xref: /openbsd/gnu/gcc/gcc/cfgrtl.c (revision 73471bf0)
1 /* Control flow graph manipulation code for GNU compiler.
2    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21 
22 /* This file contains low level functions to manipulate the CFG and analyze it
23    that are aware of the RTL intermediate language.
24 
25    Available functionality:
26      - Basic CFG/RTL manipulation API documented in cfghooks.h
27      - CFG-aware instruction chain manipulation
28 	 delete_insn, delete_insn_chain
29      - Edge splitting and committing to edges
30 	 insert_insn_on_edge, commit_edge_insertions
31      - CFG updating after insn simplification
32 	 purge_dead_edges, purge_all_dead_edges
33 
34    Functions not supposed for generic use:
35      - Infrastructure to determine quickly basic block for insn
36 	 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37      - Edge redirection with updating and optimizing of insn chain
38 	 block_label, tidy_fallthru_edge, force_nonfallthru  */
39 
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "tm.h"
44 #include "tree.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "basic-block.h"
48 #include "regs.h"
49 #include "flags.h"
50 #include "output.h"
51 #include "function.h"
52 #include "except.h"
53 #include "toplev.h"
54 #include "tm_p.h"
55 #include "obstack.h"
56 #include "insn-config.h"
57 #include "cfglayout.h"
58 #include "expr.h"
59 #include "target.h"
60 #include "cfgloop.h"
61 #include "ggc.h"
62 #include "tree-pass.h"
63 
64 static int can_delete_note_p (rtx);
65 static int can_delete_label_p (rtx);
66 static void commit_one_edge_insertion (edge, int);
67 static basic_block rtl_split_edge (edge);
68 static bool rtl_move_block_after (basic_block, basic_block);
69 static int rtl_verify_flow_info (void);
70 static basic_block cfg_layout_split_block (basic_block, void *);
71 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
72 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
73 static void cfg_layout_delete_block (basic_block);
74 static void rtl_delete_block (basic_block);
75 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
76 static edge rtl_redirect_edge_and_branch (edge, basic_block);
77 static basic_block rtl_split_block (basic_block, void *);
78 static void rtl_dump_bb (basic_block, FILE *, int);
79 static int rtl_verify_flow_info_1 (void);
80 static void rtl_make_forwarder_block (edge);
81 
82 /* Return true if NOTE is not one of the ones that must be kept paired,
83    so that we may simply delete it.  */
84 
85 static int
86 can_delete_note_p (rtx note)
87 {
88   return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
89 	  || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK);
90 }
91 
92 /* True if a given label can be deleted.  */
93 
94 static int
95 can_delete_label_p (rtx label)
96 {
97   return (!LABEL_PRESERVE_P (label)
98 	  /* User declared labels must be preserved.  */
99 	  && LABEL_NAME (label) == 0
100 	  && !in_expr_list_p (forced_labels, label));
101 }
102 
103 /* Delete INSN by patching it out.  Return the next insn.  */
104 
105 rtx
106 delete_insn (rtx insn)
107 {
108   rtx next = NEXT_INSN (insn);
109   rtx note;
110   bool really_delete = true;
111 
112   if (LABEL_P (insn))
113     {
114       /* Some labels can't be directly removed from the INSN chain, as they
115 	 might be references via variables, constant pool etc.
116 	 Convert them to the special NOTE_INSN_DELETED_LABEL note.  */
117       if (! can_delete_label_p (insn))
118 	{
119 	  const char *name = LABEL_NAME (insn);
120 
121 	  really_delete = false;
122 	  PUT_CODE (insn, NOTE);
123 	  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
124 	  NOTE_DELETED_LABEL_NAME (insn) = name;
125 	}
126 
127       remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
128     }
129 
130   if (really_delete)
131     {
132       /* If this insn has already been deleted, something is very wrong.  */
133       gcc_assert (!INSN_DELETED_P (insn));
134       remove_insn (insn);
135       INSN_DELETED_P (insn) = 1;
136     }
137 
138   /* If deleting a jump, decrement the use count of the label.  Deleting
139      the label itself should happen in the normal course of block merging.  */
140   if (JUMP_P (insn)
141       && JUMP_LABEL (insn)
142       && LABEL_P (JUMP_LABEL (insn)))
143     LABEL_NUSES (JUMP_LABEL (insn))--;
144 
145   /* Also if deleting an insn that references a label.  */
146   else
147     {
148       while ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
149 	     && LABEL_P (XEXP (note, 0)))
150 	{
151 	  LABEL_NUSES (XEXP (note, 0))--;
152 	  remove_note (insn, note);
153 	}
154     }
155 
156   if (JUMP_P (insn)
157       && (GET_CODE (PATTERN (insn)) == ADDR_VEC
158 	  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
159     {
160       rtx pat = PATTERN (insn);
161       int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
162       int len = XVECLEN (pat, diff_vec_p);
163       int i;
164 
165       for (i = 0; i < len; i++)
166 	{
167 	  rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
168 
169 	  /* When deleting code in bulk (e.g. removing many unreachable
170 	     blocks) we can delete a label that's a target of the vector
171 	     before deleting the vector itself.  */
172 	  if (!NOTE_P (label))
173 	    LABEL_NUSES (label)--;
174 	}
175     }
176 
177   return next;
178 }
179 
180 /* Like delete_insn but also purge dead edges from BB.  */
181 rtx
182 delete_insn_and_edges (rtx insn)
183 {
184   rtx x;
185   bool purge = false;
186 
187   if (INSN_P (insn)
188       && BLOCK_FOR_INSN (insn)
189       && BB_END (BLOCK_FOR_INSN (insn)) == insn)
190     purge = true;
191   x = delete_insn (insn);
192   if (purge)
193     purge_dead_edges (BLOCK_FOR_INSN (insn));
194   return x;
195 }
196 
197 /* Unlink a chain of insns between START and FINISH, leaving notes
198    that must be paired.  */
199 
200 void
201 delete_insn_chain (rtx start, rtx finish)
202 {
203   rtx next;
204 
205   /* Unchain the insns one by one.  It would be quicker to delete all of these
206      with a single unchaining, rather than one at a time, but we need to keep
207      the NOTE's.  */
208   while (1)
209     {
210       next = NEXT_INSN (start);
211       if (NOTE_P (start) && !can_delete_note_p (start))
212 	;
213       else
214 	next = delete_insn (start);
215 
216       if (start == finish)
217 	break;
218       start = next;
219     }
220 }
221 
222 /* Like delete_insn but also purge dead edges from BB.  */
223 void
224 delete_insn_chain_and_edges (rtx first, rtx last)
225 {
226   bool purge = false;
227 
228   if (INSN_P (last)
229       && BLOCK_FOR_INSN (last)
230       && BB_END (BLOCK_FOR_INSN (last)) == last)
231     purge = true;
232   delete_insn_chain (first, last);
233   if (purge)
234     purge_dead_edges (BLOCK_FOR_INSN (last));
235 }
236 
237 /* Create a new basic block consisting of the instructions between HEAD and END
238    inclusive.  This function is designed to allow fast BB construction - reuses
239    the note and basic block struct in BB_NOTE, if any and do not grow
240    BASIC_BLOCK chain and should be used directly only by CFG construction code.
241    END can be NULL in to create new empty basic block before HEAD.  Both END
242    and HEAD can be NULL to create basic block at the end of INSN chain.
243    AFTER is the basic block we should be put after.  */
244 
245 basic_block
246 create_basic_block_structure (rtx head, rtx end, rtx bb_note, basic_block after)
247 {
248   basic_block bb;
249 
250   if (bb_note
251       && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
252       && bb->aux == NULL)
253     {
254       /* If we found an existing note, thread it back onto the chain.  */
255 
256       rtx after;
257 
258       if (LABEL_P (head))
259 	after = head;
260       else
261 	{
262 	  after = PREV_INSN (head);
263 	  head = bb_note;
264 	}
265 
266       if (after != bb_note && NEXT_INSN (after) != bb_note)
267 	reorder_insns_nobb (bb_note, bb_note, after);
268     }
269   else
270     {
271       /* Otherwise we must create a note and a basic block structure.  */
272 
273       bb = alloc_block ();
274 
275       init_rtl_bb_info (bb);
276       if (!head && !end)
277 	head = end = bb_note
278 	  = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
279       else if (LABEL_P (head) && end)
280 	{
281 	  bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
282 	  if (head == end)
283 	    end = bb_note;
284 	}
285       else
286 	{
287 	  bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
288 	  head = bb_note;
289 	  if (!end)
290 	    end = head;
291 	}
292 
293       NOTE_BASIC_BLOCK (bb_note) = bb;
294     }
295 
296   /* Always include the bb note in the block.  */
297   if (NEXT_INSN (end) == bb_note)
298     end = bb_note;
299 
300   BB_HEAD (bb) = head;
301   BB_END (bb) = end;
302   bb->index = last_basic_block++;
303   bb->flags = BB_NEW | BB_RTL;
304   link_block (bb, after);
305   SET_BASIC_BLOCK (bb->index, bb);
306   update_bb_for_insn (bb);
307   BB_SET_PARTITION (bb, BB_UNPARTITIONED);
308 
309   /* Tag the block so that we know it has been used when considering
310      other basic block notes.  */
311   bb->aux = bb;
312 
313   return bb;
314 }
315 
316 /* Create new basic block consisting of instructions in between HEAD and END
317    and place it to the BB chain after block AFTER.  END can be NULL in to
318    create new empty basic block before HEAD.  Both END and HEAD can be NULL to
319    create basic block at the end of INSN chain.  */
320 
321 static basic_block
322 rtl_create_basic_block (void *headp, void *endp, basic_block after)
323 {
324   rtx head = headp, end = endp;
325   basic_block bb;
326 
327   /* Grow the basic block array if needed.  */
328   if ((size_t) last_basic_block >= VEC_length (basic_block, basic_block_info))
329     {
330       size_t old_size = VEC_length (basic_block, basic_block_info);
331       size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
332       basic_block *p;
333       VEC_safe_grow (basic_block, gc, basic_block_info, new_size);
334       p = VEC_address (basic_block, basic_block_info);
335       memset (&p[old_size], 0, sizeof (basic_block) * (new_size - old_size));
336     }
337 
338   n_basic_blocks++;
339 
340   bb = create_basic_block_structure (head, end, NULL, after);
341   bb->aux = NULL;
342   return bb;
343 }
344 
345 static basic_block
346 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
347 {
348   basic_block newbb = rtl_create_basic_block (head, end, after);
349 
350   return newbb;
351 }
352 
353 /* Delete the insns in a (non-live) block.  We physically delete every
354    non-deleted-note insn, and update the flow graph appropriately.
355 
356    Return nonzero if we deleted an exception handler.  */
357 
358 /* ??? Preserving all such notes strikes me as wrong.  It would be nice
359    to post-process the stream to remove empty blocks, loops, ranges, etc.  */
360 
361 static void
362 rtl_delete_block (basic_block b)
363 {
364   rtx insn, end;
365 
366   /* If the head of this block is a CODE_LABEL, then it might be the
367      label for an exception handler which can't be reached.  We need
368      to remove the label from the exception_handler_label list.  */
369   insn = BB_HEAD (b);
370   if (LABEL_P (insn))
371     maybe_remove_eh_handler (insn);
372 
373   end = get_last_bb_insn (b);
374 
375   /* Selectively delete the entire chain.  */
376   BB_HEAD (b) = NULL;
377   delete_insn_chain (insn, end);
378   if (b->il.rtl->global_live_at_start)
379     {
380       FREE_REG_SET (b->il.rtl->global_live_at_start);
381       FREE_REG_SET (b->il.rtl->global_live_at_end);
382       b->il.rtl->global_live_at_start = NULL;
383       b->il.rtl->global_live_at_end = NULL;
384     }
385 }
386 
387 /* Records the basic block struct in BLOCK_FOR_INSN for every insn.  */
388 
389 void
390 compute_bb_for_insn (void)
391 {
392   basic_block bb;
393 
394   FOR_EACH_BB (bb)
395     {
396       rtx end = BB_END (bb);
397       rtx insn;
398 
399       for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
400 	{
401 	  BLOCK_FOR_INSN (insn) = bb;
402 	  if (insn == end)
403 	    break;
404 	}
405     }
406 }
407 
408 /* Release the basic_block_for_insn array.  */
409 
410 unsigned int
411 free_bb_for_insn (void)
412 {
413   rtx insn;
414   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
415     if (!BARRIER_P (insn))
416       BLOCK_FOR_INSN (insn) = NULL;
417   return 0;
418 }
419 
420 struct tree_opt_pass pass_free_cfg =
421 {
422   NULL,                                 /* name */
423   NULL,                                 /* gate */
424   free_bb_for_insn,                     /* execute */
425   NULL,                                 /* sub */
426   NULL,                                 /* next */
427   0,                                    /* static_pass_number */
428   0,                                    /* tv_id */
429   0,                                    /* properties_required */
430   0,                                    /* properties_provided */
431   PROP_cfg,                             /* properties_destroyed */
432   0,                                    /* todo_flags_start */
433   0,                                    /* todo_flags_finish */
434   0                                     /* letter */
435 };
436 
437 /* Return RTX to emit after when we want to emit code on the entry of function.  */
438 rtx
439 entry_of_function (void)
440 {
441   return (n_basic_blocks > NUM_FIXED_BLOCKS ?
442 	  BB_HEAD (ENTRY_BLOCK_PTR->next_bb) : get_insns ());
443 }
444 
445 /* Emit INSN at the entry point of the function, ensuring that it is only
446    executed once per function.  */
447 void
448 emit_insn_at_entry (rtx insn)
449 {
450   edge_iterator ei = ei_start (ENTRY_BLOCK_PTR->succs);
451   edge e = ei_safe_edge (ei);
452   gcc_assert (e->flags & EDGE_FALLTHRU);
453 
454   insert_insn_on_edge (insn, e);
455   commit_edge_insertions ();
456 }
457 
458 /* Update insns block within BB.  */
459 
460 void
461 update_bb_for_insn (basic_block bb)
462 {
463   rtx insn;
464 
465   for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
466     {
467       if (!BARRIER_P (insn))
468 	set_block_for_insn (insn, bb);
469       if (insn == BB_END (bb))
470 	break;
471     }
472 }
473 
474 /* Creates a new basic block just after basic block B by splitting
475    everything after specified instruction I.  */
476 
477 static basic_block
478 rtl_split_block (basic_block bb, void *insnp)
479 {
480   basic_block new_bb;
481   rtx insn = insnp;
482   edge e;
483   edge_iterator ei;
484 
485   if (!insn)
486     {
487       insn = first_insn_after_basic_block_note (bb);
488 
489       if (insn)
490 	insn = PREV_INSN (insn);
491       else
492 	insn = get_last_insn ();
493     }
494 
495   /* We probably should check type of the insn so that we do not create
496      inconsistent cfg.  It is checked in verify_flow_info anyway, so do not
497      bother.  */
498   if (insn == BB_END (bb))
499     emit_note_after (NOTE_INSN_DELETED, insn);
500 
501   /* Create the new basic block.  */
502   new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
503   BB_COPY_PARTITION (new_bb, bb);
504   BB_END (bb) = insn;
505 
506   /* Redirect the outgoing edges.  */
507   new_bb->succs = bb->succs;
508   bb->succs = NULL;
509   FOR_EACH_EDGE (e, ei, new_bb->succs)
510     e->src = new_bb;
511 
512   if (bb->il.rtl->global_live_at_start)
513     {
514       new_bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
515       new_bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
516       COPY_REG_SET (new_bb->il.rtl->global_live_at_end, bb->il.rtl->global_live_at_end);
517 
518       /* We now have to calculate which registers are live at the end
519 	 of the split basic block and at the start of the new basic
520 	 block.  Start with those registers that are known to be live
521 	 at the end of the original basic block and get
522 	 propagate_block to determine which registers are live.  */
523       COPY_REG_SET (new_bb->il.rtl->global_live_at_start, bb->il.rtl->global_live_at_end);
524       propagate_block (new_bb, new_bb->il.rtl->global_live_at_start, NULL, NULL, 0);
525       COPY_REG_SET (bb->il.rtl->global_live_at_end,
526 		    new_bb->il.rtl->global_live_at_start);
527 #ifdef HAVE_conditional_execution
528       /* In the presence of conditional execution we are not able to update
529 	 liveness precisely.  */
530       if (reload_completed)
531 	{
532 	  bb->flags |= BB_DIRTY;
533 	  new_bb->flags |= BB_DIRTY;
534 	}
535 #endif
536     }
537 
538   return new_bb;
539 }
540 
541 /* Blocks A and B are to be merged into a single block A.  The insns
542    are already contiguous.  */
543 
544 static void
545 rtl_merge_blocks (basic_block a, basic_block b)
546 {
547   rtx b_head = BB_HEAD (b), b_end = BB_END (b), a_end = BB_END (a);
548   rtx del_first = NULL_RTX, del_last = NULL_RTX;
549   int b_empty = 0;
550 
551   /* If there was a CODE_LABEL beginning B, delete it.  */
552   if (LABEL_P (b_head))
553     {
554       /* This might have been an EH label that no longer has incoming
555 	 EH edges.  Update data structures to match.  */
556       maybe_remove_eh_handler (b_head);
557 
558       /* Detect basic blocks with nothing but a label.  This can happen
559 	 in particular at the end of a function.  */
560       if (b_head == b_end)
561 	b_empty = 1;
562 
563       del_first = del_last = b_head;
564       b_head = NEXT_INSN (b_head);
565     }
566 
567   /* Delete the basic block note and handle blocks containing just that
568      note.  */
569   if (NOTE_INSN_BASIC_BLOCK_P (b_head))
570     {
571       if (b_head == b_end)
572 	b_empty = 1;
573       if (! del_last)
574 	del_first = b_head;
575 
576       del_last = b_head;
577       b_head = NEXT_INSN (b_head);
578     }
579 
580   /* If there was a jump out of A, delete it.  */
581   if (JUMP_P (a_end))
582     {
583       rtx prev;
584 
585       for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
586 	if (!NOTE_P (prev)
587 	    || NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
588 	    || prev == BB_HEAD (a))
589 	  break;
590 
591       del_first = a_end;
592 
593 #ifdef HAVE_cc0
594       /* If this was a conditional jump, we need to also delete
595 	 the insn that set cc0.  */
596       if (only_sets_cc0_p (prev))
597 	{
598 	  rtx tmp = prev;
599 
600 	  prev = prev_nonnote_insn (prev);
601 	  if (!prev)
602 	    prev = BB_HEAD (a);
603 	  del_first = tmp;
604 	}
605 #endif
606 
607       a_end = PREV_INSN (del_first);
608     }
609   else if (BARRIER_P (NEXT_INSN (a_end)))
610     del_first = NEXT_INSN (a_end);
611 
612   /* Delete everything marked above as well as crap that might be
613      hanging out between the two blocks.  */
614   BB_HEAD (b) = NULL;
615   delete_insn_chain (del_first, del_last);
616 
617   /* Reassociate the insns of B with A.  */
618   if (!b_empty)
619     {
620       rtx x;
621 
622       for (x = a_end; x != b_end; x = NEXT_INSN (x))
623 	set_block_for_insn (x, a);
624 
625       set_block_for_insn (b_end, a);
626 
627       a_end = b_end;
628     }
629 
630   BB_END (a) = a_end;
631   a->il.rtl->global_live_at_end = b->il.rtl->global_live_at_end;
632 }
633 
634 /* Return true when block A and B can be merged.  */
635 static bool
636 rtl_can_merge_blocks (basic_block a,basic_block b)
637 {
638   /* If we are partitioning hot/cold basic blocks, we don't want to
639      mess up unconditional or indirect jumps that cross between hot
640      and cold sections.
641 
642      Basic block partitioning may result in some jumps that appear to
643      be optimizable (or blocks that appear to be mergeable), but which really
644      must be left untouched (they are required to make it safely across
645      partition boundaries).  See  the comments at the top of
646      bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
647 
648   if (BB_PARTITION (a) != BB_PARTITION (b))
649     return false;
650 
651   /* There must be exactly one edge in between the blocks.  */
652   return (single_succ_p (a)
653 	  && single_succ (a) == b
654 	  && single_pred_p (b)
655 	  && a != b
656 	  /* Must be simple edge.  */
657 	  && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
658 	  && a->next_bb == b
659 	  && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
660 	  /* If the jump insn has side effects,
661 	     we can't kill the edge.  */
662 	  && (!JUMP_P (BB_END (a))
663 	      || (reload_completed
664 		  ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
665 }
666 
667 /* Return the label in the head of basic block BLOCK.  Create one if it doesn't
668    exist.  */
669 
670 rtx
671 block_label (basic_block block)
672 {
673   if (block == EXIT_BLOCK_PTR)
674     return NULL_RTX;
675 
676   if (!LABEL_P (BB_HEAD (block)))
677     {
678       BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
679     }
680 
681   return BB_HEAD (block);
682 }
683 
684 /* Attempt to perform edge redirection by replacing possibly complex jump
685    instruction by unconditional jump or removing jump completely.  This can
686    apply only if all edges now point to the same block.  The parameters and
687    return values are equivalent to redirect_edge_and_branch.  */
688 
689 edge
690 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
691 {
692   basic_block src = e->src;
693   rtx insn = BB_END (src), kill_from;
694   rtx set;
695   int fallthru = 0;
696 
697   /* If we are partitioning hot/cold basic blocks, we don't want to
698      mess up unconditional or indirect jumps that cross between hot
699      and cold sections.
700 
701      Basic block partitioning may result in some jumps that appear to
702      be optimizable (or blocks that appear to be mergeable), but which really
703      must be left untouched (they are required to make it safely across
704      partition boundaries).  See  the comments at the top of
705      bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
706 
707   if (find_reg_note (insn, REG_CROSSING_JUMP, NULL_RTX)
708       || BB_PARTITION (src) != BB_PARTITION (target))
709     return NULL;
710 
711   /* We can replace or remove a complex jump only when we have exactly
712      two edges.  Also, if we have exactly one outgoing edge, we can
713      redirect that.  */
714   if (EDGE_COUNT (src->succs) >= 3
715       /* Verify that all targets will be TARGET.  Specifically, the
716 	 edge that is not E must also go to TARGET.  */
717       || (EDGE_COUNT (src->succs) == 2
718 	  && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
719     return NULL;
720 
721   if (!onlyjump_p (insn))
722     return NULL;
723   if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
724     return NULL;
725 
726   /* Avoid removing branch with side effects.  */
727   set = single_set (insn);
728   if (!set || side_effects_p (set))
729     return NULL;
730 
731   /* In case we zap a conditional jump, we'll need to kill
732      the cc0 setter too.  */
733   kill_from = insn;
734 #ifdef HAVE_cc0
735   if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
736     kill_from = PREV_INSN (insn);
737 #endif
738 
739   /* See if we can create the fallthru edge.  */
740   if (in_cfglayout || can_fallthru (src, target))
741     {
742       if (dump_file)
743 	fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
744       fallthru = 1;
745 
746       /* Selectively unlink whole insn chain.  */
747       if (in_cfglayout)
748 	{
749 	  rtx insn = src->il.rtl->footer;
750 
751 	  delete_insn_chain (kill_from, BB_END (src));
752 
753 	  /* Remove barriers but keep jumptables.  */
754 	  while (insn)
755 	    {
756 	      if (BARRIER_P (insn))
757 		{
758 		  if (PREV_INSN (insn))
759 		    NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
760 		  else
761 		    src->il.rtl->footer = NEXT_INSN (insn);
762 		  if (NEXT_INSN (insn))
763 		    PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
764 		}
765 	      if (LABEL_P (insn))
766 		break;
767 	      insn = NEXT_INSN (insn);
768 	    }
769 	}
770       else
771 	delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)));
772     }
773 
774   /* If this already is simplejump, redirect it.  */
775   else if (simplejump_p (insn))
776     {
777       if (e->dest == target)
778 	return NULL;
779       if (dump_file)
780 	fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
781 		 INSN_UID (insn), e->dest->index, target->index);
782       if (!redirect_jump (insn, block_label (target), 0))
783 	{
784 	  gcc_assert (target == EXIT_BLOCK_PTR);
785 	  return NULL;
786 	}
787     }
788 
789   /* Cannot do anything for target exit block.  */
790   else if (target == EXIT_BLOCK_PTR)
791     return NULL;
792 
793   /* Or replace possibly complicated jump insn by simple jump insn.  */
794   else
795     {
796       rtx target_label = block_label (target);
797       rtx barrier, label, table;
798 
799       emit_jump_insn_after_noloc (gen_jump (target_label), insn);
800       JUMP_LABEL (BB_END (src)) = target_label;
801       LABEL_NUSES (target_label)++;
802       if (dump_file)
803 	fprintf (dump_file, "Replacing insn %i by jump %i\n",
804 		 INSN_UID (insn), INSN_UID (BB_END (src)));
805 
806 
807       delete_insn_chain (kill_from, insn);
808 
809       /* Recognize a tablejump that we are converting to a
810 	 simple jump and remove its associated CODE_LABEL
811 	 and ADDR_VEC or ADDR_DIFF_VEC.  */
812       if (tablejump_p (insn, &label, &table))
813 	delete_insn_chain (label, table);
814 
815       barrier = next_nonnote_insn (BB_END (src));
816       if (!barrier || !BARRIER_P (barrier))
817 	emit_barrier_after (BB_END (src));
818       else
819 	{
820 	  if (barrier != NEXT_INSN (BB_END (src)))
821 	    {
822 	      /* Move the jump before barrier so that the notes
823 		 which originally were or were created before jump table are
824 		 inside the basic block.  */
825 	      rtx new_insn = BB_END (src);
826 	      rtx tmp;
827 
828 	      for (tmp = NEXT_INSN (BB_END (src)); tmp != barrier;
829 		   tmp = NEXT_INSN (tmp))
830 		set_block_for_insn (tmp, src);
831 
832 	      NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
833 	      PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
834 
835 	      NEXT_INSN (new_insn) = barrier;
836 	      NEXT_INSN (PREV_INSN (barrier)) = new_insn;
837 
838 	      PREV_INSN (new_insn) = PREV_INSN (barrier);
839 	      PREV_INSN (barrier) = new_insn;
840 	    }
841 	}
842     }
843 
844   /* Keep only one edge out and set proper flags.  */
845   if (!single_succ_p (src))
846     remove_edge (e);
847   gcc_assert (single_succ_p (src));
848 
849   e = single_succ_edge (src);
850   if (fallthru)
851     e->flags = EDGE_FALLTHRU;
852   else
853     e->flags = 0;
854 
855   e->probability = REG_BR_PROB_BASE;
856   e->count = src->count;
857 
858   /* We don't want a block to end on a line-number note since that has
859      the potential of changing the code between -g and not -g.  */
860   while (NOTE_P (BB_END (e->src))
861 	 && NOTE_LINE_NUMBER (BB_END (e->src)) >= 0)
862     delete_insn (BB_END (e->src));
863 
864   if (e->dest != target)
865     redirect_edge_succ (e, target);
866 
867   return e;
868 }
869 
870 /* Redirect edge representing branch of (un)conditional jump or tablejump,
871    NULL on failure  */
872 static edge
873 redirect_branch_edge (edge e, basic_block target)
874 {
875   rtx tmp;
876   rtx old_label = BB_HEAD (e->dest);
877   basic_block src = e->src;
878   rtx insn = BB_END (src);
879 
880   /* We can only redirect non-fallthru edges of jump insn.  */
881   if (e->flags & EDGE_FALLTHRU)
882     return NULL;
883   else if (!JUMP_P (insn))
884     return NULL;
885 
886   /* Recognize a tablejump and adjust all matching cases.  */
887   if (tablejump_p (insn, NULL, &tmp))
888     {
889       rtvec vec;
890       int j;
891       rtx new_label = block_label (target);
892 
893       if (target == EXIT_BLOCK_PTR)
894 	return NULL;
895       if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
896 	vec = XVEC (PATTERN (tmp), 0);
897       else
898 	vec = XVEC (PATTERN (tmp), 1);
899 
900       for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
901 	if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
902 	  {
903 	    RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
904 	    --LABEL_NUSES (old_label);
905 	    ++LABEL_NUSES (new_label);
906 	  }
907 
908       /* Handle casesi dispatch insns.  */
909       if ((tmp = single_set (insn)) != NULL
910 	  && SET_DEST (tmp) == pc_rtx
911 	  && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
912 	  && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
913 	  && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
914 	{
915 	  XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
916 						       new_label);
917 	  --LABEL_NUSES (old_label);
918 	  ++LABEL_NUSES (new_label);
919 	}
920     }
921   else
922     {
923       /* ?? We may play the games with moving the named labels from
924 	 one basic block to the other in case only one computed_jump is
925 	 available.  */
926       if (computed_jump_p (insn)
927 	  /* A return instruction can't be redirected.  */
928 	  || returnjump_p (insn))
929 	return NULL;
930 
931       /* If the insn doesn't go where we think, we're confused.  */
932       gcc_assert (JUMP_LABEL (insn) == old_label);
933 
934       /* If the substitution doesn't succeed, die.  This can happen
935 	 if the back end emitted unrecognizable instructions or if
936 	 target is exit block on some arches.  */
937       if (!redirect_jump (insn, block_label (target), 0))
938 	{
939 	  gcc_assert (target == EXIT_BLOCK_PTR);
940 	  return NULL;
941 	}
942     }
943 
944   if (dump_file)
945     fprintf (dump_file, "Edge %i->%i redirected to %i\n",
946 	     e->src->index, e->dest->index, target->index);
947 
948   if (e->dest != target)
949     e = redirect_edge_succ_nodup (e, target);
950   return e;
951 }
952 
953 /* Attempt to change code to redirect edge E to TARGET.  Don't do that on
954    expense of adding new instructions or reordering basic blocks.
955 
956    Function can be also called with edge destination equivalent to the TARGET.
957    Then it should try the simplifications and do nothing if none is possible.
958 
959    Return edge representing the branch if transformation succeeded.  Return NULL
960    on failure.
961    We still return NULL in case E already destinated TARGET and we didn't
962    managed to simplify instruction stream.  */
963 
964 static edge
965 rtl_redirect_edge_and_branch (edge e, basic_block target)
966 {
967   edge ret;
968   basic_block src = e->src;
969 
970   if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
971     return NULL;
972 
973   if (e->dest == target)
974     return e;
975 
976   if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
977     {
978       src->flags |= BB_DIRTY;
979       return ret;
980     }
981 
982   ret = redirect_branch_edge (e, target);
983   if (!ret)
984     return NULL;
985 
986   src->flags |= BB_DIRTY;
987   return ret;
988 }
989 
990 /* Like force_nonfallthru below, but additionally performs redirection
991    Used by redirect_edge_and_branch_force.  */
992 
993 static basic_block
994 force_nonfallthru_and_redirect (edge e, basic_block target)
995 {
996   basic_block jump_block, new_bb = NULL, src = e->src;
997   rtx note;
998   edge new_edge;
999   int abnormal_edge_flags = 0;
1000 
1001   /* In the case the last instruction is conditional jump to the next
1002      instruction, first redirect the jump itself and then continue
1003      by creating a basic block afterwards to redirect fallthru edge.  */
1004   if (e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR
1005       && any_condjump_p (BB_END (e->src))
1006       && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1007     {
1008       rtx note;
1009       edge b = unchecked_make_edge (e->src, target, 0);
1010       bool redirected;
1011 
1012       redirected = redirect_jump (BB_END (e->src), block_label (target), 0);
1013       gcc_assert (redirected);
1014 
1015       note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1016       if (note)
1017 	{
1018 	  int prob = INTVAL (XEXP (note, 0));
1019 
1020 	  b->probability = prob;
1021 	  b->count = e->count * prob / REG_BR_PROB_BASE;
1022 	  e->probability -= e->probability;
1023 	  e->count -= b->count;
1024 	  if (e->probability < 0)
1025 	    e->probability = 0;
1026 	  if (e->count < 0)
1027 	    e->count = 0;
1028 	}
1029     }
1030 
1031   if (e->flags & EDGE_ABNORMAL)
1032     {
1033       /* Irritating special case - fallthru edge to the same block as abnormal
1034 	 edge.
1035 	 We can't redirect abnormal edge, but we still can split the fallthru
1036 	 one and create separate abnormal edge to original destination.
1037 	 This allows bb-reorder to make such edge non-fallthru.  */
1038       gcc_assert (e->dest == target);
1039       abnormal_edge_flags = e->flags & ~(EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
1040       e->flags &= EDGE_FALLTHRU | EDGE_CAN_FALLTHRU;
1041     }
1042   else
1043     {
1044       gcc_assert (e->flags & EDGE_FALLTHRU);
1045       if (e->src == ENTRY_BLOCK_PTR)
1046 	{
1047 	  /* We can't redirect the entry block.  Create an empty block
1048 	     at the start of the function which we use to add the new
1049 	     jump.  */
1050 	  edge tmp;
1051 	  edge_iterator ei;
1052 	  bool found = false;
1053 
1054 	  basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL, ENTRY_BLOCK_PTR);
1055 
1056 	  /* Change the existing edge's source to be the new block, and add
1057 	     a new edge from the entry block to the new block.  */
1058 	  e->src = bb;
1059 	  for (ei = ei_start (ENTRY_BLOCK_PTR->succs); (tmp = ei_safe_edge (ei)); )
1060 	    {
1061 	      if (tmp == e)
1062 		{
1063 		  VEC_unordered_remove (edge, ENTRY_BLOCK_PTR->succs, ei.index);
1064 		  found = true;
1065 		  break;
1066 		}
1067 	      else
1068 		ei_next (&ei);
1069 	    }
1070 
1071 	  gcc_assert (found);
1072 
1073 	  VEC_safe_push (edge, gc, bb->succs, e);
1074 	  make_single_succ_edge (ENTRY_BLOCK_PTR, bb, EDGE_FALLTHRU);
1075 	}
1076     }
1077 
1078   if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags)
1079     {
1080       /* Create the new structures.  */
1081 
1082       /* If the old block ended with a tablejump, skip its table
1083 	 by searching forward from there.  Otherwise start searching
1084 	 forward from the last instruction of the old block.  */
1085       if (!tablejump_p (BB_END (e->src), NULL, &note))
1086 	note = BB_END (e->src);
1087       note = NEXT_INSN (note);
1088 
1089       jump_block = create_basic_block (note, NULL, e->src);
1090       jump_block->count = e->count;
1091       jump_block->frequency = EDGE_FREQUENCY (e);
1092       jump_block->loop_depth = target->loop_depth;
1093 
1094       if (target->il.rtl->global_live_at_start)
1095 	{
1096 	  jump_block->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1097 	  jump_block->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1098 	  COPY_REG_SET (jump_block->il.rtl->global_live_at_start,
1099 			target->il.rtl->global_live_at_start);
1100 	  COPY_REG_SET (jump_block->il.rtl->global_live_at_end,
1101 			target->il.rtl->global_live_at_start);
1102 	}
1103 
1104       /* Make sure new block ends up in correct hot/cold section.  */
1105 
1106       BB_COPY_PARTITION (jump_block, e->src);
1107       if (flag_reorder_blocks_and_partition
1108 	  && targetm.have_named_sections
1109 	  && JUMP_P (BB_END (jump_block))
1110 	  && !any_condjump_p (BB_END (jump_block))
1111 	  && (EDGE_SUCC (jump_block, 0)->flags & EDGE_CROSSING))
1112 	REG_NOTES (BB_END (jump_block)) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
1113 							     NULL_RTX,
1114 							     REG_NOTES
1115 							     (BB_END
1116 							      (jump_block)));
1117 
1118       /* Wire edge in.  */
1119       new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1120       new_edge->probability = e->probability;
1121       new_edge->count = e->count;
1122 
1123       /* Redirect old edge.  */
1124       redirect_edge_pred (e, jump_block);
1125       e->probability = REG_BR_PROB_BASE;
1126 
1127       new_bb = jump_block;
1128     }
1129   else
1130     jump_block = e->src;
1131 
1132   e->flags &= ~EDGE_FALLTHRU;
1133   if (target == EXIT_BLOCK_PTR)
1134     {
1135 #ifdef HAVE_return
1136 	emit_jump_insn_after_noloc (gen_return (), BB_END (jump_block));
1137 #else
1138 	gcc_unreachable ();
1139 #endif
1140     }
1141   else
1142     {
1143       rtx label = block_label (target);
1144       emit_jump_insn_after_noloc (gen_jump (label), BB_END (jump_block));
1145       JUMP_LABEL (BB_END (jump_block)) = label;
1146       LABEL_NUSES (label)++;
1147     }
1148 
1149   emit_barrier_after (BB_END (jump_block));
1150   redirect_edge_succ_nodup (e, target);
1151 
1152   if (abnormal_edge_flags)
1153     make_edge (src, target, abnormal_edge_flags);
1154 
1155   return new_bb;
1156 }
1157 
1158 /* Edge E is assumed to be fallthru edge.  Emit needed jump instruction
1159    (and possibly create new basic block) to make edge non-fallthru.
1160    Return newly created BB or NULL if none.  */
1161 
1162 basic_block
1163 force_nonfallthru (edge e)
1164 {
1165   return force_nonfallthru_and_redirect (e, e->dest);
1166 }
1167 
1168 /* Redirect edge even at the expense of creating new jump insn or
1169    basic block.  Return new basic block if created, NULL otherwise.
1170    Conversion must be possible.  */
1171 
1172 static basic_block
1173 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1174 {
1175   if (redirect_edge_and_branch (e, target)
1176       || e->dest == target)
1177     return NULL;
1178 
1179   /* In case the edge redirection failed, try to force it to be non-fallthru
1180      and redirect newly created simplejump.  */
1181   e->src->flags |= BB_DIRTY;
1182   return force_nonfallthru_and_redirect (e, target);
1183 }
1184 
1185 /* The given edge should potentially be a fallthru edge.  If that is in
1186    fact true, delete the jump and barriers that are in the way.  */
1187 
1188 static void
1189 rtl_tidy_fallthru_edge (edge e)
1190 {
1191   rtx q;
1192   basic_block b = e->src, c = b->next_bb;
1193 
1194   /* ??? In a late-running flow pass, other folks may have deleted basic
1195      blocks by nopping out blocks, leaving multiple BARRIERs between here
1196      and the target label. They ought to be chastised and fixed.
1197 
1198      We can also wind up with a sequence of undeletable labels between
1199      one block and the next.
1200 
1201      So search through a sequence of barriers, labels, and notes for
1202      the head of block C and assert that we really do fall through.  */
1203 
1204   for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1205     if (INSN_P (q))
1206       return;
1207 
1208   /* Remove what will soon cease being the jump insn from the source block.
1209      If block B consisted only of this single jump, turn it into a deleted
1210      note.  */
1211   q = BB_END (b);
1212   if (JUMP_P (q)
1213       && onlyjump_p (q)
1214       && (any_uncondjump_p (q)
1215 	  || single_succ_p (b)))
1216     {
1217 #ifdef HAVE_cc0
1218       /* If this was a conditional jump, we need to also delete
1219 	 the insn that set cc0.  */
1220       if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1221 	q = PREV_INSN (q);
1222 #endif
1223 
1224       q = PREV_INSN (q);
1225 
1226       /* We don't want a block to end on a line-number note since that has
1227 	 the potential of changing the code between -g and not -g.  */
1228       while (NOTE_P (q) && NOTE_LINE_NUMBER (q) >= 0)
1229 	q = PREV_INSN (q);
1230     }
1231 
1232   /* Selectively unlink the sequence.  */
1233   if (q != PREV_INSN (BB_HEAD (c)))
1234     delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)));
1235 
1236   e->flags |= EDGE_FALLTHRU;
1237 }
1238 
1239 /* Should move basic block BB after basic block AFTER.  NIY.  */
1240 
1241 static bool
1242 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1243 		      basic_block after ATTRIBUTE_UNUSED)
1244 {
1245   return false;
1246 }
1247 
1248 /* Split a (typically critical) edge.  Return the new block.
1249    The edge must not be abnormal.
1250 
1251    ??? The code generally expects to be called on critical edges.
1252    The case of a block ending in an unconditional jump to a
1253    block with multiple predecessors is not handled optimally.  */
1254 
1255 static basic_block
1256 rtl_split_edge (edge edge_in)
1257 {
1258   basic_block bb;
1259   rtx before;
1260 
1261   /* Abnormal edges cannot be split.  */
1262   gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1263 
1264   /* We are going to place the new block in front of edge destination.
1265      Avoid existence of fallthru predecessors.  */
1266   if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1267     {
1268       edge e;
1269       edge_iterator ei;
1270 
1271       FOR_EACH_EDGE (e, ei, edge_in->dest->preds)
1272 	if (e->flags & EDGE_FALLTHRU)
1273 	  break;
1274 
1275       if (e)
1276 	force_nonfallthru (e);
1277     }
1278 
1279   /* Create the basic block note.  */
1280   if (edge_in->dest != EXIT_BLOCK_PTR)
1281     before = BB_HEAD (edge_in->dest);
1282   else
1283     before = NULL_RTX;
1284 
1285   /* If this is a fall through edge to the exit block, the blocks might be
1286      not adjacent, and the right place is the after the source.  */
1287   if (edge_in->flags & EDGE_FALLTHRU && edge_in->dest == EXIT_BLOCK_PTR)
1288     {
1289       before = NEXT_INSN (BB_END (edge_in->src));
1290       bb = create_basic_block (before, NULL, edge_in->src);
1291       BB_COPY_PARTITION (bb, edge_in->src);
1292     }
1293   else
1294     {
1295       bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1296       /* ??? Why not edge_in->dest->prev_bb here?  */
1297       BB_COPY_PARTITION (bb, edge_in->dest);
1298     }
1299 
1300   /* ??? This info is likely going to be out of date very soon.  */
1301   if (edge_in->dest->il.rtl->global_live_at_start)
1302     {
1303       bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1304       bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1305       COPY_REG_SET (bb->il.rtl->global_live_at_start,
1306 		    edge_in->dest->il.rtl->global_live_at_start);
1307       COPY_REG_SET (bb->il.rtl->global_live_at_end,
1308 		    edge_in->dest->il.rtl->global_live_at_start);
1309     }
1310 
1311   make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1312 
1313   /* For non-fallthru edges, we must adjust the predecessor's
1314      jump instruction to target our new block.  */
1315   if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1316     {
1317       edge redirected = redirect_edge_and_branch (edge_in, bb);
1318       gcc_assert (redirected);
1319     }
1320   else
1321     redirect_edge_succ (edge_in, bb);
1322 
1323   return bb;
1324 }
1325 
1326 /* Queue instructions for insertion on an edge between two basic blocks.
1327    The new instructions and basic blocks (if any) will not appear in the
1328    CFG until commit_edge_insertions is called.  */
1329 
1330 void
1331 insert_insn_on_edge (rtx pattern, edge e)
1332 {
1333   /* We cannot insert instructions on an abnormal critical edge.
1334      It will be easier to find the culprit if we die now.  */
1335   gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1336 
1337   if (e->insns.r == NULL_RTX)
1338     start_sequence ();
1339   else
1340     push_to_sequence (e->insns.r);
1341 
1342   emit_insn (pattern);
1343 
1344   e->insns.r = get_insns ();
1345   end_sequence ();
1346 }
1347 
1348 /* Update the CFG for the instructions queued on edge E.  */
1349 
1350 static void
1351 commit_one_edge_insertion (edge e, int watch_calls)
1352 {
1353   rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1354   basic_block bb = NULL;
1355 
1356   /* Pull the insns off the edge now since the edge might go away.  */
1357   insns = e->insns.r;
1358   e->insns.r = NULL_RTX;
1359 
1360   /* Special case -- avoid inserting code between call and storing
1361      its return value.  */
1362   if (watch_calls && (e->flags & EDGE_FALLTHRU)
1363       && single_pred_p (e->dest)
1364       && e->src != ENTRY_BLOCK_PTR
1365       && CALL_P (BB_END (e->src)))
1366     {
1367       rtx next = next_nonnote_insn (BB_END (e->src));
1368 
1369       after = BB_HEAD (e->dest);
1370       /* The first insn after the call may be a stack pop, skip it.  */
1371       while (next
1372 	     && keep_with_call_p (next))
1373 	{
1374 	  after = next;
1375 	  next = next_nonnote_insn (next);
1376 	}
1377       bb = e->dest;
1378     }
1379   if (!before && !after)
1380     {
1381       /* Figure out where to put these things.  If the destination has
1382 	 one predecessor, insert there.  Except for the exit block.  */
1383       if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR)
1384 	{
1385 	  bb = e->dest;
1386 
1387 	  /* Get the location correct wrt a code label, and "nice" wrt
1388 	     a basic block note, and before everything else.  */
1389 	  tmp = BB_HEAD (bb);
1390 	  if (LABEL_P (tmp))
1391 	    tmp = NEXT_INSN (tmp);
1392 	  if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1393 	    tmp = NEXT_INSN (tmp);
1394 	  if (tmp == BB_HEAD (bb))
1395 	    before = tmp;
1396 	  else if (tmp)
1397 	    after = PREV_INSN (tmp);
1398 	  else
1399 	    after = get_last_insn ();
1400 	}
1401 
1402       /* If the source has one successor and the edge is not abnormal,
1403 	 insert there.  Except for the entry block.  */
1404       else if ((e->flags & EDGE_ABNORMAL) == 0
1405 	       && single_succ_p (e->src)
1406 	       && e->src != ENTRY_BLOCK_PTR)
1407 	{
1408 	  bb = e->src;
1409 
1410 	  /* It is possible to have a non-simple jump here.  Consider a target
1411 	     where some forms of unconditional jumps clobber a register.  This
1412 	     happens on the fr30 for example.
1413 
1414 	     We know this block has a single successor, so we can just emit
1415 	     the queued insns before the jump.  */
1416 	  if (JUMP_P (BB_END (bb)))
1417 	    before = BB_END (bb);
1418 	  else
1419 	    {
1420 	      /* We'd better be fallthru, or we've lost track of
1421 		 what's what.  */
1422 	      gcc_assert (e->flags & EDGE_FALLTHRU);
1423 
1424 	      after = BB_END (bb);
1425 	    }
1426 	}
1427       /* Otherwise we must split the edge.  */
1428       else
1429 	{
1430 	  bb = split_edge (e);
1431 	  after = BB_END (bb);
1432 
1433 	  if (flag_reorder_blocks_and_partition
1434 	      && targetm.have_named_sections
1435 	      && e->src != ENTRY_BLOCK_PTR
1436 	      && BB_PARTITION (e->src) == BB_COLD_PARTITION
1437 	      && !(e->flags & EDGE_CROSSING))
1438 	    {
1439 	      rtx bb_note, cur_insn;
1440 
1441 	      bb_note = NULL_RTX;
1442 	      for (cur_insn = BB_HEAD (bb); cur_insn != NEXT_INSN (BB_END (bb));
1443 		   cur_insn = NEXT_INSN (cur_insn))
1444 		if (NOTE_P (cur_insn)
1445 		    && NOTE_LINE_NUMBER (cur_insn) == NOTE_INSN_BASIC_BLOCK)
1446 		  {
1447 		    bb_note = cur_insn;
1448 		    break;
1449 		  }
1450 
1451 	      if (JUMP_P (BB_END (bb))
1452 		  && !any_condjump_p (BB_END (bb))
1453 		  && (single_succ_edge (bb)->flags & EDGE_CROSSING))
1454 		REG_NOTES (BB_END (bb)) = gen_rtx_EXPR_LIST
1455 		  (REG_CROSSING_JUMP, NULL_RTX, REG_NOTES (BB_END (bb)));
1456 	    }
1457 	}
1458     }
1459 
1460   /* Now that we've found the spot, do the insertion.  */
1461 
1462   if (before)
1463     {
1464       emit_insn_before_noloc (insns, before);
1465       last = prev_nonnote_insn (before);
1466     }
1467   else
1468     last = emit_insn_after_noloc (insns, after);
1469 
1470   if (returnjump_p (last))
1471     {
1472       /* ??? Remove all outgoing edges from BB and add one for EXIT.
1473 	 This is not currently a problem because this only happens
1474 	 for the (single) epilogue, which already has a fallthru edge
1475 	 to EXIT.  */
1476 
1477       e = single_succ_edge (bb);
1478       gcc_assert (e->dest == EXIT_BLOCK_PTR
1479 		  && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
1480 
1481       e->flags &= ~EDGE_FALLTHRU;
1482       emit_barrier_after (last);
1483 
1484       if (before)
1485 	delete_insn (before);
1486     }
1487   else
1488     gcc_assert (!JUMP_P (last));
1489 
1490   /* Mark the basic block for find_many_sub_basic_blocks.  */
1491   bb->aux = &bb->aux;
1492 }
1493 
1494 /* Update the CFG for all queued instructions.  */
1495 
1496 void
1497 commit_edge_insertions (void)
1498 {
1499   basic_block bb;
1500   sbitmap blocks;
1501   bool changed = false;
1502 
1503 #ifdef ENABLE_CHECKING
1504   verify_flow_info ();
1505 #endif
1506 
1507   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1508     {
1509       edge e;
1510       edge_iterator ei;
1511 
1512       FOR_EACH_EDGE (e, ei, bb->succs)
1513 	if (e->insns.r)
1514 	  {
1515 	    changed = true;
1516 	    commit_one_edge_insertion (e, false);
1517 	  }
1518     }
1519 
1520   if (!changed)
1521     return;
1522 
1523   blocks = sbitmap_alloc (last_basic_block);
1524   sbitmap_zero (blocks);
1525   FOR_EACH_BB (bb)
1526     if (bb->aux)
1527       {
1528 	SET_BIT (blocks, bb->index);
1529 	/* Check for forgotten bb->aux values before commit_edge_insertions
1530 	   call.  */
1531 	gcc_assert (bb->aux == &bb->aux);
1532 	bb->aux = NULL;
1533       }
1534   find_many_sub_basic_blocks (blocks);
1535   sbitmap_free (blocks);
1536 }
1537 
1538 /* Update the CFG for all queued instructions, taking special care of inserting
1539    code on edges between call and storing its return value.  */
1540 
1541 void
1542 commit_edge_insertions_watch_calls (void)
1543 {
1544   basic_block bb;
1545   sbitmap blocks;
1546   bool changed = false;
1547 
1548 #ifdef ENABLE_CHECKING
1549   verify_flow_info ();
1550 #endif
1551 
1552   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1553     {
1554       edge e;
1555       edge_iterator ei;
1556 
1557       FOR_EACH_EDGE (e, ei, bb->succs)
1558 	if (e->insns.r)
1559 	  {
1560 	    changed = true;
1561 	    commit_one_edge_insertion (e, true);
1562 	  }
1563     }
1564 
1565   if (!changed)
1566     return;
1567 
1568   blocks = sbitmap_alloc (last_basic_block);
1569   sbitmap_zero (blocks);
1570   FOR_EACH_BB (bb)
1571     if (bb->aux)
1572       {
1573 	SET_BIT (blocks, bb->index);
1574 	/* Check for forgotten bb->aux values before commit_edge_insertions
1575 	   call.  */
1576 	gcc_assert (bb->aux == &bb->aux);
1577 	bb->aux = NULL;
1578       }
1579   find_many_sub_basic_blocks (blocks);
1580   sbitmap_free (blocks);
1581 }
1582 
1583 /* Print out RTL-specific basic block information (live information
1584    at start and end).  */
1585 
1586 static void
1587 rtl_dump_bb (basic_block bb, FILE *outf, int indent)
1588 {
1589   rtx insn;
1590   rtx last;
1591   char *s_indent;
1592 
1593   s_indent = alloca ((size_t) indent + 1);
1594   memset (s_indent, ' ', (size_t) indent);
1595   s_indent[indent] = '\0';
1596 
1597   fprintf (outf, ";;%s Registers live at start: ", s_indent);
1598   dump_regset (bb->il.rtl->global_live_at_start, outf);
1599   putc ('\n', outf);
1600 
1601   for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
1602        insn = NEXT_INSN (insn))
1603     print_rtl_single (outf, insn);
1604 
1605   fprintf (outf, ";;%s Registers live at end: ", s_indent);
1606   dump_regset (bb->il.rtl->global_live_at_end, outf);
1607   putc ('\n', outf);
1608 }
1609 
1610 /* Like print_rtl, but also print out live information for the start of each
1611    basic block.  */
1612 
1613 void
1614 print_rtl_with_bb (FILE *outf, rtx rtx_first)
1615 {
1616   rtx tmp_rtx;
1617 
1618   if (rtx_first == 0)
1619     fprintf (outf, "(nil)\n");
1620   else
1621     {
1622       enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
1623       int max_uid = get_max_uid ();
1624       basic_block *start = XCNEWVEC (basic_block, max_uid);
1625       basic_block *end = XCNEWVEC (basic_block, max_uid);
1626       enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
1627 
1628       basic_block bb;
1629 
1630       FOR_EACH_BB_REVERSE (bb)
1631 	{
1632 	  rtx x;
1633 
1634 	  start[INSN_UID (BB_HEAD (bb))] = bb;
1635 	  end[INSN_UID (BB_END (bb))] = bb;
1636 	  for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
1637 	    {
1638 	      enum bb_state state = IN_MULTIPLE_BB;
1639 
1640 	      if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
1641 		state = IN_ONE_BB;
1642 	      in_bb_p[INSN_UID (x)] = state;
1643 
1644 	      if (x == BB_END (bb))
1645 		break;
1646 	    }
1647 	}
1648 
1649       for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
1650 	{
1651 	  int did_output;
1652 
1653 	  if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
1654 	    {
1655 	      fprintf (outf, ";; Start of basic block %d, registers live:",
1656 		       bb->index);
1657 	      dump_regset (bb->il.rtl->global_live_at_start, outf);
1658 	      putc ('\n', outf);
1659 	    }
1660 
1661 	  if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
1662 	      && !NOTE_P (tmp_rtx)
1663 	      && !BARRIER_P (tmp_rtx))
1664 	    fprintf (outf, ";; Insn is not within a basic block\n");
1665 	  else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
1666 	    fprintf (outf, ";; Insn is in multiple basic blocks\n");
1667 
1668 	  did_output = print_rtl_single (outf, tmp_rtx);
1669 
1670 	  if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
1671 	    {
1672 	      fprintf (outf, ";; End of basic block %d, registers live:\n",
1673 		       bb->index);
1674 	      dump_regset (bb->il.rtl->global_live_at_end, outf);
1675 	      putc ('\n', outf);
1676 	    }
1677 
1678 	  if (did_output)
1679 	    putc ('\n', outf);
1680 	}
1681 
1682       free (start);
1683       free (end);
1684       free (in_bb_p);
1685     }
1686 
1687   if (current_function_epilogue_delay_list != 0)
1688     {
1689       fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
1690       for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
1691 	   tmp_rtx = XEXP (tmp_rtx, 1))
1692 	print_rtl_single (outf, XEXP (tmp_rtx, 0));
1693     }
1694 }
1695 
1696 void
1697 update_br_prob_note (basic_block bb)
1698 {
1699   rtx note;
1700   if (!JUMP_P (BB_END (bb)))
1701     return;
1702   note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
1703   if (!note || INTVAL (XEXP (note, 0)) == BRANCH_EDGE (bb)->probability)
1704     return;
1705   XEXP (note, 0) = GEN_INT (BRANCH_EDGE (bb)->probability);
1706 }
1707 
1708 /* Get the last insn associated with block BB (that includes barriers and
1709    tablejumps after BB).  */
1710 rtx
1711 get_last_bb_insn (basic_block bb)
1712 {
1713   rtx tmp;
1714   rtx end = BB_END (bb);
1715 
1716   /* Include any jump table following the basic block.  */
1717   if (tablejump_p (end, NULL, &tmp))
1718     end = tmp;
1719 
1720   /* Include any barriers that may follow the basic block.  */
1721   tmp = next_nonnote_insn (end);
1722   while (tmp && BARRIER_P (tmp))
1723     {
1724       end = tmp;
1725       tmp = next_nonnote_insn (end);
1726     }
1727 
1728   return end;
1729 }
1730 
1731 /* Verify the CFG and RTL consistency common for both underlying RTL and
1732    cfglayout RTL.
1733 
1734    Currently it does following checks:
1735 
1736    - test head/end pointers
1737    - overlapping of basic blocks
1738    - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
1739    - tails of basic blocks (ensure that boundary is necessary)
1740    - scans body of the basic block for JUMP_INSN, CODE_LABEL
1741      and NOTE_INSN_BASIC_BLOCK
1742    - verify that no fall_thru edge crosses hot/cold partition boundaries
1743 
1744    In future it can be extended check a lot of other stuff as well
1745    (reachability of basic blocks, life information, etc. etc.).  */
1746 
1747 static int
1748 rtl_verify_flow_info_1 (void)
1749 {
1750   const int max_uid = get_max_uid ();
1751   rtx last_head = get_last_insn ();
1752   basic_block *bb_info;
1753   rtx x;
1754   int err = 0;
1755   basic_block bb;
1756 
1757   bb_info = XCNEWVEC (basic_block, max_uid);
1758 
1759   FOR_EACH_BB_REVERSE (bb)
1760     {
1761       rtx head = BB_HEAD (bb);
1762       rtx end = BB_END (bb);
1763 
1764       /* Verify the end of the basic block is in the INSN chain.  */
1765       for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
1766 	if (x == end)
1767 	  break;
1768 
1769       if (!(bb->flags & BB_RTL))
1770 	{
1771 	  error ("BB_RTL flag not set for block %d", bb->index);
1772 	  err = 1;
1773 	}
1774 
1775       if (!x)
1776 	{
1777 	  error ("end insn %d for block %d not found in the insn stream",
1778 		 INSN_UID (end), bb->index);
1779 	  err = 1;
1780 	}
1781 
1782       /* Work backwards from the end to the head of the basic block
1783 	 to verify the head is in the RTL chain.  */
1784       for (; x != NULL_RTX; x = PREV_INSN (x))
1785 	{
1786 	  /* While walking over the insn chain, verify insns appear
1787 	     in only one basic block and initialize the BB_INFO array
1788 	     used by other passes.  */
1789 	  if (bb_info[INSN_UID (x)] != NULL)
1790 	    {
1791 	      error ("insn %d is in multiple basic blocks (%d and %d)",
1792 		     INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
1793 	      err = 1;
1794 	    }
1795 
1796 	  bb_info[INSN_UID (x)] = bb;
1797 
1798 	  if (x == head)
1799 	    break;
1800 	}
1801       if (!x)
1802 	{
1803 	  error ("head insn %d for block %d not found in the insn stream",
1804 		 INSN_UID (head), bb->index);
1805 	  err = 1;
1806 	}
1807 
1808       last_head = x;
1809     }
1810 
1811   /* Now check the basic blocks (boundaries etc.) */
1812   FOR_EACH_BB_REVERSE (bb)
1813     {
1814       int n_fallthru = 0, n_eh = 0, n_call = 0, n_abnormal = 0, n_branch = 0;
1815       edge e, fallthru = NULL;
1816       rtx note;
1817       edge_iterator ei;
1818 
1819       if (JUMP_P (BB_END (bb))
1820 	  && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
1821 	  && EDGE_COUNT (bb->succs) >= 2
1822 	  && any_condjump_p (BB_END (bb)))
1823 	{
1824 	  if (INTVAL (XEXP (note, 0)) != BRANCH_EDGE (bb)->probability
1825 	      && profile_status != PROFILE_ABSENT)
1826 	    {
1827 	      error ("verify_flow_info: REG_BR_PROB does not match cfg %wi %i",
1828 		     INTVAL (XEXP (note, 0)), BRANCH_EDGE (bb)->probability);
1829 	      err = 1;
1830 	    }
1831 	}
1832       FOR_EACH_EDGE (e, ei, bb->succs)
1833 	{
1834 	  if (e->flags & EDGE_FALLTHRU)
1835 	    {
1836 	      n_fallthru++, fallthru = e;
1837 	      if ((e->flags & EDGE_CROSSING)
1838 		  || (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
1839 		      && e->src != ENTRY_BLOCK_PTR
1840 		      && e->dest != EXIT_BLOCK_PTR))
1841 	    {
1842 		  error ("fallthru edge crosses section boundary (bb %i)",
1843 			 e->src->index);
1844 		  err = 1;
1845 		}
1846 	    }
1847 
1848 	  if ((e->flags & ~(EDGE_DFS_BACK
1849 			    | EDGE_CAN_FALLTHRU
1850 			    | EDGE_IRREDUCIBLE_LOOP
1851 			    | EDGE_LOOP_EXIT
1852 			    | EDGE_CROSSING)) == 0)
1853 	    n_branch++;
1854 
1855 	  if (e->flags & EDGE_ABNORMAL_CALL)
1856 	    n_call++;
1857 
1858 	  if (e->flags & EDGE_EH)
1859 	    n_eh++;
1860 	  else if (e->flags & EDGE_ABNORMAL)
1861 	    n_abnormal++;
1862 	}
1863 
1864       if (n_eh && GET_CODE (PATTERN (BB_END (bb))) != RESX
1865 	  && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
1866 	{
1867 	  error ("missing REG_EH_REGION note in the end of bb %i", bb->index);
1868 	  err = 1;
1869 	}
1870       if (n_branch
1871 	  && (!JUMP_P (BB_END (bb))
1872 	      || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
1873 				   || any_condjump_p (BB_END (bb))))))
1874 	{
1875 	  error ("too many outgoing branch edges from bb %i", bb->index);
1876 	  err = 1;
1877 	}
1878       if (n_fallthru && any_uncondjump_p (BB_END (bb)))
1879 	{
1880 	  error ("fallthru edge after unconditional jump %i", bb->index);
1881 	  err = 1;
1882 	}
1883       if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
1884 	{
1885 	  error ("wrong amount of branch edges after unconditional jump %i", bb->index);
1886 	  err = 1;
1887 	}
1888       if (n_branch != 1 && any_condjump_p (BB_END (bb))
1889 	  && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
1890 	{
1891 	  error ("wrong amount of branch edges after conditional jump %i",
1892 		 bb->index);
1893 	  err = 1;
1894 	}
1895       if (n_call && !CALL_P (BB_END (bb)))
1896 	{
1897 	  error ("call edges for non-call insn in bb %i", bb->index);
1898 	  err = 1;
1899 	}
1900       if (n_abnormal
1901 	  && (!CALL_P (BB_END (bb)) && n_call != n_abnormal)
1902 	  && (!JUMP_P (BB_END (bb))
1903 	      || any_condjump_p (BB_END (bb))
1904 	      || any_uncondjump_p (BB_END (bb))))
1905 	{
1906 	  error ("abnormal edges for no purpose in bb %i", bb->index);
1907 	  err = 1;
1908 	}
1909 
1910       for (x = BB_HEAD (bb); x != NEXT_INSN (BB_END (bb)); x = NEXT_INSN (x))
1911 	/* We may have a barrier inside a basic block before dead code
1912 	   elimination.  There is no BLOCK_FOR_INSN field in a barrier.  */
1913 	if (!BARRIER_P (x) && BLOCK_FOR_INSN (x) != bb)
1914 	  {
1915 	    debug_rtx (x);
1916 	    if (! BLOCK_FOR_INSN (x))
1917 	      error
1918 		("insn %d inside basic block %d but block_for_insn is NULL",
1919 		 INSN_UID (x), bb->index);
1920 	    else
1921 	      error
1922 		("insn %d inside basic block %d but block_for_insn is %i",
1923 		 INSN_UID (x), bb->index, BLOCK_FOR_INSN (x)->index);
1924 
1925 	    err = 1;
1926 	  }
1927 
1928       /* OK pointers are correct.  Now check the header of basic
1929 	 block.  It ought to contain optional CODE_LABEL followed
1930 	 by NOTE_BASIC_BLOCK.  */
1931       x = BB_HEAD (bb);
1932       if (LABEL_P (x))
1933 	{
1934 	  if (BB_END (bb) == x)
1935 	    {
1936 	      error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
1937 		     bb->index);
1938 	      err = 1;
1939 	    }
1940 
1941 	  x = NEXT_INSN (x);
1942 	}
1943 
1944       if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
1945 	{
1946 	  error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
1947 		 bb->index);
1948 	  err = 1;
1949 	}
1950 
1951       if (BB_END (bb) == x)
1952 	/* Do checks for empty blocks here.  */
1953 	;
1954       else
1955 	for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
1956 	  {
1957 	    if (NOTE_INSN_BASIC_BLOCK_P (x))
1958 	      {
1959 		error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
1960 		       INSN_UID (x), bb->index);
1961 		err = 1;
1962 	      }
1963 
1964 	    if (x == BB_END (bb))
1965 	      break;
1966 
1967 	    if (control_flow_insn_p (x))
1968 	      {
1969 		error ("in basic block %d:", bb->index);
1970 		fatal_insn ("flow control insn inside a basic block", x);
1971 	      }
1972 	  }
1973     }
1974 
1975   /* Clean up.  */
1976   free (bb_info);
1977   return err;
1978 }
1979 
1980 /* Verify the CFG and RTL consistency common for both underlying RTL and
1981    cfglayout RTL.
1982 
1983    Currently it does following checks:
1984    - all checks of rtl_verify_flow_info_1
1985    - check that all insns are in the basic blocks
1986      (except the switch handling code, barriers and notes)
1987    - check that all returns are followed by barriers
1988    - check that all fallthru edge points to the adjacent blocks.  */
1989 static int
1990 rtl_verify_flow_info (void)
1991 {
1992   basic_block bb;
1993   int err = rtl_verify_flow_info_1 ();
1994   rtx x;
1995   int num_bb_notes;
1996   const rtx rtx_first = get_insns ();
1997   basic_block last_bb_seen = ENTRY_BLOCK_PTR, curr_bb = NULL;
1998 
1999   FOR_EACH_BB_REVERSE (bb)
2000     {
2001       edge e;
2002       edge_iterator ei;
2003 
2004       if (bb->predictions)
2005 	{
2006 	  error ("bb prediction set for block %i, but it is not used in RTL land", bb->index);
2007 	  err = 1;
2008 	}
2009 
2010       FOR_EACH_EDGE (e, ei, bb->succs)
2011 	if (e->flags & EDGE_FALLTHRU)
2012 	  break;
2013       if (!e)
2014 	{
2015 	  rtx insn;
2016 
2017 	  /* Ensure existence of barrier in BB with no fallthru edges.  */
2018 	  for (insn = BB_END (bb); !insn || !BARRIER_P (insn);
2019 	       insn = NEXT_INSN (insn))
2020 	    if (!insn
2021 		|| (NOTE_P (insn)
2022 		    && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK))
2023 		{
2024 		  error ("missing barrier after block %i", bb->index);
2025 		  err = 1;
2026 		  break;
2027 		}
2028 	}
2029       else if (e->src != ENTRY_BLOCK_PTR
2030 	       && e->dest != EXIT_BLOCK_PTR)
2031 	{
2032 	  rtx insn;
2033 
2034 	  if (e->src->next_bb != e->dest)
2035 	    {
2036 	      error
2037 		("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2038 		 e->src->index, e->dest->index);
2039 	      err = 1;
2040 	    }
2041 	  else
2042 	    for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2043 		 insn = NEXT_INSN (insn))
2044 	      if (BARRIER_P (insn) || INSN_P (insn))
2045 		{
2046 		  error ("verify_flow_info: Incorrect fallthru %i->%i",
2047 			 e->src->index, e->dest->index);
2048 		  fatal_insn ("wrong insn in the fallthru edge", insn);
2049 		  err = 1;
2050 		}
2051 	}
2052     }
2053 
2054   num_bb_notes = 0;
2055   last_bb_seen = ENTRY_BLOCK_PTR;
2056 
2057   for (x = rtx_first; x; x = NEXT_INSN (x))
2058     {
2059       if (NOTE_INSN_BASIC_BLOCK_P (x))
2060 	{
2061 	  bb = NOTE_BASIC_BLOCK (x);
2062 
2063 	  num_bb_notes++;
2064 	  if (bb != last_bb_seen->next_bb)
2065 	    internal_error ("basic blocks not laid down consecutively");
2066 
2067 	  curr_bb = last_bb_seen = bb;
2068 	}
2069 
2070       if (!curr_bb)
2071 	{
2072 	  switch (GET_CODE (x))
2073 	    {
2074 	    case BARRIER:
2075 	    case NOTE:
2076 	      break;
2077 
2078 	    case CODE_LABEL:
2079 	      /* An addr_vec is placed outside any basic block.  */
2080 	      if (NEXT_INSN (x)
2081 		  && JUMP_P (NEXT_INSN (x))
2082 		  && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
2083 		      || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
2084 		x = NEXT_INSN (x);
2085 
2086 	      /* But in any case, non-deletable labels can appear anywhere.  */
2087 	      break;
2088 
2089 	    default:
2090 	      fatal_insn ("insn outside basic block", x);
2091 	    }
2092 	}
2093 
2094       if (JUMP_P (x)
2095 	  && returnjump_p (x) && ! condjump_p (x)
2096 	  && ! (NEXT_INSN (x) && BARRIER_P (NEXT_INSN (x))))
2097 	    fatal_insn ("return not followed by barrier", x);
2098       if (curr_bb && x == BB_END (curr_bb))
2099 	curr_bb = NULL;
2100     }
2101 
2102   if (num_bb_notes != n_basic_blocks - NUM_FIXED_BLOCKS)
2103     internal_error
2104       ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2105        num_bb_notes, n_basic_blocks);
2106 
2107    return err;
2108 }
2109 
2110 /* Assume that the preceding pass has possibly eliminated jump instructions
2111    or converted the unconditional jumps.  Eliminate the edges from CFG.
2112    Return true if any edges are eliminated.  */
2113 
2114 bool
2115 purge_dead_edges (basic_block bb)
2116 {
2117   edge e;
2118   rtx insn = BB_END (bb), note;
2119   bool purged = false;
2120   bool found;
2121   edge_iterator ei;
2122 
2123   /* If this instruction cannot trap, remove REG_EH_REGION notes.  */
2124   if (NONJUMP_INSN_P (insn)
2125       && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
2126     {
2127       rtx eqnote;
2128 
2129       if (! may_trap_p (PATTERN (insn))
2130 	  || ((eqnote = find_reg_equal_equiv_note (insn))
2131 	      && ! may_trap_p (XEXP (eqnote, 0))))
2132 	remove_note (insn, note);
2133     }
2134 
2135   /* Cleanup abnormal edges caused by exceptions or non-local gotos.  */
2136   for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2137     {
2138       /* There are three types of edges we need to handle correctly here: EH
2139 	 edges, abnormal call EH edges, and abnormal call non-EH edges.  The
2140 	 latter can appear when nonlocal gotos are used.  */
2141       if (e->flags & EDGE_EH)
2142 	{
2143 	  if (can_throw_internal (BB_END (bb))
2144 	      /* If this is a call edge, verify that this is a call insn.  */
2145 	      && (! (e->flags & EDGE_ABNORMAL_CALL)
2146 		  || CALL_P (BB_END (bb))))
2147 	    {
2148 	      ei_next (&ei);
2149 	      continue;
2150 	    }
2151 	}
2152       else if (e->flags & EDGE_ABNORMAL_CALL)
2153 	{
2154 	  if (CALL_P (BB_END (bb))
2155 	      && (! (note = find_reg_note (insn, REG_EH_REGION, NULL))
2156 		  || INTVAL (XEXP (note, 0)) >= 0))
2157 	    {
2158 	      ei_next (&ei);
2159 	      continue;
2160 	    }
2161 	}
2162       else
2163 	{
2164 	  ei_next (&ei);
2165 	  continue;
2166 	}
2167 
2168       remove_edge (e);
2169       bb->flags |= BB_DIRTY;
2170       purged = true;
2171     }
2172 
2173   if (JUMP_P (insn))
2174     {
2175       rtx note;
2176       edge b,f;
2177       edge_iterator ei;
2178 
2179       /* We do care only about conditional jumps and simplejumps.  */
2180       if (!any_condjump_p (insn)
2181 	  && !returnjump_p (insn)
2182 	  && !simplejump_p (insn))
2183 	return purged;
2184 
2185       /* Branch probability/prediction notes are defined only for
2186 	 condjumps.  We've possibly turned condjump into simplejump.  */
2187       if (simplejump_p (insn))
2188 	{
2189 	  note = find_reg_note (insn, REG_BR_PROB, NULL);
2190 	  if (note)
2191 	    remove_note (insn, note);
2192 	  while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
2193 	    remove_note (insn, note);
2194 	}
2195 
2196       for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2197 	{
2198 	  /* Avoid abnormal flags to leak from computed jumps turned
2199 	     into simplejumps.  */
2200 
2201 	  e->flags &= ~EDGE_ABNORMAL;
2202 
2203 	  /* See if this edge is one we should keep.  */
2204 	  if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
2205 	    /* A conditional jump can fall through into the next
2206 	       block, so we should keep the edge.  */
2207 	    {
2208 	      ei_next (&ei);
2209 	      continue;
2210 	    }
2211 	  else if (e->dest != EXIT_BLOCK_PTR
2212 		   && BB_HEAD (e->dest) == JUMP_LABEL (insn))
2213 	    /* If the destination block is the target of the jump,
2214 	       keep the edge.  */
2215 	    {
2216 	      ei_next (&ei);
2217 	      continue;
2218 	    }
2219 	  else if (e->dest == EXIT_BLOCK_PTR && returnjump_p (insn))
2220 	    /* If the destination block is the exit block, and this
2221 	       instruction is a return, then keep the edge.  */
2222 	    {
2223 	      ei_next (&ei);
2224 	      continue;
2225 	    }
2226 	  else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
2227 	    /* Keep the edges that correspond to exceptions thrown by
2228 	       this instruction and rematerialize the EDGE_ABNORMAL
2229 	       flag we just cleared above.  */
2230 	    {
2231 	      e->flags |= EDGE_ABNORMAL;
2232 	      ei_next (&ei);
2233 	      continue;
2234 	    }
2235 
2236 	  /* We do not need this edge.  */
2237 	  bb->flags |= BB_DIRTY;
2238 	  purged = true;
2239 	  remove_edge (e);
2240 	}
2241 
2242       if (EDGE_COUNT (bb->succs) == 0 || !purged)
2243 	return purged;
2244 
2245       if (dump_file)
2246 	fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
2247 
2248       if (!optimize)
2249 	return purged;
2250 
2251       /* Redistribute probabilities.  */
2252       if (single_succ_p (bb))
2253 	{
2254 	  single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2255 	  single_succ_edge (bb)->count = bb->count;
2256 	}
2257       else
2258 	{
2259 	  note = find_reg_note (insn, REG_BR_PROB, NULL);
2260 	  if (!note)
2261 	    return purged;
2262 
2263 	  b = BRANCH_EDGE (bb);
2264 	  f = FALLTHRU_EDGE (bb);
2265 	  b->probability = INTVAL (XEXP (note, 0));
2266 	  f->probability = REG_BR_PROB_BASE - b->probability;
2267 	  b->count = bb->count * b->probability / REG_BR_PROB_BASE;
2268 	  f->count = bb->count * f->probability / REG_BR_PROB_BASE;
2269 	}
2270 
2271       return purged;
2272     }
2273   else if (CALL_P (insn) && SIBLING_CALL_P (insn))
2274     {
2275       /* First, there should not be any EH or ABCALL edges resulting
2276 	 from non-local gotos and the like.  If there were, we shouldn't
2277 	 have created the sibcall in the first place.  Second, there
2278 	 should of course never have been a fallthru edge.  */
2279       gcc_assert (single_succ_p (bb));
2280       gcc_assert (single_succ_edge (bb)->flags
2281 		  == (EDGE_SIBCALL | EDGE_ABNORMAL));
2282 
2283       return 0;
2284     }
2285 
2286   /* If we don't see a jump insn, we don't know exactly why the block would
2287      have been broken at this point.  Look for a simple, non-fallthru edge,
2288      as these are only created by conditional branches.  If we find such an
2289      edge we know that there used to be a jump here and can then safely
2290      remove all non-fallthru edges.  */
2291   found = false;
2292   FOR_EACH_EDGE (e, ei, bb->succs)
2293     if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
2294       {
2295 	found = true;
2296 	break;
2297       }
2298 
2299   if (!found)
2300     return purged;
2301 
2302   /* Remove all but the fake and fallthru edges.  The fake edge may be
2303      the only successor for this block in the case of noreturn
2304      calls.  */
2305   for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2306     {
2307       if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
2308 	{
2309 	  bb->flags |= BB_DIRTY;
2310 	  remove_edge (e);
2311 	  purged = true;
2312 	}
2313       else
2314 	ei_next (&ei);
2315     }
2316 
2317   gcc_assert (single_succ_p (bb));
2318 
2319   single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2320   single_succ_edge (bb)->count = bb->count;
2321 
2322   if (dump_file)
2323     fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
2324 	     bb->index);
2325   return purged;
2326 }
2327 
2328 /* Search all basic blocks for potentially dead edges and purge them.  Return
2329    true if some edge has been eliminated.  */
2330 
2331 bool
2332 purge_all_dead_edges (void)
2333 {
2334   int purged = false;
2335   basic_block bb;
2336 
2337   FOR_EACH_BB (bb)
2338     {
2339       bool purged_here = purge_dead_edges (bb);
2340 
2341       purged |= purged_here;
2342     }
2343 
2344   return purged;
2345 }
2346 
2347 /* Same as split_block but update cfg_layout structures.  */
2348 
2349 static basic_block
2350 cfg_layout_split_block (basic_block bb, void *insnp)
2351 {
2352   rtx insn = insnp;
2353   basic_block new_bb = rtl_split_block (bb, insn);
2354 
2355   new_bb->il.rtl->footer = bb->il.rtl->footer;
2356   bb->il.rtl->footer = NULL;
2357 
2358   return new_bb;
2359 }
2360 
2361 
2362 /* Redirect Edge to DEST.  */
2363 static edge
2364 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
2365 {
2366   basic_block src = e->src;
2367   edge ret;
2368 
2369   if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
2370     return NULL;
2371 
2372   if (e->dest == dest)
2373     return e;
2374 
2375   if (e->src != ENTRY_BLOCK_PTR
2376       && (ret = try_redirect_by_replacing_jump (e, dest, true)))
2377     {
2378       src->flags |= BB_DIRTY;
2379       return ret;
2380     }
2381 
2382   if (e->src == ENTRY_BLOCK_PTR
2383       && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
2384     {
2385       if (dump_file)
2386 	fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
2387 		 e->src->index, dest->index);
2388 
2389       e->src->flags |= BB_DIRTY;
2390       redirect_edge_succ (e, dest);
2391       return e;
2392     }
2393 
2394   /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
2395      in the case the basic block appears to be in sequence.  Avoid this
2396      transformation.  */
2397 
2398   if (e->flags & EDGE_FALLTHRU)
2399     {
2400       /* Redirect any branch edges unified with the fallthru one.  */
2401       if (JUMP_P (BB_END (src))
2402 	  && label_is_jump_target_p (BB_HEAD (e->dest),
2403 				     BB_END (src)))
2404 	{
2405 	  edge redirected;
2406 
2407 	  if (dump_file)
2408 	    fprintf (dump_file, "Fallthru edge unified with branch "
2409 		     "%i->%i redirected to %i\n",
2410 		     e->src->index, e->dest->index, dest->index);
2411 	  e->flags &= ~EDGE_FALLTHRU;
2412 	  redirected = redirect_branch_edge (e, dest);
2413 	  gcc_assert (redirected);
2414 	  e->flags |= EDGE_FALLTHRU;
2415 	  e->src->flags |= BB_DIRTY;
2416 	  return e;
2417 	}
2418       /* In case we are redirecting fallthru edge to the branch edge
2419 	 of conditional jump, remove it.  */
2420       if (EDGE_COUNT (src->succs) == 2)
2421 	{
2422 	  /* Find the edge that is different from E.  */
2423 	  edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
2424 
2425 	  if (s->dest == dest
2426 	      && any_condjump_p (BB_END (src))
2427 	      && onlyjump_p (BB_END (src)))
2428 	    delete_insn (BB_END (src));
2429 	}
2430       ret = redirect_edge_succ_nodup (e, dest);
2431       if (dump_file)
2432 	fprintf (dump_file, "Fallthru edge %i->%i redirected to %i\n",
2433 		 e->src->index, e->dest->index, dest->index);
2434     }
2435   else
2436     ret = redirect_branch_edge (e, dest);
2437 
2438   /* We don't want simplejumps in the insn stream during cfglayout.  */
2439   gcc_assert (!simplejump_p (BB_END (src)));
2440 
2441   src->flags |= BB_DIRTY;
2442   return ret;
2443 }
2444 
2445 /* Simple wrapper as we always can redirect fallthru edges.  */
2446 static basic_block
2447 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
2448 {
2449   edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
2450 
2451   gcc_assert (redirected);
2452   return NULL;
2453 }
2454 
2455 /* Same as delete_basic_block but update cfg_layout structures.  */
2456 
2457 static void
2458 cfg_layout_delete_block (basic_block bb)
2459 {
2460   rtx insn, next, prev = PREV_INSN (BB_HEAD (bb)), *to, remaints;
2461 
2462   if (bb->il.rtl->header)
2463     {
2464       next = BB_HEAD (bb);
2465       if (prev)
2466 	NEXT_INSN (prev) = bb->il.rtl->header;
2467       else
2468 	set_first_insn (bb->il.rtl->header);
2469       PREV_INSN (bb->il.rtl->header) = prev;
2470       insn = bb->il.rtl->header;
2471       while (NEXT_INSN (insn))
2472 	insn = NEXT_INSN (insn);
2473       NEXT_INSN (insn) = next;
2474       PREV_INSN (next) = insn;
2475     }
2476   next = NEXT_INSN (BB_END (bb));
2477   if (bb->il.rtl->footer)
2478     {
2479       insn = bb->il.rtl->footer;
2480       while (insn)
2481 	{
2482 	  if (BARRIER_P (insn))
2483 	    {
2484 	      if (PREV_INSN (insn))
2485 		NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2486 	      else
2487 		bb->il.rtl->footer = NEXT_INSN (insn);
2488 	      if (NEXT_INSN (insn))
2489 		PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2490 	    }
2491 	  if (LABEL_P (insn))
2492 	    break;
2493 	  insn = NEXT_INSN (insn);
2494 	}
2495       if (bb->il.rtl->footer)
2496 	{
2497 	  insn = BB_END (bb);
2498 	  NEXT_INSN (insn) = bb->il.rtl->footer;
2499 	  PREV_INSN (bb->il.rtl->footer) = insn;
2500 	  while (NEXT_INSN (insn))
2501 	    insn = NEXT_INSN (insn);
2502 	  NEXT_INSN (insn) = next;
2503 	  if (next)
2504 	    PREV_INSN (next) = insn;
2505 	  else
2506 	    set_last_insn (insn);
2507 	}
2508     }
2509   if (bb->next_bb != EXIT_BLOCK_PTR)
2510     to = &bb->next_bb->il.rtl->header;
2511   else
2512     to = &cfg_layout_function_footer;
2513 
2514   rtl_delete_block (bb);
2515 
2516   if (prev)
2517     prev = NEXT_INSN (prev);
2518   else
2519     prev = get_insns ();
2520   if (next)
2521     next = PREV_INSN (next);
2522   else
2523     next = get_last_insn ();
2524 
2525   if (next && NEXT_INSN (next) != prev)
2526     {
2527       remaints = unlink_insn_chain (prev, next);
2528       insn = remaints;
2529       while (NEXT_INSN (insn))
2530 	insn = NEXT_INSN (insn);
2531       NEXT_INSN (insn) = *to;
2532       if (*to)
2533 	PREV_INSN (*to) = insn;
2534       *to = remaints;
2535     }
2536 }
2537 
2538 /* Return true when blocks A and B can be safely merged.  */
2539 static bool
2540 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
2541 {
2542   /* If we are partitioning hot/cold basic blocks, we don't want to
2543      mess up unconditional or indirect jumps that cross between hot
2544      and cold sections.
2545 
2546      Basic block partitioning may result in some jumps that appear to
2547      be optimizable (or blocks that appear to be mergeable), but which really
2548      must be left untouched (they are required to make it safely across
2549      partition boundaries).  See  the comments at the top of
2550      bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
2551 
2552   if (BB_PARTITION (a) != BB_PARTITION (b))
2553     return false;
2554 
2555   /* There must be exactly one edge in between the blocks.  */
2556   return (single_succ_p (a)
2557 	  && single_succ (a) == b
2558 	  && single_pred_p (b) == 1
2559 	  && a != b
2560 	  /* Must be simple edge.  */
2561 	  && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
2562 	  && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
2563 	  /* If the jump insn has side effects,
2564 	     we can't kill the edge.  */
2565 	  && (!JUMP_P (BB_END (a))
2566 	      || (reload_completed
2567 		  ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
2568 }
2569 
2570 /* Merge block A and B.  The blocks must be mergeable.  */
2571 
2572 static void
2573 cfg_layout_merge_blocks (basic_block a, basic_block b)
2574 {
2575 #ifdef ENABLE_CHECKING
2576   gcc_assert (cfg_layout_can_merge_blocks_p (a, b));
2577 #endif
2578 
2579   /* If there was a CODE_LABEL beginning B, delete it.  */
2580   if (LABEL_P (BB_HEAD (b)))
2581     {
2582       /* This might have been an EH label that no longer has incoming
2583 	 EH edges.  Update data structures to match.  */
2584       maybe_remove_eh_handler (BB_HEAD (b));
2585 
2586       delete_insn (BB_HEAD (b));
2587     }
2588 
2589   /* We should have fallthru edge in a, or we can do dummy redirection to get
2590      it cleaned up.  */
2591   if (JUMP_P (BB_END (a)))
2592     try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
2593   gcc_assert (!JUMP_P (BB_END (a)));
2594 
2595   /* Possible line number notes should appear in between.  */
2596   if (b->il.rtl->header)
2597     {
2598       rtx first = BB_END (a), last;
2599 
2600       last = emit_insn_after_noloc (b->il.rtl->header, BB_END (a));
2601       delete_insn_chain (NEXT_INSN (first), last);
2602       b->il.rtl->header = NULL;
2603     }
2604 
2605   /* In the case basic blocks are not adjacent, move them around.  */
2606   if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
2607     {
2608       rtx first = unlink_insn_chain (BB_HEAD (b), BB_END (b));
2609 
2610       emit_insn_after_noloc (first, BB_END (a));
2611       /* Skip possible DELETED_LABEL insn.  */
2612       if (!NOTE_INSN_BASIC_BLOCK_P (first))
2613 	first = NEXT_INSN (first);
2614       gcc_assert (NOTE_INSN_BASIC_BLOCK_P (first));
2615       BB_HEAD (b) = NULL;
2616       delete_insn (first);
2617     }
2618   /* Otherwise just re-associate the instructions.  */
2619   else
2620     {
2621       rtx insn;
2622 
2623       for (insn = BB_HEAD (b);
2624 	   insn != NEXT_INSN (BB_END (b));
2625 	   insn = NEXT_INSN (insn))
2626 	set_block_for_insn (insn, a);
2627       insn = BB_HEAD (b);
2628       /* Skip possible DELETED_LABEL insn.  */
2629       if (!NOTE_INSN_BASIC_BLOCK_P (insn))
2630 	insn = NEXT_INSN (insn);
2631       gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
2632       BB_HEAD (b) = NULL;
2633       BB_END (a) = BB_END (b);
2634       delete_insn (insn);
2635     }
2636 
2637   /* Possible tablejumps and barriers should appear after the block.  */
2638   if (b->il.rtl->footer)
2639     {
2640       if (!a->il.rtl->footer)
2641 	a->il.rtl->footer = b->il.rtl->footer;
2642       else
2643 	{
2644 	  rtx last = a->il.rtl->footer;
2645 
2646 	  while (NEXT_INSN (last))
2647 	    last = NEXT_INSN (last);
2648 	  NEXT_INSN (last) = b->il.rtl->footer;
2649 	  PREV_INSN (b->il.rtl->footer) = last;
2650 	}
2651       b->il.rtl->footer = NULL;
2652     }
2653   a->il.rtl->global_live_at_end = b->il.rtl->global_live_at_end;
2654 
2655   if (dump_file)
2656     fprintf (dump_file, "Merged blocks %d and %d.\n",
2657 	     a->index, b->index);
2658 }
2659 
2660 /* Split edge E.  */
2661 
2662 static basic_block
2663 cfg_layout_split_edge (edge e)
2664 {
2665   basic_block new_bb =
2666     create_basic_block (e->src != ENTRY_BLOCK_PTR
2667 			? NEXT_INSN (BB_END (e->src)) : get_insns (),
2668 			NULL_RTX, e->src);
2669 
2670   /* ??? This info is likely going to be out of date very soon, but we must
2671      create it to avoid getting an ICE later.  */
2672   if (e->dest->il.rtl->global_live_at_start)
2673     {
2674       new_bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
2675       new_bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
2676       COPY_REG_SET (new_bb->il.rtl->global_live_at_start,
2677 		    e->dest->il.rtl->global_live_at_start);
2678       COPY_REG_SET (new_bb->il.rtl->global_live_at_end,
2679 		    e->dest->il.rtl->global_live_at_start);
2680     }
2681 
2682   make_edge (new_bb, e->dest, EDGE_FALLTHRU);
2683   redirect_edge_and_branch_force (e, new_bb);
2684 
2685   return new_bb;
2686 }
2687 
2688 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU.  */
2689 
2690 static void
2691 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
2692 {
2693 }
2694 
2695 /* Return 1 if BB ends with a call, possibly followed by some
2696    instructions that must stay with the call, 0 otherwise.  */
2697 
2698 static bool
2699 rtl_block_ends_with_call_p (basic_block bb)
2700 {
2701   rtx insn = BB_END (bb);
2702 
2703   while (!CALL_P (insn)
2704 	 && insn != BB_HEAD (bb)
2705 	 && keep_with_call_p (insn))
2706     insn = PREV_INSN (insn);
2707   return (CALL_P (insn));
2708 }
2709 
2710 /* Return 1 if BB ends with a conditional branch, 0 otherwise.  */
2711 
2712 static bool
2713 rtl_block_ends_with_condjump_p (basic_block bb)
2714 {
2715   return any_condjump_p (BB_END (bb));
2716 }
2717 
2718 /* Return true if we need to add fake edge to exit.
2719    Helper function for rtl_flow_call_edges_add.  */
2720 
2721 static bool
2722 need_fake_edge_p (rtx insn)
2723 {
2724   if (!INSN_P (insn))
2725     return false;
2726 
2727   if ((CALL_P (insn)
2728        && !SIBLING_CALL_P (insn)
2729        && !find_reg_note (insn, REG_NORETURN, NULL)
2730        && !CONST_OR_PURE_CALL_P (insn)))
2731     return true;
2732 
2733   return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2734 	   && MEM_VOLATILE_P (PATTERN (insn)))
2735 	  || (GET_CODE (PATTERN (insn)) == PARALLEL
2736 	      && asm_noperands (insn) != -1
2737 	      && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
2738 	  || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2739 }
2740 
2741 /* Add fake edges to the function exit for any non constant and non noreturn
2742    calls, volatile inline assembly in the bitmap of blocks specified by
2743    BLOCKS or to the whole CFG if BLOCKS is zero.  Return the number of blocks
2744    that were split.
2745 
2746    The goal is to expose cases in which entering a basic block does not imply
2747    that all subsequent instructions must be executed.  */
2748 
2749 static int
2750 rtl_flow_call_edges_add (sbitmap blocks)
2751 {
2752   int i;
2753   int blocks_split = 0;
2754   int last_bb = last_basic_block;
2755   bool check_last_block = false;
2756 
2757   if (n_basic_blocks == NUM_FIXED_BLOCKS)
2758     return 0;
2759 
2760   if (! blocks)
2761     check_last_block = true;
2762   else
2763     check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
2764 
2765   /* In the last basic block, before epilogue generation, there will be
2766      a fallthru edge to EXIT.  Special care is required if the last insn
2767      of the last basic block is a call because make_edge folds duplicate
2768      edges, which would result in the fallthru edge also being marked
2769      fake, which would result in the fallthru edge being removed by
2770      remove_fake_edges, which would result in an invalid CFG.
2771 
2772      Moreover, we can't elide the outgoing fake edge, since the block
2773      profiler needs to take this into account in order to solve the minimal
2774      spanning tree in the case that the call doesn't return.
2775 
2776      Handle this by adding a dummy instruction in a new last basic block.  */
2777   if (check_last_block)
2778     {
2779       basic_block bb = EXIT_BLOCK_PTR->prev_bb;
2780       rtx insn = BB_END (bb);
2781 
2782       /* Back up past insns that must be kept in the same block as a call.  */
2783       while (insn != BB_HEAD (bb)
2784 	     && keep_with_call_p (insn))
2785 	insn = PREV_INSN (insn);
2786 
2787       if (need_fake_edge_p (insn))
2788 	{
2789 	  edge e;
2790 
2791 	  e = find_edge (bb, EXIT_BLOCK_PTR);
2792 	  if (e)
2793 	    {
2794 	      insert_insn_on_edge (gen_rtx_USE (VOIDmode, const0_rtx), e);
2795 	      commit_edge_insertions ();
2796 	    }
2797 	}
2798     }
2799 
2800   /* Now add fake edges to the function exit for any non constant
2801      calls since there is no way that we can determine if they will
2802      return or not...  */
2803 
2804   for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
2805     {
2806       basic_block bb = BASIC_BLOCK (i);
2807       rtx insn;
2808       rtx prev_insn;
2809 
2810       if (!bb)
2811 	continue;
2812 
2813       if (blocks && !TEST_BIT (blocks, i))
2814 	continue;
2815 
2816       for (insn = BB_END (bb); ; insn = prev_insn)
2817 	{
2818 	  prev_insn = PREV_INSN (insn);
2819 	  if (need_fake_edge_p (insn))
2820 	    {
2821 	      edge e;
2822 	      rtx split_at_insn = insn;
2823 
2824 	      /* Don't split the block between a call and an insn that should
2825 		 remain in the same block as the call.  */
2826 	      if (CALL_P (insn))
2827 		while (split_at_insn != BB_END (bb)
2828 		       && keep_with_call_p (NEXT_INSN (split_at_insn)))
2829 		  split_at_insn = NEXT_INSN (split_at_insn);
2830 
2831 	      /* The handling above of the final block before the epilogue
2832 		 should be enough to verify that there is no edge to the exit
2833 		 block in CFG already.  Calling make_edge in such case would
2834 		 cause us to mark that edge as fake and remove it later.  */
2835 
2836 #ifdef ENABLE_CHECKING
2837 	      if (split_at_insn == BB_END (bb))
2838 		{
2839 		  e = find_edge (bb, EXIT_BLOCK_PTR);
2840 		  gcc_assert (e == NULL);
2841 		}
2842 #endif
2843 
2844 	      /* Note that the following may create a new basic block
2845 		 and renumber the existing basic blocks.  */
2846 	      if (split_at_insn != BB_END (bb))
2847 		{
2848 		  e = split_block (bb, split_at_insn);
2849 		  if (e)
2850 		    blocks_split++;
2851 		}
2852 
2853 	      make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
2854 	    }
2855 
2856 	  if (insn == BB_HEAD (bb))
2857 	    break;
2858 	}
2859     }
2860 
2861   if (blocks_split)
2862     verify_flow_info ();
2863 
2864   return blocks_split;
2865 }
2866 
2867 /* Add COMP_RTX as a condition at end of COND_BB.  FIRST_HEAD is
2868    the conditional branch target, SECOND_HEAD should be the fall-thru
2869    there is no need to handle this here the loop versioning code handles
2870    this.  the reason for SECON_HEAD is that it is needed for condition
2871    in trees, and this should be of the same type since it is a hook.  */
2872 static void
2873 rtl_lv_add_condition_to_bb (basic_block first_head ,
2874 			    basic_block second_head ATTRIBUTE_UNUSED,
2875 			    basic_block cond_bb, void *comp_rtx)
2876 {
2877   rtx label, seq, jump;
2878   rtx op0 = XEXP ((rtx)comp_rtx, 0);
2879   rtx op1 = XEXP ((rtx)comp_rtx, 1);
2880   enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
2881   enum machine_mode mode;
2882 
2883 
2884   label = block_label (first_head);
2885   mode = GET_MODE (op0);
2886   if (mode == VOIDmode)
2887     mode = GET_MODE (op1);
2888 
2889   start_sequence ();
2890   op0 = force_operand (op0, NULL_RTX);
2891   op1 = force_operand (op1, NULL_RTX);
2892   do_compare_rtx_and_jump (op0, op1, comp, 0,
2893 			   mode, NULL_RTX, NULL_RTX, label);
2894   jump = get_last_insn ();
2895   JUMP_LABEL (jump) = label;
2896   LABEL_NUSES (label)++;
2897   seq = get_insns ();
2898   end_sequence ();
2899 
2900   /* Add the new cond , in the new head.  */
2901   emit_insn_after(seq, BB_END(cond_bb));
2902 }
2903 
2904 
2905 /* Given a block B with unconditional branch at its end, get the
2906    store the return the branch edge and the fall-thru edge in
2907    BRANCH_EDGE and FALLTHRU_EDGE respectively.  */
2908 static void
2909 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
2910 			   edge *fallthru_edge)
2911 {
2912   edge e = EDGE_SUCC (b, 0);
2913 
2914   if (e->flags & EDGE_FALLTHRU)
2915     {
2916       *fallthru_edge = e;
2917       *branch_edge = EDGE_SUCC (b, 1);
2918     }
2919   else
2920     {
2921       *branch_edge = e;
2922       *fallthru_edge = EDGE_SUCC (b, 1);
2923     }
2924 }
2925 
2926 void
2927 init_rtl_bb_info (basic_block bb)
2928 {
2929   gcc_assert (!bb->il.rtl);
2930   bb->il.rtl = ggc_alloc_cleared (sizeof (struct rtl_bb_info));
2931 }
2932 
2933 
2934 /* Add EXPR to the end of basic block BB.  */
2935 
2936 rtx
2937 insert_insn_end_bb_new (rtx pat, basic_block bb)
2938 {
2939   rtx insn = BB_END (bb);
2940   rtx new_insn;
2941   rtx pat_end = pat;
2942 
2943   while (NEXT_INSN (pat_end) != NULL_RTX)
2944     pat_end = NEXT_INSN (pat_end);
2945 
2946   /* If the last insn is a jump, insert EXPR in front [taking care to
2947      handle cc0, etc. properly].  Similarly we need to care trapping
2948      instructions in presence of non-call exceptions.  */
2949 
2950   if (JUMP_P (insn)
2951       || (NONJUMP_INSN_P (insn)
2952           && (!single_succ_p (bb)
2953               || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2954     {
2955 #ifdef HAVE_cc0
2956       rtx note;
2957 #endif
2958       /* If this is a jump table, then we can't insert stuff here.  Since
2959          we know the previous real insn must be the tablejump, we insert
2960          the new instruction just before the tablejump.  */
2961       if (GET_CODE (PATTERN (insn)) == ADDR_VEC
2962           || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
2963         insn = prev_real_insn (insn);
2964 
2965 #ifdef HAVE_cc0
2966       /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2967          if cc0 isn't set.  */
2968       note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2969       if (note)
2970         insn = XEXP (note, 0);
2971       else
2972         {
2973           rtx maybe_cc0_setter = prev_nonnote_insn (insn);
2974           if (maybe_cc0_setter
2975               && INSN_P (maybe_cc0_setter)
2976               && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2977             insn = maybe_cc0_setter;
2978         }
2979 #endif
2980       /* FIXME: What if something in cc0/jump uses value set in new
2981          insn?  */
2982       new_insn = emit_insn_before_noloc (pat, insn);
2983     }
2984 
2985   /* Likewise if the last insn is a call, as will happen in the presence
2986      of exception handling.  */
2987   else if (CALL_P (insn)
2988            && (!single_succ_p (bb)
2989                || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2990     {
2991       /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
2992          we search backward and place the instructions before the first
2993          parameter is loaded.  Do this for everyone for consistency and a
2994          presumption that we'll get better code elsewhere as well.  */
2995 
2996       /* Since different machines initialize their parameter registers
2997          in different orders, assume nothing.  Collect the set of all
2998          parameter registers.  */
2999       insn = find_first_parameter_load (insn, BB_HEAD (bb));
3000 
3001       /* If we found all the parameter loads, then we want to insert
3002          before the first parameter load.
3003 
3004          If we did not find all the parameter loads, then we might have
3005          stopped on the head of the block, which could be a CODE_LABEL.
3006          If we inserted before the CODE_LABEL, then we would be putting
3007          the insn in the wrong basic block.  In that case, put the insn
3008          after the CODE_LABEL.  Also, respect NOTE_INSN_BASIC_BLOCK.  */
3009       while (LABEL_P (insn)
3010              || NOTE_INSN_BASIC_BLOCK_P (insn))
3011         insn = NEXT_INSN (insn);
3012 
3013       new_insn = emit_insn_before_noloc (pat, insn);
3014     }
3015   else
3016     new_insn = emit_insn_after_noloc (pat, insn);
3017 
3018   return new_insn;
3019 }
3020 
3021 /* Implementation of CFG manipulation for linearized RTL.  */
3022 struct cfg_hooks rtl_cfg_hooks = {
3023   "rtl",
3024   rtl_verify_flow_info,
3025   rtl_dump_bb,
3026   rtl_create_basic_block,
3027   rtl_redirect_edge_and_branch,
3028   rtl_redirect_edge_and_branch_force,
3029   rtl_delete_block,
3030   rtl_split_block,
3031   rtl_move_block_after,
3032   rtl_can_merge_blocks,  /* can_merge_blocks_p */
3033   rtl_merge_blocks,
3034   rtl_predict_edge,
3035   rtl_predicted_by_p,
3036   NULL, /* can_duplicate_block_p */
3037   NULL, /* duplicate_block */
3038   rtl_split_edge,
3039   rtl_make_forwarder_block,
3040   rtl_tidy_fallthru_edge,
3041   rtl_block_ends_with_call_p,
3042   rtl_block_ends_with_condjump_p,
3043   rtl_flow_call_edges_add,
3044   NULL, /* execute_on_growing_pred */
3045   NULL, /* execute_on_shrinking_pred */
3046   NULL, /* duplicate loop for trees */
3047   NULL, /* lv_add_condition_to_bb */
3048   NULL, /* lv_adjust_loop_header_phi*/
3049   NULL, /* extract_cond_bb_edges */
3050   NULL		/* flush_pending_stmts */
3051 };
3052 
3053 /* Implementation of CFG manipulation for cfg layout RTL, where
3054    basic block connected via fallthru edges does not have to be adjacent.
3055    This representation will hopefully become the default one in future
3056    version of the compiler.  */
3057 
3058 /* We do not want to declare these functions in a header file, since they
3059    should only be used through the cfghooks interface, and we do not want to
3060    move them here since it would require also moving quite a lot of related
3061    code.  */
3062 extern bool cfg_layout_can_duplicate_bb_p (basic_block);
3063 extern basic_block cfg_layout_duplicate_bb (basic_block);
3064 
3065 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
3066   "cfglayout mode",
3067   rtl_verify_flow_info_1,
3068   rtl_dump_bb,
3069   cfg_layout_create_basic_block,
3070   cfg_layout_redirect_edge_and_branch,
3071   cfg_layout_redirect_edge_and_branch_force,
3072   cfg_layout_delete_block,
3073   cfg_layout_split_block,
3074   rtl_move_block_after,
3075   cfg_layout_can_merge_blocks_p,
3076   cfg_layout_merge_blocks,
3077   rtl_predict_edge,
3078   rtl_predicted_by_p,
3079   cfg_layout_can_duplicate_bb_p,
3080   cfg_layout_duplicate_bb,
3081   cfg_layout_split_edge,
3082   rtl_make_forwarder_block,
3083   NULL,
3084   rtl_block_ends_with_call_p,
3085   rtl_block_ends_with_condjump_p,
3086   rtl_flow_call_edges_add,
3087   NULL, /* execute_on_growing_pred */
3088   NULL, /* execute_on_shrinking_pred */
3089   duplicate_loop_to_header_edge, /* duplicate loop for trees */
3090   rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
3091   NULL, /* lv_adjust_loop_header_phi*/
3092   rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
3093   NULL		/* flush_pending_stmts */
3094 };
3095