xref: /openbsd/gnu/gcc/gcc/config/mips/mips.h (revision a1c34178)
1 /* Definitions of target machine for GNU compiler.  MIPS version.
2    Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3    1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4    Contributed by A. Lichnewsky (lich@inria.inria.fr).
5    Changed by Michael Meissner	(meissner@osf.org).
6    64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7    Brendan Eich (brendan@microunity.com).
8 
9 This file is part of GCC.
10 
11 GCC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
14 any later version.
15 
16 GCC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 GNU General Public License for more details.
20 
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING.  If not, write to
23 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA.  */
25 
26 
27 /* MIPS external variables defined in mips.c.  */
28 
29 /* Which processor to schedule for.  Since there is no difference between
30    a R2000 and R3000 in terms of the scheduler, we collapse them into
31    just an R3000.  The elements of the enumeration must match exactly
32    the cpu attribute in the mips.md machine description.  */
33 
34 enum processor_type {
35   PROCESSOR_R3000,
36   PROCESSOR_4KC,
37   PROCESSOR_4KP,
38   PROCESSOR_5KC,
39   PROCESSOR_5KF,
40   PROCESSOR_20KC,
41   PROCESSOR_24K,
42   PROCESSOR_24KX,
43   PROCESSOR_M4K,
44   PROCESSOR_R3900,
45   PROCESSOR_R6000,
46   PROCESSOR_R4000,
47   PROCESSOR_R4100,
48   PROCESSOR_R4111,
49   PROCESSOR_R4120,
50   PROCESSOR_R4130,
51   PROCESSOR_R4300,
52   PROCESSOR_R4600,
53   PROCESSOR_R4650,
54   PROCESSOR_R5000,
55   PROCESSOR_R5400,
56   PROCESSOR_R5500,
57   PROCESSOR_R7000,
58   PROCESSOR_R8000,
59   PROCESSOR_R9000,
60   PROCESSOR_SB1,
61   PROCESSOR_SB1A,
62   PROCESSOR_SR71000,
63   PROCESSOR_MAX
64 };
65 
66 /* Costs of various operations on the different architectures.  */
67 
68 struct mips_rtx_cost_data
69 {
70   unsigned short fp_add;
71   unsigned short fp_mult_sf;
72   unsigned short fp_mult_df;
73   unsigned short fp_div_sf;
74   unsigned short fp_div_df;
75   unsigned short int_mult_si;
76   unsigned short int_mult_di;
77   unsigned short int_div_si;
78   unsigned short int_div_di;
79   unsigned short branch_cost;
80   unsigned short memory_latency;
81 };
82 
83 /* Which ABI to use.  ABI_32 (original 32, or o32), ABI_N32 (n32),
84    ABI_64 (n64) are all defined by SGI.  ABI_O64 is o32 extended
85    to work on a 64 bit machine.  */
86 
87 #define ABI_32  0
88 #define ABI_N32 1
89 #define ABI_64  2
90 #define ABI_EABI 3
91 #define ABI_O64  4
92 
93 /* Information about one recognized processor.  Defined here for the
94    benefit of TARGET_CPU_CPP_BUILTINS.  */
95 struct mips_cpu_info {
96   /* The 'canonical' name of the processor as far as GCC is concerned.
97      It's typically a manufacturer's prefix followed by a numerical
98      designation.  It should be lower case.  */
99   const char *name;
100 
101   /* The internal processor number that most closely matches this
102      entry.  Several processors can have the same value, if there's no
103      difference between them from GCC's point of view.  */
104   enum processor_type cpu;
105 
106   /* The ISA level that the processor implements.  */
107   int isa;
108 };
109 
110 #ifndef USED_FOR_TARGET
111 extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
112 extern const char *current_function_file; /* filename current function is in */
113 extern int num_source_filenames;	/* current .file # */
114 extern int mips_section_threshold;	/* # bytes of data/sdata cutoff */
115 extern int sym_lineno;			/* sgi next label # for each stmt */
116 extern int set_noreorder;		/* # of nested .set noreorder's  */
117 extern int set_nomacro;			/* # of nested .set nomacro's  */
118 extern int set_noat;			/* # of nested .set noat's  */
119 extern int set_volatile;		/* # of nested .set volatile's  */
120 extern int mips_branch_likely;		/* emit 'l' after br (branch likely) */
121 extern int mips_dbx_regno[];		/* Map register # to debug register # */
122 extern bool mips_split_p[];
123 extern GTY(()) rtx cmp_operands[2];
124 extern enum processor_type mips_arch;   /* which cpu to codegen for */
125 extern enum processor_type mips_tune;   /* which cpu to schedule for */
126 extern int mips_isa;			/* architectural level */
127 extern int mips_abi;			/* which ABI to use */
128 extern int mips16_hard_float;		/* mips16 without -msoft-float */
129 extern const struct mips_cpu_info mips_cpu_info_table[];
130 extern const struct mips_cpu_info *mips_arch_info;
131 extern const struct mips_cpu_info *mips_tune_info;
132 extern const struct mips_rtx_cost_data *mips_cost;
133 #endif
134 
135 /* Macros to silence warnings about numbers being signed in traditional
136    C and unsigned in ISO C when compiled on 32-bit hosts.  */
137 
138 #define BITMASK_HIGH	(((unsigned long)1) << 31)	/* 0x80000000 */
139 #define BITMASK_UPPER16	((unsigned long)0xffff << 16)	/* 0xffff0000 */
140 #define BITMASK_LOWER16	((unsigned long)0xffff)		/* 0x0000ffff */
141 
142 
143 /* Run-time compilation parameters selecting different hardware subsets.  */
144 
145 /* True if the call patterns should be split into a jalr followed by
146    an instruction to restore $gp.  This is only ever true for SVR4 PIC,
147    in which $gp is call-clobbered.  It is only safe to split the load
148    from the call when every use of $gp is explicit.  */
149 
150 #define TARGET_SPLIT_CALLS \
151   (TARGET_EXPLICIT_RELOCS && TARGET_ABICALLS && !TARGET_NEWABI)
152 
153 /* True if we're generating a form of -mabicalls in which we can use
154    operators like %hi and %lo to refer to locally-binding symbols.
155    We can only do this for -mno-shared, and only then if we can use
156    relocation operations instead of assembly macros.  It isn't really
157    worth using absolute sequences for 64-bit symbols because GOT
158    accesses are so much shorter.  */
159 
160 #define TARGET_ABSOLUTE_ABICALLS	\
161   (TARGET_ABICALLS			\
162    && !TARGET_SHARED			\
163    && TARGET_EXPLICIT_RELOCS		\
164    && !ABI_HAS_64BIT_SYMBOLS)
165 
166 /* True if we can optimize sibling calls.  For simplicity, we only
167    handle cases in which call_insn_operand will reject invalid
168    sibcall addresses.  There are two cases in which this isn't true:
169 
170       - TARGET_MIPS16.  call_insn_operand accepts constant addresses
171 	but there is no direct jump instruction.  It isn't worth
172 	using sibling calls in this case anyway; they would usually
173 	be longer than normal calls.
174 
175       - TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS.  call_insn_operand
176 	accepts global constants, but "jr $25" is the only allowed
177 	sibcall.  */
178 
179 #define TARGET_SIBCALLS \
180   (!TARGET_MIPS16 && (!TARGET_ABICALLS || TARGET_EXPLICIT_RELOCS))
181 
182 /* True if .gpword or .gpdword should be used for switch tables.
183 
184    Although GAS does understand .gpdword, the SGI linker mishandles
185    the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
186    We therefore disable GP-relative switch tables for n64 on IRIX targets.  */
187 #define TARGET_GPWORD (TARGET_ABICALLS && !(mips_abi == ABI_64 && TARGET_IRIX))
188 
189 /* Generate mips16 code */
190 #define TARGET_MIPS16		((target_flags & MASK_MIPS16) != 0)
191 /* Generate mips16e code. Default 16bit ASE for mips32/mips32r2/mips64 */
192 #define GENERATE_MIPS16E	(TARGET_MIPS16 && mips_isa >= 32)
193 
194 /* Generic ISA defines.  */
195 #define ISA_MIPS1		    (mips_isa == 1)
196 #define ISA_MIPS2		    (mips_isa == 2)
197 #define ISA_MIPS3                   (mips_isa == 3)
198 #define ISA_MIPS4		    (mips_isa == 4)
199 #define ISA_MIPS32		    (mips_isa == 32)
200 #define ISA_MIPS32R2		    (mips_isa == 33)
201 #define ISA_MIPS64                  (mips_isa == 64)
202 
203 /* Architecture target defines.  */
204 #define TARGET_MIPS3900             (mips_arch == PROCESSOR_R3900)
205 #define TARGET_MIPS4000             (mips_arch == PROCESSOR_R4000)
206 #define TARGET_MIPS4120             (mips_arch == PROCESSOR_R4120)
207 #define TARGET_MIPS4130             (mips_arch == PROCESSOR_R4130)
208 #define TARGET_MIPS5400             (mips_arch == PROCESSOR_R5400)
209 #define TARGET_MIPS5500             (mips_arch == PROCESSOR_R5500)
210 #define TARGET_MIPS7000             (mips_arch == PROCESSOR_R7000)
211 #define TARGET_MIPS9000             (mips_arch == PROCESSOR_R9000)
212 #define TARGET_SB1                  (mips_arch == PROCESSOR_SB1		\
213 				     || mips_arch == PROCESSOR_SB1A)
214 #define TARGET_SR71K                (mips_arch == PROCESSOR_SR71000)
215 
216 /* Scheduling target defines.  */
217 #define TUNE_MIPS3000               (mips_tune == PROCESSOR_R3000)
218 #define TUNE_MIPS3900               (mips_tune == PROCESSOR_R3900)
219 #define TUNE_MIPS4000               (mips_tune == PROCESSOR_R4000)
220 #define TUNE_MIPS4120               (mips_tune == PROCESSOR_R4120)
221 #define TUNE_MIPS4130               (mips_tune == PROCESSOR_R4130)
222 #define TUNE_MIPS5000               (mips_tune == PROCESSOR_R5000)
223 #define TUNE_MIPS5400               (mips_tune == PROCESSOR_R5400)
224 #define TUNE_MIPS5500               (mips_tune == PROCESSOR_R5500)
225 #define TUNE_MIPS6000               (mips_tune == PROCESSOR_R6000)
226 #define TUNE_MIPS7000               (mips_tune == PROCESSOR_R7000)
227 #define TUNE_MIPS9000               (mips_tune == PROCESSOR_R9000)
228 #define TUNE_SB1                    (mips_tune == PROCESSOR_SB1		\
229 				     || mips_tune == PROCESSOR_SB1A)
230 
231 /* True if the pre-reload scheduler should try to create chains of
232    multiply-add or multiply-subtract instructions.  For example,
233    suppose we have:
234 
235 	t1 = a * b
236 	t2 = t1 + c * d
237 	t3 = e * f
238 	t4 = t3 - g * h
239 
240    t1 will have a higher priority than t2 and t3 will have a higher
241    priority than t4.  However, before reload, there is no dependence
242    between t1 and t3, and they can often have similar priorities.
243    The scheduler will then tend to prefer:
244 
245 	t1 = a * b
246 	t3 = e * f
247 	t2 = t1 + c * d
248 	t4 = t3 - g * h
249 
250    which stops us from making full use of macc/madd-style instructions.
251    This sort of situation occurs frequently in Fourier transforms and
252    in unrolled loops.
253 
254    To counter this, the TUNE_MACC_CHAINS code will reorder the ready
255    queue so that chained multiply-add and multiply-subtract instructions
256    appear ahead of any other instruction that is likely to clobber lo.
257    In the example above, if t2 and t3 become ready at the same time,
258    the code ensures that t2 is scheduled first.
259 
260    Multiply-accumulate instructions are a bigger win for some targets
261    than others, so this macro is defined on an opt-in basis.  */
262 #define TUNE_MACC_CHAINS	    (TUNE_MIPS5500		\
263 				     || TUNE_MIPS4120		\
264 				     || TUNE_MIPS4130)
265 
266 #define TARGET_OLDABI		    (mips_abi == ABI_32 || mips_abi == ABI_O64)
267 #define TARGET_NEWABI		    (mips_abi == ABI_N32 || mips_abi == ABI_64)
268 
269 /* IRIX specific stuff.  */
270 #define TARGET_IRIX	   0
271 #define TARGET_IRIX6	   0
272 
273 /* Define preprocessor macros for the -march and -mtune options.
274    PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
275    processor.  If INFO's canonical name is "foo", define PREFIX to
276    be "foo", and define an additional macro PREFIX_FOO.  */
277 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO)			\
278   do								\
279     {								\
280       char *macro, *p;						\
281 								\
282       macro = concat ((PREFIX), "_", (INFO)->name, NULL);	\
283       for (p = macro; *p != 0; p++)				\
284 	*p = TOUPPER (*p);					\
285 								\
286       builtin_define (macro);					\
287       builtin_define_with_value ((PREFIX), (INFO)->name, 1);	\
288       free (macro);						\
289     }								\
290   while (0)
291 
292 /* Target CPU builtins.  */
293 #define TARGET_CPU_CPP_BUILTINS()				\
294   do								\
295     {								\
296       /* Everyone but IRIX defines this to mips.  */            \
297       if (!TARGET_IRIX)                                         \
298         builtin_assert ("machine=mips");                        \
299                                                                 \
300       builtin_assert ("cpu=mips");				\
301       builtin_define ("__mips__");     				\
302       builtin_define ("_mips");					\
303 								\
304       /* We do this here because __mips is defined below	\
305 	 and so we can't use builtin_define_std.  */		\
306       if (!flag_iso)						\
307 	builtin_define ("mips");				\
308 								\
309       if (TARGET_64BIT)						\
310 	builtin_define ("__mips64");				\
311 								\
312       if (!TARGET_IRIX)						\
313 	{							\
314 	  /* Treat _R3000 and _R4000 like register-size		\
315 	     defines, which is how they've historically		\
316 	     been used.  */					\
317 	  if (TARGET_64BIT)					\
318 	    {							\
319 	      builtin_define_std ("R4000");			\
320 	      builtin_define ("_R4000");			\
321 	    }							\
322 	  else							\
323 	    {							\
324 	      builtin_define_std ("R3000");			\
325 	      builtin_define ("_R3000");			\
326 	    }							\
327 	}							\
328       if (TARGET_FLOAT64)					\
329 	builtin_define ("__mips_fpr=64");			\
330       else							\
331 	builtin_define ("__mips_fpr=32");			\
332 								\
333       if (TARGET_MIPS16)					\
334 	builtin_define ("__mips16");				\
335 								\
336       if (TARGET_MIPS3D)					\
337 	builtin_define ("__mips3d");				\
338 								\
339       if (TARGET_DSP)						\
340 	builtin_define ("__mips_dsp");				\
341 								\
342       MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info);	\
343       MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info);	\
344 								\
345       if (ISA_MIPS1)						\
346 	{							\
347 	  builtin_define ("__mips=1");				\
348 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1");		\
349 	}							\
350       else if (ISA_MIPS2)					\
351 	{							\
352 	  builtin_define ("__mips=2");				\
353 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2");		\
354 	}							\
355       else if (ISA_MIPS3)					\
356 	{							\
357 	  builtin_define ("__mips=3");				\
358 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3");		\
359 	}							\
360       else if (ISA_MIPS4)					\
361 	{							\
362 	  builtin_define ("__mips=4");				\
363 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4");		\
364 	}							\
365       else if (ISA_MIPS32)					\
366 	{							\
367 	  builtin_define ("__mips=32");				\
368 	  builtin_define ("__mips_isa_rev=1");			\
369 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");	\
370 	}							\
371       else if (ISA_MIPS32R2)					\
372 	{							\
373 	  builtin_define ("__mips=32");				\
374 	  builtin_define ("__mips_isa_rev=2");			\
375 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");	\
376 	}							\
377       else if (ISA_MIPS64)					\
378 	{							\
379 	  builtin_define ("__mips=64");				\
380 	  builtin_define ("__mips_isa_rev=1");			\
381 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");	\
382 	}							\
383 								\
384       if (TARGET_HARD_FLOAT)					\
385 	builtin_define ("__mips_hard_float");			\
386       else if (TARGET_SOFT_FLOAT)				\
387 	builtin_define ("__mips_soft_float");			\
388 								\
389       if (TARGET_SINGLE_FLOAT)					\
390 	builtin_define ("__mips_single_float");			\
391 								\
392       if (TARGET_PAIRED_SINGLE_FLOAT)				\
393 	builtin_define ("__mips_paired_single_float");		\
394 								\
395       if (TARGET_BIG_ENDIAN)					\
396 	{							\
397 	  builtin_define_std ("MIPSEB");			\
398 	  builtin_define ("_MIPSEB");				\
399 	}							\
400       else							\
401 	{							\
402 	  builtin_define_std ("MIPSEL");			\
403 	  builtin_define ("_MIPSEL");				\
404 	}							\
405 								\
406         /* Macros dependent on the C dialect.  */		\
407       if (preprocessing_asm_p ())				\
408 	{							\
409           builtin_define_std ("LANGUAGE_ASSEMBLY");		\
410 	  builtin_define ("_LANGUAGE_ASSEMBLY");		\
411 	}							\
412       else if (c_dialect_cxx ())				\
413         {							\
414 	  builtin_define ("_LANGUAGE_C_PLUS_PLUS");		\
415           builtin_define ("__LANGUAGE_C_PLUS_PLUS");		\
416           builtin_define ("__LANGUAGE_C_PLUS_PLUS__");		\
417         }							\
418       else							\
419 	{							\
420           builtin_define_std ("LANGUAGE_C");			\
421 	  builtin_define ("_LANGUAGE_C");			\
422 	}							\
423       if (c_dialect_objc ())					\
424         {							\
425 	  builtin_define ("_LANGUAGE_OBJECTIVE_C");		\
426           builtin_define ("__LANGUAGE_OBJECTIVE_C");		\
427 	  /* Bizarre, but needed at least for Irix.  */		\
428 	  builtin_define_std ("LANGUAGE_C");			\
429 	  builtin_define ("_LANGUAGE_C");			\
430         }							\
431 								\
432       if (mips_abi == ABI_EABI)					\
433 	builtin_define ("__mips_eabi");				\
434 								\
435 } while (0)
436 
437 /* Default target_flags if no switches are specified  */
438 
439 #ifndef TARGET_DEFAULT
440 #define TARGET_DEFAULT 0
441 #endif
442 
443 #ifndef TARGET_CPU_DEFAULT
444 #define TARGET_CPU_DEFAULT 0
445 #endif
446 
447 #ifndef TARGET_ENDIAN_DEFAULT
448 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
449 #endif
450 
451 #ifndef TARGET_FP_EXCEPTIONS_DEFAULT
452 #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
453 #endif
454 
455 /* 'from-abi' makes a good default: you get whatever the ABI requires.  */
456 #ifndef MIPS_ISA_DEFAULT
457 #ifndef MIPS_CPU_STRING_DEFAULT
458 #define MIPS_CPU_STRING_DEFAULT "from-abi"
459 #endif
460 #endif
461 
462 #ifdef IN_LIBGCC2
463 #undef TARGET_64BIT
464 /* Make this compile time constant for libgcc2 */
465 #ifdef __mips64
466 #define TARGET_64BIT		1
467 #else
468 #define TARGET_64BIT		0
469 #endif
470 #endif /* IN_LIBGCC2 */
471 
472 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
473 
474 #ifndef MULTILIB_ENDIAN_DEFAULT
475 #if TARGET_ENDIAN_DEFAULT == 0
476 #define MULTILIB_ENDIAN_DEFAULT "EL"
477 #else
478 #define MULTILIB_ENDIAN_DEFAULT "EB"
479 #endif
480 #endif
481 
482 #ifndef MULTILIB_ISA_DEFAULT
483 #  if MIPS_ISA_DEFAULT == 1
484 #    define MULTILIB_ISA_DEFAULT "mips1"
485 #  else
486 #    if MIPS_ISA_DEFAULT == 2
487 #      define MULTILIB_ISA_DEFAULT "mips2"
488 #    else
489 #      if MIPS_ISA_DEFAULT == 3
490 #        define MULTILIB_ISA_DEFAULT "mips3"
491 #      else
492 #        if MIPS_ISA_DEFAULT == 4
493 #          define MULTILIB_ISA_DEFAULT "mips4"
494 #        else
495 #          if MIPS_ISA_DEFAULT == 32
496 #            define MULTILIB_ISA_DEFAULT "mips32"
497 #          else
498 #            if MIPS_ISA_DEFAULT == 33
499 #              define MULTILIB_ISA_DEFAULT "mips32r2"
500 #            else
501 #              if MIPS_ISA_DEFAULT == 64
502 #                define MULTILIB_ISA_DEFAULT "mips64"
503 #              else
504 #                define MULTILIB_ISA_DEFAULT "mips1"
505 #              endif
506 #            endif
507 #          endif
508 #        endif
509 #      endif
510 #    endif
511 #  endif
512 #endif
513 
514 #ifndef MULTILIB_DEFAULTS
515 #define MULTILIB_DEFAULTS \
516     { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
517 #endif
518 
519 /* We must pass -EL to the linker by default for little endian embedded
520    targets using linker scripts with a OUTPUT_FORMAT line.  Otherwise, the
521    linker will default to using big-endian output files.  The OUTPUT_FORMAT
522    line must be in the linker script, otherwise -EB/-EL will not work.  */
523 
524 #ifndef ENDIAN_SPEC
525 #if TARGET_ENDIAN_DEFAULT == 0
526 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
527 #else
528 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
529 #endif
530 #endif
531 
532 /* Support for a compile-time default CPU, et cetera.  The rules are:
533    --with-arch is ignored if -march is specified or a -mips is specified
534      (other than -mips16).
535    --with-tune is ignored if -mtune is specified.
536    --with-abi is ignored if -mabi is specified.
537    --with-float is ignored if -mhard-float or -msoft-float are
538      specified.
539    --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
540      specified. */
541 #define OPTION_DEFAULT_SPECS \
542   {"arch", "%{!march=*:%{mips16:-march=%(VALUE)}%{!mips*:-march=%(VALUE)}}" }, \
543   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
544   {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
545   {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
546   {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }
547 
548 
549 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
550                                && ISA_HAS_COND_TRAP)
551 
552 #define GENERATE_BRANCHLIKELY   (TARGET_BRANCHLIKELY                    \
553 				 && !TARGET_SR71K                       \
554 				 && !TARGET_MIPS16)
555 
556 /* Generate three-operand multiply instructions for SImode.  */
557 #define GENERATE_MULT3_SI       ((TARGET_MIPS3900                       \
558                                   || TARGET_MIPS5400                    \
559                                   || TARGET_MIPS5500                    \
560                                   || TARGET_MIPS7000                    \
561                                   || TARGET_MIPS9000                    \
562 				  || TARGET_MAD				\
563                                   || ISA_MIPS32	                        \
564                                   || ISA_MIPS32R2                       \
565                                   || ISA_MIPS64)                        \
566                                  && !TARGET_MIPS16)
567 
568 /* Generate three-operand multiply instructions for DImode.  */
569 #define GENERATE_MULT3_DI       ((TARGET_MIPS3900)                      \
570 				 && !TARGET_MIPS16)
571 
572 /* True if the ABI can only work with 64-bit integer registers.  We
573    generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
574    otherwise floating-point registers must also be 64-bit.  */
575 #define ABI_NEEDS_64BIT_REGS	(TARGET_NEWABI || mips_abi == ABI_O64)
576 
577 /* Likewise for 32-bit regs.  */
578 #define ABI_NEEDS_32BIT_REGS	(mips_abi == ABI_32)
579 
580 /* True if symbols are 64 bits wide.  At present, n64 is the only
581    ABI for which this is true.  */
582 #define ABI_HAS_64BIT_SYMBOLS	(mips_abi == ABI_64 && !TARGET_SYM32)
583 
584 /* ISA has instructions for managing 64 bit fp and gp regs (e.g. mips3).  */
585 #define ISA_HAS_64BIT_REGS	(ISA_MIPS3				\
586 				 || ISA_MIPS4				\
587                                  || ISA_MIPS64)
588 
589 /* ISA has branch likely instructions (e.g. mips2).  */
590 /* Disable branchlikely for tx39 until compare rewrite.  They haven't
591    been generated up to this point.  */
592 #define ISA_HAS_BRANCHLIKELY	(!ISA_MIPS1)
593 
594 /* ISA has the conditional move instructions introduced in mips4.  */
595 #define ISA_HAS_CONDMOVE        ((ISA_MIPS4				\
596 				  || ISA_MIPS32	                        \
597 				  || ISA_MIPS32R2                       \
598 				  || ISA_MIPS64)			\
599                                  && !TARGET_MIPS5500                    \
600 				 && !TARGET_MIPS16)
601 
602 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
603    branch on CC, and move (both FP and non-FP) on CC.  */
604 #define ISA_HAS_8CC		(ISA_MIPS4				\
605                          	 || ISA_MIPS32	                        \
606                          	 || ISA_MIPS32R2                        \
607 				 || ISA_MIPS64)
608 
609 /* This is a catch all for other mips4 instructions: indexed load, the
610    FP madd and msub instructions, and the FP recip and recip sqrt
611    instructions.  */
612 #define ISA_HAS_FP4             ((ISA_MIPS4				\
613 				  || ISA_MIPS64)       			\
614  				 && !TARGET_MIPS16)
615 
616 /* ISA has conditional trap instructions.  */
617 #define ISA_HAS_COND_TRAP	(!ISA_MIPS1				\
618 				 && !TARGET_MIPS16)
619 
620 /* ISA has integer multiply-accumulate instructions, madd and msub.  */
621 #define ISA_HAS_MADD_MSUB       ((ISA_MIPS32				\
622 				  || ISA_MIPS32R2			\
623 				  || ISA_MIPS64				\
624 				  ) && !TARGET_MIPS16)
625 
626 /* ISA has floating-point nmadd and nmsub instructions.  */
627 #define ISA_HAS_NMADD_NMSUB	((ISA_MIPS4				\
628 				  || ISA_MIPS64)       			\
629                                  && (!TARGET_MIPS5400 || TARGET_MAD)    \
630 				 && ! TARGET_MIPS16)
631 
632 /* ISA has count leading zeroes/ones instruction (not implemented).  */
633 #define ISA_HAS_CLZ_CLO         ((ISA_MIPS32				\
634                                   || ISA_MIPS32R2			\
635                                   || ISA_MIPS64				\
636                                  ) && !TARGET_MIPS16)
637 
638 /* ISA has double-word count leading zeroes/ones instruction (not
639    implemented).  */
640 #define ISA_HAS_DCLZ_DCLO       (ISA_MIPS64				\
641 				 && !TARGET_MIPS16)
642 
643 /* ISA has three operand multiply instructions that put
644    the high part in an accumulator: mulhi or mulhiu.  */
645 #define ISA_HAS_MULHI           (TARGET_MIPS5400                        \
646                                  || TARGET_MIPS5500                     \
647                                  || TARGET_SR71K                        \
648                                  )
649 
650 /* ISA has three operand multiply instructions that
651    negates the result and puts the result in an accumulator.  */
652 #define ISA_HAS_MULS            (TARGET_MIPS5400                        \
653                                  || TARGET_MIPS5500                     \
654                                  || TARGET_SR71K                        \
655                                  )
656 
657 /* ISA has three operand multiply instructions that subtracts the
658    result from a 4th operand and puts the result in an accumulator.  */
659 #define ISA_HAS_MSAC            (TARGET_MIPS5400                        \
660                                  || TARGET_MIPS5500                     \
661                                  || TARGET_SR71K                        \
662                                  )
663 /* ISA has three operand multiply instructions that  the result
664    from a 4th operand and puts the result in an accumulator.  */
665 #define ISA_HAS_MACC            ((TARGET_MIPS4120 && !TARGET_MIPS16)	\
666                                  || (TARGET_MIPS4130 && !TARGET_MIPS16)	\
667                                  || TARGET_MIPS5400                     \
668                                  || TARGET_MIPS5500                     \
669                                  || TARGET_SR71K                        \
670                                  )
671 
672 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions.  */
673 #define ISA_HAS_MACCHI		(!TARGET_MIPS16				\
674 				 && (TARGET_MIPS4120			\
675 				     || TARGET_MIPS4130))
676 
677 /* ISA has 32-bit rotate right instruction.  */
678 #define ISA_HAS_ROTR_SI         (!TARGET_MIPS16                         \
679                                  && (ISA_MIPS32R2                       \
680                                      || TARGET_MIPS5400                 \
681                                      || TARGET_MIPS5500                 \
682                                      || TARGET_SR71K                    \
683                                      ))
684 
685 /* ISA has 64-bit rotate right instruction.  */
686 #define ISA_HAS_ROTR_DI         (TARGET_64BIT                           \
687                                  && !TARGET_MIPS16                      \
688                                  && (TARGET_MIPS5400                    \
689                                      || TARGET_MIPS5500                 \
690                                      || TARGET_SR71K                    \
691                                      ))
692 
693 /* ISA has data prefetch instructions.  This controls use of 'pref'.  */
694 #define ISA_HAS_PREFETCH	((ISA_MIPS4				\
695 				  || ISA_MIPS32				\
696 				  || ISA_MIPS32R2			\
697 				  || ISA_MIPS64)	       		\
698 				 && !TARGET_MIPS16)
699 
700 /* ISA has data indexed prefetch instructions.  This controls use of
701    'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
702    (prefx is a cop1x instruction, so can only be used if FP is
703    enabled.)  */
704 #define ISA_HAS_PREFETCHX       ((ISA_MIPS4				\
705 				  || ISA_MIPS64)       			\
706  				 && !TARGET_MIPS16)
707 
708 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
709    instructions.  Both require TARGET_HARD_FLOAT, and trunc.w.d
710    also requires TARGET_DOUBLE_FLOAT.  */
711 #define ISA_HAS_TRUNC_W		(!ISA_MIPS1)
712 
713 /* ISA includes the MIPS32r2 seb and seh instructions.  */
714 #define ISA_HAS_SEB_SEH         (!TARGET_MIPS16                        \
715                                  && (ISA_MIPS32R2                      \
716                                      ))
717 
718 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions.  */
719 #define ISA_HAS_EXT_INS         (!TARGET_MIPS16                        \
720                                  && (ISA_MIPS32R2                      \
721                                      ))
722 
723 /* True if the result of a load is not available to the next instruction.
724    A nop will then be needed between instructions like "lw $4,..."
725    and "addiu $4,$4,1".  */
726 #define ISA_HAS_LOAD_DELAY	(mips_isa == 1				\
727 				 && !TARGET_MIPS3900			\
728 				 && !TARGET_MIPS16)
729 
730 /* Likewise mtc1 and mfc1.  */
731 #define ISA_HAS_XFER_DELAY	(mips_isa <= 3)
732 
733 /* Likewise floating-point comparisons.  */
734 #define ISA_HAS_FCMP_DELAY	(mips_isa <= 3)
735 
736 /* True if mflo and mfhi can be immediately followed by instructions
737    which write to the HI and LO registers.
738 
739    According to MIPS specifications, MIPS ISAs I, II, and III need
740    (at least) two instructions between the reads of HI/LO and
741    instructions which write them, and later ISAs do not.  Contradicting
742    the MIPS specifications, some MIPS IV processor user manuals (e.g.
743    the UM for the NEC Vr5000) document needing the instructions between
744    HI/LO reads and writes, as well.  Therefore, we declare only MIPS32,
745    MIPS64 and later ISAs to have the interlocks, plus any specific
746    earlier-ISA CPUs for which CPU documentation declares that the
747    instructions are really interlocked.  */
748 #define ISA_HAS_HILO_INTERLOCKS	(ISA_MIPS32				\
749 				 || ISA_MIPS32R2			\
750 				 || ISA_MIPS64				\
751 				 || TARGET_MIPS5500)
752 
753 /* Add -G xx support.  */
754 
755 #undef  SWITCH_TAKES_ARG
756 #define SWITCH_TAKES_ARG(CHAR)						\
757   (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
758 
759 #define OVERRIDE_OPTIONS override_options ()
760 
761 #define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
762 
763 /* Show we can debug even without a frame pointer.  */
764 #define CAN_DEBUG_WITHOUT_FP
765 
766 /* Tell collect what flags to pass to nm.  */
767 #ifndef NM_FLAGS
768 #define NM_FLAGS "-Bn"
769 #endif
770 
771 
772 #ifndef MIPS_ABI_DEFAULT
773 #define MIPS_ABI_DEFAULT ABI_32
774 #endif
775 
776 /* Use the most portable ABI flag for the ASM specs.  */
777 
778 #if MIPS_ABI_DEFAULT == ABI_32
779 #define MULTILIB_ABI_DEFAULT "mabi=32"
780 #endif
781 
782 #if MIPS_ABI_DEFAULT == ABI_O64
783 #define MULTILIB_ABI_DEFAULT "mabi=o64"
784 #endif
785 
786 #if MIPS_ABI_DEFAULT == ABI_N32
787 #define MULTILIB_ABI_DEFAULT "mabi=n32"
788 #endif
789 
790 #if MIPS_ABI_DEFAULT == ABI_64
791 #define MULTILIB_ABI_DEFAULT "mabi=64"
792 #endif
793 
794 #if MIPS_ABI_DEFAULT == ABI_EABI
795 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
796 #endif
797 
798 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
799    to the assembler.  It may be overridden by subtargets.  */
800 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
801 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
802 %{noasmopt:-O0} \
803 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
804 #endif
805 
806 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
807    the assembler.  It may be overridden by subtargets.
808 
809    Beginning with gas 2.13, -mdebug must be passed to correctly handle
810    COFF debugging info.  */
811 
812 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
813 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
814 %{g} %{g0} %{g1} %{g2} %{g3} \
815 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
816 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
817 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
818 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
819 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
820 #endif
821 
822 /* SUBTARGET_ASM_SPEC is always passed to the assembler.  It may be
823    overridden by subtargets.  */
824 
825 #ifndef SUBTARGET_ASM_SPEC
826 #define SUBTARGET_ASM_SPEC ""
827 #endif
828 
829 #undef ASM_SPEC
830 #define ASM_SPEC "\
831 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
832 %{mips32} %{mips32r2} %{mips64} \
833 %{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
834 %{mips3d:-mips3d} \
835 %{mdsp} \
836 %{mfix-vr4120} %{mfix-vr4130} \
837 %(subtarget_asm_optimizing_spec) \
838 %(subtarget_asm_debugging_spec) \
839 %{mabi=*} %{!mabi*: %(asm_abi_default_spec)} \
840 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
841 %{mshared} %{mno-shared} \
842 %{msym32} %{mno-sym32} \
843 %{mtune=*} %{v} \
844 %(subtarget_asm_spec)"
845 
846 /* Extra switches sometimes passed to the linker.  */
847 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
848   will interpret it as a -b option.  */
849 
850 #ifndef LINK_SPEC
851 #define LINK_SPEC "\
852 %(endian_spec) \
853 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips32r2} %{mips64} \
854 %{bestGnum} %{shared} %{non_shared}"
855 #endif  /* LINK_SPEC defined */
856 
857 
858 /* Specs for the compiler proper */
859 
860 /* SUBTARGET_CC1_SPEC is passed to the compiler proper.  It may be
861    overridden by subtargets.  */
862 #ifndef SUBTARGET_CC1_SPEC
863 #define SUBTARGET_CC1_SPEC ""
864 #endif
865 
866 /* CC1_SPEC is the set of arguments to pass to the compiler proper.  */
867 
868 #undef CC1_SPEC
869 #define CC1_SPEC "\
870 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
871 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
872 %{save-temps: } \
873 %(subtarget_cc1_spec)"
874 
875 /* Preprocessor specs.  */
876 
877 /* SUBTARGET_CPP_SPEC is passed to the preprocessor.  It may be
878    overridden by subtargets.  */
879 #ifndef SUBTARGET_CPP_SPEC
880 #define SUBTARGET_CPP_SPEC ""
881 #endif
882 
883 #undef CPP_SPEC
884 #define CPP_SPEC "%(subtarget_cpp_spec)"
885 
886 /* This macro defines names of additional specifications to put in the specs
887    that can be used in various specifications like CC1_SPEC.  Its definition
888    is an initializer with a subgrouping for each command option.
889 
890    Each subgrouping contains a string constant, that defines the
891    specification name, and a string constant that used by the GCC driver
892    program.
893 
894    Do not define this macro if it does not need to do anything.  */
895 
896 #define EXTRA_SPECS							\
897   { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC },				\
898   { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },				\
899   { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC },	\
900   { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC },	\
901   { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },				\
902   { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT },			\
903   { "endian_spec", ENDIAN_SPEC },					\
904   SUBTARGET_EXTRA_SPECS
905 
906 #ifndef SUBTARGET_EXTRA_SPECS
907 #define SUBTARGET_EXTRA_SPECS
908 #endif
909 
910 #define DBX_DEBUGGING_INFO 1		/* generate stabs (OSF/rose) */
911 #define MIPS_DEBUGGING_INFO 1		/* MIPS specific debugging info */
912 #define DWARF2_DEBUGGING_INFO 1         /* dwarf2 debugging info */
913 
914 #ifndef PREFERRED_DEBUGGING_TYPE
915 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
916 #endif
917 
918 #define DWARF2_ADDR_SIZE (ABI_HAS_64BIT_SYMBOLS ? 8 : 4)
919 
920 /* By default, turn on GDB extensions.  */
921 #define DEFAULT_GDB_EXTENSIONS 1
922 
923 /* Local compiler-generated symbols must have a prefix that the assembler
924    understands.   By default, this is $, although some targets (e.g.,
925    NetBSD-ELF) need to override this.  */
926 
927 #ifndef LOCAL_LABEL_PREFIX
928 #define LOCAL_LABEL_PREFIX	"$"
929 #endif
930 
931 /* By default on the mips, external symbols do not have an underscore
932    prepended, but some targets (e.g., NetBSD) require this.  */
933 
934 #ifndef USER_LABEL_PREFIX
935 #define USER_LABEL_PREFIX	""
936 #endif
937 
938 /* On Sun 4, this limit is 2048.  We use 1500 to be safe,
939    since the length can run past this up to a continuation point.  */
940 #undef DBX_CONTIN_LENGTH
941 #define DBX_CONTIN_LENGTH 1500
942 
943 /* How to renumber registers for dbx and gdb.  */
944 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
945 
946 /* The mapping from gcc register number to DWARF 2 CFA column number.  */
947 #define DWARF_FRAME_REGNUM(REG)	(REG)
948 
949 /* The DWARF 2 CFA column which tracks the return address.  */
950 #define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
951 
952 /* The DWARF 2 CFA column which tracks the return address from a
953    signal handler context.  */
954 #define SIGNAL_UNWIND_RETURN_COLUMN (FP_REG_LAST + 1)
955 
956 /* Before the prologue, RA lives in r31.  */
957 #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
958 
959 /* Describe how we implement __builtin_eh_return.  */
960 #define EH_RETURN_DATA_REGNO(N) \
961   ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
962 
963 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
964 
965 /* Offsets recorded in opcodes are a multiple of this alignment factor.
966    The default for this in 64-bit mode is 8, which causes problems with
967    SFmode register saves.  */
968 #define DWARF_CIE_DATA_ALIGNMENT -4
969 
970 /* Correct the offset of automatic variables and arguments.  Note that
971    the MIPS debug format wants all automatic variables and arguments
972    to be in terms of the virtual frame pointer (stack pointer before
973    any adjustment in the function), while the MIPS 3.0 linker wants
974    the frame pointer to be the stack pointer after the initial
975    adjustment.  */
976 
977 #define DEBUGGER_AUTO_OFFSET(X)				\
978   mips_debugger_offset (X, (HOST_WIDE_INT) 0)
979 #define DEBUGGER_ARG_OFFSET(OFFSET, X)			\
980   mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
981 
982 /* Target machine storage layout */
983 
984 #define BITS_BIG_ENDIAN 0
985 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
986 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
987 
988 /* Define this to set the endianness to use in libgcc2.c, which can
989    not depend on target_flags.  */
990 #if !defined(MIPSEL) && !defined(__MIPSEL__)
991 #define LIBGCC2_WORDS_BIG_ENDIAN 1
992 #else
993 #define LIBGCC2_WORDS_BIG_ENDIAN 0
994 #endif
995 
996 #define MAX_BITS_PER_WORD 64
997 
998 /* Width of a word, in units (bytes).  */
999 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1000 #ifndef IN_LIBGCC2
1001 #define MIN_UNITS_PER_WORD 4
1002 #endif
1003 
1004 /* For MIPS, width of a floating point register.  */
1005 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1006 
1007 /* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
1008    the next available register.  */
1009 #define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1010 
1011 /* The largest size of value that can be held in floating-point
1012    registers and moved with a single instruction.  */
1013 #define UNITS_PER_HWFPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
1014 
1015 /* The largest size of value that can be held in floating-point
1016    registers.  */
1017 #define UNITS_PER_FPVALUE			\
1018   (TARGET_SOFT_FLOAT ? 0			\
1019    : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG	\
1020    : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1021 
1022 /* The number of bytes in a double.  */
1023 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1024 
1025 #define UNITS_PER_SIMD_WORD (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
1026 
1027 /* Set the sizes of the core types.  */
1028 #define SHORT_TYPE_SIZE 16
1029 #define INT_TYPE_SIZE 32
1030 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1031 #define LONG_LONG_TYPE_SIZE 64
1032 
1033 #define FLOAT_TYPE_SIZE 32
1034 #define DOUBLE_TYPE_SIZE 64
1035 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1036 
1037 /* long double is not a fixed mode, but the idea is that, if we
1038    support long double, we also want a 128-bit integer type.  */
1039 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1040 
1041 #ifdef IN_LIBGCC2
1042 #if  (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1043   || (defined _ABI64 && _MIPS_SIM == _ABI64)
1044 #  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1045 # else
1046 #  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1047 # endif
1048 #endif
1049 
1050 /* Width in bits of a pointer.  */
1051 #ifndef POINTER_SIZE
1052 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1053 #endif
1054 
1055 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
1056 #define PARM_BOUNDARY BITS_PER_WORD
1057 
1058 /* Allocation boundary (in *bits*) for the code of a function.  */
1059 #define FUNCTION_BOUNDARY 32
1060 
1061 /* Alignment of field after `int : 0' in a structure.  */
1062 #define EMPTY_FIELD_BOUNDARY 32
1063 
1064 /* Every structure's size must be a multiple of this.  */
1065 /* 8 is observed right on a DECstation and on riscos 4.02.  */
1066 #define STRUCTURE_SIZE_BOUNDARY 8
1067 
1068 /* There is no point aligning anything to a rounder boundary than this.  */
1069 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1070 
1071 /* All accesses must be aligned.  */
1072 #define STRICT_ALIGNMENT 1
1073 
1074 /* Define this if you wish to imitate the way many other C compilers
1075    handle alignment of bitfields and the structures that contain
1076    them.
1077 
1078    The behavior is that the type written for a bit-field (`int',
1079    `short', or other integer type) imposes an alignment for the
1080    entire structure, as if the structure really did contain an
1081    ordinary field of that type.  In addition, the bit-field is placed
1082    within the structure so that it would fit within such a field,
1083    not crossing a boundary for it.
1084 
1085    Thus, on most machines, a bit-field whose type is written as `int'
1086    would not cross a four-byte boundary, and would force four-byte
1087    alignment for the whole structure.  (The alignment used may not
1088    be four bytes; it is controlled by the other alignment
1089    parameters.)
1090 
1091    If the macro is defined, its definition should be a C expression;
1092    a nonzero value for the expression enables this behavior.  */
1093 
1094 #define PCC_BITFIELD_TYPE_MATTERS 1
1095 
1096 /* If defined, a C expression to compute the alignment given to a
1097    constant that is being placed in memory.  CONSTANT is the constant
1098    and ALIGN is the alignment that the object would ordinarily have.
1099    The value of this macro is used instead of that alignment to align
1100    the object.
1101 
1102    If this macro is not defined, then ALIGN is used.
1103 
1104    The typical use of this macro is to increase alignment for string
1105    constants to be word aligned so that `strcpy' calls that copy
1106    constants can be done inline.  */
1107 
1108 #define CONSTANT_ALIGNMENT(EXP, ALIGN)					\
1109   ((TREE_CODE (EXP) == STRING_CST  || TREE_CODE (EXP) == CONSTRUCTOR)	\
1110    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1111 
1112 /* If defined, a C expression to compute the alignment for a static
1113    variable.  TYPE is the data type, and ALIGN is the alignment that
1114    the object would ordinarily have.  The value of this macro is used
1115    instead of that alignment to align the object.
1116 
1117    If this macro is not defined, then ALIGN is used.
1118 
1119    One use of this macro is to increase alignment of medium-size
1120    data to make it all fit in fewer cache lines.  Another is to
1121    cause character arrays to be word-aligned so that `strcpy' calls
1122    that copy constants to character arrays can be done inline.  */
1123 
1124 #undef DATA_ALIGNMENT
1125 #define DATA_ALIGNMENT(TYPE, ALIGN)					\
1126   ((((ALIGN) < BITS_PER_WORD)						\
1127     && (TREE_CODE (TYPE) == ARRAY_TYPE					\
1128 	|| TREE_CODE (TYPE) == UNION_TYPE				\
1129 	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1130 
1131 /* Make local arrays of chars word-aligned for the same reasons.  */
1132 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
1133 
1134 #define PAD_VARARGS_DOWN \
1135   (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1136 
1137 /* Define if operations between registers always perform the operation
1138    on the full register even if a narrower mode is specified.  */
1139 #define WORD_REGISTER_OPERATIONS
1140 
1141 /* When in 64 bit mode, move insns will sign extend SImode and CCmode
1142    moves.  All other references are zero extended.  */
1143 #define LOAD_EXTEND_OP(MODE) \
1144   (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1145    ? SIGN_EXTEND : ZERO_EXTEND)
1146 
1147 /* Define this macro if it is advisable to hold scalars in registers
1148    in a wider mode than that declared by the program.  In such cases,
1149    the value is constrained to be within the bounds of the declared
1150    type, but kept valid in the wider mode.  The signedness of the
1151    extension may differ from that of the type.  */
1152 
1153 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
1154   if (GET_MODE_CLASS (MODE) == MODE_INT		\
1155       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1156     {                                           \
1157       if ((MODE) == SImode)                     \
1158         (UNSIGNEDP) = 0;                        \
1159       (MODE) = Pmode;                           \
1160     }
1161 
1162 /* Define if loading short immediate values into registers sign extends.  */
1163 #define SHORT_IMMEDIATES_SIGN_EXTEND
1164 
1165 /* The [d]clz instructions have the natural values at 0.  */
1166 
1167 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1168   ((VALUE) = GET_MODE_BITSIZE (MODE), true)
1169 
1170 /* Standard register usage.  */
1171 
1172 /* Number of hardware registers.  We have:
1173 
1174    - 32 integer registers
1175    - 32 floating point registers
1176    - 8 condition code registers
1177    - 2 accumulator registers (hi and lo)
1178    - 32 registers each for coprocessors 0, 2 and 3
1179    - 3 fake registers:
1180 	- ARG_POINTER_REGNUM
1181 	- FRAME_POINTER_REGNUM
1182 	- FAKE_CALL_REGNO (see the comment above load_callsi for details)
1183    - 3 dummy entries that were used at various times in the past.
1184    - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1185    - 6 DSP control registers  */
1186 
1187 #define FIRST_PSEUDO_REGISTER 188
1188 
1189 /* By default, fix the kernel registers ($26 and $27), the global
1190    pointer ($28) and the stack pointer ($29).  This can change
1191    depending on the command-line options.
1192 
1193    Regarding coprocessor registers: without evidence to the contrary,
1194    it's best to assume that each coprocessor register has a unique
1195    use.  This can be overridden, in, e.g., override_options() or
1196    CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1197    for a particular target.  */
1198 
1199 #define FIXED_REGISTERS							\
1200 {									\
1201   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1202   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,			\
1203   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1204   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1205   0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,			\
1206   /* COP0 registers */							\
1207   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1208   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1209   /* COP2 registers */							\
1210   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1211   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1212   /* COP3 registers */							\
1213   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1214   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1215   /* 6 DSP accumulator registers & 6 control registers */		\
1216   0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1					\
1217 }
1218 
1219 
1220 /* Set up this array for o32 by default.
1221 
1222    Note that we don't mark $31 as a call-clobbered register.  The idea is
1223    that it's really the call instructions themselves which clobber $31.
1224    We don't care what the called function does with it afterwards.
1225 
1226    This approach makes it easier to implement sibcalls.  Unlike normal
1227    calls, sibcalls don't clobber $31, so the register reaches the
1228    called function in tact.  EPILOGUE_USES says that $31 is useful
1229    to the called function.  */
1230 
1231 #define CALL_USED_REGISTERS						\
1232 {									\
1233   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1234   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,			\
1235   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1236   1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1237   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1238   /* COP0 registers */							\
1239   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1240   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1241   /* COP2 registers */							\
1242   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1243   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1244   /* COP3 registers */							\
1245   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1246   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1247   /* 6 DSP accumulator registers & 6 control registers */		\
1248   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1					\
1249 }
1250 
1251 
1252 /* Define this since $28, though fixed, is call-saved in many ABIs.  */
1253 
1254 #define CALL_REALLY_USED_REGISTERS                                      \
1255 { /* General registers.  */                                             \
1256   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1257   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,                       \
1258   /* Floating-point registers.  */                                      \
1259   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1260   1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1261   /* Others.  */                                                        \
1262   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1263   /* COP0 registers */							\
1264   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1265   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1266   /* COP2 registers */							\
1267   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1268   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1269   /* COP3 registers */							\
1270   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1271   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1272   /* 6 DSP accumulator registers & 6 control registers */		\
1273   1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0					\
1274 }
1275 
1276 /* Internal macros to classify a register number as to whether it's a
1277    general purpose register, a floating point register, a
1278    multiply/divide register, or a status register.  */
1279 
1280 #define GP_REG_FIRST 0
1281 #define GP_REG_LAST  31
1282 #define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
1283 #define GP_DBX_FIRST 0
1284 
1285 #define FP_REG_FIRST 32
1286 #define FP_REG_LAST  63
1287 #define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
1288 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1289 
1290 #define MD_REG_FIRST 64
1291 #define MD_REG_LAST  65
1292 #define MD_REG_NUM   (MD_REG_LAST - MD_REG_FIRST + 1)
1293 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1294 
1295 #define ST_REG_FIRST 67
1296 #define ST_REG_LAST  74
1297 #define ST_REG_NUM   (ST_REG_LAST - ST_REG_FIRST + 1)
1298 
1299 
1300 /* FIXME: renumber.  */
1301 #define COP0_REG_FIRST 80
1302 #define COP0_REG_LAST 111
1303 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1304 
1305 #define COP2_REG_FIRST 112
1306 #define COP2_REG_LAST 143
1307 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1308 
1309 #define COP3_REG_FIRST 144
1310 #define COP3_REG_LAST 175
1311 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1312 /* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively.  */
1313 #define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1314 
1315 #define DSP_ACC_REG_FIRST 176
1316 #define DSP_ACC_REG_LAST 181
1317 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1318 
1319 #define AT_REGNUM	(GP_REG_FIRST + 1)
1320 #define HI_REGNUM	(MD_REG_FIRST + 0)
1321 #define LO_REGNUM	(MD_REG_FIRST + 1)
1322 #define AC1HI_REGNUM	(DSP_ACC_REG_FIRST + 0)
1323 #define AC1LO_REGNUM	(DSP_ACC_REG_FIRST + 1)
1324 #define AC2HI_REGNUM	(DSP_ACC_REG_FIRST + 2)
1325 #define AC2LO_REGNUM	(DSP_ACC_REG_FIRST + 3)
1326 #define AC3HI_REGNUM	(DSP_ACC_REG_FIRST + 4)
1327 #define AC3LO_REGNUM	(DSP_ACC_REG_FIRST + 5)
1328 
1329 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1330    If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1331    should be used instead.  */
1332 #define FPSW_REGNUM	ST_REG_FIRST
1333 
1334 #define GP_REG_P(REGNO)	\
1335   ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1336 #define M16_REG_P(REGNO) \
1337   (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1338 #define FP_REG_P(REGNO)  \
1339   ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1340 #define MD_REG_P(REGNO) \
1341   ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1342 #define ST_REG_P(REGNO) \
1343   ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1344 #define COP0_REG_P(REGNO) \
1345   ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1346 #define COP2_REG_P(REGNO) \
1347   ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1348 #define COP3_REG_P(REGNO) \
1349   ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1350 #define ALL_COP_REG_P(REGNO) \
1351   ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1352 /* Test if REGNO is one of the 6 new DSP accumulators.  */
1353 #define DSP_ACC_REG_P(REGNO) \
1354   ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1355 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators.  */
1356 #define ACC_REG_P(REGNO) \
1357   (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1358 /* Test if REGNO is HI or the first register of 3 new DSP accumulator pairs.  */
1359 #define ACC_HI_REG_P(REGNO) \
1360   ((REGNO) == HI_REGNUM || (REGNO) == AC1HI_REGNUM || (REGNO) == AC2HI_REGNUM \
1361    || (REGNO) == AC3HI_REGNUM)
1362 
1363 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1364 
1365 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)).  This is used
1366    to initialize the mips16 gp pseudo register.  */
1367 #define CONST_GP_P(X)				\
1368   (GET_CODE (X) == CONST			\
1369    && GET_CODE (XEXP (X, 0)) == UNSPEC		\
1370    && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1371 
1372 /* Return coprocessor number from register number.  */
1373 
1374 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) 				\
1375   (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2'			\
1376    : COP3_REG_P (REGNO) ? '3' : '?')
1377 
1378 
1379 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1380 
1381 /* To make the code simpler, HARD_REGNO_MODE_OK just references an
1382    array built in override_options.  Because machmodes.h is not yet
1383    included before this file is processed, the MODE bound can't be
1384    expressed here.  */
1385 
1386 extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1387 
1388 #define HARD_REGNO_MODE_OK(REGNO, MODE)					\
1389   mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1390 
1391 /* Value is 1 if it is a good idea to tie two pseudo registers
1392    when one has mode MODE1 and one has mode MODE2.
1393    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1394    for any hard reg, then this must be 0 for correct output.  */
1395 #define MODES_TIEABLE_P(MODE1, MODE2)					\
1396   ((GET_MODE_CLASS (MODE1) == MODE_FLOAT ||				\
1397     GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)			\
1398    == (GET_MODE_CLASS (MODE2) == MODE_FLOAT ||				\
1399        GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1400 
1401 /* Register to use for pushing function arguments.  */
1402 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1403 
1404 /* These two registers don't really exist: they get eliminated to either
1405    the stack or hard frame pointer.  */
1406 #define ARG_POINTER_REGNUM 77
1407 #define FRAME_POINTER_REGNUM 78
1408 
1409 /* $30 is not available on the mips16, so we use $17 as the frame
1410    pointer.  */
1411 #define HARD_FRAME_POINTER_REGNUM \
1412   (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1413 
1414 /* Value should be nonzero if functions must have frame pointers.
1415    Zero means the frame pointer need not be set up (and parms
1416    may be accessed via the stack pointer) in functions that seem suitable.
1417    This is computed in `reload', in reload1.c.  */
1418 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1419 
1420 /* Register in which static-chain is passed to a function.  */
1421 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1422 
1423 /* Registers used as temporaries in prologue/epilogue code.  If we're
1424    generating mips16 code, these registers must come from the core set
1425    of 8.  The prologue register mustn't conflict with any incoming
1426    arguments, the static chain pointer, or the frame pointer.  The
1427    epilogue temporary mustn't conflict with the return registers, the
1428    frame pointer, the EH stack adjustment, or the EH data registers.  */
1429 
1430 #define MIPS_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 3)
1431 #define MIPS_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1432 
1433 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1434 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1435 
1436 /* Define this macro if it is as good or better to call a constant
1437    function address than to call an address kept in a register.  */
1438 #define NO_FUNCTION_CSE 1
1439 
1440 /* The ABI-defined global pointer.  Sometimes we use a different
1441    register in leaf functions: see PIC_OFFSET_TABLE_REGNUM.  */
1442 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1443 
1444 /* We normally use $28 as the global pointer.  However, when generating
1445    n32/64 PIC, it is better for leaf functions to use a call-clobbered
1446    register instead.  They can then avoid saving and restoring $28
1447    and perhaps avoid using a frame at all.
1448 
1449    When a leaf function uses something other than $28, mips_expand_prologue
1450    will modify pic_offset_table_rtx in place.  Take the register number
1451    from there after reload.  */
1452 #define PIC_OFFSET_TABLE_REGNUM \
1453   (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1454 
1455 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1456 
1457 /* Define the classes of registers for register constraints in the
1458    machine description.  Also define ranges of constants.
1459 
1460    One of the classes must always be named ALL_REGS and include all hard regs.
1461    If there is more than one class, another class must be named NO_REGS
1462    and contain no registers.
1463 
1464    The name GENERAL_REGS must be the name of a class (or an alias for
1465    another name such as ALL_REGS).  This is the class of registers
1466    that is allowed by "g" or "r" in a register constraint.
1467    Also, registers outside this class are allocated only when
1468    instructions express preferences for them.
1469 
1470    The classes must be numbered in nondecreasing order; that is,
1471    a larger-numbered class must never be contained completely
1472    in a smaller-numbered class.
1473 
1474    For any two classes, it is very desirable that there be another
1475    class that represents their union.  */
1476 
1477 enum reg_class
1478 {
1479   NO_REGS,			/* no registers in set */
1480   M16_NA_REGS,			/* mips16 regs not used to pass args */
1481   M16_REGS,			/* mips16 directly accessible registers */
1482   T_REG,			/* mips16 T register ($24) */
1483   M16_T_REGS,			/* mips16 registers plus T register */
1484   PIC_FN_ADDR_REG,		/* SVR4 PIC function address register */
1485   V1_REG,			/* Register $v1 ($3) used for TLS access.  */
1486   LEA_REGS,			/* Every GPR except $25 */
1487   GR_REGS,			/* integer registers */
1488   FP_REGS,			/* floating point registers */
1489   HI_REG,			/* hi register */
1490   LO_REG,			/* lo register */
1491   MD_REGS,			/* multiply/divide registers (hi/lo) */
1492   COP0_REGS,			/* generic coprocessor classes */
1493   COP2_REGS,
1494   COP3_REGS,
1495   HI_AND_GR_REGS,		/* union classes */
1496   LO_AND_GR_REGS,
1497   HI_AND_FP_REGS,
1498   COP0_AND_GR_REGS,
1499   COP2_AND_GR_REGS,
1500   COP3_AND_GR_REGS,
1501   ALL_COP_REGS,
1502   ALL_COP_AND_GR_REGS,
1503   ST_REGS,			/* status registers (fp status) */
1504   DSP_ACC_REGS,			/* DSP accumulator registers */
1505   ACC_REGS,			/* Hi/Lo and DSP accumulator registers */
1506   ALL_REGS,			/* all registers */
1507   LIM_REG_CLASSES		/* max value + 1 */
1508 };
1509 
1510 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1511 
1512 #define GENERAL_REGS GR_REGS
1513 
1514 /* An initializer containing the names of the register classes as C
1515    string constants.  These names are used in writing some of the
1516    debugging dumps.  */
1517 
1518 #define REG_CLASS_NAMES							\
1519 {									\
1520   "NO_REGS",								\
1521   "M16_NA_REGS",							\
1522   "M16_REGS",								\
1523   "T_REG",								\
1524   "M16_T_REGS",								\
1525   "PIC_FN_ADDR_REG",							\
1526   "V1_REG",								\
1527   "LEA_REGS",								\
1528   "GR_REGS",								\
1529   "FP_REGS",								\
1530   "HI_REG",								\
1531   "LO_REG",								\
1532   "MD_REGS",								\
1533   /* coprocessor registers */						\
1534   "COP0_REGS",								\
1535   "COP2_REGS",								\
1536   "COP3_REGS",								\
1537   "HI_AND_GR_REGS",							\
1538   "LO_AND_GR_REGS",							\
1539   "HI_AND_FP_REGS",							\
1540   "COP0_AND_GR_REGS",							\
1541   "COP2_AND_GR_REGS",							\
1542   "COP3_AND_GR_REGS",							\
1543   "ALL_COP_REGS",							\
1544   "ALL_COP_AND_GR_REGS",						\
1545   "ST_REGS",								\
1546   "DSP_ACC_REGS",							\
1547   "ACC_REGS",								\
1548   "ALL_REGS"								\
1549 }
1550 
1551 /* An initializer containing the contents of the register classes,
1552    as integers which are bit masks.  The Nth integer specifies the
1553    contents of class N.  The way the integer MASK is interpreted is
1554    that register R is in the class if `MASK & (1 << R)' is 1.
1555 
1556    When the machine has more than 32 registers, an integer does not
1557    suffice.  Then the integers are replaced by sub-initializers,
1558    braced groupings containing several integers.  Each
1559    sub-initializer must be suitable as an initializer for the type
1560    `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
1561 
1562 #define REG_CLASS_CONTENTS						                                \
1563 {									                                \
1564   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* no registers */	\
1565   { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 nonarg regs */\
1566   { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 registers */	\
1567   { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 T register */	\
1568   { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* mips16 and T regs */ \
1569   { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* SVR4 PIC function address register */ \
1570   { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* only $v1 */ \
1571   { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* Every other GPR except $25 */   \
1572   { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* integer registers */	\
1573   { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* floating registers*/	\
1574   { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* hi register */	\
1575   { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* lo register */	\
1576   { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* mul/div registers */	\
1577   { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },   /* cop0 registers */    \
1578   { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },   /* cop2 registers */    \
1579   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },   /* cop3 registers */    \
1580   { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* union classes */     \
1581   { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },				\
1582   { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },				\
1583   { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },			        \
1584   { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },	                        \
1585   { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },                           \
1586   { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff },                           \
1587   { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff },                           \
1588   { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 },	/* status registers */	\
1589   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 },	/* dsp accumulator registers */	\
1590   { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },	/* hi/lo and dsp accumulator registers */	\
1591   { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0fffffff }	/* all registers */	\
1592 }
1593 
1594 
1595 /* A C expression whose value is a register class containing hard
1596    register REGNO.  In general there is more that one such class;
1597    choose a class which is "minimal", meaning that no smaller class
1598    also contains the register.  */
1599 
1600 extern const enum reg_class mips_regno_to_class[];
1601 
1602 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1603 
1604 /* A macro whose definition is the name of the class to which a
1605    valid base register must belong.  A base register is one used in
1606    an address which is the register value plus a displacement.  */
1607 
1608 #define BASE_REG_CLASS  (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1609 
1610 /* A macro whose definition is the name of the class to which a
1611    valid index register must belong.  An index register is one used
1612    in an address where its value is either multiplied by a scale
1613    factor or added to another register (as well as added to a
1614    displacement).  */
1615 
1616 #define INDEX_REG_CLASS NO_REGS
1617 
1618 /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1619    registers explicitly used in the rtl to be used as spill registers
1620    but prevents the compiler from extending the lifetime of these
1621    registers.  */
1622 
1623 #define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1624 
1625 /* This macro is used later on in the file.  */
1626 #define GR_REG_CLASS_P(CLASS)						\
1627   ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG	\
1628    || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS			\
1629    || (CLASS) == V1_REG							\
1630    || (CLASS) == PIC_FN_ADDR_REG || (CLASS) == LEA_REGS)
1631 
1632 /* This macro is also used later on in the file.  */
1633 #define COP_REG_CLASS_P(CLASS)						\
1634   ((CLASS)  == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
1635 
1636 /* REG_ALLOC_ORDER is to order in which to allocate registers.  This
1637    is the default value (allocate the registers in numeric order).  We
1638    define it just so that we can override it for the mips16 target in
1639    ORDER_REGS_FOR_LOCAL_ALLOC.  */
1640 
1641 #define REG_ALLOC_ORDER							\
1642 {  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,	\
1643   16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,	\
1644   32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
1645   48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,	\
1646   64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,	\
1647   80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,	\
1648   96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111,	\
1649   112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,	\
1650   128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,	\
1651   144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,	\
1652   160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,	\
1653   176,177,178,179,180,181,182,183,184,185,186,187			\
1654 }
1655 
1656 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1657    to be rearranged based on a particular function.  On the mips16, we
1658    want to allocate $24 (T_REG) before other registers for
1659    instructions for which it is possible.  */
1660 
1661 #define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
1662 
1663 /* True if VALUE is an unsigned 6-bit number.  */
1664 
1665 #define UIMM6_OPERAND(VALUE) \
1666   (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
1667 
1668 /* True if VALUE is a signed 10-bit number.  */
1669 
1670 #define IMM10_OPERAND(VALUE) \
1671   ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
1672 
1673 /* True if VALUE is a signed 16-bit number.  */
1674 
1675 #define SMALL_OPERAND(VALUE) \
1676   ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
1677 
1678 /* True if VALUE is an unsigned 16-bit number.  */
1679 
1680 #define SMALL_OPERAND_UNSIGNED(VALUE) \
1681   (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
1682 
1683 /* True if VALUE can be loaded into a register using LUI.  */
1684 
1685 #define LUI_OPERAND(VALUE)					\
1686   (((VALUE) | 0x7fff0000) == 0x7fff0000				\
1687    || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
1688 
1689 /* Return a value X with the low 16 bits clear, and such that
1690    VALUE - X is a signed 16-bit value.  */
1691 
1692 #define CONST_HIGH_PART(VALUE) \
1693   (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
1694 
1695 #define CONST_LOW_PART(VALUE) \
1696   ((VALUE) - CONST_HIGH_PART (VALUE))
1697 
1698 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
1699 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
1700 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
1701 
1702 #define PREFERRED_RELOAD_CLASS(X,CLASS)					\
1703   mips_preferred_reload_class (X, CLASS)
1704 
1705 /* Certain machines have the property that some registers cannot be
1706    copied to some other registers without using memory.  Define this
1707    macro on those machines to be a C expression that is nonzero if
1708    objects of mode MODE in registers of CLASS1 can only be copied to
1709    registers of class CLASS2 by storing a register of CLASS1 into
1710    memory and loading that memory location into a register of CLASS2.
1711 
1712    Do not define this macro if its value would always be zero.  */
1713 #if 0
1714 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
1715   ((!TARGET_DEBUG_H_MODE						\
1716     && GET_MODE_CLASS (MODE) == MODE_INT				\
1717     && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2))			\
1718 	|| (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)))		\
1719    || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode		\
1720        && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)		\
1721 	   || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
1722 #endif
1723 /* The HI and LO registers can only be reloaded via the general
1724    registers.  Condition code registers can only be loaded to the
1725    general registers, and from the floating point registers.  */
1726 
1727 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)			\
1728   mips_secondary_reload_class (CLASS, MODE, X, 1)
1729 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)			\
1730   mips_secondary_reload_class (CLASS, MODE, X, 0)
1731 
1732 /* Return the maximum number of consecutive registers
1733    needed to represent mode MODE in a register of class CLASS.  */
1734 
1735 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
1736 
1737 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1738   mips_cannot_change_mode_class (FROM, TO, CLASS)
1739 
1740 /* Stack layout; function entry, exit and calling.  */
1741 
1742 #define STACK_GROWS_DOWNWARD
1743 
1744 #define FRAME_GROWS_DOWNWARD 1
1745 
1746 /* The offset of the first local variable from the beginning of the frame.
1747    See compute_frame_size for details about the frame layout.
1748 
1749    ??? If flag_profile_values is true, and we are generating 32-bit code, then
1750    we assume that we will need 16 bytes of argument space.  This is because
1751    the value profiling code may emit calls to cmpdi2 in leaf functions.
1752    Without this hack, the local variables will start at sp+8 and the gp save
1753    area will be at sp+16, and thus they will overlap.  compute_frame_size is
1754    OK because it uses STARTING_FRAME_OFFSET to compute cprestore_size, which
1755    will end up as 24 instead of 8.  This won't be needed if profiling code is
1756    inserted before virtual register instantiation.  */
1757 
1758 #define STARTING_FRAME_OFFSET 0
1759 
1760 #define RETURN_ADDR_RTX mips_return_addr
1761 
1762 /* Since the mips16 ISA mode is encoded in the least-significant bit
1763    of the address, mask it off return addresses for purposes of
1764    finding exception handling regions.  */
1765 
1766 #define MASK_RETURN_ADDR GEN_INT (-2)
1767 
1768 
1769 /* Similarly, don't use the least-significant bit to tell pointers to
1770    code from vtable index.  */
1771 
1772 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
1773 
1774 /* The eliminations to $17 are only used for mips16 code.  See the
1775    definition of HARD_FRAME_POINTER_REGNUM.  */
1776 
1777 #define ELIMINABLE_REGS							\
1778 {{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},				\
1779  { ARG_POINTER_REGNUM,   GP_REG_FIRST + 30},				\
1780  { ARG_POINTER_REGNUM,   GP_REG_FIRST + 17},				\
1781  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
1782  { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30},				\
1783  { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
1784 
1785 /* We can always eliminate to the hard frame pointer.  We can eliminate
1786    to the stack pointer unless a frame pointer is needed.
1787 
1788    In mips16 mode, we need a frame pointer for a large frame; otherwise,
1789    reload may be unable to compute the address of a local variable,
1790    since there is no way to add a large constant to the stack pointer
1791    without using a temporary register.  */
1792 #define CAN_ELIMINATE(FROM, TO)						\
1793   ((TO) == HARD_FRAME_POINTER_REGNUM 				        \
1794    || ((TO) == STACK_POINTER_REGNUM && !frame_pointer_needed		\
1795        && (!TARGET_MIPS16						\
1796 	   || compute_frame_size (get_frame_size ()) < 32768)))
1797 
1798 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1799   (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
1800 
1801 /* Allocate stack space for arguments at the beginning of each function.  */
1802 #define ACCUMULATE_OUTGOING_ARGS 1
1803 
1804 /* The argument pointer always points to the first argument.  */
1805 #define FIRST_PARM_OFFSET(FNDECL) 0
1806 
1807 /* o32 and o64 reserve stack space for all argument registers.  */
1808 #define REG_PARM_STACK_SPACE(FNDECL) 			\
1809   (TARGET_OLDABI					\
1810    ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD)		\
1811    : 0)
1812 
1813 /* Define this if it is the responsibility of the caller to
1814    allocate the area reserved for arguments passed in registers.
1815    If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
1816    of this macro is to determine whether the space is included in
1817    `current_function_outgoing_args_size'.  */
1818 #define OUTGOING_REG_PARM_STACK_SPACE
1819 
1820 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
1821 
1822 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1823 
1824 /* Symbolic macros for the registers used to return integer and floating
1825    point values.  */
1826 
1827 #define GP_RETURN (GP_REG_FIRST + 2)
1828 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
1829 
1830 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
1831 
1832 /* Symbolic macros for the first/last argument registers.  */
1833 
1834 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
1835 #define GP_ARG_LAST  (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1836 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
1837 #define FP_ARG_LAST  (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1838 
1839 #define LIBCALL_VALUE(MODE) \
1840   mips_function_value (NULL_TREE, NULL, (MODE))
1841 
1842 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1843   mips_function_value ((VALTYPE), (FUNC), VOIDmode)
1844 
1845 /* 1 if N is a possible register number for a function value.
1846    On the MIPS, R2 R3 and F0 F2 are the only register thus used.
1847    Currently, R2 and F0 are only implemented here (C has no complex type)  */
1848 
1849 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
1850   || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
1851       && (N) == FP_RETURN + 2))
1852 
1853 /* 1 if N is a possible register number for function argument passing.
1854    We have no FP argument registers when soft-float.  When FP registers
1855    are 32 bits, we can't directly reference the odd numbered ones.  */
1856 
1857 #define FUNCTION_ARG_REGNO_P(N)					\
1858   ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST)			\
1859     || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST)))		\
1860    && !fixed_regs[N])
1861 
1862 /* This structure has to cope with two different argument allocation
1863    schemes.  Most MIPS ABIs view the arguments as a structure, of which
1864    the first N words go in registers and the rest go on the stack.  If I
1865    < N, the Ith word might go in Ith integer argument register or in a
1866    floating-point register.  For these ABIs, we only need to remember
1867    the offset of the current argument into the structure.
1868 
1869    The EABI instead allocates the integer and floating-point arguments
1870    separately.  The first N words of FP arguments go in FP registers,
1871    the rest go on the stack.  Likewise, the first N words of the other
1872    arguments go in integer registers, and the rest go on the stack.  We
1873    need to maintain three counts: the number of integer registers used,
1874    the number of floating-point registers used, and the number of words
1875    passed on the stack.
1876 
1877    We could keep separate information for the two ABIs (a word count for
1878    the standard ABIs, and three separate counts for the EABI).  But it
1879    seems simpler to view the standard ABIs as forms of EABI that do not
1880    allocate floating-point registers.
1881 
1882    So for the standard ABIs, the first N words are allocated to integer
1883    registers, and function_arg decides on an argument-by-argument basis
1884    whether that argument should really go in an integer register, or in
1885    a floating-point one.  */
1886 
1887 typedef struct mips_args {
1888   /* Always true for varargs functions.  Otherwise true if at least
1889      one argument has been passed in an integer register.  */
1890   int gp_reg_found;
1891 
1892   /* The number of arguments seen so far.  */
1893   unsigned int arg_number;
1894 
1895   /* The number of integer registers used so far.  For all ABIs except
1896      EABI, this is the number of words that have been added to the
1897      argument structure, limited to MAX_ARGS_IN_REGISTERS.  */
1898   unsigned int num_gprs;
1899 
1900   /* For EABI, the number of floating-point registers used so far.  */
1901   unsigned int num_fprs;
1902 
1903   /* The number of words passed on the stack.  */
1904   unsigned int stack_words;
1905 
1906   /* On the mips16, we need to keep track of which floating point
1907      arguments were passed in general registers, but would have been
1908      passed in the FP regs if this were a 32 bit function, so that we
1909      can move them to the FP regs if we wind up calling a 32 bit
1910      function.  We record this information in fp_code, encoded in base
1911      four.  A zero digit means no floating point argument, a one digit
1912      means an SFmode argument, and a two digit means a DFmode argument,
1913      and a three digit is not used.  The low order digit is the first
1914      argument.  Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
1915      an SFmode argument.  ??? A more sophisticated approach will be
1916      needed if MIPS_ABI != ABI_32.  */
1917   int fp_code;
1918 
1919   /* True if the function has a prototype.  */
1920   int prototype;
1921 } CUMULATIVE_ARGS;
1922 
1923 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1924    for a call to a function whose data type is FNTYPE.
1925    For a library call, FNTYPE is 0.  */
1926 
1927 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1928   init_cumulative_args (&CUM, FNTYPE, LIBNAME)				\
1929 
1930 /* Update the data in CUM to advance over an argument
1931    of mode MODE and data type TYPE.
1932    (TYPE is null for libcalls where that information may not be available.)  */
1933 
1934 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
1935   function_arg_advance (&CUM, MODE, TYPE, NAMED)
1936 
1937 /* Determine where to put an argument to a function.
1938    Value is zero to push the argument on the stack,
1939    or a hard register in which to store the argument.
1940 
1941    MODE is the argument's machine mode.
1942    TYPE is the data type of the argument (as a tree).
1943     This is null for libcalls where that information may
1944     not be available.
1945    CUM is a variable of type CUMULATIVE_ARGS which gives info about
1946     the preceding args and about the function being called.
1947    NAMED is nonzero if this argument is a named parameter
1948     (otherwise it is an extra parameter matching an ellipsis).  */
1949 
1950 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1951   function_arg( &CUM, MODE, TYPE, NAMED)
1952 
1953 #define FUNCTION_ARG_BOUNDARY function_arg_boundary
1954 
1955 #define FUNCTION_ARG_PADDING(MODE, TYPE)		\
1956   (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
1957 
1958 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST)		\
1959   (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
1960 
1961 /* True if using EABI and varargs can be passed in floating-point
1962    registers.  Under these conditions, we need a more complex form
1963    of va_list, which tracks GPR, FPR and stack arguments separately.  */
1964 #define EABI_FLOAT_VARARGS_P \
1965 	(mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
1966 
1967 
1968 /* Say that the epilogue uses the return address register.  Note that
1969    in the case of sibcalls, the values "used by the epilogue" are
1970    considered live at the start of the called function.  */
1971 #define EPILOGUE_USES(REGNO) ((REGNO) == 31)
1972 
1973 /* Treat LOC as a byte offset from the stack pointer and round it up
1974    to the next fully-aligned offset.  */
1975 #define MIPS_STACK_ALIGN(LOC) \
1976   (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
1977 
1978 
1979 /* Implement `va_start' for varargs and stdarg.  */
1980 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1981   mips_va_start (valist, nextarg)
1982 
1983 /* Output assembler code to FILE to increment profiler label # LABELNO
1984    for profiling a function entry.  */
1985 
1986 #define FUNCTION_PROFILER(FILE, LABELNO)				\
1987 {									\
1988   if (TARGET_MIPS16)							\
1989     sorry ("mips16 function profiling");				\
1990   fprintf (FILE, "\t.set\tnoat\n");					\
1991   fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n",	\
1992 	   reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]);	\
1993   if (!TARGET_NEWABI)							\
1994     {									\
1995       fprintf (FILE,							\
1996 	       "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from  stack\n", \
1997 	       TARGET_64BIT ? "dsubu" : "subu",				\
1998 	       reg_names[STACK_POINTER_REGNUM],				\
1999 	       reg_names[STACK_POINTER_REGNUM],				\
2000 	       Pmode == DImode ? 16 : 8);				\
2001     }									\
2002   fprintf (FILE, "\tjal\t_mcount\n");                                   \
2003   fprintf (FILE, "\t.set\tat\n");					\
2004 }
2005 
2006 /* No mips port has ever used the profiler counter word, so don't emit it
2007    or the label for it.  */
2008 
2009 #define NO_PROFILE_COUNTERS 1
2010 
2011 /* Define this macro if the code for function profiling should come
2012    before the function prologue.  Normally, the profiling code comes
2013    after.  */
2014 
2015 /* #define PROFILE_BEFORE_PROLOGUE */
2016 
2017 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2018    the stack pointer does not matter.  The value is tested only in
2019    functions that have frame pointers.
2020    No definition is equivalent to always zero.  */
2021 
2022 #define EXIT_IGNORE_STACK 1
2023 
2024 
2025 /* A C statement to output, on the stream FILE, assembler code for a
2026    block of data that contains the constant parts of a trampoline.
2027    This code should not include a label--the label is taken care of
2028    automatically.  */
2029 
2030 #define TRAMPOLINE_TEMPLATE(STREAM)					\
2031 {									\
2032   if (ptr_mode == DImode)						\
2033     fprintf (STREAM, "\t.word\t0x03e0082d\t\t# dmove   $1,$31\n");	\
2034   else									\
2035     fprintf (STREAM, "\t.word\t0x03e00821\t\t# move   $1,$31\n");	\
2036   fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n");		\
2037   fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n");			\
2038   if (ptr_mode == DImode)						\
2039     {									\
2040       fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld     $3,20($31)\n");	\
2041       fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld     $2,28($31)\n");	\
2042       fprintf (STREAM, "\t.word\t0x0060c82d\t\t# dmove  $25,$3\n");	\
2043     }									\
2044   else									\
2045     {									\
2046       fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw     $3,20($31)\n");	\
2047       fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw     $2,24($31)\n");	\
2048       fprintf (STREAM, "\t.word\t0x0060c821\t\t# move   $25,$3\n");	\
2049     }									\
2050   fprintf (STREAM, "\t.word\t0x00600008\t\t# jr     $3\n");		\
2051   if (ptr_mode == DImode)						\
2052     {									\
2053       fprintf (STREAM, "\t.word\t0x0020f82d\t\t# dmove   $31,$1\n");	\
2054       fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2055       fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2056     }									\
2057   else									\
2058     {									\
2059       fprintf (STREAM, "\t.word\t0x0020f821\t\t# move   $31,$1\n");	\
2060       fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2061       fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2062     }									\
2063 }
2064 
2065 /* A C expression for the size in bytes of the trampoline, as an
2066    integer.  */
2067 
2068 #define TRAMPOLINE_SIZE (32 + GET_MODE_SIZE (ptr_mode) * 2)
2069 
2070 /* Alignment required for trampolines, in bits.  */
2071 
2072 #define TRAMPOLINE_ALIGNMENT GET_MODE_BITSIZE (ptr_mode)
2073 
2074 /* INITIALIZE_TRAMPOLINE calls this library function to flush
2075    program and data caches.  */
2076 
2077 #ifndef CACHE_FLUSH_FUNC
2078 #define CACHE_FLUSH_FUNC "_flush_cache"
2079 #endif
2080 
2081 /* A C statement to initialize the variable parts of a trampoline.
2082    ADDR is an RTX for the address of the trampoline; FNADDR is an
2083    RTX for the address of the nested function; STATIC_CHAIN is an
2084    RTX for the static chain value that should be passed to the
2085    function when it is called.  */
2086 
2087 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN)			    \
2088 {									    \
2089   rtx func_addr, chain_addr;						    \
2090 									    \
2091   func_addr = plus_constant (ADDR, 32);					    \
2092   chain_addr = plus_constant (func_addr, GET_MODE_SIZE (ptr_mode));	    \
2093   emit_move_insn (gen_rtx_MEM (ptr_mode, func_addr), FUNC);		    \
2094   emit_move_insn (gen_rtx_MEM (ptr_mode, chain_addr), CHAIN);		    \
2095 									    \
2096   /* Flush both caches.  We need to flush the data cache in case	    \
2097      the system has a write-back cache.  */				    \
2098   /* ??? Should check the return value for errors.  */			    \
2099   if (mips_cache_flush_func && mips_cache_flush_func[0])		    \
2100     emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func),   \
2101 		       0, VOIDmode, 3, ADDR, Pmode,			    \
2102 		       GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2103 		       GEN_INT (3), TYPE_MODE (integer_type_node));	    \
2104 }
2105 
2106 /* Addressing modes, and classification of registers for them.  */
2107 
2108 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2109 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2110   mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2111 
2112 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2113    and check its validity for a certain class.
2114    We have two alternate definitions for each of them.
2115    The usual definition accepts all pseudo regs; the other rejects them all.
2116    The symbol REG_OK_STRICT causes the latter definition to be used.
2117 
2118    Most source files want to accept pseudo regs in the hope that
2119    they will get allocated to the class that the insn wants them to be in.
2120    Some source files that are used after register allocation
2121    need to be strict.  */
2122 
2123 #ifndef REG_OK_STRICT
2124 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2125   mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2126 #else
2127 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2128   mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2129 #endif
2130 
2131 #define REG_OK_FOR_INDEX_P(X) 0
2132 
2133 
2134 /* Maximum number of registers that can appear in a valid memory address.  */
2135 
2136 #define MAX_REGS_PER_ADDRESS 1
2137 
2138 #ifdef REG_OK_STRICT
2139 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)	\
2140 {						\
2141   if (mips_legitimate_address_p (MODE, X, 1))	\
2142     goto ADDR;					\
2143 }
2144 #else
2145 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)	\
2146 {						\
2147   if (mips_legitimate_address_p (MODE, X, 0))	\
2148     goto ADDR;					\
2149 }
2150 #endif
2151 
2152 /* Check for constness inline but use mips_legitimate_address_p
2153    to check whether a constant really is an address.  */
2154 
2155 #define CONSTANT_ADDRESS_P(X) \
2156   (CONSTANT_P (X) && mips_legitimate_address_p (SImode, X, 0))
2157 
2158 #define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2159 
2160 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
2161   do {								\
2162     if (mips_legitimize_address (&(X), MODE))			\
2163       goto WIN;							\
2164   } while (0)
2165 
2166 
2167 /* A C statement or compound statement with a conditional `goto
2168    LABEL;' executed if memory address X (an RTX) can have different
2169    meanings depending on the machine mode of the memory reference it
2170    is used for.
2171 
2172    Autoincrement and autodecrement addresses typically have
2173    mode-dependent effects because the amount of the increment or
2174    decrement is the size of the operand being addressed.  Some
2175    machines have other mode-dependent addresses.  Many RISC machines
2176    have no mode-dependent addresses.
2177 
2178    You may assume that ADDR is a valid address for the machine.  */
2179 
2180 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2181 
2182 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2183    'the start of the function that this code is output in'.  */
2184 
2185 #define ASM_OUTPUT_LABELREF(FILE,NAME)  \
2186   if (strcmp (NAME, "..CURRENT_FUNCTION") == 0)				\
2187     asm_fprintf ((FILE), "%U%s",					\
2188 		 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));	\
2189   else									\
2190     asm_fprintf ((FILE), "%U%s", (NAME))
2191 
2192 /* Flag to mark a function decl symbol that requires a long call.  */
2193 #define SYMBOL_FLAG_LONG_CALL	(SYMBOL_FLAG_MACH_DEP << 0)
2194 #define SYMBOL_REF_LONG_CALL_P(X)					\
2195   ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2196 
2197 /* Specify the machine mode that this machine uses
2198    for the index in the tablejump instruction.
2199    ??? Using HImode in mips16 mode can cause overflow.  */
2200 #define CASE_VECTOR_MODE \
2201   (TARGET_MIPS16 ? HImode : ptr_mode)
2202 
2203 /* Define as C expression which evaluates to nonzero if the tablejump
2204    instruction expects the table to contain offsets from the address of the
2205    table.
2206    Do not define this if the table should contain absolute addresses.  */
2207 #define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
2208 
2209 /* Define this as 1 if `char' should by default be signed; else as 0.  */
2210 #ifndef DEFAULT_SIGNED_CHAR
2211 #define DEFAULT_SIGNED_CHAR 1
2212 #endif
2213 
2214 /* Max number of bytes we can move from memory to memory
2215    in one reasonably fast instruction.  */
2216 #define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2217 #define MAX_MOVE_MAX 8
2218 
2219 /* Define this macro as a C expression which is nonzero if
2220    accessing less than a word of memory (i.e. a `char' or a
2221    `short') is no faster than accessing a word of memory, i.e., if
2222    such access require more than one instruction or if there is no
2223    difference in cost between byte and (aligned) word loads.
2224 
2225    On RISC machines, it tends to generate better code to define
2226    this as 1, since it avoids making a QI or HI mode register.  */
2227 #define SLOW_BYTE_ACCESS 1
2228 
2229 /* Define this to be nonzero if shift instructions ignore all but the low-order
2230    few bits.  */
2231 #define SHIFT_COUNT_TRUNCATED 1
2232 
2233 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2234    is done just by pretending it is already truncated.  */
2235 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2236   (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2237 
2238 
2239 /* Specify the machine mode that pointers have.
2240    After generation of rtl, the compiler makes no further distinction
2241    between pointers and any other objects of this machine mode.  */
2242 
2243 #ifndef Pmode
2244 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2245 #endif
2246 
2247 /* Give call MEMs SImode since it is the "most permissive" mode
2248    for both 32-bit and 64-bit targets.  */
2249 
2250 #define FUNCTION_MODE SImode
2251 
2252 
2253 /* The cost of loading values from the constant pool.  It should be
2254    larger than the cost of any constant we want to synthesize in-line.  */
2255 
2256 #define CONSTANT_POOL_COST COSTS_N_INSNS (8)
2257 
2258 /* A C expression for the cost of moving data from a register in
2259    class FROM to one in class TO.  The classes are expressed using
2260    the enumeration values such as `GENERAL_REGS'.  A value of 2 is
2261    the default; other values are interpreted relative to that.
2262 
2263    It is not required that the cost always equal 2 when FROM is the
2264    same as TO; on some machines it is expensive to move between
2265    registers if they are not general registers.
2266 
2267    If reload sees an insn consisting of a single `set' between two
2268    hard registers, and if `REGISTER_MOVE_COST' applied to their
2269    classes returns a value of 2, reload does not check to ensure
2270    that the constraints of the insn are met.  Setting a cost of
2271    other than 2 will allow reload to verify that the constraints are
2272    met.  You should do this if the `movM' pattern's constraints do
2273    not allow such copying.  */
2274 
2275 #define REGISTER_MOVE_COST(MODE, FROM, TO)				\
2276   mips_register_move_cost (MODE, FROM, TO)
2277 
2278 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
2279   (mips_cost->memory_latency	      		\
2280    + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
2281 
2282 /* Define if copies to/from condition code registers should be avoided.
2283 
2284    This is needed for the MIPS because reload_outcc is not complete;
2285    it needs to handle cases where the source is a general or another
2286    condition code register.  */
2287 #define AVOID_CCMODE_COPIES
2288 
2289 /* A C expression for the cost of a branch instruction.  A value of
2290    1 is the default; other values are interpreted relative to that.  */
2291 
2292 #define BRANCH_COST mips_cost->branch_cost
2293 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2294 
2295 /* If defined, modifies the length assigned to instruction INSN as a
2296    function of the context in which it is used.  LENGTH is an lvalue
2297    that contains the initially computed length of the insn and should
2298    be updated with the correct length of the insn.  */
2299 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2300   ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2301 
2302 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2303    OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2304    its operands.  */
2305 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2306   "%*" OPCODE "%?\t" OPERANDS "%/"
2307 
2308 /* Return the asm template for a call.  INSN is the instruction's mnemonic
2309    ("j" or "jal"), OPERANDS are its operands, and OPNO is the operand number
2310    of the target.
2311 
2312    When generating -mabicalls without explicit relocation operators,
2313    all calls should use assembly macros.  Otherwise, all indirect
2314    calls should use "jr" or "jalr"; we will arrange to restore $gp
2315    afterwards if necessary.  Finally, we can only generate direct
2316    calls for -mabicalls by temporarily switching to non-PIC mode.  */
2317 #define MIPS_CALL(INSN, OPERANDS, OPNO)				\
2318   (TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS			\
2319    ? "%*" INSN "\t%" #OPNO "%/"					\
2320    : REG_P (OPERANDS[OPNO])					\
2321    ? "%*" INSN "r\t%" #OPNO "%/"				\
2322    : TARGET_ABICALLS						\
2323    ? (".option\tpic0\n\t"					\
2324       "%*" INSN "\t%" #OPNO "%/\n\t"				\
2325       ".option\tpic2")						\
2326    : "%*" INSN "\t%" #OPNO "%/")
2327 
2328 /* Control the assembler format that we output.  */
2329 
2330 /* Output to assembler file text saying following lines
2331    may contain character constants, extra white space, comments, etc.  */
2332 
2333 #ifndef ASM_APP_ON
2334 #define ASM_APP_ON " #APP\n"
2335 #endif
2336 
2337 /* Output to assembler file text saying following lines
2338    no longer contain unusual constructs.  */
2339 
2340 #ifndef ASM_APP_OFF
2341 #define ASM_APP_OFF " #NO_APP\n"
2342 #endif
2343 
2344 #define REGISTER_NAMES							   \
2345 { "$0",   "$1",   "$2",   "$3",   "$4",   "$5",   "$6",   "$7",		   \
2346   "$8",   "$9",   "$10",  "$11",  "$12",  "$13",  "$14",  "$15",	   \
2347   "$16",  "$17",  "$18",  "$19",  "$20",  "$21",  "$22",  "$23",	   \
2348   "$24",  "$25",  "$26",  "$27",  "$28",  "$sp",  "$fp",  "$31",	   \
2349   "$f0",  "$f1",  "$f2",  "$f3",  "$f4",  "$f5",  "$f6",  "$f7",	   \
2350   "$f8",  "$f9",  "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",	   \
2351   "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",	   \
2352   "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",	   \
2353   "hi",   "lo",   "",     "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",	   \
2354   "$fcc5","$fcc6","$fcc7","", "", "$arg", "$frame", "$fakec",		   \
2355   "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",  \
2356   "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2357   "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2358   "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2359   "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",  \
2360   "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2361   "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2362   "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2363   "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",  \
2364   "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2365   "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2366   "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2367   "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2368   "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2369 
2370 /* List the "software" names for each register.  Also list the numerical
2371    names for $fp and $sp.  */
2372 
2373 #define ADDITIONAL_REGISTER_NAMES					\
2374 {									\
2375   { "$29",	29 + GP_REG_FIRST },					\
2376   { "$30",	30 + GP_REG_FIRST },					\
2377   { "at",	 1 + GP_REG_FIRST },					\
2378   { "v0",	 2 + GP_REG_FIRST },					\
2379   { "v1",	 3 + GP_REG_FIRST },					\
2380   { "a0",	 4 + GP_REG_FIRST },					\
2381   { "a1",	 5 + GP_REG_FIRST },					\
2382   { "a2",	 6 + GP_REG_FIRST },					\
2383   { "a3",	 7 + GP_REG_FIRST },					\
2384   { "t0",	 8 + GP_REG_FIRST },					\
2385   { "t1",	 9 + GP_REG_FIRST },					\
2386   { "t2",	10 + GP_REG_FIRST },					\
2387   { "t3",	11 + GP_REG_FIRST },					\
2388   { "t4",	12 + GP_REG_FIRST },					\
2389   { "t5",	13 + GP_REG_FIRST },					\
2390   { "t6",	14 + GP_REG_FIRST },					\
2391   { "t7",	15 + GP_REG_FIRST },					\
2392   { "s0",	16 + GP_REG_FIRST },					\
2393   { "s1",	17 + GP_REG_FIRST },					\
2394   { "s2",	18 + GP_REG_FIRST },					\
2395   { "s3",	19 + GP_REG_FIRST },					\
2396   { "s4",	20 + GP_REG_FIRST },					\
2397   { "s5",	21 + GP_REG_FIRST },					\
2398   { "s6",	22 + GP_REG_FIRST },					\
2399   { "s7",	23 + GP_REG_FIRST },					\
2400   { "t8",	24 + GP_REG_FIRST },					\
2401   { "t9",	25 + GP_REG_FIRST },					\
2402   { "k0",	26 + GP_REG_FIRST },					\
2403   { "k1",	27 + GP_REG_FIRST },					\
2404   { "gp",	28 + GP_REG_FIRST },					\
2405   { "sp",	29 + GP_REG_FIRST },					\
2406   { "fp",	30 + GP_REG_FIRST },					\
2407   { "ra",	31 + GP_REG_FIRST },					\
2408   ALL_COP_ADDITIONAL_REGISTER_NAMES					\
2409 }
2410 
2411 /* This is meant to be redefined in the host dependent files.  It is a
2412    set of alternative names and regnums for mips coprocessors.  */
2413 
2414 #define ALL_COP_ADDITIONAL_REGISTER_NAMES
2415 
2416 /* A C compound statement to output to stdio stream STREAM the
2417    assembler syntax for an instruction operand X.  X is an RTL
2418    expression.
2419 
2420    CODE is a value that can be used to specify one of several ways
2421    of printing the operand.  It is used when identical operands
2422    must be printed differently depending on the context.  CODE
2423    comes from the `%' specification that was used to request
2424    printing of the operand.  If the specification was just `%DIGIT'
2425    then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2426    is the ASCII code for LTR.
2427 
2428    If X is a register, this macro should print the register's name.
2429    The names can be found in an array `reg_names' whose type is
2430    `char *[]'.  `reg_names' is initialized from `REGISTER_NAMES'.
2431 
2432    When the machine description has a specification `%PUNCT' (a `%'
2433    followed by a punctuation character), this macro is called with
2434    a null pointer for X and the punctuation character for CODE.
2435 
2436    See mips.c for the MIPS specific codes.  */
2437 
2438 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2439 
2440 /* A C expression which evaluates to true if CODE is a valid
2441    punctuation character for use in the `PRINT_OPERAND' macro.  If
2442    `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
2443    punctuation characters (except for the standard one, `%') are
2444    used in this way.  */
2445 
2446 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
2447 
2448 /* A C compound statement to output to stdio stream STREAM the
2449    assembler syntax for an instruction operand that is a memory
2450    reference whose address is ADDR.  ADDR is an RTL expression.  */
2451 
2452 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2453 
2454 
2455 /* A C statement, to be executed after all slot-filler instructions
2456    have been output.  If necessary, call `dbr_sequence_length' to
2457    determine the number of slots filled in a sequence (zero if not
2458    currently outputting a sequence), to decide how many no-ops to
2459    output, or whatever.
2460 
2461    Don't define this macro if it has nothing to do, but it is
2462    helpful in reading assembly output if the extent of the delay
2463    sequence is made explicit (e.g. with white space).
2464 
2465    Note that output routines for instructions with delay slots must
2466    be prepared to deal with not being output as part of a sequence
2467    (i.e.  when the scheduling pass is not run, or when no slot
2468    fillers could be found.)  The variable `final_sequence' is null
2469    when not processing a sequence, otherwise it contains the
2470    `sequence' rtx being output.  */
2471 
2472 #define DBR_OUTPUT_SEQEND(STREAM)					\
2473 do									\
2474   {									\
2475     if (set_nomacro > 0 && --set_nomacro == 0)				\
2476       fputs ("\t.set\tmacro\n", STREAM);				\
2477 									\
2478     if (set_noreorder > 0 && --set_noreorder == 0)			\
2479       fputs ("\t.set\treorder\n", STREAM);				\
2480 									\
2481     fputs ("\n", STREAM);						\
2482   }									\
2483 while (0)
2484 
2485 
2486 /* How to tell the debugger about changes of source files.  */
2487 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)			\
2488   mips_output_filename (STREAM, NAME)
2489 
2490 /* mips-tfile does not understand .stabd directives.  */
2491 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do {	\
2492   dbxout_begin_stabn_sline (LINE);				\
2493   dbxout_stab_value_internal_label ("LM", &COUNTER);		\
2494 } while (0)
2495 
2496 /* Use .loc directives for SDB line numbers.  */
2497 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE)			\
2498   fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2499 
2500 /* The MIPS implementation uses some labels for its own purpose.  The
2501    following lists what labels are created, and are all formed by the
2502    pattern $L[a-z].*.  The machine independent portion of GCC creates
2503    labels matching:  $L[A-Z][0-9]+ and $L[0-9]+.
2504 
2505 	LM[0-9]+	Silicon Graphics/ECOFF stabs label before each stmt.
2506 	$Lb[0-9]+	Begin blocks for MIPS debug support
2507 	$Lc[0-9]+	Label for use in s<xx> operation.
2508 	$Le[0-9]+	End blocks for MIPS debug support  */
2509 
2510 #undef ASM_DECLARE_OBJECT_NAME
2511 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2512   mips_declare_object (STREAM, NAME, "", ":\n", 0)
2513 
2514 /* Globalizing directive for a label.  */
2515 #define GLOBAL_ASM_OP "\t.globl\t"
2516 
2517 /* This says how to define a global common symbol.  */
2518 
2519 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2520 
2521 /* This says how to define a local common symbol (i.e., not visible to
2522    linker).  */
2523 
2524 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2525 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2526   mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2527 #endif
2528 
2529 /* This says how to output an external.  It would be possible not to
2530    output anything and let undefined symbol become external. However
2531    the assembler uses length information on externals to allocate in
2532    data/sdata bss/sbss, thereby saving exec time.  */
2533 
2534 #undef ASM_OUTPUT_EXTERNAL
2535 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2536   mips_output_external(STREAM,DECL,NAME)
2537 
2538 /* This is how to declare a function name.  The actual work of
2539    emitting the label is moved to function_prologue, so that we can
2540    get the line number correctly emitted before the .ent directive,
2541    and after any .file directives.  Define as empty so that the function
2542    is not declared before the .ent directive elsewhere.  */
2543 
2544 #undef ASM_DECLARE_FUNCTION_NAME
2545 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2546 
2547 #ifndef FUNCTION_NAME_ALREADY_DECLARED
2548 #define FUNCTION_NAME_ALREADY_DECLARED 0
2549 #endif
2550 
2551 /* This is how to store into the string LABEL
2552    the symbol_ref name of an internal numbered label where
2553    PREFIX is the class of label and NUM is the number within the class.
2554    This is suitable for output with `assemble_name'.  */
2555 
2556 #undef ASM_GENERATE_INTERNAL_LABEL
2557 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
2558   sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2559 
2560 /* This is how to output an element of a case-vector that is absolute.  */
2561 
2562 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
2563   fprintf (STREAM, "\t%s\t%sL%d\n",					\
2564 	   ptr_mode == DImode ? ".dword" : ".word",			\
2565 	   LOCAL_LABEL_PREFIX,						\
2566 	   VALUE)
2567 
2568 /* This is how to output an element of a case-vector.  We can make the
2569    entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2570    is supported.  */
2571 
2572 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
2573 do {									\
2574   if (TARGET_MIPS16)							\
2575     fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n",				\
2576 	     LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
2577   else if (TARGET_GPWORD)						\
2578     fprintf (STREAM, "\t%s\t%sL%d\n",					\
2579 	     ptr_mode == DImode ? ".gpdword" : ".gpword",		\
2580 	     LOCAL_LABEL_PREFIX, VALUE);				\
2581   else									\
2582     fprintf (STREAM, "\t%s\t%sL%d\n",					\
2583 	     ptr_mode == DImode ? ".dword" : ".word",			\
2584 	     LOCAL_LABEL_PREFIX, VALUE);				\
2585 } while (0)
2586 
2587 /* When generating MIPS16 code, we want the jump table to be in the text
2588    section so that we can load its address using a PC-relative addition.  */
2589 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16
2590 
2591 /* This is how to output an assembler line
2592    that says to advance the location counter
2593    to a multiple of 2**LOG bytes.  */
2594 
2595 #define ASM_OUTPUT_ALIGN(STREAM,LOG)					\
2596   fprintf (STREAM, "\t.align\t%d\n", (LOG))
2597 
2598 /* This is how to output an assembler line to advance the location
2599    counter by SIZE bytes.  */
2600 
2601 #undef ASM_OUTPUT_SKIP
2602 #define ASM_OUTPUT_SKIP(STREAM,SIZE)					\
2603   fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2604 
2605 /* This is how to output a string.  */
2606 #undef ASM_OUTPUT_ASCII
2607 #define ASM_OUTPUT_ASCII(STREAM, STRING, LEN)				\
2608   mips_output_ascii (STREAM, STRING, LEN, "\t.ascii\t")
2609 
2610 /* Output #ident as a in the read-only data section.  */
2611 #undef  ASM_OUTPUT_IDENT
2612 #define ASM_OUTPUT_IDENT(FILE, STRING)					\
2613 {									\
2614   const char *p = STRING;						\
2615   int size = strlen (p) + 1;						\
2616   switch_to_section (readonly_data_section);				\
2617   assemble_string (p, size);						\
2618 }
2619 
2620 /* Default to -G 8 */
2621 #ifndef MIPS_DEFAULT_GVALUE
2622 #define MIPS_DEFAULT_GVALUE 8
2623 #endif
2624 
2625 /* Define the strings to put out for each section in the object file.  */
2626 #define TEXT_SECTION_ASM_OP	"\t.text"	/* instructions */
2627 #define DATA_SECTION_ASM_OP	"\t.data"	/* large data */
2628 
2629 #undef READONLY_DATA_SECTION_ASM_OP
2630 #define READONLY_DATA_SECTION_ASM_OP	"\t.rdata"	/* read-only data */
2631 
2632 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)				\
2633 do									\
2634   {									\
2635     fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n",			\
2636 	     TARGET_64BIT ? "dsubu" : "subu",				\
2637 	     reg_names[STACK_POINTER_REGNUM],				\
2638 	     reg_names[STACK_POINTER_REGNUM],				\
2639 	     TARGET_64BIT ? "sd" : "sw",				\
2640 	     reg_names[REGNO],						\
2641 	     reg_names[STACK_POINTER_REGNUM]);				\
2642   }									\
2643 while (0)
2644 
2645 #define ASM_OUTPUT_REG_POP(STREAM,REGNO)				\
2646 do									\
2647   {									\
2648     if (! set_noreorder)						\
2649       fprintf (STREAM, "\t.set\tnoreorder\n");				\
2650 									\
2651     fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n",			\
2652 	     TARGET_64BIT ? "ld" : "lw",				\
2653 	     reg_names[REGNO],						\
2654 	     reg_names[STACK_POINTER_REGNUM],				\
2655 	     TARGET_64BIT ? "daddu" : "addu",				\
2656 	     reg_names[STACK_POINTER_REGNUM],				\
2657 	     reg_names[STACK_POINTER_REGNUM]);				\
2658 									\
2659     if (! set_noreorder)						\
2660       fprintf (STREAM, "\t.set\treorder\n");				\
2661   }									\
2662 while (0)
2663 
2664 /* How to start an assembler comment.
2665    The leading space is important (the mips native assembler requires it).  */
2666 #ifndef ASM_COMMENT_START
2667 #define ASM_COMMENT_START " #"
2668 #endif
2669 
2670 /* Default definitions for size_t and ptrdiff_t.  We must override the
2671    definitions from ../svr4.h on mips-*-linux-gnu.  */
2672 
2673 #undef SIZE_TYPE
2674 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2675 
2676 #undef PTRDIFF_TYPE
2677 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2678 
2679 #ifndef __mips16
2680 /* Since the bits of the _init and _fini function is spread across
2681    many object files, each potentially with its own GP, we must assume
2682    we need to load our GP.  We don't preserve $gp or $ra, since each
2683    init/fini chunk is supposed to initialize $gp, and crti/crtn
2684    already take care of preserving $ra and, when appropriate, $gp.  */
2685 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2686 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2687    asm (SECTION_OP "\n\
2688 	.set noreorder\n\
2689 	bal 1f\n\
2690 	nop\n\
2691 1:	.cpload $31\n\
2692 	.set reorder\n\
2693 	jal " USER_LABEL_PREFIX #FUNC "\n\
2694 	" TEXT_SECTION_ASM_OP);
2695 #endif /* Switch to #elif when we're no longer limited by K&R C.  */
2696 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2697    || (defined _ABI64 && _MIPS_SIM == _ABI64)
2698 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2699    asm (SECTION_OP "\n\
2700 	.set noreorder\n\
2701 	bal 1f\n\
2702 	nop\n\
2703 1:	.set reorder\n\
2704 	.cpsetup $31, $2, 1b\n\
2705 	jal " USER_LABEL_PREFIX #FUNC "\n\
2706 	" TEXT_SECTION_ASM_OP);
2707 #endif
2708 #endif
2709 
2710 #ifndef HAVE_AS_TLS
2711 #define HAVE_AS_TLS 0
2712 #endif
2713