TREE_CODE_CLASS (TREE_CODE (t))) 403 { 404 case tcc_unary: 405 return find_base_decl (TREE_OPERAND (t, 0)); 406 407 case tcc_binary: 408 /* Return 0 if found in neither or both are the same. */ 409 d0 = find_base_decl (TREE_OPERAND (t, 0)); 410 d1 = find_base_decl (TREE_OPERAND (t, 1)); 411 if (d0 == d1) 412 return d0; 413 else if (d0 == 0) 414 return d1; 415 else if (d1 == 0) 416 return d0; 417 else 418 return 0; 419 420 default: 421 return 0; 422 } 423 } 424 425 /* Return true if all nested component references handled by 426 get_inner_reference in T are such that we should use the alias set 427 provided by the object at the heart of T. 428 429 This is true for non-addressable components (which don't have their 430 own alias set), as well as components of objects in alias set zero. 431 This later point is a special case wherein we wish to override the 432 alias set used by the component, but we don't have per-FIELD_DECL 433 assignable alias sets. */ 434 435 bool 436 component_uses_parent_alias_set (tree t) 437 { 438 while (1) 439 { 440 /* If we're at the end, it vacuously uses its own alias set. */ 441 if (!handled_component_p (t)) 442 return false; 443 444 switch (TREE_CODE (t)) 445 { 446 case COMPONENT_REF: 447 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))) 448 return true; 449 break; 450 451 case ARRAY_REF: 452 case ARRAY_RANGE_REF: 453 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))) 454 return true; 455 break; 456 457 case REALPART_EXPR: 458 case IMAGPART_EXPR: 459 break; 460 461 default: 462 /* Bitfields and casts are never addressable. */ 463 return true; 464 } 465 466 t = TREE_OPERAND (t, 0); 467 if (get_alias_set (TREE_TYPE (t)) == 0) 468 return true; 469 } 470 } 471 472 /* Return the alias set for T, which may be either a type or an 473 expression. Call language-specific routine for help, if needed. */ 474 475 HOST_WIDE_INT 476 get_alias_set (tree t) 477 { 478 HOST_WIDE_INT set; 479 480 /* If we're not doing any alias analysis, just assume everything 481 aliases everything else. Also return 0 if this or its type is 482 an error. */ 483 if (! flag_strict_aliasing || t == error_mark_node 484 || (! TYPE_P (t) 485 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node))) 486 return 0; 487 488 /* We can be passed either an expression or a type. This and the 489 language-specific routine may make mutually-recursive calls to each other 490 to figure out what to do. At each juncture, we see if this is a tree 491 that the language may need to handle specially. First handle things that 492 aren't types. */ 493 if (! TYPE_P (t)) 494 { 495 tree inner = t; 496 497 /* Remove any nops, then give the language a chance to do 498 something with this tree before we look at it. */ 499 STRIP_NOPS (t); 500 set = lang_hooks.get_alias_set (t); 501 if (set != -1) 502 return set; 503 504 /* First see if the actual object referenced is an INDIRECT_REF from a 505 restrict-qualified pointer or a "void *". */ 506 while (handled_component_p (inner)) 507 { 508 inner = TREE_OPERAND (inner, 0); 509 STRIP_NOPS (inner); 510 } 511 512 /* Check for accesses through restrict-qualified pointers. */ 513 if (INDIRECT_REF_P (inner)) 514 { 515 tree decl = find_base_decl (TREE_OPERAND (inner, 0)); 516 517 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl)) 518 { 519 /* If we haven't computed the actual alias set, do it now. */ 520 if (DECL_POINTER_ALIAS_SET (decl) == -2) 521 { 522 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl)); 523 524 /* No two restricted pointers can point at the same thing. 525 However, a restricted pointer can point at the same thing 526 as an unrestricted pointer, if that unrestricted pointer 527 is based on the restricted pointer. So, we make the 528 alias set for the restricted pointer a subset of the 529 alias set for the type pointed to by the type of the 530 decl. */ 531 HOST_WIDE_INT pointed_to_alias_set 532 = get_alias_set (pointed_to_type); 533 534 if (pointed_to_alias_set == 0) 535 /* It's not legal to make a subset of alias set zero. */ 536 DECL_POINTER_ALIAS_SET (decl) = 0; 537 else if (AGGREGATE_TYPE_P (pointed_to_type)) 538 /* For an aggregate, we must treat the restricted 539 pointer the same as an ordinary pointer. If we 540 were to make the type pointed to by the 541 restricted pointer a subset of the pointed-to 542 type, then we would believe that other subsets 543 of the pointed-to type (such as fields of that 544 type) do not conflict with the type pointed to 545 by the restricted pointer. */ 546 DECL_POINTER_ALIAS_SET (decl) 547 = pointed_to_alias_set; 548 else 549 { 550 DECL_POINTER_ALIAS_SET (decl) = new_alias_set (); 551 record_alias_subset (pointed_to_alias_set, 552 DECL_POINTER_ALIAS_SET (decl)); 553 } 554 } 555 556 /* We use the alias set indicated in the declaration. */ 557 return DECL_POINTER_ALIAS_SET (decl); 558 } 559 560 /* If we have an INDIRECT_REF via a void pointer, we don't 561 know anything about what that might alias. Likewise if the 562 pointer is marked that way. */ 563 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE 564 || (TYPE_REF_CAN_ALIAS_ALL 565 (TREE_TYPE (TREE_OPERAND (inner, 0))))) 566 return 0; 567 } 568 569 /* Otherwise, pick up the outermost object that we could have a pointer 570 to, processing conversions as above. */ 571 while (component_uses_parent_alias_set (t)) 572 { 573 t = TREE_OPERAND (t, 0); 574 STRIP_NOPS (t); 575 } 576 577 /* If we've already determined the alias set for a decl, just return 578 it. This is necessary for C++ anonymous unions, whose component 579 variables don't look like union members (boo!). */ 580 if (TREE_CODE (t) == VAR_DECL 581 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t))) 582 return MEM_ALIAS_SET (DECL_RTL (t)); 583 584 /* Now all we care about is the type. */ 585 t = TREE_TYPE (t); 586 } 587 588 /* Variant qualifiers don't affect the alias set, so get the main 589 variant. If this is a type with a known alias set, return it. */ 590 t = TYPE_MAIN_VARIANT (t); 591 if (TYPE_ALIAS_SET_KNOWN_P (t)) 592 return TYPE_ALIAS_SET (t); 593 594 /* See if the language has special handling for this type. */ 595 set = lang_hooks.get_alias_set (t); 596 if (set != -1) 597 return set; 598 599 /* There are no objects of FUNCTION_TYPE, so there's no point in 600 using up an alias set for them. (There are, of course, pointers 601 and references to functions, but that's different.) */ 602 else if (TREE_CODE (t) == FUNCTION_TYPE) 603 set = 0; 604 605 /* Unless the language specifies otherwise, let vector types alias 606 their components. This avoids some nasty type punning issues in 607 normal usage. And indeed lets vectors be treated more like an 608 array slice. */ 609 else if (TREE_CODE (t) == VECTOR_TYPE) 610 set = get_alias_set (TREE_TYPE (t)); 611 612 else 613 /* Otherwise make a new alias set for this type. */ 614 set = new_alias_set (); 615 616 TYPE_ALIAS_SET (t) = set; 617 618 /* If this is an aggregate type, we must record any component aliasing 619 information. */ 620 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE) 621 record_component_aliases (t); 622 623 return set; 624 } 625 626 /* Return a brand-new alias set. */ 627 628 HOST_WIDE_INT 629 new_alias_set (void) 630 { 631 if (flag_strict_aliasing) 632 { 633 if (alias_sets == 0) 634 VEC_safe_push (alias_set_entry, gc, alias_sets, 0); 635 VEC_safe_push (alias_set_entry, gc, alias_sets, 0); 636 return VEC_length (alias_set_entry, alias_sets) - 1; 637 } 638 else 639 return 0; 640 } 641 642 /* Indicate that things in SUBSET can alias things in SUPERSET, but that 643 not everything that aliases SUPERSET also aliases SUBSET. For example, 644 in C, a store to an `int' can alias a load of a structure containing an 645 `int', and vice versa. But it can't alias a load of a 'double' member 646 of the same structure. Here, the structure would be the SUPERSET and 647 `int' the SUBSET. This relationship is also described in the comment at 648 the beginning of this file. 649 650 This function should be called only once per SUPERSET/SUBSET pair. 651 652 It is illegal for SUPERSET to be zero; everything is implicitly a 653 subset of alias set zero. */ 654 655 static void 656 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset) 657 { 658 alias_set_entry superset_entry; 659 alias_set_entry subset_entry; 660 661 /* It is possible in complex type situations for both sets to be the same, 662 in which case we can ignore this operation. */ 663 if (superset == subset) 664 return; 665 666 gcc_assert (superset); 667 668 superset_entry = get_alias_set_entry (superset); 669 if (superset_entry == 0) 670 { 671 /* Create an entry for the SUPERSET, so that we have a place to 672 attach the SUBSET. */ 673 superset_entry = ggc_alloc (sizeof (struct alias_set_entry)); 674 superset_entry->alias_set = superset; 675 superset_entry->children 676 = splay_tree_new_ggc (splay_tree_compare_ints); 677 superset_entry->has_zero_child = 0; 678 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry); 679 } 680 681 if (subset == 0) 682 superset_entry->has_zero_child = 1; 683 else 684 { 685 subset_entry = get_alias_set_entry (subset); 686 /* If there is an entry for the subset, enter all of its children 687 (if they are not already present) as children of the SUPERSET. */ 688 if (subset_entry) 689 { 690 if (subset_entry->has_zero_child) 691 superset_entry->has_zero_child = 1; 692 693 splay_tree_foreach (subset_entry->children, insert_subset_children, 694 superset_entry->children); 695 } 696 697 /* Enter the SUBSET itself as a child of the SUPERSET. */ 698 splay_tree_insert (superset_entry->children, 699 (splay_tree_key) subset, 0); 700 } 701 } 702 703 /* Record that component types of TYPE, if any, are part of that type for 704 aliasing purposes. For record types, we only record component types 705 for fields that are marked addressable. For array types, we always 706 record the component types, so the front end should not call this 707 function if the individual component aren't addressable. */ 708 709 void 710 record_component_aliases (tree type) 711 { 712 HOST_WIDE_INT superset = get_alias_set (type); 713 tree field; 714 715 if (superset == 0) 716 return; 717 718 switch (TREE_CODE (type)) 719 { 720 case ARRAY_TYPE: 721 if (! TYPE_NONALIASED_COMPONENT (type)) 722 record_alias_subset (superset, get_alias_set (TREE_TYPE (type))); 723 break; 724 725 case RECORD_TYPE: 726 case UNION_TYPE: 727 case QUAL_UNION_TYPE: 728 /* Recursively record aliases for the base classes, if there are any. */ 729 if (TYPE_BINFO (type)) 730 { 731 int i; 732 tree binfo, base_binfo; 733 734 for (binfo = TYPE_BINFO (type), i = 0; 735 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) 736 record_alias_subset (superset, 737 get_alias_set (BINFO_TYPE (base_binfo))); 738 } 739 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field)) 740 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field)) 741 record_alias_subset (superset, get_alias_set (TREE_TYPE (field))); 742 break; 743 744 case COMPLEX_TYPE: 745 record_alias_subset (superset, get_alias_set (TREE_TYPE (type))); 746 break; 747 748 default: 749 break; 750 } 751 } 752 753 /* Allocate an alias set for use in storing and reading from the varargs 754 spill area. */ 755 756 static GTY(()) HOST_WIDE_INT varargs_set = -1; 757 758 HOST_WIDE_INT 759 get_varargs_alias_set (void) 760 { 761 #if 1 762 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the 763 varargs alias set to an INDIRECT_REF (FIXME!), so we can't 764 consistently use the varargs alias set for loads from the varargs 765 area. So don't use it anywhere. */ 766 return 0; 767 #else 768 if (varargs_set == -1) 769 varargs_set = new_alias_set (); 770 771 return varargs_set; 772 #endif 773 } 774 775 /* Likewise, but used for the fixed portions of the frame, e.g., register 776 save areas. */ 777 778 static GTY(()) HOST_WIDE_INT frame_set = -1; 779 780 HOST_WIDE_INT 781 get_frame_alias_set (void) 782 { 783 if (frame_set == -1) 784 frame_set = new_alias_set (); 785 786 return frame_set; 787 } 788 789 /* Inside SRC, the source of a SET, find a base address. */ 790 791 static rtx 792 find_base_value (rtx src) 793 { 794 unsigned int regno; 795 796 switch (GET_CODE (src)) 797 { 798 case SYMBOL_REF: 799 case LABEL_REF: 800 return src; 801 802 case REG: 803 regno = REGNO (src); 804 /* At the start of a function, argument registers have known base 805 values which may be lost later. Returning an ADDRESS 806 expression here allows optimization based on argument values 807 even when the argument registers are used for other purposes. */ 808 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments) 809 return new_reg_base_value[regno]; 810 811 /* If a pseudo has a known base value, return it. Do not do this 812 for non-fixed hard regs since it can result in a circular 813 dependency chain for registers which have values at function entry. 814 815 The test above is not sufficient because the scheduler may move 816 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */ 817 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno]) 818 && regno < VEC_length (rtx, reg_base_value)) 819 { 820 /* If we're inside init_alias_analysis, use new_reg_base_value 821 to reduce the number of relaxation iterations. */ 822 if (new_reg_base_value && new_reg_base_value[regno] 823 && REG_N_SETS (regno) == 1) 824 return new_reg_base_value[regno]; 825 826 if (VEC_index (rtx, reg_base_value, regno)) 827 return VEC_index (rtx, reg_base_value, regno); 828 } 829 830 return 0; 831 832 case MEM: 833 /* Check for an argument passed in memory. Only record in the 834 copying-arguments block; it is too hard to track changes 835 otherwise. */ 836 if (copying_arguments 837 && (XEXP (src, 0) == arg_pointer_rtx 838 || (GET_CODE (XEXP (src, 0)) == PLUS 839 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx))) 840 return gen_rtx_ADDRESS (VOIDmode, src); 841 return 0; 842 843 case CONST: 844 src = XEXP (src, 0); 845 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS) 846 break; 847 848 /* ... fall through ... */ 849 850 case PLUS: 851 case MINUS: 852 { 853 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1); 854 855 /* If either operand is a REG that is a known pointer, then it 856 is the base. */ 857 if (REG_P (src_0) && REG_POINTER (src_0)) 858 return find_base_value (src_0); 859 if (REG_P (src_1) && REG_POINTER (src_1)) 860 return find_base_value (src_1); 861 862 /* If either operand is a REG, then see if we already have 863 a known value for it. */ 864 if (REG_P (src_0)) 865 { 866 temp = find_base_value (src_0); 867 if (temp != 0) 868 src_0 = temp; 869 } 870 871 if (REG_P (src_1)) 872 { 873 temp = find_base_value (src_1); 874 if (temp!= 0) 875 src_1 = temp; 876 } 877 878 /* If either base is named object or a special address 879 (like an argument or stack reference), then use it for the 880 base term. */ 881 if (src_0 != 0 882 && (GET_CODE (src_0) == SYMBOL_REF 883 || GET_CODE (src_0) == LABEL_REF 884 || (GET_CODE (src_0) == ADDRESS 885 && GET_MODE (src_0) != VOIDmode))) 886 return src_0; 887 888 if (src_1 != 0 889 && (GET_CODE (src_1) == SYMBOL_REF 890 || GET_CODE (src_1) == LABEL_REF 891 || (GET_CODE (src_1) == ADDRESS 892 && GET_MODE (src_1) != VOIDmode))) 893 return src_1; 894 895 /* Guess which operand is the base address: 896 If either operand is a symbol, then it is the base. If 897 either operand is a CONST_INT, then the other is the base. */ 898 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0)) 899 return find_base_value (src_0); 900 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1)) 901 return find_base_value (src_1); 902 903 return 0; 904 } 905 906 case LO_SUM: 907 /* The standard form is (lo_sum reg sym) so look only at the 908 second operand. */ 909 return find_base_value (XEXP (src, 1)); 910 911 case AND: 912 /* If the second operand is constant set the base 913 address to the first operand. */ 914 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0) 915 return find_base_value (XEXP (src, 0)); 916 return 0; 917 918 case TRUNCATE: 919 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode)) 920 break; 921 /* Fall through. */ 922 case HIGH: 923 case PRE_INC: 924 case PRE_DEC: 925 case POST_INC: 926 case POST_DEC: 927 case PRE_MODIFY: 928 case POST_MODIFY: 929 return find_base_value (XEXP (src, 0)); 930 931 case ZERO_EXTEND: 932 case SIGN_EXTEND: /* used for NT/Alpha pointers */ 933 { 934 rtx temp = find_base_value (XEXP (src, 0)); 935 936 if (temp != 0 && CONSTANT_P (temp)) 937 temp = convert_memory_address (Pmode, temp); 938 939 return temp; 940 } 941 942 default: 943 break; 944 } 945 946 return 0; 947 } 948 949 /* Called from init_alias_analysis indirectly through note_stores. */ 950 951 /* While scanning insns to find base values, reg_seen[N] is nonzero if 952 register N has been set in this function. */ 953 static char *reg_seen; 954 955 /* Addresses which are known not to alias anything else are identified 956 by a unique integer. */ 957 static int unique_id; 958 959 static void 960 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED) 961 { 962 unsigned regno; 963 rtx src; 964 int n; 965 966 if (!REG_P (dest)) 967 return; 968 969 regno = REGNO (dest); 970 971 gcc_assert (regno < VEC_length (rtx, reg_base_value)); 972 973 /* If this spans multiple hard registers, then we must indicate that every 974 register has an unusable value. */ 975 if (regno < FIRST_PSEUDO_REGISTER) 976 n = hard_regno_nregs[regno][GET_MODE (dest)]; 977 else 978 n = 1; 979 if (n != 1) 980 { 981 while (--n >= 0) 982 { 983 reg_seen[regno + n] = 1; 984 new_reg_base_value[regno + n] = 0; 985 } 986 return; 987 } 988 989 if (set) 990 { 991 /* A CLOBBER wipes out any old value but does not prevent a previously 992 unset register from acquiring a base address (i.e. reg_seen is not 993 set). */ 994 if (GET_CODE (set) == CLOBBER) 995 { 996 new_reg_base_value[regno] = 0; 997 return; 998 } 999 src = SET_SRC (set); 1000 } 1001 else 1002 { 1003 if (reg_seen[regno]) 1004 { 1005 new_reg_base_value[regno] = 0; 1006 return; 1007 } 1008 reg_seen[regno] = 1; 1009 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode, 1010 GEN_INT (unique_id++)); 1011 return; 1012 } 1013 1014 /* If this is not the first set of REGNO, see whether the new value 1015 is related to the old one. There are two cases of interest: 1016 1017 (1) The register might be assigned an entirely new value 1018 that has the same base term as the original set. 1019 1020 (2) The set might be a simple self-modification that 1021 cannot change REGNO's base value. 1022 1023 If neither case holds, reject the original base value as invalid. 1024 Note that the following situation is not detected: 1025 1026 extern int x, y; int *p = &x; p += (&y-&x); 1027 1028 ANSI C does not allow computing the difference of addresses 1029 of distinct top level objects. */ 1030 if (new_reg_base_value[regno] != 0 1031 && find_base_value (src) != new_reg_base_value[regno]) 1032 switch (GET_CODE (src)) 1033 { 1034 case LO_SUM: 1035 case MINUS: 1036 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest) 1037 new_reg_base_value[regno] = 0; 1038 break; 1039 case PLUS: 1040 /* If the value we add in the PLUS is also a valid base value, 1041 this might be the actual base value, and the original value 1042 an index. */ 1043 { 1044 rtx other = NULL_RTX; 1045 1046 if (XEXP (src, 0) == dest) 1047 other = XEXP (src, 1); 1048 else if (XEXP (src, 1) == dest) 1049 other = XEXP (src, 0); 1050 1051 if (! other || find_base_value (other)) 1052 new_reg_base_value[regno] = 0; 1053 break; 1054 } 1055 case AND: 1056 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT) 1057 new_reg_base_value[regno] = 0; 1058 break; 1059 default: 1060 new_reg_base_value[regno] = 0; 1061 break; 1062 } 1063 /* If this is the first set of a register, record the value. */ 1064 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno]) 1065 && ! reg_seen[regno] && new_reg_base_value[regno] == 0) 1066 new_reg_base_value[regno] = find_base_value (src); 1067 1068 reg_seen[regno] = 1; 1069 } 1070 1071 /* Clear alias info for a register. This is used if an RTL transformation 1072 changes the value of a register. This is used in flow by AUTO_INC_DEC 1073 optimizations. We don't need to clear reg_base_value, since flow only 1074 changes the offset. */ 1075 1076 void 1077 clear_reg_alias_info (rtx reg) 1078 { 1079 unsigned int regno = REGNO (reg); 1080 1081 if (regno >= FIRST_PSEUDO_REGISTER) 1082 { 1083 regno -= FIRST_PSEUDO_REGISTER; 1084 if (regno < reg_known_value_size) 1085 { 1086 reg_known_value[regno] = reg; 1087 reg_known_equiv_p[regno] = false; 1088 } 1089 } 1090 } 1091 1092 /* If a value is known for REGNO, return it. */ 1093 1094 rtx 1095 get_reg_known_value (unsigned int regno) 1096 { 1097 if (regno >= FIRST_PSEUDO_REGISTER) 1098 { 1099 regno -= FIRST_PSEUDO_REGISTER; 1100 if (regno < reg_known_value_size) 1101 return reg_known_value[regno]; 1102 } 1103 return NULL; 1104 } 1105 1106 /* Set it. */ 1107 1108 static void 1109 set_reg_known_value (unsigned int regno, rtx val) 1110 { 1111 if (regno >= FIRST_PSEUDO_REGISTER) 1112 { 1113 regno -= FIRST_PSEUDO_REGISTER; 1114 if (regno < reg_known_value_size) 1115 reg_known_value[regno] = val; 1116 } 1117 } 1118 1119 /* Similarly for reg_known_equiv_p. */ 1120 1121 bool 1122 get_reg_known_equiv_p (unsigned int regno) 1123 { 1124 if (regno >= FIRST_PSEUDO_REGISTER) 1125 { 1126 regno -= FIRST_PSEUDO_REGISTER; 1127 if (regno < reg_known_value_size) 1128 return reg_known_equiv_p[regno]; 1129 } 1130 return false; 1131 } 1132 1133 static void 1134 set_reg_known_equiv_p (unsigned int regno, bool val) 1135 { 1136 if (regno >= FIRST_PSEUDO_REGISTER) 1137 { 1138 regno -= FIRST_PSEUDO_REGISTER; 1139 if (regno < reg_known_value_size) 1140 reg_known_equiv_p[regno] = val; 1141 } 1142 } 1143 1144 1145 /* Returns a canonical version of X, from the point of view alias 1146 analysis. (For example, if X is a MEM whose address is a register, 1147 and the register has a known value (say a SYMBOL_REF), then a MEM 1148 whose address is the SYMBOL_REF is returned.) */ 1149 1150 rtx 1151 canon_rtx (rtx x) 1152 { 1153 /* Recursively look for equivalences. */ 1154 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER) 1155 { 1156 rtx t = get_reg_known_value (REGNO (x)); 1157 if (t == x) 1158 return x; 1159 if (t) 1160 return canon_rtx (t); 1161 } 1162 1163 if (GET_CODE (x) == PLUS) 1164 { 1165 rtx x0 = canon_rtx (XEXP (x, 0)); 1166 rtx x1 = canon_rtx (XEXP (x, 1)); 1167 1168 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1)) 1169 { 1170 if (GET_CODE (x0) == CONST_INT) 1171 return plus_constant (x1, INTVAL (x0)); 1172 else if (GET_CODE (x1) == CONST_INT) 1173 return plus_constant (x0, INTVAL (x1)); 1174 return gen_rtx_PLUS (GET_MODE (x), x0, x1); 1175 } 1176 } 1177 1178 /* This gives us much better alias analysis when called from 1179 the loop optimizer. Note we want to leave the original 1180 MEM alone, but need to return the canonicalized MEM with 1181 all the flags with their original values. */ 1182 else if (MEM_P (x)) 1183 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0))); 1184 1185 return x; 1186 } 1187 1188 /* Return 1 if X and Y are identical-looking rtx's. 1189 Expect that X and Y has been already canonicalized. 1190 1191 We use the data in reg_known_value above to see if two registers with 1192 different numbers are, in fact, equivalent. */ 1193 1194 static int 1195 rtx_equal_for_memref_p (rtx x, rtx y) 1196 { 1197 int i; 1198 int j; 1199 enum rtx_code code; 1200 const char *fmt; 1201 1202 if (x == 0 && y == 0) 1203 return 1; 1204 if (x == 0 || y == 0) 1205 return 0; 1206 1207 if (x == y) 1208 return 1; 1209 1210 code = GET_CODE (x); 1211 /* Rtx's of different codes cannot be equal. */ 1212 if (code != GET_CODE (y)) 1213 return 0; 1214 1215 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. 1216 (REG:SI x) and (REG:HI x) are NOT equivalent. */ 1217 1218 if (GET_MODE (x) != GET_MODE (y)) 1219 return 0; 1220 1221 /* Some RTL can be compared without a recursive examination. */ 1222 switch (code) 1223 { 1224 case REG: 1225 return REGNO (x) == REGNO (y); 1226 1227 case LABEL_REF: 1228 return XEXP (x, 0) == XEXP (y, 0); 1229 1230 case SYMBOL_REF: 1231 return XSTR (x, 0) == XSTR (y, 0); 1232 1233 case VALUE: 1234 case CONST_INT: 1235 case CONST_DOUBLE: 1236 /* There's no need to compare the contents of CONST_DOUBLEs or 1237 CONST_INTs because pointer equality is a good enough 1238 comparison for these nodes. */ 1239 return 0; 1240 1241 default: 1242 break; 1243 } 1244 1245 /* canon_rtx knows how to handle plus. No need to canonicalize. */ 1246 if (code == PLUS) 1247 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0)) 1248 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1))) 1249 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1)) 1250 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0)))); 1251 /* For commutative operations, the RTX match if the operand match in any 1252 order. Also handle the simple binary and unary cases without a loop. */ 1253 if (COMMUTATIVE_P (x)) 1254 { 1255 rtx xop0 = canon_rtx (XEXP (x, 0)); 1256 rtx yop0 = canon_rtx (XEXP (y, 0)); 1257 rtx yop1 = canon_rtx (XEXP (y, 1)); 1258 1259 return ((rtx_equal_for_memref_p (xop0, yop0) 1260 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1)) 1261 || (rtx_equal_for_memref_p (xop0, yop1) 1262 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0))); 1263 } 1264 else if (NON_COMMUTATIVE_P (x)) 1265 { 1266 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)), 1267 canon_rtx (XEXP (y, 0))) 1268 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), 1269 canon_rtx (XEXP (y, 1)))); 1270 } 1271 else if (UNARY_P (x)) 1272 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)), 1273 canon_rtx (XEXP (y, 0))); 1274 1275 /* Compare the elements. If any pair of corresponding elements 1276 fail to match, return 0 for the whole things. 1277 1278 Limit cases to types which actually appear in addresses. */ 1279 1280 fmt = GET_RTX_FORMAT (code); 1281 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 1282 { 1283 switch (fmt[i]) 1284 { 1285 case 'i': 1286 if (XINT (x, i) != XINT (y, i)) 1287 return 0; 1288 break; 1289 1290 case 'E': 1291 /* Two vectors must have the same length. */ 1292 if (XVECLEN (x, i) != XVECLEN (y, i)) 1293 return 0; 1294 1295 /* And the corresponding elements must match. */ 1296 for (j = 0; j < XVECLEN (x, i); j++) 1297 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)), 1298 canon_rtx (XVECEXP (y, i, j))) == 0) 1299 return 0; 1300 break; 1301 1302 case 'e': 1303 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)), 1304 canon_rtx (XEXP (y, i))) == 0) 1305 return 0; 1306 break; 1307 1308 /* This can happen for asm operands. */ 1309 case 's': 1310 if (strcmp (XSTR (x, i), XSTR (y, i))) 1311 return 0; 1312 break; 1313 1314 /* This can happen for an asm which clobbers memory. */ 1315 case '0': 1316 break; 1317 1318 /* It is believed that rtx's at this level will never 1319 contain anything but integers and other rtx's, 1320 except for within LABEL_REFs and SYMBOL_REFs. */ 1321 default: 1322 gcc_unreachable (); 1323 } 1324 } 1325 return 1; 1326 } 1327 1328 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within 1329 X and return it, or return 0 if none found. */ 1330 1331 static rtx 1332 find_symbolic_term (rtx x) 1333 { 1334 int i; 1335 enum rtx_code code; 1336 const char *fmt; 1337 1338 code = GET_CODE (x); 1339 if (code == SYMBOL_REF || code == LABEL_REF) 1340 return x; 1341 if (OBJECT_P (x)) 1342 return 0; 1343 1344 fmt = GET_RTX_FORMAT (code); 1345 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 1346 { 1347 rtx t; 1348 1349 if (fmt[i] == 'e') 1350 { 1351 t = find_symbolic_term (XEXP (x, i)); 1352 if (t != 0) 1353 return t; 1354 } 1355 else if (fmt[i] == 'E') 1356 break; 1357 } 1358 return 0; 1359 } 1360 1361 rtx 1362 find_base_term (rtx x) 1363 { 1364 cselib_val *val; 1365 struct elt_loc_list *l; 1366 1367 #if defined (FIND_BASE_TERM) 1368 /* Try machine-dependent ways to find the base term. */ 1369 x = FIND_BASE_TERM (x); 1370 #endif 1371 1372 switch (GET_CODE (x)) 1373 { 1374 case REG: 1375 return REG_BASE_VALUE (x); 1376 1377 case TRUNCATE: 1378 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode)) 1379 return 0; 1380 /* Fall through. */ 1381 case HIGH: 1382 case PRE_INC: 1383 case PRE_DEC: 1384 case POST_INC: 1385 case POST_DEC: 1386 case PRE_MODIFY: 1387 case POST_MODIFY: 1388 return find_base_term (XEXP (x, 0)); 1389 1390 case ZERO_EXTEND: 1391 case SIGN_EXTEND: /* Used for Alpha/NT pointers */ 1392 { 1393 rtx temp = find_base_term (XEXP (x, 0)); 1394 1395 if (temp != 0 && CONSTANT_P (temp)) 1396 temp = convert_memory_address (Pmode, temp); 1397 1398 return temp; 1399 } 1400 1401 case VALUE: 1402 val = CSELIB_VAL_PTR (x); 1403 if (!val) 1404 return 0; 1405 for (l = val->locs; l; l = l->next) 1406 if ((x = find_base_term (l->loc)) != 0) 1407 return x; 1408 return 0; 1409 1410 case CONST: 1411 x = XEXP (x, 0); 1412 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS) 1413 return 0; 1414 /* Fall through. */ 1415 case LO_SUM: 1416 case PLUS: 1417 case MINUS: 1418 { 1419 rtx tmp1 = XEXP (x, 0); 1420 rtx tmp2 = XEXP (x, 1); 1421 1422 /* This is a little bit tricky since we have to determine which of 1423 the two operands represents the real base address. Otherwise this 1424 routine may return the index register instead of the base register. 1425 1426 That may cause us to believe no aliasing was possible, when in 1427 fact aliasing is possible. 1428 1429 We use a few simple tests to guess the base register. Additional 1430 tests can certainly be added. For example, if one of the operands 1431 is a shift or multiply, then it must be the index register and the 1432 other operand is the base register. */ 1433 1434 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2)) 1435 return find_base_term (tmp2); 1436 1437 /* If either operand is known to be a pointer, then use it 1438 to determine the base term. */ 1439 if (REG_P (tmp1) && REG_POINTER (tmp1)) 1440 return find_base_term (tmp1); 1441 1442 if (REG_P (tmp2) && REG_POINTER (tmp2)) 1443 return find_base_term (tmp2); 1444 1445 /* Neither operand was known to be a pointer. Go ahead and find the 1446 base term for both operands. */ 1447 tmp1 = find_base_term (tmp1); 1448 tmp2 = find_base_term (tmp2); 1449 1450 /* If either base term is named object or a special address 1451 (like an argument or stack reference), then use it for the 1452 base term. */ 1453 if (tmp1 != 0 1454 && (GET_CODE (tmp1) == SYMBOL_REF 1455 || GET_CODE (tmp1) == LABEL_REF 1456 || (GET_CODE (tmp1) == ADDRESS 1457 && GET_MODE (tmp1) != VOIDmode))) 1458 return tmp1; 1459 1460 if (tmp2 != 0 1461 && (GET_CODE (tmp2) == SYMBOL_REF 1462 || GET_CODE (tmp2) == LABEL_REF 1463 || (GET_CODE (tmp2) == ADDRESS 1464 && GET_MODE (tmp2) != VOIDmode))) 1465 return tmp2; 1466 1467 /* We could not determine which of the two operands was the 1468 base register and which was the index. So we can determine 1469 nothing from the base alias check. */ 1470 return 0; 1471 } 1472 1473 case AND: 1474 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0) 1475 return find_base_term (XEXP (x, 0)); 1476 return 0; 1477 1478 case SYMBOL_REF: 1479 case LABEL_REF: 1480 return x; 1481 1482 default: 1483 return 0; 1484 } 1485 } 1486 1487 /* Return 0 if the addresses X and Y are known to point to different 1488 objects, 1 if they might be pointers to the same object. */ 1489 1490 static int 1491 base_alias_check (rtx x, rtx y, enum machine_mode x_mode, 1492 enum machine_mode y_mode) 1493 { 1494 rtx x_base = find_base_term (x); 1495 rtx y_base = find_base_term (y); 1496 1497 /* If the address itself has no known base see if a known equivalent 1498 value has one. If either address still has no known base, nothing 1499 is known about aliasing. */ 1500 if (x_base == 0) 1501 { 1502 rtx x_c; 1503 1504 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x) 1505 return 1; 1506 1507 x_base = find_base_term (x_c); 1508 if (x_base == 0) 1509 return 1; 1510 } 1511 1512 if (y_base == 0) 1513 { 1514 rtx y_c; 1515 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y) 1516 return 1; 1517 1518 y_base = find_base_term (y_c); 1519 if (y_base == 0) 1520 return 1; 1521 } 1522 1523 /* If the base addresses are equal nothing is known about aliasing. */ 1524 if (rtx_equal_p (x_base, y_base)) 1525 return 1; 1526 1527 /* The base addresses of the read and write are different expressions. 1528 If they are both symbols and they are not accessed via AND, there is 1529 no conflict. We can bring knowledge of object alignment into play 1530 here. For example, on alpha, "char a, b;" can alias one another, 1531 though "char a; long b;" cannot. */ 1532 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS) 1533 { 1534 if (GET_CODE (x) == AND && GET_CODE (y) == AND) 1535 return 1; 1536 if (GET_CODE (x) == AND 1537 && (GET_CODE (XEXP (x, 1)) != CONST_INT 1538 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1)))) 1539 return 1; 1540 if (GET_CODE (y) == AND 1541 && (GET_CODE (XEXP (y, 1)) != CONST_INT 1542 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1)))) 1543 return 1; 1544 /* Differing symbols never alias. */ 1545 return 0; 1546 } 1547 1548 /* If one address is a stack reference there can be no alias: 1549 stack references using different base registers do not alias, 1550 a stack reference can not alias a parameter, and a stack reference 1551 can not alias a global. */ 1552 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode) 1553 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode)) 1554 return 0; 1555 1556 if (! flag_argument_noalias) 1557 return 1; 1558 1559 if (flag_argument_noalias > 1) 1560 return 0; 1561 1562 /* Weak noalias assertion (arguments are distinct, but may match globals). */ 1563 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode); 1564 } 1565 1566 /* Convert the address X into something we can use. This is done by returning 1567 it unchanged unless it is a value; in the latter case we call cselib to get 1568 a more useful rtx. */ 1569 1570 rtx 1571 get_addr (rtx x) 1572 { 1573 cselib_val *v; 1574 struct elt_loc_list *l; 1575 1576 if (GET_CODE (x) != VALUE) 1577 return x; 1578 v = CSELIB_VAL_PTR (x); 1579 if (v) 1580 { 1581 for (l = v->locs; l; l = l->next) 1582 if (CONSTANT_P (l->loc)) 1583 return l->loc; 1584 for (l = v->locs; l; l = l->next) 1585 if (!REG_P (l->loc) && !MEM_P (l->loc)) 1586 return l->loc; 1587 if (v->locs) 1588 return v->locs->loc; 1589 } 1590 return x; 1591 } 1592 1593 /* Return the address of the (N_REFS + 1)th memory reference to ADDR 1594 where SIZE is the size in bytes of the memory reference. If ADDR 1595 is not modified by the memory reference then ADDR is returned. */ 1596 1597 static rtx 1598 addr_side_effect_eval (rtx addr, int size, int n_refs) 1599 { 1600 int offset = 0; 1601 1602 switch (GET_CODE (addr)) 1603 { 1604 case PRE_INC: 1605 offset = (n_refs + 1) * size; 1606 break; 1607 case PRE_DEC: 1608 offset = -(n_refs + 1) * size; 1609 break; 1610 case POST_INC: 1611 offset = n_refs * size; 1612 break; 1613 case POST_DEC: 1614 offset = -n_refs * size; 1615 break; 1616 1617 default: 1618 return addr; 1619 } 1620 1621 if (offset) 1622 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0), 1623 GEN_INT (offset)); 1624 else 1625 addr = XEXP (addr, 0); 1626 addr = canon_rtx (addr); 1627 1628 return addr; 1629 } 1630 1631 /* Return nonzero if X and Y (memory addresses) could reference the 1632 same location in memory. C is an offset accumulator. When 1633 C is nonzero, we are testing aliases between X and Y + C. 1634 XSIZE is the size in bytes of the X reference, 1635 similarly YSIZE is the size in bytes for Y. 1636 Expect that canon_rtx has been already called for X and Y. 1637 1638 If XSIZE or YSIZE is zero, we do not know the amount of memory being 1639 referenced (the reference was BLKmode), so make the most pessimistic 1640 assumptions. 1641 1642 If XSIZE or YSIZE is negative, we may access memory outside the object 1643 being referenced as a side effect. This can happen when using AND to 1644 align memory references, as is done on the Alpha. 1645 1646 Nice to notice that varying addresses cannot conflict with fp if no 1647 local variables had their addresses taken, but that's too hard now. */ 1648 1649 static int 1650 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c) 1651 { 1652 if (GET_CODE (x) == VALUE) 1653 x = get_addr (x); 1654 if (GET_CODE (y) == VALUE) 1655 y = get_addr (y); 1656 if (GET_CODE (x) == HIGH) 1657 x = XEXP (x, 0); 1658 else if (GET_CODE (x) == LO_SUM) 1659 x = XEXP (x, 1); 1660 else 1661 x = addr_side_effect_eval (x, xsize, 0); 1662 if (GET_CODE (y) == HIGH) 1663 y = XEXP (y, 0); 1664 else if (GET_CODE (y) == LO_SUM) 1665 y = XEXP (y, 1); 1666 else 1667 y = addr_side_effect_eval (y, ysize, 0); 1668 1669 if (rtx_equal_for_memref_p (x, y)) 1670 { 1671 if (xsize <= 0 || ysize <= 0) 1672 return 1; 1673 if (c >= 0 && xsize > c) 1674 return 1; 1675 if (c < 0 && ysize+c > 0) 1676 return 1; 1677 return 0; 1678 } 1679 1680 /* This code used to check for conflicts involving stack references and 1681 globals but the base address alias code now handles these cases. */ 1682 1683 if (GET_CODE (x) == PLUS) 1684 { 1685 /* The fact that X is canonicalized means that this 1686 PLUS rtx is canonicalized. */ 1687 rtx x0 = XEXP (x, 0); 1688 rtx x1 = XEXP (x, 1); 1689 1690 if (GET_CODE (y) == PLUS) 1691 { 1692 /* The fact that Y is canonicalized means that this 1693 PLUS rtx is canonicalized. */ 1694 rtx y0 = XEXP (y, 0); 1695 rtx y1 = XEXP (y, 1); 1696 1697 if (rtx_equal_for_memref_p (x1, y1)) 1698 return memrefs_conflict_p (xsize, x0, ysize, y0, c); 1699 if (rtx_equal_for_memref_p (x0, y0)) 1700 return memrefs_conflict_p (xsize, x1, ysize, y1, c); 1701 if (GET_CODE (x1) == CONST_INT) 1702 { 1703 if (GET_CODE (y1) == CONST_INT) 1704 return memrefs_conflict_p (xsize, x0, ysize, y0, 1705 c - INTVAL (x1) + INTVAL (y1)); 1706 else 1707 return memrefs_conflict_p (xsize, x0, ysize, y, 1708 c - INTVAL (x1)); 1709 } 1710 else if (GET_CODE (y1) == CONST_INT) 1711 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1)); 1712 1713 return 1; 1714 } 1715 else if (GET_CODE (x1) == CONST_INT) 1716 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1)); 1717 } 1718 else if (GET_CODE (y) == PLUS) 1719 { 1720 /* The fact that Y is canonicalized means that this 1721 PLUS rtx is canonicalized. */ 1722 rtx y0 = XEXP (y, 0); 1723 rtx y1 = XEXP (y, 1); 1724 1725 if (GET_CODE (y1) == CONST_INT) 1726 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1)); 1727 else 1728 return 1; 1729 } 1730 1731 if (GET_CODE (x) == GET_CODE (y)) 1732 switch (GET_CODE (x)) 1733 { 1734 case MULT: 1735 { 1736 /* Handle cases where we expect the second operands to be the 1737 same, and check only whether the first operand would conflict 1738 or not. */ 1739 rtx x0, y0; 1740 rtx x1 = canon_rtx (XEXP (x, 1)); 1741 rtx y1 = canon_rtx (XEXP (y, 1)); 1742 if (! rtx_equal_for_memref_p (x1, y1)) 1743 return 1; 1744 x0 = canon_rtx (XEXP (x, 0)); 1745 y0 = canon_rtx (XEXP (y, 0)); 1746 if (rtx_equal_for_memref_p (x0, y0)) 1747 return (xsize == 0 || ysize == 0 1748 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)); 1749 1750 /* Can't properly adjust our sizes. */ 1751 if (GET_CODE (x1) != CONST_INT) 1752 return 1; 1753 xsize /= INTVAL (x1); 1754 ysize /= INTVAL (x1); 1755 c /= INTVAL (x1); 1756 return memrefs_conflict_p (xsize, x0, ysize, y0, c); 1757 } 1758 1759 default: 1760 break; 1761 } 1762 1763 /* Treat an access through an AND (e.g. a subword access on an Alpha) 1764 as an access with indeterminate size. Assume that references 1765 besides AND are aligned, so if the size of the other reference is 1766 at least as large as the alignment, assume no other overlap. */ 1767 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT) 1768 { 1769 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1))) 1770 xsize = -1; 1771 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c); 1772 } 1773 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT) 1774 { 1775 /* ??? If we are indexing far enough into the array/structure, we 1776 may yet be able to determine that we can not overlap. But we 1777 also need to that we are far enough from the end not to overlap 1778 a following reference, so we do nothing with that for now. */ 1779 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1))) 1780 ysize = -1; 1781 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c); 1782 } 1783 1784 if (CONSTANT_P (x)) 1785 { 1786 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT) 1787 { 1788 c += (INTVAL (y) - INTVAL (x)); 1789 return (xsize <= 0 || ysize <= 0 1790 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)); 1791 } 1792 1793 if (GET_CODE (x) == CONST) 1794 { 1795 if (GET_CODE (y) == CONST) 1796 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), 1797 ysize, canon_rtx (XEXP (y, 0)), c); 1798 else 1799 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), 1800 ysize, y, c); 1801 } 1802 if (GET_CODE (y) == CONST) 1803 return memrefs_conflict_p (xsize, x, ysize, 1804 canon_rtx (XEXP (y, 0)), c); 1805 1806 if (CONSTANT_P (y)) 1807 return (xsize <= 0 || ysize <= 0 1808 || (rtx_equal_for_memref_p (x, y) 1809 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)))); 1810 1811 return 1; 1812 } 1813 return 1; 1814 } 1815 1816 /* Functions to compute memory dependencies. 1817 1818 Since we process the insns in execution order, we can build tables 1819 to keep track of what registers are fixed (and not aliased), what registers 1820 are varying in known ways, and what registers are varying in unknown 1821 ways. 1822 1823 If both memory references are volatile, then there must always be a 1824 dependence between the two references, since their order can not be 1825 changed. A volatile and non-volatile reference can be interchanged 1826 though. 1827 1828 A MEM_IN_STRUCT reference at a non-AND varying address can never 1829 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We 1830 also must allow AND addresses, because they may generate accesses 1831 outside the object being referenced. This is used to generate 1832 aligned addresses from unaligned addresses, for instance, the alpha 1833 storeqi_unaligned pattern. */ 1834 1835 /* Read dependence: X is read after read in MEM takes place. There can 1836 only be a dependence here if both reads are volatile. */ 1837 1838 int 1839 read_dependence (rtx mem, rtx x) 1840 { 1841 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem); 1842 } 1843 1844 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and 1845 MEM2 is a reference to a structure at a varying address, or returns 1846 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL 1847 value is returned MEM1 and MEM2 can never alias. VARIES_P is used 1848 to decide whether or not an address may vary; it should return 1849 nonzero whenever variation is possible. 1850 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */ 1851 1852 static rtx 1853 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr, 1854 rtx mem2_addr, 1855 int (*varies_p) (rtx, int)) 1856 { 1857 if (! flag_strict_aliasing) 1858 return NULL_RTX; 1859 1860 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2) 1861 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1)) 1862 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a 1863 varying address. */ 1864 return mem1; 1865 1866 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2) 1867 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1)) 1868 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a 1869 varying address. */ 1870 return mem2; 1871 1872 return NULL_RTX; 1873 } 1874 1875 /* Returns nonzero if something about the mode or address format MEM1 1876 indicates that it might well alias *anything*. */ 1877 1878 static int 1879 aliases_everything_p (rtx mem) 1880 { 1881 if (GET_CODE (XEXP (mem, 0)) == AND) 1882 /* If the address is an AND, it's very hard to know at what it is 1883 actually pointing. */ 1884 return 1; 1885 1886 return 0; 1887 } 1888 1889 /* Return true if we can determine that the fields referenced cannot 1890 overlap for any pair of objects. */ 1891 1892 static bool 1893 nonoverlapping_component_refs_p (tree x, tree y) 1894 { 1895 tree fieldx, fieldy, typex, typey, orig_y; 1896 1897 do 1898 { 1899 /* The comparison has to be done at a common type, since we don't 1900 know how the inheritance hierarchy works. */ 1901 orig_y = y; 1902 do 1903 { 1904 fieldx = TREE_OPERAND (x, 1); 1905 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx)); 1906 1907 y = orig_y; 1908 do 1909 { 1910 fieldy = TREE_OPERAND (y, 1); 1911 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy)); 1912 1913 if (typex == typey) 1914 goto found; 1915 1916 y = TREE_OPERAND (y, 0); 1917 } 1918 while (y && TREE_CODE (y) == COMPONENT_REF); 1919 1920 x = TREE_OPERAND (x, 0); 1921 } 1922 while (x && TREE_CODE (x) == COMPONENT_REF); 1923 /* Never found a common type. */ 1924 return false; 1925 1926 found: 1927 /* If we're left with accessing different fields of a structure, 1928 then no overlap. */ 1929 if (TREE_CODE (typex) == RECORD_TYPE 1930 && fieldx != fieldy) 1931 return true; 1932 1933 /* The comparison on the current field failed. If we're accessing 1934 a very nested structure, look at the next outer level. */ 1935 x = TREE_OPERAND (x, 0); 1936 y = TREE_OPERAND (y, 0); 1937 } 1938 while (x && y 1939 && TREE_CODE (x) == COMPONENT_REF 1940 && TREE_CODE (y) == COMPONENT_REF); 1941 1942 return false; 1943 } 1944 1945 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */ 1946 1947 static tree 1948 decl_for_component_ref (tree x) 1949 { 1950 do 1951 { 1952 x = TREE_OPERAND (x, 0); 1953 } 1954 while (x && TREE_CODE (x) == COMPONENT_REF); 1955 1956 return x && DECL_P (x) ? x : NULL_TREE; 1957 } 1958 1959 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the 1960 offset of the field reference. */ 1961 1962 static rtx 1963 adjust_offset_for_component_ref (tree x, rtx offset) 1964 { 1965 HOST_WIDE_INT ioffset; 1966 1967 if (! offset) 1968 return NULL_RTX; 1969 1970 ioffset = INTVAL (offset); 1971 do 1972 { 1973 tree offset = component_ref_field_offset (x); 1974 tree field = TREE_OPERAND (x, 1); 1975 1976 if (! host_integerp (offset, 1)) 1977 return NULL_RTX; 1978 ioffset += (tree_low_cst (offset, 1) 1979 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1) 1980 / BITS_PER_UNIT)); 1981 1982 x = TREE_OPERAND (x, 0); 1983 } 1984 while (x && TREE_CODE (x) == COMPONENT_REF); 1985 1986 return GEN_INT (ioffset); 1987 } 1988 1989 /* Return nonzero if we can determine the exprs corresponding to memrefs 1990 X and Y and they do not overlap. */ 1991 1992 static int 1993 nonoverlapping_memrefs_p (rtx x, rtx y) 1994 { 1995 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y); 1996 rtx rtlx, rtly; 1997 rtx basex, basey; 1998 rtx moffsetx, moffsety; 1999 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem; 2000 2001 /* Unless both have exprs, we can't tell anything. */ 2002 if (exprx == 0 || expry == 0) 2003 return 0; 2004 2005 /* If both are field references, we may be able to determine something. */ 2006 if (TREE_CODE (exprx) == COMPONENT_REF 2007 && TREE_CODE (expry) == COMPONENT_REF 2008 && nonoverlapping_component_refs_p (exprx, expry)) 2009 return 1; 2010 2011 2012 /* If the field reference test failed, look at the DECLs involved. */ 2013 moffsetx = MEM_OFFSET (x); 2014 if (TREE_CODE (exprx) == COMPONENT_REF) 2015 { 2016 if (TREE_CODE (expry) == VAR_DECL 2017 && POINTER_TYPE_P (TREE_TYPE (expry))) 2018 { 2019 tree field = TREE_OPERAND (exprx, 1); 2020 tree fieldcontext = DECL_FIELD_CONTEXT (field); 2021 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext, 2022 TREE_TYPE (field))) 2023 return 1; 2024 } 2025 { 2026 tree t = decl_for_component_ref (exprx); 2027 if (! t) 2028 return 0; 2029 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx); 2030 exprx = t; 2031 } 2032 } 2033 else if (INDIRECT_REF_P (exprx)) 2034 { 2035 exprx = TREE_OPERAND (exprx, 0); 2036 if (flag_argument_noalias < 2 2037 || TREE_CODE (exprx) != PARM_DECL) 2038 return 0; 2039 } 2040 2041 moffsety = MEM_OFFSET (y); 2042 if (TREE_CODE (expry) == COMPONENT_REF) 2043 { 2044 if (TREE_CODE (exprx) == VAR_DECL 2045 && POINTER_TYPE_P (TREE_TYPE (exprx))) 2046 { 2047 tree field = TREE_OPERAND (expry, 1); 2048 tree fieldcontext = DECL_FIELD_CONTEXT (field); 2049 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext, 2050 TREE_TYPE (field))) 2051 return 1; 2052 } 2053 { 2054 tree t = decl_for_component_ref (expry); 2055 if (! t) 2056 return 0; 2057 moffsety = adjust_offset_for_component_ref (expry, moffsety); 2058 expry = t; 2059 } 2060 } 2061 else if (INDIRECT_REF_P (expry)) 2062 { 2063 expry = TREE_OPERAND (expry, 0); 2064 if (flag_argument_noalias < 2 2065 || TREE_CODE (expry) != PARM_DECL) 2066 return 0; 2067 } 2068 2069 if (! DECL_P (exprx) || ! DECL_P (expry)) 2070 return 0; 2071 2072 rtlx = DECL_RTL (exprx); 2073 rtly = DECL_RTL (expry); 2074 2075 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they 2076 can't overlap unless they are the same because we never reuse that part 2077 of the stack frame used for locals for spilled pseudos. */ 2078 if ((!MEM_P (rtlx) || !MEM_P (rtly)) 2079 && ! rtx_equal_p (rtlx, rtly)) 2080 return 1; 2081 2082 /* Get the base and offsets of both decls. If either is a register, we 2083 know both are and are the same, so use that as the base. The only 2084 we can avoid overlap is if we can deduce that they are nonoverlapping 2085 pieces of that decl, which is very rare. */ 2086 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx; 2087 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT) 2088 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0); 2089 2090 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly; 2091 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT) 2092 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0); 2093 2094 /* If the bases are different, we know they do not overlap if both 2095 are constants or if one is a constant and the other a pointer into the 2096 stack frame. Otherwise a different base means we can't tell if they 2097 overlap or not. */ 2098 if (! rtx_equal_p (basex, basey)) 2099 return ((CONSTANT_P (basex) && CONSTANT_P (basey)) 2100 || (CONSTANT_P (basex) && REG_P (basey) 2101 && REGNO_PTR_FRAME_P (REGNO (basey))) 2102 || (CONSTANT_P (basey) && REG_P (basex) 2103 && REGNO_PTR_FRAME_P (REGNO (basex)))); 2104 2105 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx)) 2106 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx)) 2107 : -1); 2108 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly)) 2109 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) : 2110 -1); 2111 2112 /* If we have an offset for either memref, it can update the values computed 2113 above. */ 2114 if (moffsetx) 2115 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx); 2116 if (moffsety) 2117 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety); 2118 2119 /* If a memref has both a size and an offset, we can use the smaller size. 2120 We can't do this if the offset isn't known because we must view this 2121 memref as being anywhere inside the DECL's MEM. */ 2122 if (MEM_SIZE (x) && moffsetx) 2123 sizex = INTVAL (MEM_SIZE (x)); 2124 if (MEM_SIZE (y) && moffsety) 2125 sizey = INTVAL (MEM_SIZE (y)); 2126 2127 /* Put the values of the memref with the lower offset in X's values. */ 2128 if (offsetx > offsety) 2129 { 2130 tem = offsetx, offsetx = offsety, offsety = tem; 2131 tem = sizex, sizex = sizey, sizey = tem; 2132 } 2133 2134 /* If we don't know the size of the lower-offset value, we can't tell 2135 if they conflict. Otherwise, we do the test. */ 2136 return sizex >= 0 && offsety >= offsetx + sizex; 2137 } 2138 2139 /* True dependence: X is read after store in MEM takes place. */ 2140 2141 int 2142 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x, 2143 int (*varies) (rtx, int)) 2144 { 2145 rtx x_addr, mem_addr; 2146 rtx base; 2147 2148 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) 2149 return 1; 2150 2151 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything. 2152 This is used in epilogue deallocation functions. */ 2153 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH) 2154 return 1; 2155 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH) 2156 return 1; 2157 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER 2158 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) 2159 return 1; 2160 2161 if (DIFFERENT_ALIAS_SETS_P (x, mem)) 2162 return 0; 2163 2164 /* Read-only memory is by definition never modified, and therefore can't 2165 conflict with anything. We don't expect to find read-only set on MEM, 2166 but stupid user tricks can produce them, so don't die. */ 2167 if (MEM_READONLY_P (x)) 2168 return 0; 2169 2170 if (nonoverlapping_memrefs_p (mem, x)) 2171 return 0; 2172 2173 if (mem_mode == VOIDmode) 2174 mem_mode = GET_MODE (mem); 2175 2176 x_addr = get_addr (XEXP (x, 0)); 2177 mem_addr = get_addr (XEXP (mem, 0)); 2178 2179 base = find_base_term (x_addr); 2180 if (base && (GET_CODE (base) == LABEL_REF 2181 || (GET_CODE (base) == SYMBOL_REF 2182 && CONSTANT_POOL_ADDRESS_P (base)))) 2183 return 0; 2184 2185 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode)) 2186 return 0; 2187 2188 x_addr = canon_rtx (x_addr); 2189 mem_addr = canon_rtx (mem_addr); 2190 2191 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr, 2192 SIZE_FOR_MODE (x), x_addr, 0)) 2193 return 0; 2194 2195 if (aliases_everything_p (x)) 2196 return 1; 2197 2198 /* We cannot use aliases_everything_p to test MEM, since we must look 2199 at MEM_MODE, rather than GET_MODE (MEM). */ 2200 if (mem_mode == QImode || GET_CODE (mem_addr) == AND) 2201 return 1; 2202 2203 /* In true_dependence we also allow BLKmode to alias anything. Why 2204 don't we do this in anti_dependence and output_dependence? */ 2205 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode) 2206 return 1; 2207 2208 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, 2209 varies); 2210 } 2211 2212 /* Canonical true dependence: X is read after store in MEM takes place. 2213 Variant of true_dependence which assumes MEM has already been 2214 canonicalized (hence we no longer do that here). 2215 The mem_addr argument has been added, since true_dependence computed 2216 this value prior to canonicalizing. */ 2217 2218 int 2219 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr, 2220 rtx x, int (*varies) (rtx, int)) 2221 { 2222 rtx x_addr; 2223 2224 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) 2225 return 1; 2226 2227 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything. 2228 This is used in epilogue deallocation functions. */ 2229 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH) 2230 return 1; 2231 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH) 2232 return 1; 2233 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER 2234 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) 2235 return 1; 2236 2237 if (DIFFERENT_ALIAS_SETS_P (x, mem)) 2238 return 0; 2239 2240 /* Read-only memory is by definition never modified, and therefore can't 2241 conflict with anything. We don't expect to find read-only set on MEM, 2242 but stupid user tricks can produce them, so don't die. */ 2243 if (MEM_READONLY_P (x)) 2244 return 0; 2245 2246 if (nonoverlapping_memrefs_p (x, mem)) 2247 return 0; 2248 2249 x_addr = get_addr (XEXP (x, 0)); 2250 2251 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode)) 2252 return 0; 2253 2254 x_addr = canon_rtx (x_addr); 2255 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr, 2256 SIZE_FOR_MODE (x), x_addr, 0)) 2257 return 0; 2258 2259 if (aliases_everything_p (x)) 2260 return 1; 2261 2262 /* We cannot use aliases_everything_p to test MEM, since we must look 2263 at MEM_MODE, rather than GET_MODE (MEM). */ 2264 if (mem_mode == QImode || GET_CODE (mem_addr) == AND) 2265 return 1; 2266 2267 /* In true_dependence we also allow BLKmode to alias anything. Why 2268 don't we do this in anti_dependence and output_dependence? */ 2269 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode) 2270 return 1; 2271 2272 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, 2273 varies); 2274 } 2275 2276 /* Returns nonzero if a write to X might alias a previous read from 2277 (or, if WRITEP is nonzero, a write to) MEM. */ 2278 2279 static int 2280 write_dependence_p (rtx mem, rtx x, int writep) 2281 { 2282 rtx x_addr, mem_addr; 2283 rtx fixed_scalar; 2284 rtx base; 2285 2286 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) 2287 return 1; 2288 2289 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything. 2290 This is used in epilogue deallocation functions. */ 2291 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH) 2292 return 1; 2293 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH) 2294 return 1; 2295 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER 2296 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) 2297 return 1; 2298 2299 if (DIFFERENT_ALIAS_SETS_P (x, mem)) 2300 return 0; 2301 2302 /* A read from read-only memory can't conflict with read-write memory. */ 2303 if (!writep && MEM_READONLY_P (mem)) 2304 return 0; 2305 2306 if (nonoverlapping_memrefs_p (x, mem)) 2307 return 0; 2308 2309 x_addr = get_addr (XEXP (x, 0)); 2310 mem_addr = get_addr (XEXP (mem, 0)); 2311 2312 if (! writep) 2313 { 2314 base = find_base_term (mem_addr); 2315 if (base && (GET_CODE (base) == LABEL_REF 2316 || (GET_CODE (base) == SYMBOL_REF 2317 && CONSTANT_POOL_ADDRESS_P (base)))) 2318 return 0; 2319 } 2320 2321 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), 2322 GET_MODE (mem))) 2323 return 0; 2324 2325 x_addr = canon_rtx (x_addr); 2326 mem_addr = canon_rtx (mem_addr); 2327 2328 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr, 2329 SIZE_FOR_MODE (x), x_addr, 0)) 2330 return 0; 2331 2332 fixed_scalar 2333 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, 2334 rtx_addr_varies_p); 2335 2336 return (!(fixed_scalar == mem && !aliases_everything_p (x)) 2337 && !(fixed_scalar == x && !aliases_everything_p (mem))); 2338 } 2339 2340 /* Anti dependence: X is written after read in MEM takes place. */ 2341 2342 int 2343 anti_dependence (rtx mem, rtx x) 2344 { 2345 return write_dependence_p (mem, x, /*writep=*/0); 2346 } 2347 2348 /* Output dependence: X is written after store in MEM takes place. */ 2349 2350 int 2351 output_dependence (rtx mem, rtx x) 2352 { 2353 return write_dependence_p (mem, x, /*writep=*/1); 2354 } 2355 2356 2357 void 2358 init_alias_once (void) 2359 { 2360 int i; 2361 2362 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 2363 /* Check whether this register can hold an incoming pointer 2364 argument. FUNCTION_ARG_REGNO_P tests outgoing register 2365 numbers, so translate if necessary due to register windows. */ 2366 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i)) 2367 && HARD_REGNO_MODE_OK (i, Pmode)) 2368 static_reg_base_value[i] 2369 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i)); 2370 2371 static_reg_base_value[STACK_POINTER_REGNUM] 2372 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx); 2373 static_reg_base_value[ARG_POINTER_REGNUM] 2374 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx); 2375 static_reg_base_value[FRAME_POINTER_REGNUM] 2376 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx); 2377 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM 2378 static_reg_base_value[HARD_FRAME_POINTER_REGNUM] 2379 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx); 2380 #endif 2381 } 2382 2383 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed 2384 to be memory reference. */ 2385 static bool memory_modified; 2386 static void 2387 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data) 2388 { 2389 if (MEM_P (x)) 2390 { 2391 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data)) 2392 memory_modified = true; 2393 } 2394 } 2395 2396 2397 /* Return true when INSN possibly modify memory contents of MEM 2398 (i.e. address can be modified). */ 2399 bool 2400 memory_modified_in_insn_p (rtx mem, rtx insn) 2401 { 2402 if (!INSN_P (insn)) 2403 return false; 2404 memory_modified = false; 2405 note_stores (PATTERN (insn), memory_modified_1, mem); 2406 return memory_modified; 2407 } 2408 2409 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE 2410 array. */ 2411 2412 void 2413 init_alias_analysis (void) 2414 { 2415 unsigned int maxreg = max_reg_num (); 2416 int changed, pass; 2417 int i; 2418 unsigned int ui; 2419 rtx insn; 2420 2421 timevar_push (TV_ALIAS_ANALYSIS); 2422 2423 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER; 2424 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx)); 2425 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool)); 2426 2427 /* If we have memory allocated from the previous run, use it. */ 2428 if (old_reg_base_value) 2429 reg_base_value = old_reg_base_value; 2430 2431 if (reg_base_value) 2432 VEC_truncate (rtx, reg_base_value, 0); 2433 2434 VEC_safe_grow (rtx, gc, reg_base_value, maxreg); 2435 memset (VEC_address (rtx, reg_base_value), 0, 2436 sizeof (rtx) * VEC_length (rtx, reg_base_value)); 2437 2438 new_reg_base_value = XNEWVEC (rtx, maxreg); 2439 reg_seen = XNEWVEC (char, maxreg); 2440 2441 /* The basic idea is that each pass through this loop will use the 2442 "constant" information from the previous pass to propagate alias 2443 information through another level of assignments. 2444 2445 This could get expensive if the assignment chains are long. Maybe 2446 we should throttle the number of iterations, possibly based on 2447 the optimization level or flag_expensive_optimizations. 2448 2449 We could propagate more information in the first pass by making use 2450 of REG_N_SETS to determine immediately that the alias information 2451 for a pseudo is "constant". 2452 2453 A program with an uninitialized variable can cause an infinite loop 2454 here. Instead of doing a full dataflow analysis to detect such problems 2455 we just cap the number of iterations for the loop. 2456 2457 The state of the arrays for the set chain in question does not matter 2458 since the program has undefined behavior. */ 2459 2460 pass = 0; 2461 do 2462 { 2463 /* Assume nothing will change this iteration of the loop. */ 2464 changed = 0; 2465 2466 /* We want to assign the same IDs each iteration of this loop, so 2467 start counting from zero each iteration of the loop. */ 2468 unique_id = 0; 2469 2470 /* We're at the start of the function each iteration through the 2471 loop, so we're copying arguments. */ 2472 copying_arguments = true; 2473 2474 /* Wipe the potential alias information clean for this pass. */ 2475 memset (new_reg_base_value, 0, maxreg * sizeof (rtx)); 2476 2477 /* Wipe the reg_seen array clean. */ 2478 memset (reg_seen, 0, maxreg); 2479 2480 /* Mark all hard registers which may contain an address. 2481 The stack, frame and argument pointers may contain an address. 2482 An argument register which can hold a Pmode value may contain 2483 an address even if it is not in BASE_REGS. 2484 2485 The address expression is VOIDmode for an argument and 2486 Pmode for other registers. */ 2487 2488 memcpy (new_reg_base_value, static_reg_base_value, 2489 FIRST_PSEUDO_REGISTER * sizeof (rtx)); 2490 2491 /* Walk the insns adding values to the new_reg_base_value array. */ 2492 for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) 2493 { 2494 if (INSN_P (insn)) 2495 { 2496 rtx note, set; 2497 2498 #if defined (HAVE_prologue) || defined (HAVE_epilogue) 2499 /* The prologue/epilogue insns are not threaded onto the 2500 insn chain until after reload has completed. Thus, 2501 there is no sense wasting time checking if INSN is in 2502 the prologue/epilogue until after reload has completed. */ 2503 if (reload_completed 2504 && prologue_epilogue_contains (insn)) 2505 continue; 2506 #endif 2507 2508 /* If this insn has a noalias note, process it, Otherwise, 2509 scan for sets. A simple set will have no side effects 2510 which could change the base value of any other register. */ 2511 2512 if (GET_CODE (PATTERN (insn)) == SET 2513 && REG_NOTES (insn) != 0 2514 && find_reg_note (insn, REG_NOALIAS, NULL_RTX)) 2515 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL); 2516 else 2517 note_stores (PATTERN (insn), record_set, NULL); 2518 2519 set = single_set (insn); 2520 2521 if (set != 0 2522 && REG_P (SET_DEST (set)) 2523 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER) 2524 { 2525 unsigned int regno = REGNO (SET_DEST (set)); 2526 rtx src = SET_SRC (set); 2527 rtx t; 2528 2529 if (REG_NOTES (insn) != 0 2530 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0 2531 && REG_N_SETS (regno) == 1) 2532 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0) 2533 && GET_CODE (XEXP (note, 0)) != EXPR_LIST 2534 && ! rtx_varies_p (XEXP (note, 0), 1) 2535 && ! reg_overlap_mentioned_p (SET_DEST (set), 2536 XEXP (note, 0))) 2537 { 2538 set_reg_known_value (regno, XEXP (note, 0)); 2539 set_reg_known_equiv_p (regno, 2540 REG_NOTE_KIND (note) == REG_EQUIV); 2541 } 2542 else if (REG_N_SETS (regno) == 1 2543 && GET_CODE (src) == PLUS 2544 && REG_P (XEXP (src, 0)) 2545 && (t = get_reg_known_value (REGNO (XEXP (src, 0)))) 2546 && GET_CODE (XEXP (src, 1)) == CONST_INT) 2547 { 2548 t = plus_constant (t, INTVAL (XEXP (src, 1))); 2549 set_reg_known_value (regno, t); 2550 set_reg_known_equiv_p (regno, 0); 2551 } 2552 else if (REG_N_SETS (regno) == 1 2553 && ! rtx_varies_p (src, 1)) 2554 { 2555 set_reg_known_value (regno, src); 2556 set_reg_known_equiv_p (regno, 0); 2557 } 2558 } 2559 } 2560 else if (NOTE_P (insn) 2561 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG) 2562 copying_arguments = false; 2563 } 2564 2565 /* Now propagate values from new_reg_base_value to reg_base_value. */ 2566 gcc_assert (maxreg == (unsigned int) max_reg_num()); 2567 2568 for (ui = 0; ui < maxreg; ui++) 2569 { 2570 if (new_reg_base_value[ui] 2571 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui) 2572 && ! rtx_equal_p (new_reg_base_value[ui], 2573 VEC_index (rtx, reg_base_value, ui))) 2574 { 2575 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]); 2576 changed = 1; 2577 } 2578 } 2579 } 2580 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES); 2581 2582 /* Fill in the remaining entries. */ 2583 for (i = 0; i < (int)reg_known_value_size; i++) 2584 if (reg_known_value[i] == 0) 2585 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER]; 2586 2587 /* Simplify the reg_base_value array so that no register refers to 2588 another register, except to special registers indirectly through 2589 ADDRESS expressions. 2590 2591 In theory this loop can take as long as O(registers^2), but unless 2592 there are very long dependency chains it will run in close to linear 2593 time. 2594 2595 This loop may not be needed any longer now that the main loop does 2596 a better job at propagating alias information. */ 2597 pass = 0; 2598 do 2599 { 2600 changed = 0; 2601 pass++; 2602 for (ui = 0; ui < maxreg; ui++) 2603 { 2604 rtx base = VEC_index (rtx, reg_base_value, ui); 2605 if (base && REG_P (base)) 2606 { 2607 unsigned int base_regno = REGNO (base); 2608 if (base_regno == ui) /* register set from itself */ 2609 VEC_replace (rtx, reg_base_value, ui, 0); 2610 else 2611 VEC_replace (rtx, reg_base_value, ui, 2612 VEC_index (rtx, reg_base_value, base_regno)); 2613 changed = 1; 2614 } 2615 } 2616 } 2617 while (changed && pass < MAX_ALIAS_LOOP_PASSES); 2618 2619 /* Clean up. */ 2620 free (new_reg_base_value); 2621 new_reg_base_value = 0; 2622 free (reg_seen); 2623 reg_seen = 0; 2624 timevar_pop (TV_ALIAS_ANALYSIS); 2625 } 2626 2627 void 2628 end_alias_analysis (void) 2629 { 2630 old_reg_base_value = reg_base_value; 2631 ggc_free (reg_known_value); 2632 reg_known_value = 0; 2633 reg_known_value_size = 0; 2634 free (reg_known_equiv_p); 2635 reg_known_equiv_p = 0; 2636 } 2637 2638 #include "gt-alias.h" 2639