xref: /openbsd/gnu/gcc/gcc/config/pa/pa.h (revision 76d0caae)
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3    2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4    Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5    and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6    Software Science at the University of Utah.
7 
8 This file is part of GCC.
9 
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14 
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 GNU General Public License for more details.
19 
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING.  If not, write to
22 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA.  */
24 
25 enum cmp_type				/* comparison type */
26 {
27   CMP_SI,				/* compare integers */
28   CMP_SF,				/* compare single precision floats */
29   CMP_DF,				/* compare double precision floats */
30   CMP_MAX				/* max comparison type */
31 };
32 
33 /* For long call handling.  */
34 extern unsigned long total_code_bytes;
35 
36 /* Which processor to schedule for.  */
37 
38 enum processor_type
39 {
40   PROCESSOR_700,
41   PROCESSOR_7100,
42   PROCESSOR_7100LC,
43   PROCESSOR_7200,
44   PROCESSOR_7300,
45   PROCESSOR_8000
46 };
47 
48 /* For -mschedule= option.  */
49 extern enum processor_type pa_cpu;
50 
51 /* For -munix= option.  */
52 extern int flag_pa_unix;
53 
54 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
55 
56 /* Print subsidiary information on the compiler version in use.  */
57 
58 #define TARGET_VERSION fputs (" (hppa)", stderr);
59 
60 #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
61 
62 /* Generate code for the HPPA 2.0 architecture in 64bit mode.  */
63 #ifndef TARGET_64BIT
64 #define TARGET_64BIT 0
65 #endif
66 
67 /* Generate code for ELF32 ABI.  */
68 #ifndef TARGET_ELF32
69 #define TARGET_ELF32 0
70 #endif
71 
72 /* Generate code for SOM 32bit ABI.  */
73 #ifndef TARGET_SOM
74 #define TARGET_SOM 0
75 #endif
76 
77 /* HP-UX UNIX features.  */
78 #ifndef TARGET_HPUX
79 #define TARGET_HPUX 0
80 #endif
81 
82 /* HP-UX 10.10 UNIX 95 features.  */
83 #ifndef TARGET_HPUX_10_10
84 #define TARGET_HPUX_10_10 0
85 #endif
86 
87 /* HP-UX 11i multibyte and UNIX 98 extensions.  */
88 #ifndef TARGET_HPUX_11_11
89 #define TARGET_HPUX_11_11 0
90 #endif
91 
92 /* The following three defines are potential target switches.  The current
93    defines are optimal given the current capabilities of GAS and GNU ld.  */
94 
95 /* Define to a C expression evaluating to true to use long absolute calls.
96    Currently, only the HP assembler and SOM linker support long absolute
97    calls.  They are used only in non-pic code.  */
98 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
99 
100 /* Define to a C expression evaluating to true to use long pic symbol
101    difference calls.  This is a call variant similar to the long pic
102    pc-relative call.  Long pic symbol difference calls are only used with
103    the HP SOM linker.  Currently, only the HP assembler supports these
104    calls.  GAS doesn't allow an arbitrary difference of two symbols.  */
105 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS)
106 
107 /* Define to a C expression evaluating to true to use long pic
108    pc-relative calls.  Long pic pc-relative calls are only used with
109    GAS.  Currently, they are usable for calls within a module but
110    not for external calls.  */
111 #define TARGET_LONG_PIC_PCREL_CALL 0
112 
113 /* Define to a C expression evaluating to true to use SOM secondary
114    definition symbols for weak support.  Linker support for secondary
115    definition symbols is buggy prior to HP-UX 11.X.  */
116 #define TARGET_SOM_SDEF 0
117 
118 /* Define to a C expression evaluating to true to save the entry value
119    of SP in the current frame marker.  This is normally unnecessary.
120    However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
121    HP compilers don't use this flag but it is supported by the assembler.
122    We set this flag to indicate that register %r3 has been saved at the
123    start of the frame.  Thus, when the HP unwind library is used, we
124    need to generate additional code to save SP into the frame marker.  */
125 #define TARGET_HPUX_UNWIND_LIBRARY 0
126 
127 #ifndef TARGET_DEFAULT
128 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH)
129 #endif
130 
131 #ifndef TARGET_CPU_DEFAULT
132 #define TARGET_CPU_DEFAULT 0
133 #endif
134 
135 #ifndef TARGET_SCHED_DEFAULT
136 #define TARGET_SCHED_DEFAULT PROCESSOR_8000
137 #endif
138 
139 /* Support for a compile-time default CPU, et cetera.  The rules are:
140    --with-schedule is ignored if -mschedule is specified.
141    --with-arch is ignored if -march is specified.  */
142 #define OPTION_DEFAULT_SPECS \
143   {"arch", "%{!march=*:-march=%(VALUE)}" }, \
144   {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
145 
146 /* Specify the dialect of assembler to use.  New mnemonics is dialect one
147    and the old mnemonics are dialect zero.  */
148 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
149 
150 #define OVERRIDE_OPTIONS override_options ()
151 
152 /* Override some settings from dbxelf.h.  */
153 
154 /* We do not have to be compatible with dbx, so we enable gdb extensions
155    by default.  */
156 #define DEFAULT_GDB_EXTENSIONS 1
157 
158 /* This used to be zero (no max length), but big enums and such can
159    cause huge strings which killed gas.
160 
161    We also have to avoid lossage in dbxout.c -- it does not compute the
162    string size accurately, so we are real conservative here.  */
163 #undef DBX_CONTIN_LENGTH
164 #define DBX_CONTIN_LENGTH 3000
165 
166 /* GDB always assumes the current function's frame begins at the value
167    of the stack pointer upon entry to the current function.  Accessing
168    local variables and parameters passed on the stack is done using the
169    base of the frame + an offset provided by GCC.
170 
171    For functions which have frame pointers this method works fine;
172    the (frame pointer) == (stack pointer at function entry) and GCC provides
173    an offset relative to the frame pointer.
174 
175    This loses for functions without a frame pointer; GCC provides an offset
176    which is relative to the stack pointer after adjusting for the function's
177    frame size.  GDB would prefer the offset to be relative to the value of
178    the stack pointer at the function's entry.  Yuk!  */
179 #define DEBUGGER_AUTO_OFFSET(X) \
180   ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
181     + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
182 
183 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
184   ((GET_CODE (X) == PLUS ? OFFSET : 0) \
185     + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
186 
187 #define TARGET_CPU_CPP_BUILTINS()				\
188 do {								\
189      builtin_assert("cpu=hppa");				\
190      builtin_assert("machine=hppa");				\
191      builtin_define("__hppa");					\
192      builtin_define("__hppa__");				\
193      if (TARGET_PA_20)						\
194        builtin_define("_PA_RISC2_0");				\
195      else if (TARGET_PA_11)					\
196        builtin_define("_PA_RISC1_1");				\
197      else							\
198        builtin_define("_PA_RISC1_0");				\
199 } while (0)
200 
201 /* An old set of OS defines for various BSD-like systems.  */
202 #define TARGET_OS_CPP_BUILTINS()				\
203   do								\
204     {								\
205 	builtin_define_std ("REVARGV");				\
206 	builtin_define_std ("hp800");				\
207 	builtin_define_std ("hp9000");				\
208 	builtin_define_std ("hp9k8");				\
209 	if (!c_dialect_cxx () && !flag_iso)			\
210 	  builtin_define ("hppa");				\
211 	builtin_define_std ("spectrum");			\
212 	builtin_define_std ("unix");				\
213 	builtin_assert ("system=bsd");				\
214 	builtin_assert ("system=unix");				\
215     }								\
216   while (0)
217 
218 #define CC1_SPEC "%{pg:} %{p:}"
219 
220 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
221 
222 /* We don't want -lg.  */
223 #ifndef LIB_SPEC
224 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
225 #endif
226 
227 /* This macro defines command-line switches that modify the default
228    target name.
229 
230    The definition is be an initializer for an array of structures.  Each
231    array element has have three elements: the switch name, one of the
232    enumeration codes ADD or DELETE to indicate whether the string should be
233    inserted or deleted, and the string to be inserted or deleted.  */
234 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
235 
236 /* Make gcc agree with <machine/ansi.h> */
237 
238 #define SIZE_TYPE "unsigned int"
239 #define PTRDIFF_TYPE "int"
240 #define WCHAR_TYPE "unsigned int"
241 #define WCHAR_TYPE_SIZE 32
242 
243 /* Show we can debug even without a frame pointer.  */
244 #define CAN_DEBUG_WITHOUT_FP
245 
246 /* target machine storage layout */
247 typedef struct machine_function GTY(())
248 {
249   /* Flag indicating that a .NSUBSPA directive has been output for
250      this function.  */
251   int in_nsubspa;
252 } machine_function;
253 
254 /* Define this macro if it is advisable to hold scalars in registers
255    in a wider mode than that declared by the program.  In such cases,
256    the value is constrained to be within the bounds of the declared
257    type, but kept valid in the wider mode.  The signedness of the
258    extension may differ from that of the type.  */
259 
260 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
261   if (GET_MODE_CLASS (MODE) == MODE_INT	\
262       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)  	\
263     (MODE) = word_mode;
264 
265 /* Define this if most significant bit is lowest numbered
266    in instructions that operate on numbered bit-fields.  */
267 #define BITS_BIG_ENDIAN 1
268 
269 /* Define this if most significant byte of a word is the lowest numbered.  */
270 /* That is true on the HP-PA.  */
271 #define BYTES_BIG_ENDIAN 1
272 
273 /* Define this if most significant word of a multiword number is lowest
274    numbered.  */
275 #define WORDS_BIG_ENDIAN 1
276 
277 #define MAX_BITS_PER_WORD 64
278 
279 /* Width of a word, in units (bytes).  */
280 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
281 
282 /* Minimum number of units in a word.  If this is undefined, the default
283    is UNITS_PER_WORD.  Otherwise, it is the constant value that is the
284    smallest value that UNITS_PER_WORD can have at run-time.
285 
286    FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
287    building of various TImode routines in libgcc.  The HP runtime
288    specification doesn't provide the alignment requirements and calling
289    conventions for TImode variables.  */
290 #define MIN_UNITS_PER_WORD 4
291 
292 /* The widest floating point format supported by the hardware.  Note that
293    setting this influences some Ada floating point type sizes, currently
294    required for GNAT to operate properly.  */
295 #define WIDEST_HARDWARE_FP_SIZE 64
296 
297 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
298 #define PARM_BOUNDARY BITS_PER_WORD
299 
300 /* Largest alignment required for any stack parameter, in bits.
301    Don't define this if it is equal to PARM_BOUNDARY */
302 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
303 
304 /* Boundary (in *bits*) on which stack pointer is always aligned;
305    certain optimizations in combine depend on this.
306 
307    The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
308    the stack on the 32 and 64-bit ports, respectively.  However, we
309    are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
310    in main.  Thus, we treat the former as the preferred alignment.  */
311 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
312 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
313 
314 /* Allocation boundary (in *bits*) for the code of a function.  */
315 #define FUNCTION_BOUNDARY BITS_PER_WORD
316 
317 /* Alignment of field after `int : 0' in a structure.  */
318 #define EMPTY_FIELD_BOUNDARY 32
319 
320 /* Every structure's size must be a multiple of this.  */
321 #define STRUCTURE_SIZE_BOUNDARY 8
322 
323 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
324 #define PCC_BITFIELD_TYPE_MATTERS 1
325 
326 /* No data type wants to be aligned rounder than this.  */
327 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
328 
329 /* Get around hp-ux assembler bug, and make strcpy of constants fast.  */
330 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
331   ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
332 
333 /* Make arrays of chars word-aligned for the same reasons.  */
334 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
335   (TREE_CODE (TYPE) == ARRAY_TYPE		\
336    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
337    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
338 
339 /* Make local arrays of chars word-aligned for the same reasons.  */
340 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
341 
342 /* Set this nonzero if move instructions will actually fail to work
343    when given unaligned data.  */
344 #define STRICT_ALIGNMENT 1
345 
346 /* Value is 1 if it is a good idea to tie two pseudo registers
347    when one has mode MODE1 and one has mode MODE2.
348    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
349    for any hard reg, then this must be 0 for correct output.  */
350 #define MODES_TIEABLE_P(MODE1, MODE2) \
351   (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
352 
353 /* Specify the registers used for certain standard purposes.
354    The values of these macros are register numbers.  */
355 
356 /* The HP-PA pc isn't overloaded on a register that the compiler knows about.  */
357 /* #define PC_REGNUM  */
358 
359 /* Register to use for pushing function arguments.  */
360 #define STACK_POINTER_REGNUM 30
361 
362 /* Base register for access to local variables of the function.  */
363 #define FRAME_POINTER_REGNUM 3
364 
365 /* Value should be nonzero if functions must have frame pointers.  */
366 #define FRAME_POINTER_REQUIRED \
367   (current_function_calls_alloca)
368 
369 /* Don't allow hard registers to be renamed into r2 unless r2
370    is already live or already being saved (due to eh).  */
371 
372 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
373   ((NEW_REG) != 2 || regs_ever_live[2] || current_function_calls_eh_return)
374 
375 /* C statement to store the difference between the frame pointer
376    and the stack pointer values immediately after the function prologue.
377 
378    Note, we always pretend that this is a leaf function because if
379    it's not, there's no point in trying to eliminate the
380    frame pointer.  If it is a leaf function, we guessed right!  */
381 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
382   do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
383 
384 /* Base register for access to arguments of the function.  */
385 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
386 
387 /* Register in which static-chain is passed to a function.  */
388 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
389 
390 /* Register used to address the offset table for position-independent
391    data references.  */
392 #define PIC_OFFSET_TABLE_REGNUM \
393   (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
394 
395 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
396 
397 /* Function to return the rtx used to save the pic offset table register
398    across function calls.  */
399 extern struct rtx_def *hppa_pic_save_rtx (void);
400 
401 #define DEFAULT_PCC_STRUCT_RETURN 0
402 
403 /* Register in which address to store a structure value
404    is passed to a function.  */
405 #define PA_STRUCT_VALUE_REGNUM 28
406 
407 /* Describe how we implement __builtin_eh_return.  */
408 #define EH_RETURN_DATA_REGNO(N)	\
409   ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
410 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 29)
411 #define EH_RETURN_HANDLER_RTX \
412   gen_rtx_MEM (word_mode,						\
413 	       gen_rtx_PLUS (word_mode, frame_pointer_rtx,		\
414 			     TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
415 
416 /* Offset from the frame pointer register value to the top of stack.  */
417 #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
418 
419 /* A C expression whose value is RTL representing the location of the
420    incoming return address at the beginning of any function, before the
421    prologue.  You only need to define this macro if you want to support
422    call frame debugging information like that provided by DWARF 2.  */
423 #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
424 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
425 
426 /* A C expression whose value is an integer giving a DWARF 2 column
427    number that may be used as an alternate return column.  This should
428    be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
429    register, but an alternate column needs to be used for signal frames.
430 
431    Column 0 is not used but unfortunately its register size is set to
432    4 bytes (sizeof CCmode) so it can't be used on 64-bit targets.  */
433 #define DWARF_ALT_FRAME_RETURN_COLUMN FIRST_PSEUDO_REGISTER
434 
435 /* This macro chooses the encoding of pointers embedded in the exception
436    handling sections.  If at all possible, this should be defined such
437    that the exception handling section will not require dynamic relocations,
438    and so may be read-only.
439 
440    Because the HP assembler auto aligns, it is necessary to use
441    DW_EH_PE_aligned.  It's not possible to make the data read-only
442    on the HP-UX SOM port since the linker requires fixups for label
443    differences in different sections to be word aligned.  However,
444    the SOM linker can do unaligned fixups for absolute pointers.
445    We also need aligned pointers for global and function pointers.
446 
447    Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
448    fixups, the runtime doesn't have a consistent relationship between
449    text and data for dynamically loaded objects.  Thus, it's not possible
450    to use pc-relative encoding for pointers on this target.  It may be
451    possible to use segment relative encodings but GAS doesn't currently
452    have a mechanism to generate these encodings.  For other targets, we
453    use pc-relative encoding for pointers.  If the pointer might require
454    dynamic relocation, we make it indirect.  */
455 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
456   (TARGET_GAS && !TARGET_HPUX						\
457    ? (DW_EH_PE_pcrel							\
458       | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0)		\
459       | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4))		\
460    : (!TARGET_GAS || (GLOBAL) || (CODE) == 2				\
461       ? DW_EH_PE_aligned : DW_EH_PE_absptr))
462 
463 /* Handle special EH pointer encodings.  Absolute, pc-relative, and
464    indirect are handled automatically.  We output pc-relative, and
465    indirect pc-relative ourself since we need some special magic to
466    generate pc-relative relocations, and to handle indirect function
467    pointers.  */
468 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
469   do {									\
470     if (((ENCODING) & 0x70) == DW_EH_PE_pcrel)				\
471       {									\
472 	fputs (integer_asm_op (SIZE, FALSE), FILE);			\
473 	if ((ENCODING) & DW_EH_PE_indirect)				\
474 	  output_addr_const (FILE, get_deferred_plabel (ADDR));		\
475 	else								\
476 	  assemble_name (FILE, XSTR ((ADDR), 0));			\
477 	fputs ("+8-$PIC_pcrel$0", FILE);				\
478 	goto DONE;							\
479       }									\
480     } while (0)
481 
482 /* The letters I, J, K, L and M in a register constraint string
483    can be used to stand for particular ranges of immediate operands.
484    This macro defines what the ranges are.
485    C is the letter, and VALUE is a constant value.
486    Return 1 if VALUE is in the range specified by C.
487 
488    `I' is used for the 11 bit constants.
489    `J' is used for the 14 bit constants.
490    `K' is used for values that can be moved with a zdepi insn.
491    `L' is used for the 5 bit constants.
492    `M' is used for 0.
493    `N' is used for values with the least significant 11 bits equal to zero
494 	                  and when sign extended from 32 to 64 bits the
495 			  value does not change.
496    `O' is used for numbers n such that n+1 is a power of 2.
497    */
498 
499 #define CONST_OK_FOR_LETTER_P(VALUE, C)  \
500   ((C) == 'I' ? VAL_11_BITS_P (VALUE)					\
501    : (C) == 'J' ? VAL_14_BITS_P (VALUE)					\
502    : (C) == 'K' ? zdepi_cint_p (VALUE)					\
503    : (C) == 'L' ? VAL_5_BITS_P (VALUE)					\
504    : (C) == 'M' ? (VALUE) == 0						\
505    : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
506 		   || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff))	\
507 		       == (HOST_WIDE_INT) -1 << 31))			\
508    : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0)			\
509    : (C) == 'P' ? and_mask_p (VALUE)					\
510    : 0)
511 
512 /* Similar, but for floating or large integer constants, and defining letters
513    G and H.   Here VALUE is the CONST_DOUBLE rtx itself.
514 
515    For PA, `G' is the floating-point constant zero.  `H' is undefined.  */
516 
517 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  			\
518   ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT	\
519 		 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))		\
520    : 0)
521 
522 /* The class value for index registers, and the one for base regs.  */
523 #define INDEX_REG_CLASS GENERAL_REGS
524 #define BASE_REG_CLASS GENERAL_REGS
525 
526 #define FP_REG_CLASS_P(CLASS) \
527   ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
528 
529 /* True if register is floating-point.  */
530 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
531 
532 /* Given an rtx X being reloaded into a reg required to be
533    in class CLASS, return the class of reg to actually use.
534    In general this is just CLASS; but on some machines
535    in some cases it is preferable to use a more restrictive class.  */
536 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
537 
538 #define MAYBE_FP_REG_CLASS_P(CLASS) \
539   reg_classes_intersect_p ((CLASS), FP_REGS)
540 
541 /* On the PA it is not possible to directly move data between
542    GENERAL_REGS and FP_REGS.  On the 32-bit port, we use the
543    location at SP-16.  We don't expose this location in the RTL to
544    avoid scheduling related problems.  For example, the store and
545    load could be separated by a call to a pure or const function
546    which has no frame and uses SP-16.  */
547 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
548   (TARGET_64BIT								\
549    && (MAYBE_FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)		\
550        || MAYBE_FP_REG_CLASS_P (CLASS2) != FP_REG_CLASS_P (CLASS1)))
551 
552 
553 /* Stack layout; function entry, exit and calling.  */
554 
555 /* Define this if pushing a word on the stack
556    makes the stack pointer a smaller address.  */
557 /* #define STACK_GROWS_DOWNWARD */
558 
559 /* Believe it or not.  */
560 #define ARGS_GROW_DOWNWARD
561 
562 /* Define this to nonzero if the nominal address of the stack frame
563    is at the high-address end of the local variables;
564    that is, each additional local variable allocated
565    goes at a more negative offset in the frame.  */
566 #define FRAME_GROWS_DOWNWARD 0
567 
568 /* Offset within stack frame to start allocating local variables at.
569    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
570    first local allocated.  Otherwise, it is the offset to the BEGINNING
571    of the first local allocated.
572 
573    On the 32-bit ports, we reserve one slot for the previous frame
574    pointer and one fill slot.  The fill slot is for compatibility
575    with HP compiled programs.  On the 64-bit ports, we reserve one
576    slot for the previous frame pointer.  */
577 #define STARTING_FRAME_OFFSET 8
578 
579 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
580    of the stack.  The default is to align it to STACK_BOUNDARY.  */
581 #define STACK_ALIGNMENT_NEEDED 0
582 
583 /* If we generate an insn to push BYTES bytes,
584    this says how many the stack pointer really advances by.
585    On the HP-PA, don't define this because there are no push insns.  */
586 /*  #define PUSH_ROUNDING(BYTES) */
587 
588 /* Offset of first parameter from the argument pointer register value.
589    This value will be negated because the arguments grow down.
590    Also note that on STACK_GROWS_UPWARD machines (such as this one)
591    this is the distance from the frame pointer to the end of the first
592    argument, not it's beginning.  To get the real offset of the first
593    argument, the size of the argument must be added.  */
594 
595 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
596 
597 /* When a parameter is passed in a register, stack space is still
598    allocated for it.  */
599 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
600 
601 /* Define this if the above stack space is to be considered part of the
602    space allocated by the caller.  */
603 #define OUTGOING_REG_PARM_STACK_SPACE
604 
605 /* Keep the stack pointer constant throughout the function.
606    This is both an optimization and a necessity: longjmp
607    doesn't behave itself when the stack pointer moves within
608    the function!  */
609 #define ACCUMULATE_OUTGOING_ARGS 1
610 
611 /* The weird HPPA calling conventions require a minimum of 48 bytes on
612    the stack: 16 bytes for register saves, and 32 bytes for magic.
613    This is the difference between the logical top of stack and the
614    actual sp.
615 
616    On the 64-bit port, the HP C compiler allocates a 48-byte frame
617    marker, although the runtime documentation only describes a 16
618    byte marker.  For compatibility, we allocate 48 bytes.  */
619 #define STACK_POINTER_OFFSET \
620   (TARGET_64BIT ? -(current_function_outgoing_args_size + 48): -32)
621 
622 #define STACK_DYNAMIC_OFFSET(FNDECL)	\
623   (TARGET_64BIT				\
624    ? (STACK_POINTER_OFFSET)		\
625    : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
626 
627 /* Value is 1 if returning from a function call automatically
628    pops the arguments described by the number-of-args field in the call.
629    FUNDECL is the declaration node of the function (as a tree),
630    FUNTYPE is the data type of the function (as a tree),
631    or for a library call it is an identifier node for the subroutine name.  */
632 
633 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
634 
635 /* Define how to find the value returned by a function.
636    VALTYPE is the data type of the value (as a tree).
637    If the precise function being called is known, FUNC is its FUNCTION_DECL;
638    otherwise, FUNC is 0.  */
639 
640 #define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
641 
642 /* Define how to find the value returned by a library function
643    assuming the value has mode MODE.  */
644 
645 #define LIBCALL_VALUE(MODE)	\
646   gen_rtx_REG (MODE,							\
647 	       (! TARGET_SOFT_FLOAT					\
648 		&& ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
649 
650 /* 1 if N is a possible register number for a function value
651    as seen by the caller.  */
652 
653 #define FUNCTION_VALUE_REGNO_P(N) \
654   ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
655 
656 
657 /* Define a data type for recording info about an argument list
658    during the scan of that argument list.  This data type should
659    hold all necessary information about the function itself
660    and about the args processed so far, enough to enable macros
661    such as FUNCTION_ARG to determine where the next arg should go.
662 
663    On the HP-PA, the WORDS field holds the number of words
664    of arguments scanned so far (including the invisible argument,
665    if any, which holds the structure-value-address).  Thus, 4 or
666    more means all following args should go on the stack.
667 
668    The INCOMING field tracks whether this is an "incoming" or
669    "outgoing" argument.
670 
671    The INDIRECT field indicates whether this is is an indirect
672    call or not.
673 
674    The NARGS_PROTOTYPE field indicates that an argument does not
675    have a prototype when it less than or equal to 0.  */
676 
677 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
678 
679 #define CUMULATIVE_ARGS struct hppa_args
680 
681 /* Initialize a variable CUM of type CUMULATIVE_ARGS
682    for a call to a function whose data type is FNTYPE.
683    For a library call, FNTYPE is 0.  */
684 
685 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
686   (CUM).words = 0, 							\
687   (CUM).incoming = 0,							\
688   (CUM).indirect = (FNTYPE) && !(FNDECL),				\
689   (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE)		\
690 			   ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1	\
691 			      + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
692 				 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
693 			   : 0)
694 
695 
696 
697 /* Similar, but when scanning the definition of a procedure.  We always
698    set NARGS_PROTOTYPE large so we never return a PARALLEL.  */
699 
700 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
701   (CUM).words = 0,				\
702   (CUM).incoming = 1,				\
703   (CUM).indirect = 0,				\
704   (CUM).nargs_prototype = 1000
705 
706 /* Figure out the size in words of the function argument.  The size
707    returned by this macro should always be greater than zero because
708    we pass variable and zero sized objects by reference.  */
709 
710 #define FUNCTION_ARG_SIZE(MODE, TYPE)	\
711   ((((MODE) != BLKmode \
712      ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
713      : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
714 
715 /* Update the data in CUM to advance over an argument
716    of mode MODE and data type TYPE.
717    (TYPE is null for libcalls where that information may not be available.)  */
718 
719 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
720 { (CUM).nargs_prototype--;						\
721   (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE)	 			\
722     + (((CUM).words & 01) && (TYPE) != 0				\
723 	&& FUNCTION_ARG_SIZE(MODE, TYPE) > 1);				\
724 }
725 
726 /* Determine where to put an argument to a function.
727    Value is zero to push the argument on the stack,
728    or a hard register in which to store the argument.
729 
730    MODE is the argument's machine mode.
731    TYPE is the data type of the argument (as a tree).
732     This is null for libcalls where that information may
733     not be available.
734    CUM is a variable of type CUMULATIVE_ARGS which gives info about
735     the preceding args and about the function being called.
736    NAMED is nonzero if this argument is a named parameter
737     (otherwise it is an extra parameter matching an ellipsis).
738 
739    On the HP-PA the first four words of args are normally in registers
740    and the rest are pushed.  But any arg that won't entirely fit in regs
741    is pushed.
742 
743    Arguments passed in registers are either 1 or 2 words long.
744 
745    The caller must make a distinction between calls to explicitly named
746    functions and calls through pointers to functions -- the conventions
747    are different!  Calls through pointers to functions only use general
748    registers for the first four argument words.
749 
750    Of course all this is different for the portable runtime model
751    HP wants everyone to use for ELF.  Ugh.  Here's a quick description
752    of how it's supposed to work.
753 
754    1) callee side remains unchanged.  It expects integer args to be
755    in the integer registers, float args in the float registers and
756    unnamed args in integer registers.
757 
758    2) caller side now depends on if the function being called has
759    a prototype in scope (rather than if it's being called indirectly).
760 
761       2a) If there is a prototype in scope, then arguments are passed
762       according to their type (ints in integer registers, floats in float
763       registers, unnamed args in integer registers.
764 
765       2b) If there is no prototype in scope, then floating point arguments
766       are passed in both integer and float registers.  egad.
767 
768   FYI: The portable parameter passing conventions are almost exactly like
769   the standard parameter passing conventions on the RS6000.  That's why
770   you'll see lots of similar code in rs6000.h.  */
771 
772 /* If defined, a C expression which determines whether, and in which
773    direction, to pad out an argument with extra space.  */
774 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
775 
776 /* Specify padding for the last element of a block move between registers
777    and memory.
778 
779    The 64-bit runtime specifies that objects need to be left justified
780    (i.e., the normal justification for a big endian target).  The 32-bit
781    runtime specifies right justification for objects smaller than 64 bits.
782    We use a DImode register in the parallel for 5 to 7 byte structures
783    so that there is only one element.  This allows the object to be
784    correctly padded.  */
785 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
786   function_arg_padding ((MODE), (TYPE))
787 
788 /* Do not expect to understand this without reading it several times.  I'm
789    tempted to try and simply it, but I worry about breaking something.  */
790 
791 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
792   function_arg (&CUM, MODE, TYPE, NAMED)
793 
794 /* If defined, a C expression that gives the alignment boundary, in
795    bits, of an argument with the specified mode and type.  If it is
796    not defined,  `PARM_BOUNDARY' is used for all arguments.  */
797 
798 /* Arguments larger than one word are double word aligned.  */
799 
800 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE)				\
801   (((TYPE)								\
802     ? (integer_zerop (TYPE_SIZE (TYPE))					\
803        || !TREE_CONSTANT (TYPE_SIZE (TYPE))				\
804        || int_size_in_bytes (TYPE) <= UNITS_PER_WORD)			\
805     : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD)				\
806    ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
807 
808 
809 extern GTY(()) rtx hppa_compare_op0;
810 extern GTY(()) rtx hppa_compare_op1;
811 extern enum cmp_type hppa_branch_type;
812 
813 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
814    as assembly via FUNCTION_PROFILER.  Just output a local label.
815    We can't use the function label because the GAS SOM target can't
816    handle the difference of a global symbol and a local symbol.  */
817 
818 #ifndef FUNC_BEGIN_PROLOG_LABEL
819 #define FUNC_BEGIN_PROLOG_LABEL        "LFBP"
820 #endif
821 
822 #define FUNCTION_PROFILER(FILE, LABEL) \
823   (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
824 
825 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
826 void hppa_profile_hook (int label_no);
827 
828 /* The profile counter if emitted must come before the prologue.  */
829 #define PROFILE_BEFORE_PROLOGUE 1
830 
831 /* We never want final.c to emit profile counters.  When profile
832    counters are required, we have to defer emitting them to the end
833    of the current file.  */
834 #define NO_PROFILE_COUNTERS 1
835 
836 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
837    the stack pointer does not matter.  The value is tested only in
838    functions that have frame pointers.
839    No definition is equivalent to always zero.  */
840 
841 extern int may_call_alloca;
842 
843 #define EXIT_IGNORE_STACK	\
844  (get_frame_size () != 0	\
845   || current_function_calls_alloca || current_function_outgoing_args_size)
846 
847 /* Output assembler code for a block containing the constant parts
848    of a trampoline, leaving space for the variable parts.\
849 
850    The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
851    and then branches to the specified routine.
852 
853    This code template is copied from text segment to stack location
854    and then patched with INITIALIZE_TRAMPOLINE to contain
855    valid values, and then entered as a subroutine.
856 
857    It is best to keep this as small as possible to avoid having to
858    flush multiple lines in the cache.  */
859 
860 #define TRAMPOLINE_TEMPLATE(FILE) 					\
861   {									\
862     if (!TARGET_64BIT)							\
863       {									\
864 	fputs ("\tldw	36(%r22),%r21\n", FILE);			\
865 	fputs ("\tbb,>=,n	%r21,30,.+16\n", FILE);			\
866 	if (ASSEMBLER_DIALECT == 0)					\
867 	  fputs ("\tdepi	0,31,2,%r21\n", FILE);			\
868 	else								\
869 	  fputs ("\tdepwi	0,31,2,%r21\n", FILE);			\
870 	fputs ("\tldw	4(%r21),%r19\n", FILE);				\
871 	fputs ("\tldw	0(%r21),%r21\n", FILE);				\
872 	if (TARGET_PA_20)						\
873 	  {								\
874 	    fputs ("\tbve	(%r21)\n", FILE);			\
875 	    fputs ("\tldw	40(%r22),%r29\n", FILE);		\
876 	    fputs ("\t.word	0\n", FILE);				\
877 	    fputs ("\t.word	0\n", FILE);				\
878 	  }								\
879 	else								\
880 	  {								\
881 	    fputs ("\tldsid	(%r21),%r1\n", FILE);			\
882 	    fputs ("\tmtsp	%r1,%sr0\n", FILE);			\
883 	    fputs ("\tbe	0(%sr0,%r21)\n", FILE);			\
884 	    fputs ("\tldw	40(%r22),%r29\n", FILE);		\
885 	  }								\
886 	fputs ("\t.word	0\n", FILE);					\
887 	fputs ("\t.word	0\n", FILE);					\
888 	fputs ("\t.word	0\n", FILE);					\
889 	fputs ("\t.word	0\n", FILE);					\
890       }									\
891     else								\
892       {									\
893 	fputs ("\t.dword 0\n", FILE);					\
894 	fputs ("\t.dword 0\n", FILE);					\
895 	fputs ("\t.dword 0\n", FILE);					\
896 	fputs ("\t.dword 0\n", FILE);					\
897 	fputs ("\tmfia	%r31\n", FILE);					\
898 	fputs ("\tldd	24(%r31),%r1\n", FILE);				\
899 	fputs ("\tldd	24(%r1),%r27\n", FILE);				\
900 	fputs ("\tldd	16(%r1),%r1\n", FILE);				\
901 	fputs ("\tbve	(%r1)\n", FILE);				\
902 	fputs ("\tldd	32(%r31),%r31\n", FILE);			\
903 	fputs ("\t.dword 0  ; fptr\n", FILE);				\
904 	fputs ("\t.dword 0  ; static link\n", FILE);			\
905       }									\
906   }
907 
908 /* Length in units of the trampoline for entering a nested function.  */
909 
910 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
911 
912 /* Length in units of the trampoline instruction code.  */
913 
914 #define TRAMPOLINE_CODE_SIZE (TARGET_64BIT ? 24 : (TARGET_PA_20 ? 32 : 40))
915 
916 /* Minimum length of a cache line.  A length of 16 will work on all
917    PA-RISC processors.  All PA 1.1 processors have a cache line of
918    32 bytes.  Most but not all PA 2.0 processors have a cache line
919    of 64 bytes.  As cache flushes are expensive and we don't support
920    PA 1.0, we use a minimum length of 32.  */
921 
922 #define MIN_CACHELINE_SIZE 32
923 
924 /* Emit RTL insns to initialize the variable parts of a trampoline.
925    FNADDR is an RTX for the address of the function's pure code.
926    CXT is an RTX for the static chain value for the function.
927 
928    Move the function address to the trampoline template at offset 36.
929    Move the static chain value to trampoline template at offset 40.
930    Move the trampoline address to trampoline template at offset 44.
931    Move r19 to trampoline template at offset 48.  The latter two
932    words create a plabel for the indirect call to the trampoline.
933 
934    A similar sequence is used for the 64-bit port but the plabel is
935    at the beginning of the trampoline.
936 
937    Finally, the cache entries for the trampoline code are flushed.
938    This is necessary to ensure that the trampoline instruction sequence
939    is written to memory prior to any attempts at prefetching the code
940    sequence.  */
941 
942 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) 			\
943 {									\
944   rtx start_addr = gen_reg_rtx (Pmode);					\
945   rtx end_addr = gen_reg_rtx (Pmode);					\
946   rtx line_length = gen_reg_rtx (Pmode);				\
947   rtx tmp;								\
948 									\
949   if (!TARGET_64BIT)							\
950     {									\
951       tmp = memory_address (Pmode, plus_constant ((TRAMP), 36));	\
952       emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR));		\
953       tmp = memory_address (Pmode, plus_constant ((TRAMP), 40));	\
954       emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT));			\
955 									\
956       /* Create a fat pointer for the trampoline.  */			\
957       tmp = memory_address (Pmode, plus_constant ((TRAMP), 44));	\
958       emit_move_insn (gen_rtx_MEM (Pmode, tmp), (TRAMP));		\
959       tmp = memory_address (Pmode, plus_constant ((TRAMP), 48));	\
960       emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
961 		      gen_rtx_REG (Pmode, 19));				\
962 									\
963       /* fdc and fic only use registers for the address to flush,	\
964 	 they do not accept integer displacements.  We align the	\
965 	 start and end addresses to the beginning of their respective	\
966 	 cache lines to minimize the number of lines flushed.  */	\
967       tmp = force_reg (Pmode, (TRAMP));					\
968       emit_insn (gen_andsi3 (start_addr, tmp,				\
969 			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
970       tmp = force_reg (Pmode,						\
971 		       plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1));	\
972       emit_insn (gen_andsi3 (end_addr, tmp,				\
973 			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
974       emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE));	\
975       emit_insn (gen_dcacheflush (start_addr, end_addr, line_length));	\
976       emit_insn (gen_icacheflush (start_addr, end_addr, line_length,	\
977 				  gen_reg_rtx (Pmode),			\
978 				  gen_reg_rtx (Pmode)));		\
979     }									\
980   else									\
981     {									\
982       tmp = memory_address (Pmode, plus_constant ((TRAMP), 56));	\
983       emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR));		\
984       tmp = memory_address (Pmode, plus_constant ((TRAMP), 64));	\
985       emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT));			\
986 									\
987       /* Create a fat pointer for the trampoline.  */			\
988       tmp = memory_address (Pmode, plus_constant ((TRAMP), 16));	\
989       emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
990 		      force_reg (Pmode, plus_constant ((TRAMP), 32)));	\
991       tmp = memory_address (Pmode, plus_constant ((TRAMP), 24));	\
992       emit_move_insn (gen_rtx_MEM (Pmode, tmp),				\
993 		      gen_rtx_REG (Pmode, 27));				\
994 									\
995       /* fdc and fic only use registers for the address to flush,	\
996 	 they do not accept integer displacements.  We align the	\
997 	 start and end addresses to the beginning of their respective	\
998 	 cache lines to minimize the number of lines flushed.  */	\
999       tmp = force_reg (Pmode, plus_constant ((TRAMP), 32));		\
1000       emit_insn (gen_anddi3 (start_addr, tmp,				\
1001 			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1002       tmp = force_reg (Pmode,						\
1003 		       plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1));	\
1004       emit_insn (gen_anddi3 (end_addr, tmp,				\
1005 			     GEN_INT (-MIN_CACHELINE_SIZE)));		\
1006       emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE));	\
1007       emit_insn (gen_dcacheflush (start_addr, end_addr, line_length));	\
1008       emit_insn (gen_icacheflush (start_addr, end_addr, line_length,	\
1009 				  gen_reg_rtx (Pmode),			\
1010 				  gen_reg_rtx (Pmode)));		\
1011     }									\
1012 }
1013 
1014 /* Perform any machine-specific adjustment in the address of the trampoline.
1015    ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1016    Adjust the trampoline address to point to the plabel at offset 44.  */
1017 
1018 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1019   if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1020 
1021 /* Implement `va_start' for varargs and stdarg.  */
1022 
1023 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1024   hppa_va_start (valist, nextarg)
1025 
1026 /* Addressing modes, and classification of registers for them.
1027 
1028    Using autoincrement addressing modes on PA8000 class machines is
1029    not profitable.  */
1030 
1031 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1032 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
1033 
1034 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1035 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
1036 
1037 /* Macros to check register numbers against specific register classes.  */
1038 
1039 /* The following macros assume that X is a hard or pseudo reg number.
1040    They give nonzero only if X is a hard reg of the suitable class
1041    or a pseudo reg currently allocated to a suitable hard reg.
1042    Since they use reg_renumber, they are safe only once reg_renumber
1043    has been allocated, which happens in local-alloc.c.  */
1044 
1045 #define REGNO_OK_FOR_INDEX_P(X) \
1046   ((X) && ((X) < 32							\
1047    || (X >= FIRST_PSEUDO_REGISTER					\
1048        && reg_renumber							\
1049        && (unsigned) reg_renumber[X] < 32)))
1050 #define REGNO_OK_FOR_BASE_P(X) \
1051   ((X) && ((X) < 32							\
1052    || (X >= FIRST_PSEUDO_REGISTER					\
1053        && reg_renumber							\
1054        && (unsigned) reg_renumber[X] < 32)))
1055 #define REGNO_OK_FOR_FP_P(X) \
1056   (FP_REGNO_P (X)							\
1057    || (X >= FIRST_PSEUDO_REGISTER					\
1058        && reg_renumber							\
1059        && FP_REGNO_P (reg_renumber[X])))
1060 
1061 /* Now macros that check whether X is a register and also,
1062    strictly, whether it is in a specified class.
1063 
1064    These macros are specific to the HP-PA, and may be used only
1065    in code for printing assembler insns and in conditions for
1066    define_optimization.  */
1067 
1068 /* 1 if X is an fp register.  */
1069 
1070 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1071 
1072 /* Maximum number of registers that can appear in a valid memory address.  */
1073 
1074 #define MAX_REGS_PER_ADDRESS 2
1075 
1076 /* Non-TLS symbolic references.  */
1077 #define PA_SYMBOL_REF_TLS_P(RTX) \
1078   (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
1079 
1080 /* Recognize any constant value that is a valid address except
1081    for symbolic addresses.  We get better CSE by rejecting them
1082    here and allowing hppa_legitimize_address to break them up.  We
1083    use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE.  */
1084 
1085 #define CONSTANT_ADDRESS_P(X) \
1086   ((GET_CODE (X) == LABEL_REF 						\
1087    || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X))		\
1088    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1089    || GET_CODE (X) == HIGH) 						\
1090    && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1091 
1092 /* A C expression that is nonzero if we are using the new HP assembler.  */
1093 
1094 #ifndef NEW_HP_ASSEMBLER
1095 #define NEW_HP_ASSEMBLER 0
1096 #endif
1097 
1098 /* The macros below define the immediate range for CONST_INTS on
1099    the 64-bit port.  Constants in this range can be loaded in three
1100    instructions using a ldil/ldo/depdi sequence.  Constants outside
1101    this range are forced to the constant pool prior to reload.  */
1102 
1103 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
1104 #define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
1105 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
1106   ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
1107 
1108 /* A C expression that is nonzero if X is a legitimate constant for an
1109    immediate operand.
1110 
1111    We include all constant integers and constant doubles, but not
1112    floating-point, except for floating-point zero.  We reject LABEL_REFs
1113    if we're not using gas or the new HP assembler.
1114 
1115    In 64-bit mode, we reject CONST_DOUBLES.  We also reject CONST_INTS
1116    that need more than three instructions to load prior to reload.  This
1117    limit is somewhat arbitrary.  It takes three instructions to load a
1118    CONST_INT from memory but two are memory accesses.  It may be better
1119    to increase the allowed range for CONST_INTS.  We may also be able
1120    to handle CONST_DOUBLES.  */
1121 
1122 #define LEGITIMATE_CONSTANT_P(X)				\
1123   ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT			\
1124     || (X) == CONST0_RTX (GET_MODE (X)))			\
1125    && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF)	\
1126    && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE)		\
1127    && !(TARGET_64BIT && GET_CODE (X) == CONST_INT		\
1128 	&& !(HOST_BITS_PER_WIDE_INT <= 32			\
1129 	     || (reload_in_progress || reload_completed)	\
1130 	     || LEGITIMATE_64BIT_CONST_INT_P (INTVAL (X))	\
1131 	     || cint_ok_for_move (INTVAL (X))))			\
1132    && !function_label_operand (X, VOIDmode))
1133 
1134 /* Target flags set on a symbol_ref.  */
1135 
1136 /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output.  */
1137 #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
1138 #define SYMBOL_REF_REFERENCED_P(RTX) \
1139   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
1140 
1141 /* Subroutines for EXTRA_CONSTRAINT.
1142 
1143    Return 1 iff OP is a pseudo which did not get a hard register and
1144    we are running the reload pass.  */
1145 #define IS_RELOADING_PSEUDO_P(OP) \
1146   ((reload_in_progress					\
1147     && GET_CODE (OP) == REG				\
1148     && REGNO (OP) >= FIRST_PSEUDO_REGISTER		\
1149     && reg_renumber [REGNO (OP)] < 0))
1150 
1151 /* Return 1 iff OP is a scaled or unscaled index address.  */
1152 #define IS_INDEX_ADDR_P(OP) \
1153   (GET_CODE (OP) == PLUS				\
1154    && GET_MODE (OP) == Pmode				\
1155    && (GET_CODE (XEXP (OP, 0)) == MULT			\
1156        || GET_CODE (XEXP (OP, 1)) == MULT		\
1157        || (REG_P (XEXP (OP, 0))				\
1158 	   && REG_P (XEXP (OP, 1)))))
1159 
1160 /* Return 1 iff OP is a LO_SUM DLT address.  */
1161 #define IS_LO_SUM_DLT_ADDR_P(OP) \
1162   (GET_CODE (OP) == LO_SUM				\
1163    && GET_MODE (OP) == Pmode				\
1164    && REG_P (XEXP (OP, 0))				\
1165    && REG_OK_FOR_BASE_P (XEXP (OP, 0))			\
1166    && GET_CODE (XEXP (OP, 1)) == UNSPEC)
1167 
1168 /* Optional extra constraints for this machine. Borrowed from sparc.h.
1169 
1170    `A' is a LO_SUM DLT memory operand.
1171 
1172    `Q' is any memory operand that isn't a symbolic, indexed or lo_sum
1173        memory operand.  Note that an unassigned pseudo register is such a
1174        memory operand.  Needed because reload will generate these things
1175        and then not re-recognize the insn, causing constrain_operands to
1176        fail.
1177 
1178    `R' is a scaled/unscaled indexed memory operand.
1179 
1180    `S' is the constant 31.
1181 
1182    `T' is for floating-point loads and stores.
1183 
1184    `U' is the constant 63.
1185 
1186    `W' is a register indirect memory operand.  We could allow short
1187        displacements but GO_IF_LEGITIMATE_ADDRESS can't tell when a
1188        long displacement is valid.  This is only used for prefetch
1189        instructions with the `sl' completer.  */
1190 
1191 #define EXTRA_CONSTRAINT(OP, C) \
1192   ((C) == 'Q' ?								\
1193    (IS_RELOADING_PSEUDO_P (OP)						\
1194     || (GET_CODE (OP) == MEM						\
1195 	&& (reload_in_progress						\
1196 	    || memory_address_p (GET_MODE (OP), XEXP (OP, 0)))		\
1197 	&& !symbolic_memory_operand (OP, VOIDmode)			\
1198 	&& !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0))				\
1199 	&& !IS_INDEX_ADDR_P (XEXP (OP, 0))))				\
1200    : ((C) == 'W' ?							\
1201       (GET_CODE (OP) == MEM						\
1202        && REG_P (XEXP (OP, 0))						\
1203        && REG_OK_FOR_BASE_P (XEXP (OP, 0)))				\
1204    : ((C) == 'A' ?							\
1205       (GET_CODE (OP) == MEM						\
1206        && IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0)))				\
1207    : ((C) == 'R' ?							\
1208       (GET_CODE (OP) == MEM						\
1209        && IS_INDEX_ADDR_P (XEXP (OP, 0)))				\
1210    : ((C) == 'T' ? 							\
1211       (GET_CODE (OP) == MEM						\
1212        && !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0))				\
1213        && !IS_INDEX_ADDR_P (XEXP (OP, 0))				\
1214        /* Floating-point loads and stores are used to load		\
1215 	  integer values as well as floating-point values.		\
1216 	  They don't have the same set of REG+D address modes		\
1217 	  as integer loads and stores.  PA 1.x supports only		\
1218 	  short displacements.  PA 2.0 supports long displacements	\
1219 	  but the base register needs to be aligned.			\
1220 									\
1221 	  The checks in GO_IF_LEGITIMATE_ADDRESS for SFmode and		\
1222 	  DFmode test the validity of an address for use in a		\
1223 	  floating point load or store.  So, we use SFmode/DFmode	\
1224 	  to see if the address is valid for a floating-point		\
1225 	  load/store operation.  */					\
1226        && memory_address_p ((GET_MODE_SIZE (GET_MODE (OP)) == 4		\
1227 			     ? SFmode					\
1228 			     : DFmode),					\
1229 			    XEXP (OP, 0)))				\
1230    : ((C) == 'S' ?							\
1231       (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31)			\
1232    : ((C) == 'U' ?							\
1233       (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63) : 0)))))))
1234 
1235 
1236 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1237    and check its validity for a certain class.
1238    We have two alternate definitions for each of them.
1239    The usual definition accepts all pseudo regs; the other rejects
1240    them unless they have been allocated suitable hard regs.
1241    The symbol REG_OK_STRICT causes the latter definition to be used.
1242 
1243    Most source files want to accept pseudo regs in the hope that
1244    they will get allocated to the class that the insn wants them to be in.
1245    Source files for reload pass need to be strict.
1246    After reload, it makes no difference, since pseudo regs have
1247    been eliminated by then.  */
1248 
1249 #ifndef REG_OK_STRICT
1250 
1251 /* Nonzero if X is a hard reg that can be used as an index
1252    or if it is a pseudo reg.  */
1253 #define REG_OK_FOR_INDEX_P(X) \
1254 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1255 /* Nonzero if X is a hard reg that can be used as a base reg
1256    or if it is a pseudo reg.  */
1257 #define REG_OK_FOR_BASE_P(X) \
1258 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1259 
1260 #else
1261 
1262 /* Nonzero if X is a hard reg that can be used as an index.  */
1263 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1264 /* Nonzero if X is a hard reg that can be used as a base reg.  */
1265 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1266 
1267 #endif
1268 
1269 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1270    valid memory address for an instruction.  The MODE argument is the
1271    machine mode for the MEM expression that wants to use this address.
1272 
1273    On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
1274    REG+REG, and REG+(REG*SCALE).  The indexed address forms are only
1275    available with floating point loads and stores, and integer loads.
1276    We get better code by allowing indexed addresses in the initial
1277    RTL generation.
1278 
1279    The acceptance of indexed addresses as legitimate implies that we
1280    must provide patterns for doing indexed integer stores, or the move
1281    expanders must force the address of an indexed store to a register.
1282    We have adopted the latter approach.
1283 
1284    Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
1285    the base register is a valid pointer for indexed instructions.
1286    On targets that have non-equivalent space registers, we have to
1287    know at the time of assembler output which register in a REG+REG
1288    pair is the base register.  The REG_POINTER flag is sometimes lost
1289    in reload and the following passes, so it can't be relied on during
1290    code generation.  Thus, we either have to canonicalize the order
1291    of the registers in REG+REG indexed addresses, or treat REG+REG
1292    addresses separately and provide patterns for both permutations.
1293 
1294    The latter approach requires several hundred additional lines of
1295    code in pa.md.  The downside to canonicalizing is that a PLUS
1296    in the wrong order can't combine to form to make a scaled indexed
1297    memory operand.  As we won't need to canonicalize the operands if
1298    the REG_POINTER lossage can be fixed, it seems better canonicalize.
1299 
1300    We initially break out scaled indexed addresses in canonical order
1301    in emit_move_sequence.  LEGITIMIZE_ADDRESS also canonicalizes
1302    scaled indexed addresses during RTL generation.  However, fold_rtx
1303    has its own opinion on how the operands of a PLUS should be ordered.
1304    If one of the operands is equivalent to a constant, it will make
1305    that operand the second operand.  As the base register is likely to
1306    be equivalent to a SYMBOL_REF, we have made it the second operand.
1307 
1308    GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
1309    operands are in the order INDEX+BASE on targets with non-equivalent
1310    space registers, and in any order on targets with equivalent space
1311    registers.  It accepts both MULT+BASE and BASE+MULT for scaled indexing.
1312 
1313    We treat a SYMBOL_REF as legitimate if it is part of the current
1314    function's constant-pool, because such addresses can actually be
1315    output as REG+SMALLINT.
1316 
1317    Note we only allow 5 bit immediates for access to a constant address;
1318    doing so avoids losing for loading/storing a FP register at an address
1319    which will not fit in 5 bits.  */
1320 
1321 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1322 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1323 
1324 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1325 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1326 
1327 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1328 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1329 
1330 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1331 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1332 
1333 #if HOST_BITS_PER_WIDE_INT > 32
1334 #define VAL_32_BITS_P(X) \
1335   ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31)    \
1336    < (unsigned HOST_WIDE_INT) 2 << 31)
1337 #else
1338 #define VAL_32_BITS_P(X) 1
1339 #endif
1340 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
1341 
1342 /* These are the modes that we allow for scaled indexing.  */
1343 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
1344   ((TARGET_64BIT && (MODE) == DImode)					\
1345    || (MODE) == SImode							\
1346    || (MODE) == HImode							\
1347    || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1348 
1349 /* These are the modes that we allow for unscaled indexing.  */
1350 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
1351   ((TARGET_64BIT && (MODE) == DImode)					\
1352    || (MODE) == SImode							\
1353    || (MODE) == HImode							\
1354    || (MODE) == QImode							\
1355    || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1356 
1357 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1358 {									\
1359   if ((REG_P (X) && REG_OK_FOR_BASE_P (X))				\
1360       || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC		\
1361 	   || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC)	\
1362 	  && REG_P (XEXP (X, 0))					\
1363 	  && REG_OK_FOR_BASE_P (XEXP (X, 0))))				\
1364     goto ADDR;								\
1365   else if (GET_CODE (X) == PLUS)					\
1366     {									\
1367       rtx base = 0, index = 0;						\
1368       if (REG_P (XEXP (X, 1))						\
1369 	  && REG_OK_FOR_BASE_P (XEXP (X, 1)))				\
1370 	base = XEXP (X, 1), index = XEXP (X, 0);			\
1371       else if (REG_P (XEXP (X, 0))					\
1372 	       && REG_OK_FOR_BASE_P (XEXP (X, 0)))			\
1373 	base = XEXP (X, 0), index = XEXP (X, 1);			\
1374       if (base								\
1375 	  && GET_CODE (index) == CONST_INT				\
1376 	  && ((INT_14_BITS (index)					\
1377 	       && (((MODE) != DImode					\
1378 		    && (MODE) != SFmode					\
1379 		    && (MODE) != DFmode)				\
1380 		   /* The base register for DImode loads and stores	\
1381 		      with long displacements must be aligned because	\
1382 		      the lower three bits in the displacement are	\
1383 		      assumed to be zero.  */				\
1384 		   || ((MODE) == DImode					\
1385 		       && (!TARGET_64BIT				\
1386 			   || (INTVAL (index) % 8) == 0))		\
1387 		   /* Similarly, the base register for SFmode/DFmode	\
1388 		      loads and stores with long displacements must	\
1389 		      be aligned.					\
1390 									\
1391 		      FIXME: the ELF32 linker clobbers the LSB of	\
1392 		      the FP register number in PA 2.0 floating-point	\
1393 		      insns with long displacements.  This is because	\
1394 		      R_PARISC_DPREL14WR and other relocations like	\
1395 		      it are not supported.  For now, we reject long	\
1396 		      displacements on this target.  */			\
1397 		   || (((MODE) == SFmode || (MODE) == DFmode)		\
1398 		       && (TARGET_SOFT_FLOAT				\
1399 			   || (TARGET_PA_20				\
1400 			       && !TARGET_ELF32				\
1401 			       && (INTVAL (index)			\
1402 				   % GET_MODE_SIZE (MODE)) == 0)))))	\
1403 	       || INT_5_BITS (index)))					\
1404 	goto ADDR;							\
1405       if (!TARGET_DISABLE_INDEXING					\
1406 	  /* Only accept the "canonical" INDEX+BASE operand order	\
1407 	     on targets with non-equivalent space registers.  */	\
1408 	  && (TARGET_NO_SPACE_REGS					\
1409 	      ? (base && REG_P (index))					\
1410 	      : (base == XEXP (X, 1) && REG_P (index)			\
1411 		 && (reload_completed					\
1412 		     || (reload_in_progress && HARD_REGISTER_P (base))	\
1413 		     || REG_POINTER (base))				\
1414 		 && (reload_completed					\
1415 		     || (reload_in_progress && HARD_REGISTER_P (index))	\
1416 		     || !REG_POINTER (index))))				\
1417 	  && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE)			\
1418 	  && REG_OK_FOR_INDEX_P (index)					\
1419 	  && borx_reg_operand (base, Pmode)				\
1420 	  && borx_reg_operand (index, Pmode))				\
1421 	goto ADDR;							\
1422       if (!TARGET_DISABLE_INDEXING					\
1423 	  && base							\
1424 	  && GET_CODE (index) == MULT					\
1425 	  && MODE_OK_FOR_SCALED_INDEXING_P (MODE)			\
1426 	  && REG_P (XEXP (index, 0))					\
1427 	  && GET_MODE (XEXP (index, 0)) == Pmode			\
1428 	  && REG_OK_FOR_INDEX_P (XEXP (index, 0))			\
1429 	  && GET_CODE (XEXP (index, 1)) == CONST_INT			\
1430 	  && INTVAL (XEXP (index, 1))					\
1431 	     == (HOST_WIDE_INT) GET_MODE_SIZE (MODE)			\
1432 	  && borx_reg_operand (base, Pmode))				\
1433 	goto ADDR;							\
1434     }									\
1435   else if (GET_CODE (X) == LO_SUM					\
1436 	   && GET_CODE (XEXP (X, 0)) == REG				\
1437 	   && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
1438 	   && CONSTANT_P (XEXP (X, 1))					\
1439 	   && (TARGET_SOFT_FLOAT					\
1440 	       /* We can allow symbolic LO_SUM addresses for PA2.0.  */	\
1441 	       || (TARGET_PA_20						\
1442 		   && !TARGET_ELF32					\
1443 	           && GET_CODE (XEXP (X, 1)) != CONST_INT)		\
1444 	       || ((MODE) != SFmode					\
1445 		   && (MODE) != DFmode)))				\
1446     goto ADDR;								\
1447   else if (GET_CODE (X) == LO_SUM					\
1448 	   && GET_CODE (XEXP (X, 0)) == SUBREG				\
1449 	   && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG		\
1450 	   && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))		\
1451 	   && CONSTANT_P (XEXP (X, 1))					\
1452 	   && (TARGET_SOFT_FLOAT					\
1453 	       /* We can allow symbolic LO_SUM addresses for PA2.0.  */	\
1454 	       || (TARGET_PA_20						\
1455 		   && !TARGET_ELF32					\
1456 	           && GET_CODE (XEXP (X, 1)) != CONST_INT)		\
1457 	       || ((MODE) != SFmode					\
1458 		   && (MODE) != DFmode)))				\
1459     goto ADDR;								\
1460   else if (GET_CODE (X) == LABEL_REF					\
1461 	   || (GET_CODE (X) == CONST_INT				\
1462 	       && INT_5_BITS (X)))					\
1463     goto ADDR;								\
1464   /* Needed for -fPIC */						\
1465   else if (GET_CODE (X) == LO_SUM					\
1466 	   && GET_CODE (XEXP (X, 0)) == REG             		\
1467 	   && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
1468 	   && GET_CODE (XEXP (X, 1)) == UNSPEC				\
1469 	   && (TARGET_SOFT_FLOAT					\
1470 	       || (TARGET_PA_20	&& !TARGET_ELF32)			\
1471 	       || ((MODE) != SFmode					\
1472 		   && (MODE) != DFmode)))				\
1473     goto ADDR;								\
1474 }
1475 
1476 /* Look for machine dependent ways to make the invalid address AD a
1477    valid address.
1478 
1479    For the PA, transform:
1480 
1481         memory(X + <large int>)
1482 
1483    into:
1484 
1485         if (<large int> & mask) >= 16
1486           Y = (<large int> & ~mask) + mask + 1  Round up.
1487         else
1488           Y = (<large int> & ~mask)             Round down.
1489         Z = X + Y
1490         memory (Z + (<large int> - Y));
1491 
1492    This makes reload inheritance and reload_cse work better since Z
1493    can be reused.
1494 
1495    There may be more opportunities to improve code with this hook.  */
1496 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) 	\
1497 do { 									\
1498   long offset, newoffset, mask;						\
1499   rtx new, temp = NULL_RTX;						\
1500 									\
1501   mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT				\
1502 	  ? (TARGET_PA_20 && !TARGET_ELF32 ? 0x3fff : 0x1f) : 0x3fff);	\
1503 									\
1504   if (optimize && GET_CODE (AD) == PLUS)				\
1505     temp = simplify_binary_operation (PLUS, Pmode,			\
1506 				      XEXP (AD, 0), XEXP (AD, 1));	\
1507 									\
1508   new = temp ? temp : AD;						\
1509 									\
1510   if (optimize								\
1511       && GET_CODE (new) == PLUS						\
1512       && GET_CODE (XEXP (new, 0)) == REG				\
1513       && GET_CODE (XEXP (new, 1)) == CONST_INT)				\
1514     {									\
1515       offset = INTVAL (XEXP ((new), 1));				\
1516 									\
1517       /* Choose rounding direction.  Round up if we are >= halfway.  */	\
1518       if ((offset & mask) >= ((mask + 1) / 2))				\
1519 	newoffset = (offset & ~mask) + mask + 1;			\
1520       else								\
1521 	newoffset = offset & ~mask;					\
1522 									\
1523       /* Ensure that long displacements are aligned.  */		\
1524       if (!VAL_5_BITS_P (newoffset)					\
1525 	  && GET_MODE_CLASS (MODE) == MODE_FLOAT)			\
1526 	newoffset &= ~(GET_MODE_SIZE (MODE) -1);			\
1527 									\
1528       if (newoffset != 0 && VAL_14_BITS_P (newoffset))			\
1529 	{								\
1530 	  temp = gen_rtx_PLUS (Pmode, XEXP (new, 0),			\
1531 			       GEN_INT (newoffset));			\
1532 	  AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1533 	  push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0,		\
1534 		       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,		\
1535 		       (OPNUM), (TYPE));				\
1536 	  goto WIN;							\
1537 	}								\
1538     }									\
1539 } while (0)
1540 
1541 
1542 
1543 
1544 /* Try machine-dependent ways of modifying an illegitimate address
1545    to be legitimate.  If we find one, return the new, valid address.
1546    This macro is used in only one place: `memory_address' in explow.c.
1547 
1548    OLDX is the address as it was before break_out_memory_refs was called.
1549    In some cases it is useful to look at this to decide what needs to be done.
1550 
1551    MODE and WIN are passed so that this macro can use
1552    GO_IF_LEGITIMATE_ADDRESS.
1553 
1554    It is always safe for this macro to do nothing.  It exists to recognize
1555    opportunities to optimize the output.  */
1556 
1557 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)	\
1558 { rtx orig_x = (X);				\
1559   (X) = hppa_legitimize_address (X, OLDX, MODE);	\
1560   if ((X) != orig_x && memory_address_p (MODE, X)) \
1561     goto WIN; }
1562 
1563 /* Go to LABEL if ADDR (a legitimate address expression)
1564    has an effect that depends on the machine mode it is used for.  */
1565 
1566 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)	\
1567   if (GET_CODE (ADDR) == PRE_DEC	\
1568       || GET_CODE (ADDR) == POST_DEC	\
1569       || GET_CODE (ADDR) == PRE_INC	\
1570       || GET_CODE (ADDR) == POST_INC)	\
1571     goto LABEL
1572 
1573 #define TARGET_ASM_SELECT_SECTION  pa_select_section
1574 
1575 /* Return a nonzero value if DECL has a section attribute.  */
1576 #define IN_NAMED_SECTION_P(DECL) \
1577   ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1578    && DECL_SECTION_NAME (DECL) != NULL_TREE)
1579 
1580 /* Define this macro if references to a symbol must be treated
1581    differently depending on something about the variable or
1582    function named by the symbol (such as what section it is in).
1583 
1584    The macro definition, if any, is executed immediately after the
1585    rtl for DECL or other node is created.
1586    The value of the rtl will be a `mem' whose address is a
1587    `symbol_ref'.
1588 
1589    The usual thing for this macro to do is to a flag in the
1590    `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1591    name string in the `symbol_ref' (if one bit is not enough
1592    information).
1593 
1594    On the HP-PA we use this to indicate if a symbol is in text or
1595    data space.  Also, function labels need special treatment.  */
1596 
1597 #define TEXT_SPACE_P(DECL)\
1598   (TREE_CODE (DECL) == FUNCTION_DECL					\
1599    || (TREE_CODE (DECL) == VAR_DECL					\
1600        && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL)		\
1601        && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1602        && !flag_pic)							\
1603    || CONSTANT_CLASS_P (DECL))
1604 
1605 #define FUNCTION_NAME_P(NAME)  (*(NAME) == '@')
1606 
1607 /* Specify the machine mode that this machine uses for the index in the
1608    tablejump instruction.  For small tables, an element consists of a
1609    ia-relative branch and its delay slot.  When -mbig-switch is specified,
1610    we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1611    for both 32 and 64-bit pic code.  */
1612 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1613 
1614 /* Jump tables must be 32-bit aligned, no matter the size of the element.  */
1615 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1616 
1617 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1618 #define DEFAULT_SIGNED_CHAR 1
1619 
1620 /* Max number of bytes we can move from memory to memory
1621    in one reasonably fast instruction.  */
1622 #define MOVE_MAX 8
1623 
1624 /* Higher than the default as we prefer to use simple move insns
1625    (better scheduling and delay slot filling) and because our
1626    built-in block move is really a 2X unrolled loop.
1627 
1628    Believe it or not, this has to be big enough to allow for copying all
1629    arguments passed in registers to avoid infinite recursion during argument
1630    setup for a function call.  Why?  Consider how we copy the stack slots
1631    reserved for parameters when they may be trashed by a call.  */
1632 #define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1633 
1634 /* Define if operations between registers always perform the operation
1635    on the full register even if a narrower mode is specified.  */
1636 #define WORD_REGISTER_OPERATIONS
1637 
1638 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1639    will either zero-extend or sign-extend.  The value of this macro should
1640    be the code that says which one of the two operations is implicitly
1641    done, UNKNOWN if none.  */
1642 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1643 
1644 /* Nonzero if access to memory by bytes is slow and undesirable.  */
1645 #define SLOW_BYTE_ACCESS 1
1646 
1647 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1648    is done just by pretending it is already truncated.  */
1649 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1650 
1651 /* Specify the machine mode that pointers have.
1652    After generation of rtl, the compiler makes no further distinction
1653    between pointers and any other objects of this machine mode.  */
1654 #define Pmode word_mode
1655 
1656 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1657    return the mode to be used for the comparison.  For floating-point, CCFPmode
1658    should be used.  CC_NOOVmode should be used when the first operand is a
1659    PLUS, MINUS, or NEG.  CCmode should be used when no special processing is
1660    needed.  */
1661 #define SELECT_CC_MODE(OP,X,Y) \
1662   (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode)    \
1663 
1664 /* A function address in a call instruction
1665    is a byte address (for indexing purposes)
1666    so give the MEM rtx a byte's mode.  */
1667 #define FUNCTION_MODE SImode
1668 
1669 /* Define this if addresses of constant functions
1670    shouldn't be put through pseudo regs where they can be cse'd.
1671    Desirable on machines where ordinary constants are expensive
1672    but a CALL with constant address is cheap.  */
1673 #define NO_FUNCTION_CSE
1674 
1675 /* Define this to be nonzero if shift instructions ignore all but the low-order
1676    few bits.  */
1677 #define SHIFT_COUNT_TRUNCATED 1
1678 
1679 /* Compute extra cost of moving data between one register class
1680    and another.
1681 
1682    Make moves from SAR so expensive they should never happen.  We used to
1683    have 0xffff here, but that generates overflow in rare cases.
1684 
1685    Copies involving a FP register and a non-FP register are relatively
1686    expensive because they must go through memory.
1687 
1688    Other copies are reasonably cheap.  */
1689 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1690  (CLASS1 == SHIFT_REGS ? 0x100					\
1691   : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16	\
1692   : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16	\
1693   : 2)
1694 
1695 /* Adjust the cost of branches.  */
1696 #define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1697 
1698 /* Handling the special cases is going to get too complicated for a macro,
1699    just call `pa_adjust_insn_length' to do the real work.  */
1700 #define ADJUST_INSN_LENGTH(INSN, LENGTH)	\
1701   LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1702 
1703 /* Millicode insns are actually function calls with some special
1704    constraints on arguments and register usage.
1705 
1706    Millicode calls always expect their arguments in the integer argument
1707    registers, and always return their result in %r29 (ret1).  They
1708    are expected to clobber their arguments, %r1, %r29, and the return
1709    pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1710 
1711    This macro tells reorg that the references to arguments and
1712    millicode calls do not appear to happen until after the millicode call.
1713    This allows reorg to put insns which set the argument registers into the
1714    delay slot of the millicode call -- thus they act more like traditional
1715    CALL_INSNs.
1716 
1717    Note we cannot consider side effects of the insn to be delayed because
1718    the branch and link insn will clobber the return pointer.  If we happened
1719    to use the return pointer in the delay slot of the call, then we lose.
1720 
1721    get_attr_type will try to recognize the given insn, so make sure to
1722    filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1723    in particular.  */
1724 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1725 
1726 
1727 /* Control the assembler format that we output.  */
1728 
1729 /* A C string constant describing how to begin a comment in the target
1730    assembler language.  The compiler assumes that the comment will end at
1731    the end of the line.  */
1732 
1733 #define ASM_COMMENT_START ";"
1734 
1735 /* Output to assembler file text saying following lines
1736    may contain character constants, extra white space, comments, etc.  */
1737 
1738 #define ASM_APP_ON ""
1739 
1740 /* Output to assembler file text saying following lines
1741    no longer contain unusual constructs.  */
1742 
1743 #define ASM_APP_OFF ""
1744 
1745 /* This is how to output the definition of a user-level label named NAME,
1746    such as the label on a static function or variable NAME.  */
1747 
1748 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1749   do {							\
1750     assemble_name ((FILE), (NAME));			\
1751     if (TARGET_GAS)					\
1752       fputs (":\n", (FILE));				\
1753     else						\
1754       fputc ('\n', (FILE));				\
1755   } while (0)
1756 
1757 /* This is how to output a reference to a user-level label named NAME.
1758    `assemble_name' uses this.  */
1759 
1760 #define ASM_OUTPUT_LABELREF(FILE,NAME)	\
1761   do {					\
1762     const char *xname = (NAME);		\
1763     if (FUNCTION_NAME_P (NAME))		\
1764       xname += 1;			\
1765     if (xname[0] == '*')		\
1766       xname += 1;			\
1767     else				\
1768       fputs (user_label_prefix, FILE);	\
1769     fputs (xname, FILE);		\
1770   } while (0)
1771 
1772 /* This how we output the symbol_ref X.  */
1773 
1774 #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1775   do {                                                 \
1776     SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED;    \
1777     assemble_name (FILE, XSTR (X, 0));                 \
1778   } while (0)
1779 
1780 /* This is how to store into the string LABEL
1781    the symbol_ref name of an internal numbered label where
1782    PREFIX is the class of label and NUM is the number within the class.
1783    This is suitable for output with `assemble_name'.  */
1784 
1785 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1786   sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1787 
1788 /* Output the definition of a compiler-generated label named NAME.  */
1789 
1790 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
1791   do {							\
1792     assemble_name_raw ((FILE), (NAME));			\
1793     if (TARGET_GAS)					\
1794       fputs (":\n", (FILE));				\
1795     else						\
1796       fputc ('\n', (FILE));				\
1797   } while (0)
1798 
1799 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1800 
1801 #define ASM_OUTPUT_ASCII(FILE, P, SIZE)  \
1802   output_ascii ((FILE), (P), (SIZE))
1803 
1804 /* Jump tables are always placed in the text section.  Technically, it
1805    is possible to put them in the readonly data section when -mbig-switch
1806    is specified.  This has the benefit of getting the table out of .text
1807    and reducing branch lengths as a result.  The downside is that an
1808    additional insn (addil) is needed to access the table when generating
1809    PIC code.  The address difference table also has to use 32-bit
1810    pc-relative relocations.  Currently, GAS does not support these
1811    relocations, although it is easily modified to do this operation.
1812    The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1813    when using ELF GAS.  A simple difference can be used when using
1814    SOM GAS or the HP assembler.  The final downside is GDB complains
1815    about the nesting of the label for the table when debugging.  */
1816 
1817 #define JUMP_TABLES_IN_TEXT_SECTION 1
1818 
1819 /* This is how to output an element of a case-vector that is absolute.  */
1820 
1821 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1822   if (TARGET_BIG_SWITCH)						\
1823     fprintf (FILE, "\t.word L$%04d\n", VALUE);				\
1824   else									\
1825     fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1826 
1827 /* This is how to output an element of a case-vector that is relative.
1828    Since we always place jump tables in the text section, the difference
1829    is absolute and requires no relocation.  */
1830 
1831 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
1832   if (TARGET_BIG_SWITCH)						\
1833     fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL);		\
1834   else									\
1835     fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1836 
1837 /* This is how to output an assembler line that says to advance the
1838    location counter to a multiple of 2**LOG bytes.  */
1839 
1840 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1841     fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1842 
1843 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1844   fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n",		\
1845 	   (unsigned HOST_WIDE_INT)(SIZE))
1846 
1847 /* This says how to output an assembler line to define an uninitialized
1848    global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1849    This macro exists to properly support languages like C++ which do not
1850    have common data.  */
1851 
1852 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)		\
1853   pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1854 
1855 /* This says how to output an assembler line to define a global common symbol
1856    with size SIZE (in bytes) and alignment ALIGN (in bits).  */
1857 
1858 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN)  		\
1859   pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1860 
1861 /* This says how to output an assembler line to define a local common symbol
1862    with size SIZE (in bytes) and alignment ALIGN (in bits).  This macro
1863    controls how the assembler definitions of uninitialized static variables
1864    are output.  */
1865 
1866 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN)		\
1867   pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1868 
1869 
1870 #define ASM_PN_FORMAT "%s___%lu"
1871 
1872 /* All HP assemblers use "!" to separate logical lines.  */
1873 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
1874 
1875 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1876   ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1877 
1878 /* Print operand X (an rtx) in assembler syntax to file FILE.
1879    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1880    For `%' followed by punctuation, CODE is the punctuation and X is null.
1881 
1882    On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1883    and an immediate zero should be represented as `r0'.
1884 
1885    Several % codes are defined:
1886    O an operation
1887    C compare conditions
1888    N extract conditions
1889    M modifier to handle preincrement addressing for memory refs.
1890    F modifier to handle preincrement addressing for fp memory refs */
1891 
1892 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1893 
1894 
1895 /* Print a memory address as an operand to reference that memory location.  */
1896 
1897 #define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
1898 { rtx addr = ADDR;							\
1899   switch (GET_CODE (addr))						\
1900     {									\
1901     case REG:								\
1902       fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]);		\
1903       break;								\
1904     case PLUS:								\
1905       gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT);		\
1906       fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)),		\
1907 	       reg_names [REGNO (XEXP (addr, 0))]);			\
1908       break;								\
1909     case LO_SUM:							\
1910       if (!symbolic_operand (XEXP (addr, 1), VOIDmode))			\
1911 	fputs ("R'", FILE);						\
1912       else if (flag_pic == 0)						\
1913 	fputs ("RR'", FILE);						\
1914       else								\
1915 	fputs ("RT'", FILE);						\
1916       output_global_address (FILE, XEXP (addr, 1), 0);			\
1917       fputs ("(", FILE);						\
1918       output_operand (XEXP (addr, 0), 0);				\
1919       fputs (")", FILE);						\
1920       break;								\
1921     case CONST_INT:							\
1922       fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr));	\
1923       break;								\
1924     default:								\
1925       output_addr_const (FILE, addr);					\
1926     }}
1927 
1928 
1929 /* Find the return address associated with the frame given by
1930    FRAMEADDR.  */
1931 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR)				 \
1932   (return_addr_rtx (COUNT, FRAMEADDR))
1933 
1934 /* Used to mask out junk bits from the return address, such as
1935    processor state, interrupt status, condition codes and the like.  */
1936 #define MASK_RETURN_ADDR						\
1937   /* The privilege level is in the two low order bits, mask em out	\
1938      of the return address.  */						\
1939   (GEN_INT (-4))
1940 
1941 /* The number of Pmode words for the setjmp buffer.  */
1942 #define JMP_BUF_SIZE 50
1943 
1944 /* We need a libcall to canonicalize function pointers on TARGET_ELF32.  */
1945 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1946   "__canonicalize_funcptr_for_compare"
1947 
1948 #ifdef HAVE_AS_TLS
1949 #undef TARGET_HAVE_TLS
1950 #define TARGET_HAVE_TLS true
1951 #endif
1952