1 /* Definitions of target machine for GNU compiler, for the HP Spectrum. 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 3 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. 4 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support 5 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for 6 Software Science at the University of Utah. 7 8 This file is part of GCC. 9 10 GCC is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2, or (at your option) 13 any later version. 14 15 GCC is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with GCC; see the file COPYING. If not, write to 22 the Free Software Foundation, 51 Franklin Street, Fifth Floor, 23 Boston, MA 02110-1301, USA. */ 24 25 enum cmp_type /* comparison type */ 26 { 27 CMP_SI, /* compare integers */ 28 CMP_SF, /* compare single precision floats */ 29 CMP_DF, /* compare double precision floats */ 30 CMP_MAX /* max comparison type */ 31 }; 32 33 /* For long call handling. */ 34 extern unsigned long total_code_bytes; 35 36 /* Which processor to schedule for. */ 37 38 enum processor_type 39 { 40 PROCESSOR_700, 41 PROCESSOR_7100, 42 PROCESSOR_7100LC, 43 PROCESSOR_7200, 44 PROCESSOR_7300, 45 PROCESSOR_8000 46 }; 47 48 /* For -mschedule= option. */ 49 extern enum processor_type pa_cpu; 50 51 /* For -munix= option. */ 52 extern int flag_pa_unix; 53 54 #define pa_cpu_attr ((enum attr_cpu)pa_cpu) 55 56 /* Print subsidiary information on the compiler version in use. */ 57 58 #define TARGET_VERSION fputs (" (hppa)", stderr); 59 60 #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20) 61 62 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */ 63 #ifndef TARGET_64BIT 64 #define TARGET_64BIT 0 65 #endif 66 67 /* Generate code for ELF32 ABI. */ 68 #ifndef TARGET_ELF32 69 #define TARGET_ELF32 0 70 #endif 71 72 /* Generate code for SOM 32bit ABI. */ 73 #ifndef TARGET_SOM 74 #define TARGET_SOM 0 75 #endif 76 77 /* HP-UX UNIX features. */ 78 #ifndef TARGET_HPUX 79 #define TARGET_HPUX 0 80 #endif 81 82 /* HP-UX 10.10 UNIX 95 features. */ 83 #ifndef TARGET_HPUX_10_10 84 #define TARGET_HPUX_10_10 0 85 #endif 86 87 /* HP-UX 11i multibyte and UNIX 98 extensions. */ 88 #ifndef TARGET_HPUX_11_11 89 #define TARGET_HPUX_11_11 0 90 #endif 91 92 /* The following three defines are potential target switches. The current 93 defines are optimal given the current capabilities of GAS and GNU ld. */ 94 95 /* Define to a C expression evaluating to true to use long absolute calls. 96 Currently, only the HP assembler and SOM linker support long absolute 97 calls. They are used only in non-pic code. */ 98 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS) 99 100 /* Define to a C expression evaluating to true to use long pic symbol 101 difference calls. This is a call variant similar to the long pic 102 pc-relative call. Long pic symbol difference calls are only used with 103 the HP SOM linker. Currently, only the HP assembler supports these 104 calls. GAS doesn't allow an arbitrary difference of two symbols. */ 105 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS) 106 107 /* Define to a C expression evaluating to true to use long pic 108 pc-relative calls. Long pic pc-relative calls are only used with 109 GAS. Currently, they are usable for calls within a module but 110 not for external calls. */ 111 #define TARGET_LONG_PIC_PCREL_CALL 0 112 113 /* Define to a C expression evaluating to true to use SOM secondary 114 definition symbols for weak support. Linker support for secondary 115 definition symbols is buggy prior to HP-UX 11.X. */ 116 #define TARGET_SOM_SDEF 0 117 118 /* Define to a C expression evaluating to true to save the entry value 119 of SP in the current frame marker. This is normally unnecessary. 120 However, the HP-UX unwind library looks at the SAVE_SP callinfo flag. 121 HP compilers don't use this flag but it is supported by the assembler. 122 We set this flag to indicate that register %r3 has been saved at the 123 start of the frame. Thus, when the HP unwind library is used, we 124 need to generate additional code to save SP into the frame marker. */ 125 #define TARGET_HPUX_UNWIND_LIBRARY 0 126 127 #ifndef TARGET_DEFAULT 128 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH) 129 #endif 130 131 #ifndef TARGET_CPU_DEFAULT 132 #define TARGET_CPU_DEFAULT 0 133 #endif 134 135 #ifndef TARGET_SCHED_DEFAULT 136 #define TARGET_SCHED_DEFAULT PROCESSOR_8000 137 #endif 138 139 /* Support for a compile-time default CPU, et cetera. The rules are: 140 --with-schedule is ignored if -mschedule is specified. 141 --with-arch is ignored if -march is specified. */ 142 #define OPTION_DEFAULT_SPECS \ 143 {"arch", "%{!march=*:-march=%(VALUE)}" }, \ 144 {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" } 145 146 /* Specify the dialect of assembler to use. New mnemonics is dialect one 147 and the old mnemonics are dialect zero. */ 148 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0) 149 150 #define OVERRIDE_OPTIONS override_options () 151 152 /* Override some settings from dbxelf.h. */ 153 154 /* We do not have to be compatible with dbx, so we enable gdb extensions 155 by default. */ 156 #define DEFAULT_GDB_EXTENSIONS 1 157 158 /* This used to be zero (no max length), but big enums and such can 159 cause huge strings which killed gas. 160 161 We also have to avoid lossage in dbxout.c -- it does not compute the 162 string size accurately, so we are real conservative here. */ 163 #undef DBX_CONTIN_LENGTH 164 #define DBX_CONTIN_LENGTH 3000 165 166 /* GDB always assumes the current function's frame begins at the value 167 of the stack pointer upon entry to the current function. Accessing 168 local variables and parameters passed on the stack is done using the 169 base of the frame + an offset provided by GCC. 170 171 For functions which have frame pointers this method works fine; 172 the (frame pointer) == (stack pointer at function entry) and GCC provides 173 an offset relative to the frame pointer. 174 175 This loses for functions without a frame pointer; GCC provides an offset 176 which is relative to the stack pointer after adjusting for the function's 177 frame size. GDB would prefer the offset to be relative to the value of 178 the stack pointer at the function's entry. Yuk! */ 179 #define DEBUGGER_AUTO_OFFSET(X) \ 180 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \ 181 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0))) 182 183 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \ 184 ((GET_CODE (X) == PLUS ? OFFSET : 0) \ 185 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0))) 186 187 #define TARGET_CPU_CPP_BUILTINS() \ 188 do { \ 189 builtin_assert("cpu=hppa"); \ 190 builtin_assert("machine=hppa"); \ 191 builtin_define("__hppa"); \ 192 builtin_define("__hppa__"); \ 193 if (TARGET_PA_20) \ 194 builtin_define("_PA_RISC2_0"); \ 195 else if (TARGET_PA_11) \ 196 builtin_define("_PA_RISC1_1"); \ 197 else \ 198 builtin_define("_PA_RISC1_0"); \ 199 } while (0) 200 201 /* An old set of OS defines for various BSD-like systems. */ 202 #define TARGET_OS_CPP_BUILTINS() \ 203 do \ 204 { \ 205 builtin_define_std ("REVARGV"); \ 206 builtin_define_std ("hp800"); \ 207 builtin_define_std ("hp9000"); \ 208 builtin_define_std ("hp9k8"); \ 209 if (!c_dialect_cxx () && !flag_iso) \ 210 builtin_define ("hppa"); \ 211 builtin_define_std ("spectrum"); \ 212 builtin_define_std ("unix"); \ 213 builtin_assert ("system=bsd"); \ 214 builtin_assert ("system=unix"); \ 215 } \ 216 while (0) 217 218 #define CC1_SPEC "%{pg:} %{p:}" 219 220 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}" 221 222 /* We don't want -lg. */ 223 #ifndef LIB_SPEC 224 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}" 225 #endif 226 227 /* This macro defines command-line switches that modify the default 228 target name. 229 230 The definition is be an initializer for an array of structures. Each 231 array element has have three elements: the switch name, one of the 232 enumeration codes ADD or DELETE to indicate whether the string should be 233 inserted or deleted, and the string to be inserted or deleted. */ 234 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}} 235 236 /* Make gcc agree with <machine/ansi.h> */ 237 238 #define SIZE_TYPE "unsigned int" 239 #define PTRDIFF_TYPE "int" 240 #define WCHAR_TYPE "unsigned int" 241 #define WCHAR_TYPE_SIZE 32 242 243 /* Show we can debug even without a frame pointer. */ 244 #define CAN_DEBUG_WITHOUT_FP 245 246 /* target machine storage layout */ 247 typedef struct machine_function GTY(()) 248 { 249 /* Flag indicating that a .NSUBSPA directive has been output for 250 this function. */ 251 int in_nsubspa; 252 } machine_function; 253 254 /* Define this macro if it is advisable to hold scalars in registers 255 in a wider mode than that declared by the program. In such cases, 256 the value is constrained to be within the bounds of the declared 257 type, but kept valid in the wider mode. The signedness of the 258 extension may differ from that of the type. */ 259 260 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \ 261 if (GET_MODE_CLASS (MODE) == MODE_INT \ 262 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \ 263 (MODE) = word_mode; 264 265 /* Define this if most significant bit is lowest numbered 266 in instructions that operate on numbered bit-fields. */ 267 #define BITS_BIG_ENDIAN 1 268 269 /* Define this if most significant byte of a word is the lowest numbered. */ 270 /* That is true on the HP-PA. */ 271 #define BYTES_BIG_ENDIAN 1 272 273 /* Define this if most significant word of a multiword number is lowest 274 numbered. */ 275 #define WORDS_BIG_ENDIAN 1 276 277 #define MAX_BITS_PER_WORD 64 278 279 /* Width of a word, in units (bytes). */ 280 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4) 281 282 /* Minimum number of units in a word. If this is undefined, the default 283 is UNITS_PER_WORD. Otherwise, it is the constant value that is the 284 smallest value that UNITS_PER_WORD can have at run-time. 285 286 FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the 287 building of various TImode routines in libgcc. The HP runtime 288 specification doesn't provide the alignment requirements and calling 289 conventions for TImode variables. */ 290 #define MIN_UNITS_PER_WORD 4 291 292 /* The widest floating point format supported by the hardware. Note that 293 setting this influences some Ada floating point type sizes, currently 294 required for GNAT to operate properly. */ 295 #define WIDEST_HARDWARE_FP_SIZE 64 296 297 /* Allocation boundary (in *bits*) for storing arguments in argument list. */ 298 #define PARM_BOUNDARY BITS_PER_WORD 299 300 /* Largest alignment required for any stack parameter, in bits. 301 Don't define this if it is equal to PARM_BOUNDARY */ 302 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT 303 304 /* Boundary (in *bits*) on which stack pointer is always aligned; 305 certain optimizations in combine depend on this. 306 307 The HP-UX runtime documents mandate 64-byte and 16-byte alignment for 308 the stack on the 32 and 64-bit ports, respectively. However, we 309 are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT 310 in main. Thus, we treat the former as the preferred alignment. */ 311 #define STACK_BOUNDARY BIGGEST_ALIGNMENT 312 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512) 313 314 /* Allocation boundary (in *bits*) for the code of a function. */ 315 #define FUNCTION_BOUNDARY BITS_PER_WORD 316 317 /* Alignment of field after `int : 0' in a structure. */ 318 #define EMPTY_FIELD_BOUNDARY 32 319 320 /* Every structure's size must be a multiple of this. */ 321 #define STRUCTURE_SIZE_BOUNDARY 8 322 323 /* A bit-field declared as `int' forces `int' alignment for the struct. */ 324 #define PCC_BITFIELD_TYPE_MATTERS 1 325 326 /* No data type wants to be aligned rounder than this. */ 327 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD) 328 329 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */ 330 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \ 331 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN)) 332 333 /* Make arrays of chars word-aligned for the same reasons. */ 334 #define DATA_ALIGNMENT(TYPE, ALIGN) \ 335 (TREE_CODE (TYPE) == ARRAY_TYPE \ 336 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ 337 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) 338 339 /* Make local arrays of chars word-aligned for the same reasons. */ 340 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN) 341 342 /* Set this nonzero if move instructions will actually fail to work 343 when given unaligned data. */ 344 #define STRICT_ALIGNMENT 1 345 346 /* Value is 1 if it is a good idea to tie two pseudo registers 347 when one has mode MODE1 and one has mode MODE2. 348 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, 349 for any hard reg, then this must be 0 for correct output. */ 350 #define MODES_TIEABLE_P(MODE1, MODE2) \ 351 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)) 352 353 /* Specify the registers used for certain standard purposes. 354 The values of these macros are register numbers. */ 355 356 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */ 357 /* #define PC_REGNUM */ 358 359 /* Register to use for pushing function arguments. */ 360 #define STACK_POINTER_REGNUM 30 361 362 /* Base register for access to local variables of the function. */ 363 #define FRAME_POINTER_REGNUM 3 364 365 /* Value should be nonzero if functions must have frame pointers. */ 366 #define FRAME_POINTER_REQUIRED \ 367 (current_function_calls_alloca) 368 369 /* Don't allow hard registers to be renamed into r2 unless r2 370 is already live or already being saved (due to eh). */ 371 372 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \ 373 ((NEW_REG) != 2 || regs_ever_live[2] || current_function_calls_eh_return) 374 375 /* C statement to store the difference between the frame pointer 376 and the stack pointer values immediately after the function prologue. 377 378 Note, we always pretend that this is a leaf function because if 379 it's not, there's no point in trying to eliminate the 380 frame pointer. If it is a leaf function, we guessed right! */ 381 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \ 382 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0) 383 384 /* Base register for access to arguments of the function. */ 385 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3) 386 387 /* Register in which static-chain is passed to a function. */ 388 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29) 389 390 /* Register used to address the offset table for position-independent 391 data references. */ 392 #define PIC_OFFSET_TABLE_REGNUM \ 393 (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM) 394 395 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1 396 397 /* Function to return the rtx used to save the pic offset table register 398 across function calls. */ 399 extern struct rtx_def *hppa_pic_save_rtx (void); 400 401 #define DEFAULT_PCC_STRUCT_RETURN 0 402 403 /* Register in which address to store a structure value 404 is passed to a function. */ 405 #define PA_STRUCT_VALUE_REGNUM 28 406 407 /* Describe how we implement __builtin_eh_return. */ 408 #define EH_RETURN_DATA_REGNO(N) \ 409 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM) 410 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29) 411 #define EH_RETURN_HANDLER_RTX \ 412 gen_rtx_MEM (word_mode, \ 413 gen_rtx_PLUS (word_mode, frame_pointer_rtx, \ 414 TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20))) 415 416 /* Offset from the frame pointer register value to the top of stack. */ 417 #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0 418 419 /* A C expression whose value is RTL representing the location of the 420 incoming return address at the beginning of any function, before the 421 prologue. You only need to define this macro if you want to support 422 call frame debugging information like that provided by DWARF 2. */ 423 #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2)) 424 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2)) 425 426 /* A C expression whose value is an integer giving a DWARF 2 column 427 number that may be used as an alternate return column. This should 428 be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general 429 register, but an alternate column needs to be used for signal frames. 430 431 Column 0 is not used but unfortunately its register size is set to 432 4 bytes (sizeof CCmode) so it can't be used on 64-bit targets. */ 433 #define DWARF_ALT_FRAME_RETURN_COLUMN FIRST_PSEUDO_REGISTER 434 435 /* This macro chooses the encoding of pointers embedded in the exception 436 handling sections. If at all possible, this should be defined such 437 that the exception handling section will not require dynamic relocations, 438 and so may be read-only. 439 440 Because the HP assembler auto aligns, it is necessary to use 441 DW_EH_PE_aligned. It's not possible to make the data read-only 442 on the HP-UX SOM port since the linker requires fixups for label 443 differences in different sections to be word aligned. However, 444 the SOM linker can do unaligned fixups for absolute pointers. 445 We also need aligned pointers for global and function pointers. 446 447 Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative 448 fixups, the runtime doesn't have a consistent relationship between 449 text and data for dynamically loaded objects. Thus, it's not possible 450 to use pc-relative encoding for pointers on this target. It may be 451 possible to use segment relative encodings but GAS doesn't currently 452 have a mechanism to generate these encodings. For other targets, we 453 use pc-relative encoding for pointers. If the pointer might require 454 dynamic relocation, we make it indirect. */ 455 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \ 456 (TARGET_GAS && !TARGET_HPUX \ 457 ? (DW_EH_PE_pcrel \ 458 | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0) \ 459 | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)) \ 460 : (!TARGET_GAS || (GLOBAL) || (CODE) == 2 \ 461 ? DW_EH_PE_aligned : DW_EH_PE_absptr)) 462 463 /* Handle special EH pointer encodings. Absolute, pc-relative, and 464 indirect are handled automatically. We output pc-relative, and 465 indirect pc-relative ourself since we need some special magic to 466 generate pc-relative relocations, and to handle indirect function 467 pointers. */ 468 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \ 469 do { \ 470 if (((ENCODING) & 0x70) == DW_EH_PE_pcrel) \ 471 { \ 472 fputs (integer_asm_op (SIZE, FALSE), FILE); \ 473 if ((ENCODING) & DW_EH_PE_indirect) \ 474 output_addr_const (FILE, get_deferred_plabel (ADDR)); \ 475 else \ 476 assemble_name (FILE, XSTR ((ADDR), 0)); \ 477 fputs ("+8-$PIC_pcrel$0", FILE); \ 478 goto DONE; \ 479 } \ 480 } while (0) 481 482 /* The letters I, J, K, L and M in a register constraint string 483 can be used to stand for particular ranges of immediate operands. 484 This macro defines what the ranges are. 485 C is the letter, and VALUE is a constant value. 486 Return 1 if VALUE is in the range specified by C. 487 488 `I' is used for the 11 bit constants. 489 `J' is used for the 14 bit constants. 490 `K' is used for values that can be moved with a zdepi insn. 491 `L' is used for the 5 bit constants. 492 `M' is used for 0. 493 `N' is used for values with the least significant 11 bits equal to zero 494 and when sign extended from 32 to 64 bits the 495 value does not change. 496 `O' is used for numbers n such that n+1 is a power of 2. 497 */ 498 499 #define CONST_OK_FOR_LETTER_P(VALUE, C) \ 500 ((C) == 'I' ? VAL_11_BITS_P (VALUE) \ 501 : (C) == 'J' ? VAL_14_BITS_P (VALUE) \ 502 : (C) == 'K' ? zdepi_cint_p (VALUE) \ 503 : (C) == 'L' ? VAL_5_BITS_P (VALUE) \ 504 : (C) == 'M' ? (VALUE) == 0 \ 505 : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \ 506 || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) \ 507 == (HOST_WIDE_INT) -1 << 31)) \ 508 : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \ 509 : (C) == 'P' ? and_mask_p (VALUE) \ 510 : 0) 511 512 /* Similar, but for floating or large integer constants, and defining letters 513 G and H. Here VALUE is the CONST_DOUBLE rtx itself. 514 515 For PA, `G' is the floating-point constant zero. `H' is undefined. */ 516 517 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ 518 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \ 519 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \ 520 : 0) 521 522 /* The class value for index registers, and the one for base regs. */ 523 #define INDEX_REG_CLASS GENERAL_REGS 524 #define BASE_REG_CLASS GENERAL_REGS 525 526 #define FP_REG_CLASS_P(CLASS) \ 527 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS) 528 529 /* True if register is floating-point. */ 530 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST) 531 532 /* Given an rtx X being reloaded into a reg required to be 533 in class CLASS, return the class of reg to actually use. 534 In general this is just CLASS; but on some machines 535 in some cases it is preferable to use a more restrictive class. */ 536 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS) 537 538 #define MAYBE_FP_REG_CLASS_P(CLASS) \ 539 reg_classes_intersect_p ((CLASS), FP_REGS) 540 541 /* On the PA it is not possible to directly move data between 542 GENERAL_REGS and FP_REGS. On the 32-bit port, we use the 543 location at SP-16. We don't expose this location in the RTL to 544 avoid scheduling related problems. For example, the store and 545 load could be separated by a call to a pure or const function 546 which has no frame and uses SP-16. */ 547 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \ 548 (TARGET_64BIT \ 549 && (MAYBE_FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2) \ 550 || MAYBE_FP_REG_CLASS_P (CLASS2) != FP_REG_CLASS_P (CLASS1))) 551 552 553 /* Stack layout; function entry, exit and calling. */ 554 555 /* Define this if pushing a word on the stack 556 makes the stack pointer a smaller address. */ 557 /* #define STACK_GROWS_DOWNWARD */ 558 559 /* Believe it or not. */ 560 #define ARGS_GROW_DOWNWARD 561 562 /* Define this to nonzero if the nominal address of the stack frame 563 is at the high-address end of the local variables; 564 that is, each additional local variable allocated 565 goes at a more negative offset in the frame. */ 566 #define FRAME_GROWS_DOWNWARD 0 567 568 /* Offset within stack frame to start allocating local variables at. 569 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the 570 first local allocated. Otherwise, it is the offset to the BEGINNING 571 of the first local allocated. 572 573 On the 32-bit ports, we reserve one slot for the previous frame 574 pointer and one fill slot. The fill slot is for compatibility 575 with HP compiled programs. On the 64-bit ports, we reserve one 576 slot for the previous frame pointer. */ 577 #define STARTING_FRAME_OFFSET 8 578 579 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment 580 of the stack. The default is to align it to STACK_BOUNDARY. */ 581 #define STACK_ALIGNMENT_NEEDED 0 582 583 /* If we generate an insn to push BYTES bytes, 584 this says how many the stack pointer really advances by. 585 On the HP-PA, don't define this because there are no push insns. */ 586 /* #define PUSH_ROUNDING(BYTES) */ 587 588 /* Offset of first parameter from the argument pointer register value. 589 This value will be negated because the arguments grow down. 590 Also note that on STACK_GROWS_UPWARD machines (such as this one) 591 this is the distance from the frame pointer to the end of the first 592 argument, not it's beginning. To get the real offset of the first 593 argument, the size of the argument must be added. */ 594 595 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32) 596 597 /* When a parameter is passed in a register, stack space is still 598 allocated for it. */ 599 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16) 600 601 /* Define this if the above stack space is to be considered part of the 602 space allocated by the caller. */ 603 #define OUTGOING_REG_PARM_STACK_SPACE 604 605 /* Keep the stack pointer constant throughout the function. 606 This is both an optimization and a necessity: longjmp 607 doesn't behave itself when the stack pointer moves within 608 the function! */ 609 #define ACCUMULATE_OUTGOING_ARGS 1 610 611 /* The weird HPPA calling conventions require a minimum of 48 bytes on 612 the stack: 16 bytes for register saves, and 32 bytes for magic. 613 This is the difference between the logical top of stack and the 614 actual sp. 615 616 On the 64-bit port, the HP C compiler allocates a 48-byte frame 617 marker, although the runtime documentation only describes a 16 618 byte marker. For compatibility, we allocate 48 bytes. */ 619 #define STACK_POINTER_OFFSET \ 620 (TARGET_64BIT ? -(current_function_outgoing_args_size + 48): -32) 621 622 #define STACK_DYNAMIC_OFFSET(FNDECL) \ 623 (TARGET_64BIT \ 624 ? (STACK_POINTER_OFFSET) \ 625 : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size)) 626 627 /* Value is 1 if returning from a function call automatically 628 pops the arguments described by the number-of-args field in the call. 629 FUNDECL is the declaration node of the function (as a tree), 630 FUNTYPE is the data type of the function (as a tree), 631 or for a library call it is an identifier node for the subroutine name. */ 632 633 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 634 635 /* Define how to find the value returned by a function. 636 VALTYPE is the data type of the value (as a tree). 637 If the precise function being called is known, FUNC is its FUNCTION_DECL; 638 otherwise, FUNC is 0. */ 639 640 #define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC) 641 642 /* Define how to find the value returned by a library function 643 assuming the value has mode MODE. */ 644 645 #define LIBCALL_VALUE(MODE) \ 646 gen_rtx_REG (MODE, \ 647 (! TARGET_SOFT_FLOAT \ 648 && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28)) 649 650 /* 1 if N is a possible register number for a function value 651 as seen by the caller. */ 652 653 #define FUNCTION_VALUE_REGNO_P(N) \ 654 ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32)) 655 656 657 /* Define a data type for recording info about an argument list 658 during the scan of that argument list. This data type should 659 hold all necessary information about the function itself 660 and about the args processed so far, enough to enable macros 661 such as FUNCTION_ARG to determine where the next arg should go. 662 663 On the HP-PA, the WORDS field holds the number of words 664 of arguments scanned so far (including the invisible argument, 665 if any, which holds the structure-value-address). Thus, 4 or 666 more means all following args should go on the stack. 667 668 The INCOMING field tracks whether this is an "incoming" or 669 "outgoing" argument. 670 671 The INDIRECT field indicates whether this is is an indirect 672 call or not. 673 674 The NARGS_PROTOTYPE field indicates that an argument does not 675 have a prototype when it less than or equal to 0. */ 676 677 struct hppa_args {int words, nargs_prototype, incoming, indirect; }; 678 679 #define CUMULATIVE_ARGS struct hppa_args 680 681 /* Initialize a variable CUM of type CUMULATIVE_ARGS 682 for a call to a function whose data type is FNTYPE. 683 For a library call, FNTYPE is 0. */ 684 685 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ 686 (CUM).words = 0, \ 687 (CUM).incoming = 0, \ 688 (CUM).indirect = (FNTYPE) && !(FNDECL), \ 689 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \ 690 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \ 691 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \ 692 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \ 693 : 0) 694 695 696 697 /* Similar, but when scanning the definition of a procedure. We always 698 set NARGS_PROTOTYPE large so we never return a PARALLEL. */ 699 700 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \ 701 (CUM).words = 0, \ 702 (CUM).incoming = 1, \ 703 (CUM).indirect = 0, \ 704 (CUM).nargs_prototype = 1000 705 706 /* Figure out the size in words of the function argument. The size 707 returned by this macro should always be greater than zero because 708 we pass variable and zero sized objects by reference. */ 709 710 #define FUNCTION_ARG_SIZE(MODE, TYPE) \ 711 ((((MODE) != BLKmode \ 712 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \ 713 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) 714 715 /* Update the data in CUM to advance over an argument 716 of mode MODE and data type TYPE. 717 (TYPE is null for libcalls where that information may not be available.) */ 718 719 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ 720 { (CUM).nargs_prototype--; \ 721 (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE) \ 722 + (((CUM).words & 01) && (TYPE) != 0 \ 723 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1); \ 724 } 725 726 /* Determine where to put an argument to a function. 727 Value is zero to push the argument on the stack, 728 or a hard register in which to store the argument. 729 730 MODE is the argument's machine mode. 731 TYPE is the data type of the argument (as a tree). 732 This is null for libcalls where that information may 733 not be available. 734 CUM is a variable of type CUMULATIVE_ARGS which gives info about 735 the preceding args and about the function being called. 736 NAMED is nonzero if this argument is a named parameter 737 (otherwise it is an extra parameter matching an ellipsis). 738 739 On the HP-PA the first four words of args are normally in registers 740 and the rest are pushed. But any arg that won't entirely fit in regs 741 is pushed. 742 743 Arguments passed in registers are either 1 or 2 words long. 744 745 The caller must make a distinction between calls to explicitly named 746 functions and calls through pointers to functions -- the conventions 747 are different! Calls through pointers to functions only use general 748 registers for the first four argument words. 749 750 Of course all this is different for the portable runtime model 751 HP wants everyone to use for ELF. Ugh. Here's a quick description 752 of how it's supposed to work. 753 754 1) callee side remains unchanged. It expects integer args to be 755 in the integer registers, float args in the float registers and 756 unnamed args in integer registers. 757 758 2) caller side now depends on if the function being called has 759 a prototype in scope (rather than if it's being called indirectly). 760 761 2a) If there is a prototype in scope, then arguments are passed 762 according to their type (ints in integer registers, floats in float 763 registers, unnamed args in integer registers. 764 765 2b) If there is no prototype in scope, then floating point arguments 766 are passed in both integer and float registers. egad. 767 768 FYI: The portable parameter passing conventions are almost exactly like 769 the standard parameter passing conventions on the RS6000. That's why 770 you'll see lots of similar code in rs6000.h. */ 771 772 /* If defined, a C expression which determines whether, and in which 773 direction, to pad out an argument with extra space. */ 774 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE)) 775 776 /* Specify padding for the last element of a block move between registers 777 and memory. 778 779 The 64-bit runtime specifies that objects need to be left justified 780 (i.e., the normal justification for a big endian target). The 32-bit 781 runtime specifies right justification for objects smaller than 64 bits. 782 We use a DImode register in the parallel for 5 to 7 byte structures 783 so that there is only one element. This allows the object to be 784 correctly padded. */ 785 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \ 786 function_arg_padding ((MODE), (TYPE)) 787 788 /* Do not expect to understand this without reading it several times. I'm 789 tempted to try and simply it, but I worry about breaking something. */ 790 791 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ 792 function_arg (&CUM, MODE, TYPE, NAMED) 793 794 /* If defined, a C expression that gives the alignment boundary, in 795 bits, of an argument with the specified mode and type. If it is 796 not defined, `PARM_BOUNDARY' is used for all arguments. */ 797 798 /* Arguments larger than one word are double word aligned. */ 799 800 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \ 801 (((TYPE) \ 802 ? (integer_zerop (TYPE_SIZE (TYPE)) \ 803 || !TREE_CONSTANT (TYPE_SIZE (TYPE)) \ 804 || int_size_in_bytes (TYPE) <= UNITS_PER_WORD) \ 805 : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD) \ 806 ? PARM_BOUNDARY : MAX_PARM_BOUNDARY) 807 808 809 extern GTY(()) rtx hppa_compare_op0; 810 extern GTY(()) rtx hppa_compare_op1; 811 extern enum cmp_type hppa_branch_type; 812 813 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than 814 as assembly via FUNCTION_PROFILER. Just output a local label. 815 We can't use the function label because the GAS SOM target can't 816 handle the difference of a global symbol and a local symbol. */ 817 818 #ifndef FUNC_BEGIN_PROLOG_LABEL 819 #define FUNC_BEGIN_PROLOG_LABEL "LFBP" 820 #endif 821 822 #define FUNCTION_PROFILER(FILE, LABEL) \ 823 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL) 824 825 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no) 826 void hppa_profile_hook (int label_no); 827 828 /* The profile counter if emitted must come before the prologue. */ 829 #define PROFILE_BEFORE_PROLOGUE 1 830 831 /* We never want final.c to emit profile counters. When profile 832 counters are required, we have to defer emitting them to the end 833 of the current file. */ 834 #define NO_PROFILE_COUNTERS 1 835 836 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, 837 the stack pointer does not matter. The value is tested only in 838 functions that have frame pointers. 839 No definition is equivalent to always zero. */ 840 841 extern int may_call_alloca; 842 843 #define EXIT_IGNORE_STACK \ 844 (get_frame_size () != 0 \ 845 || current_function_calls_alloca || current_function_outgoing_args_size) 846 847 /* Output assembler code for a block containing the constant parts 848 of a trampoline, leaving space for the variable parts.\ 849 850 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM 851 and then branches to the specified routine. 852 853 This code template is copied from text segment to stack location 854 and then patched with INITIALIZE_TRAMPOLINE to contain 855 valid values, and then entered as a subroutine. 856 857 It is best to keep this as small as possible to avoid having to 858 flush multiple lines in the cache. */ 859 860 #define TRAMPOLINE_TEMPLATE(FILE) \ 861 { \ 862 if (!TARGET_64BIT) \ 863 { \ 864 fputs ("\tldw 36(%r22),%r21\n", FILE); \ 865 fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \ 866 if (ASSEMBLER_DIALECT == 0) \ 867 fputs ("\tdepi 0,31,2,%r21\n", FILE); \ 868 else \ 869 fputs ("\tdepwi 0,31,2,%r21\n", FILE); \ 870 fputs ("\tldw 4(%r21),%r19\n", FILE); \ 871 fputs ("\tldw 0(%r21),%r21\n", FILE); \ 872 if (TARGET_PA_20) \ 873 { \ 874 fputs ("\tbve (%r21)\n", FILE); \ 875 fputs ("\tldw 40(%r22),%r29\n", FILE); \ 876 fputs ("\t.word 0\n", FILE); \ 877 fputs ("\t.word 0\n", FILE); \ 878 } \ 879 else \ 880 { \ 881 fputs ("\tldsid (%r21),%r1\n", FILE); \ 882 fputs ("\tmtsp %r1,%sr0\n", FILE); \ 883 fputs ("\tbe 0(%sr0,%r21)\n", FILE); \ 884 fputs ("\tldw 40(%r22),%r29\n", FILE); \ 885 } \ 886 fputs ("\t.word 0\n", FILE); \ 887 fputs ("\t.word 0\n", FILE); \ 888 fputs ("\t.word 0\n", FILE); \ 889 fputs ("\t.word 0\n", FILE); \ 890 } \ 891 else \ 892 { \ 893 fputs ("\t.dword 0\n", FILE); \ 894 fputs ("\t.dword 0\n", FILE); \ 895 fputs ("\t.dword 0\n", FILE); \ 896 fputs ("\t.dword 0\n", FILE); \ 897 fputs ("\tmfia %r31\n", FILE); \ 898 fputs ("\tldd 24(%r31),%r1\n", FILE); \ 899 fputs ("\tldd 24(%r1),%r27\n", FILE); \ 900 fputs ("\tldd 16(%r1),%r1\n", FILE); \ 901 fputs ("\tbve (%r1)\n", FILE); \ 902 fputs ("\tldd 32(%r31),%r31\n", FILE); \ 903 fputs ("\t.dword 0 ; fptr\n", FILE); \ 904 fputs ("\t.dword 0 ; static link\n", FILE); \ 905 } \ 906 } 907 908 /* Length in units of the trampoline for entering a nested function. */ 909 910 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52) 911 912 /* Length in units of the trampoline instruction code. */ 913 914 #define TRAMPOLINE_CODE_SIZE (TARGET_64BIT ? 24 : (TARGET_PA_20 ? 32 : 40)) 915 916 /* Minimum length of a cache line. A length of 16 will work on all 917 PA-RISC processors. All PA 1.1 processors have a cache line of 918 32 bytes. Most but not all PA 2.0 processors have a cache line 919 of 64 bytes. As cache flushes are expensive and we don't support 920 PA 1.0, we use a minimum length of 32. */ 921 922 #define MIN_CACHELINE_SIZE 32 923 924 /* Emit RTL insns to initialize the variable parts of a trampoline. 925 FNADDR is an RTX for the address of the function's pure code. 926 CXT is an RTX for the static chain value for the function. 927 928 Move the function address to the trampoline template at offset 36. 929 Move the static chain value to trampoline template at offset 40. 930 Move the trampoline address to trampoline template at offset 44. 931 Move r19 to trampoline template at offset 48. The latter two 932 words create a plabel for the indirect call to the trampoline. 933 934 A similar sequence is used for the 64-bit port but the plabel is 935 at the beginning of the trampoline. 936 937 Finally, the cache entries for the trampoline code are flushed. 938 This is necessary to ensure that the trampoline instruction sequence 939 is written to memory prior to any attempts at prefetching the code 940 sequence. */ 941 942 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ 943 { \ 944 rtx start_addr = gen_reg_rtx (Pmode); \ 945 rtx end_addr = gen_reg_rtx (Pmode); \ 946 rtx line_length = gen_reg_rtx (Pmode); \ 947 rtx tmp; \ 948 \ 949 if (!TARGET_64BIT) \ 950 { \ 951 tmp = memory_address (Pmode, plus_constant ((TRAMP), 36)); \ 952 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \ 953 tmp = memory_address (Pmode, plus_constant ((TRAMP), 40)); \ 954 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \ 955 \ 956 /* Create a fat pointer for the trampoline. */ \ 957 tmp = memory_address (Pmode, plus_constant ((TRAMP), 44)); \ 958 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (TRAMP)); \ 959 tmp = memory_address (Pmode, plus_constant ((TRAMP), 48)); \ 960 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \ 961 gen_rtx_REG (Pmode, 19)); \ 962 \ 963 /* fdc and fic only use registers for the address to flush, \ 964 they do not accept integer displacements. We align the \ 965 start and end addresses to the beginning of their respective \ 966 cache lines to minimize the number of lines flushed. */ \ 967 tmp = force_reg (Pmode, (TRAMP)); \ 968 emit_insn (gen_andsi3 (start_addr, tmp, \ 969 GEN_INT (-MIN_CACHELINE_SIZE))); \ 970 tmp = force_reg (Pmode, \ 971 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \ 972 emit_insn (gen_andsi3 (end_addr, tmp, \ 973 GEN_INT (-MIN_CACHELINE_SIZE))); \ 974 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \ 975 emit_insn (gen_dcacheflush (start_addr, end_addr, line_length)); \ 976 emit_insn (gen_icacheflush (start_addr, end_addr, line_length, \ 977 gen_reg_rtx (Pmode), \ 978 gen_reg_rtx (Pmode))); \ 979 } \ 980 else \ 981 { \ 982 tmp = memory_address (Pmode, plus_constant ((TRAMP), 56)); \ 983 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \ 984 tmp = memory_address (Pmode, plus_constant ((TRAMP), 64)); \ 985 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \ 986 \ 987 /* Create a fat pointer for the trampoline. */ \ 988 tmp = memory_address (Pmode, plus_constant ((TRAMP), 16)); \ 989 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \ 990 force_reg (Pmode, plus_constant ((TRAMP), 32))); \ 991 tmp = memory_address (Pmode, plus_constant ((TRAMP), 24)); \ 992 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \ 993 gen_rtx_REG (Pmode, 27)); \ 994 \ 995 /* fdc and fic only use registers for the address to flush, \ 996 they do not accept integer displacements. We align the \ 997 start and end addresses to the beginning of their respective \ 998 cache lines to minimize the number of lines flushed. */ \ 999 tmp = force_reg (Pmode, plus_constant ((TRAMP), 32)); \ 1000 emit_insn (gen_anddi3 (start_addr, tmp, \ 1001 GEN_INT (-MIN_CACHELINE_SIZE))); \ 1002 tmp = force_reg (Pmode, \ 1003 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \ 1004 emit_insn (gen_anddi3 (end_addr, tmp, \ 1005 GEN_INT (-MIN_CACHELINE_SIZE))); \ 1006 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \ 1007 emit_insn (gen_dcacheflush (start_addr, end_addr, line_length)); \ 1008 emit_insn (gen_icacheflush (start_addr, end_addr, line_length, \ 1009 gen_reg_rtx (Pmode), \ 1010 gen_reg_rtx (Pmode))); \ 1011 } \ 1012 } 1013 1014 /* Perform any machine-specific adjustment in the address of the trampoline. 1015 ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE. 1016 Adjust the trampoline address to point to the plabel at offset 44. */ 1017 1018 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \ 1019 if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46)) 1020 1021 /* Implement `va_start' for varargs and stdarg. */ 1022 1023 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \ 1024 hppa_va_start (valist, nextarg) 1025 1026 /* Addressing modes, and classification of registers for them. 1027 1028 Using autoincrement addressing modes on PA8000 class machines is 1029 not profitable. */ 1030 1031 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000) 1032 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000) 1033 1034 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000) 1035 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000) 1036 1037 /* Macros to check register numbers against specific register classes. */ 1038 1039 /* The following macros assume that X is a hard or pseudo reg number. 1040 They give nonzero only if X is a hard reg of the suitable class 1041 or a pseudo reg currently allocated to a suitable hard reg. 1042 Since they use reg_renumber, they are safe only once reg_renumber 1043 has been allocated, which happens in local-alloc.c. */ 1044 1045 #define REGNO_OK_FOR_INDEX_P(X) \ 1046 ((X) && ((X) < 32 \ 1047 || (X >= FIRST_PSEUDO_REGISTER \ 1048 && reg_renumber \ 1049 && (unsigned) reg_renumber[X] < 32))) 1050 #define REGNO_OK_FOR_BASE_P(X) \ 1051 ((X) && ((X) < 32 \ 1052 || (X >= FIRST_PSEUDO_REGISTER \ 1053 && reg_renumber \ 1054 && (unsigned) reg_renumber[X] < 32))) 1055 #define REGNO_OK_FOR_FP_P(X) \ 1056 (FP_REGNO_P (X) \ 1057 || (X >= FIRST_PSEUDO_REGISTER \ 1058 && reg_renumber \ 1059 && FP_REGNO_P (reg_renumber[X]))) 1060 1061 /* Now macros that check whether X is a register and also, 1062 strictly, whether it is in a specified class. 1063 1064 These macros are specific to the HP-PA, and may be used only 1065 in code for printing assembler insns and in conditions for 1066 define_optimization. */ 1067 1068 /* 1 if X is an fp register. */ 1069 1070 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X))) 1071 1072 /* Maximum number of registers that can appear in a valid memory address. */ 1073 1074 #define MAX_REGS_PER_ADDRESS 2 1075 1076 /* Non-TLS symbolic references. */ 1077 #define PA_SYMBOL_REF_TLS_P(RTX) \ 1078 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0) 1079 1080 /* Recognize any constant value that is a valid address except 1081 for symbolic addresses. We get better CSE by rejecting them 1082 here and allowing hppa_legitimize_address to break them up. We 1083 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */ 1084 1085 #define CONSTANT_ADDRESS_P(X) \ 1086 ((GET_CODE (X) == LABEL_REF \ 1087 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X)) \ 1088 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ 1089 || GET_CODE (X) == HIGH) \ 1090 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X))) 1091 1092 /* A C expression that is nonzero if we are using the new HP assembler. */ 1093 1094 #ifndef NEW_HP_ASSEMBLER 1095 #define NEW_HP_ASSEMBLER 0 1096 #endif 1097 1098 /* The macros below define the immediate range for CONST_INTS on 1099 the 64-bit port. Constants in this range can be loaded in three 1100 instructions using a ldil/ldo/depdi sequence. Constants outside 1101 this range are forced to the constant pool prior to reload. */ 1102 1103 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31) 1104 #define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31) 1105 #define LEGITIMATE_64BIT_CONST_INT_P(X) \ 1106 ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT) 1107 1108 /* A C expression that is nonzero if X is a legitimate constant for an 1109 immediate operand. 1110 1111 We include all constant integers and constant doubles, but not 1112 floating-point, except for floating-point zero. We reject LABEL_REFs 1113 if we're not using gas or the new HP assembler. 1114 1115 In 64-bit mode, we reject CONST_DOUBLES. We also reject CONST_INTS 1116 that need more than three instructions to load prior to reload. This 1117 limit is somewhat arbitrary. It takes three instructions to load a 1118 CONST_INT from memory but two are memory accesses. It may be better 1119 to increase the allowed range for CONST_INTS. We may also be able 1120 to handle CONST_DOUBLES. */ 1121 1122 #define LEGITIMATE_CONSTANT_P(X) \ 1123 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \ 1124 || (X) == CONST0_RTX (GET_MODE (X))) \ 1125 && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF) \ 1126 && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE) \ 1127 && !(TARGET_64BIT && GET_CODE (X) == CONST_INT \ 1128 && !(HOST_BITS_PER_WIDE_INT <= 32 \ 1129 || (reload_in_progress || reload_completed) \ 1130 || LEGITIMATE_64BIT_CONST_INT_P (INTVAL (X)) \ 1131 || cint_ok_for_move (INTVAL (X)))) \ 1132 && !function_label_operand (X, VOIDmode)) 1133 1134 /* Target flags set on a symbol_ref. */ 1135 1136 /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output. */ 1137 #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT) 1138 #define SYMBOL_REF_REFERENCED_P(RTX) \ 1139 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0) 1140 1141 /* Subroutines for EXTRA_CONSTRAINT. 1142 1143 Return 1 iff OP is a pseudo which did not get a hard register and 1144 we are running the reload pass. */ 1145 #define IS_RELOADING_PSEUDO_P(OP) \ 1146 ((reload_in_progress \ 1147 && GET_CODE (OP) == REG \ 1148 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \ 1149 && reg_renumber [REGNO (OP)] < 0)) 1150 1151 /* Return 1 iff OP is a scaled or unscaled index address. */ 1152 #define IS_INDEX_ADDR_P(OP) \ 1153 (GET_CODE (OP) == PLUS \ 1154 && GET_MODE (OP) == Pmode \ 1155 && (GET_CODE (XEXP (OP, 0)) == MULT \ 1156 || GET_CODE (XEXP (OP, 1)) == MULT \ 1157 || (REG_P (XEXP (OP, 0)) \ 1158 && REG_P (XEXP (OP, 1))))) 1159 1160 /* Return 1 iff OP is a LO_SUM DLT address. */ 1161 #define IS_LO_SUM_DLT_ADDR_P(OP) \ 1162 (GET_CODE (OP) == LO_SUM \ 1163 && GET_MODE (OP) == Pmode \ 1164 && REG_P (XEXP (OP, 0)) \ 1165 && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \ 1166 && GET_CODE (XEXP (OP, 1)) == UNSPEC) 1167 1168 /* Optional extra constraints for this machine. Borrowed from sparc.h. 1169 1170 `A' is a LO_SUM DLT memory operand. 1171 1172 `Q' is any memory operand that isn't a symbolic, indexed or lo_sum 1173 memory operand. Note that an unassigned pseudo register is such a 1174 memory operand. Needed because reload will generate these things 1175 and then not re-recognize the insn, causing constrain_operands to 1176 fail. 1177 1178 `R' is a scaled/unscaled indexed memory operand. 1179 1180 `S' is the constant 31. 1181 1182 `T' is for floating-point loads and stores. 1183 1184 `U' is the constant 63. 1185 1186 `W' is a register indirect memory operand. We could allow short 1187 displacements but GO_IF_LEGITIMATE_ADDRESS can't tell when a 1188 long displacement is valid. This is only used for prefetch 1189 instructions with the `sl' completer. */ 1190 1191 #define EXTRA_CONSTRAINT(OP, C) \ 1192 ((C) == 'Q' ? \ 1193 (IS_RELOADING_PSEUDO_P (OP) \ 1194 || (GET_CODE (OP) == MEM \ 1195 && (reload_in_progress \ 1196 || memory_address_p (GET_MODE (OP), XEXP (OP, 0))) \ 1197 && !symbolic_memory_operand (OP, VOIDmode) \ 1198 && !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0)) \ 1199 && !IS_INDEX_ADDR_P (XEXP (OP, 0)))) \ 1200 : ((C) == 'W' ? \ 1201 (GET_CODE (OP) == MEM \ 1202 && REG_P (XEXP (OP, 0)) \ 1203 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \ 1204 : ((C) == 'A' ? \ 1205 (GET_CODE (OP) == MEM \ 1206 && IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0))) \ 1207 : ((C) == 'R' ? \ 1208 (GET_CODE (OP) == MEM \ 1209 && IS_INDEX_ADDR_P (XEXP (OP, 0))) \ 1210 : ((C) == 'T' ? \ 1211 (GET_CODE (OP) == MEM \ 1212 && !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0)) \ 1213 && !IS_INDEX_ADDR_P (XEXP (OP, 0)) \ 1214 /* Floating-point loads and stores are used to load \ 1215 integer values as well as floating-point values. \ 1216 They don't have the same set of REG+D address modes \ 1217 as integer loads and stores. PA 1.x supports only \ 1218 short displacements. PA 2.0 supports long displacements \ 1219 but the base register needs to be aligned. \ 1220 \ 1221 The checks in GO_IF_LEGITIMATE_ADDRESS for SFmode and \ 1222 DFmode test the validity of an address for use in a \ 1223 floating point load or store. So, we use SFmode/DFmode \ 1224 to see if the address is valid for a floating-point \ 1225 load/store operation. */ \ 1226 && memory_address_p ((GET_MODE_SIZE (GET_MODE (OP)) == 4 \ 1227 ? SFmode \ 1228 : DFmode), \ 1229 XEXP (OP, 0))) \ 1230 : ((C) == 'S' ? \ 1231 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31) \ 1232 : ((C) == 'U' ? \ 1233 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63) : 0))))))) 1234 1235 1236 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx 1237 and check its validity for a certain class. 1238 We have two alternate definitions for each of them. 1239 The usual definition accepts all pseudo regs; the other rejects 1240 them unless they have been allocated suitable hard regs. 1241 The symbol REG_OK_STRICT causes the latter definition to be used. 1242 1243 Most source files want to accept pseudo regs in the hope that 1244 they will get allocated to the class that the insn wants them to be in. 1245 Source files for reload pass need to be strict. 1246 After reload, it makes no difference, since pseudo regs have 1247 been eliminated by then. */ 1248 1249 #ifndef REG_OK_STRICT 1250 1251 /* Nonzero if X is a hard reg that can be used as an index 1252 or if it is a pseudo reg. */ 1253 #define REG_OK_FOR_INDEX_P(X) \ 1254 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) 1255 /* Nonzero if X is a hard reg that can be used as a base reg 1256 or if it is a pseudo reg. */ 1257 #define REG_OK_FOR_BASE_P(X) \ 1258 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) 1259 1260 #else 1261 1262 /* Nonzero if X is a hard reg that can be used as an index. */ 1263 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) 1264 /* Nonzero if X is a hard reg that can be used as a base reg. */ 1265 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) 1266 1267 #endif 1268 1269 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a 1270 valid memory address for an instruction. The MODE argument is the 1271 machine mode for the MEM expression that wants to use this address. 1272 1273 On HP PA-RISC, the legitimate address forms are REG+SMALLINT, 1274 REG+REG, and REG+(REG*SCALE). The indexed address forms are only 1275 available with floating point loads and stores, and integer loads. 1276 We get better code by allowing indexed addresses in the initial 1277 RTL generation. 1278 1279 The acceptance of indexed addresses as legitimate implies that we 1280 must provide patterns for doing indexed integer stores, or the move 1281 expanders must force the address of an indexed store to a register. 1282 We have adopted the latter approach. 1283 1284 Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that 1285 the base register is a valid pointer for indexed instructions. 1286 On targets that have non-equivalent space registers, we have to 1287 know at the time of assembler output which register in a REG+REG 1288 pair is the base register. The REG_POINTER flag is sometimes lost 1289 in reload and the following passes, so it can't be relied on during 1290 code generation. Thus, we either have to canonicalize the order 1291 of the registers in REG+REG indexed addresses, or treat REG+REG 1292 addresses separately and provide patterns for both permutations. 1293 1294 The latter approach requires several hundred additional lines of 1295 code in pa.md. The downside to canonicalizing is that a PLUS 1296 in the wrong order can't combine to form to make a scaled indexed 1297 memory operand. As we won't need to canonicalize the operands if 1298 the REG_POINTER lossage can be fixed, it seems better canonicalize. 1299 1300 We initially break out scaled indexed addresses in canonical order 1301 in emit_move_sequence. LEGITIMIZE_ADDRESS also canonicalizes 1302 scaled indexed addresses during RTL generation. However, fold_rtx 1303 has its own opinion on how the operands of a PLUS should be ordered. 1304 If one of the operands is equivalent to a constant, it will make 1305 that operand the second operand. As the base register is likely to 1306 be equivalent to a SYMBOL_REF, we have made it the second operand. 1307 1308 GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the 1309 operands are in the order INDEX+BASE on targets with non-equivalent 1310 space registers, and in any order on targets with equivalent space 1311 registers. It accepts both MULT+BASE and BASE+MULT for scaled indexing. 1312 1313 We treat a SYMBOL_REF as legitimate if it is part of the current 1314 function's constant-pool, because such addresses can actually be 1315 output as REG+SMALLINT. 1316 1317 Note we only allow 5 bit immediates for access to a constant address; 1318 doing so avoids losing for loading/storing a FP register at an address 1319 which will not fit in 5 bits. */ 1320 1321 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20) 1322 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X)) 1323 1324 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20) 1325 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X)) 1326 1327 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800) 1328 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X)) 1329 1330 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000) 1331 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X)) 1332 1333 #if HOST_BITS_PER_WIDE_INT > 32 1334 #define VAL_32_BITS_P(X) \ 1335 ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31) \ 1336 < (unsigned HOST_WIDE_INT) 2 << 31) 1337 #else 1338 #define VAL_32_BITS_P(X) 1 1339 #endif 1340 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X)) 1341 1342 /* These are the modes that we allow for scaled indexing. */ 1343 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \ 1344 ((TARGET_64BIT && (MODE) == DImode) \ 1345 || (MODE) == SImode \ 1346 || (MODE) == HImode \ 1347 || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode))) 1348 1349 /* These are the modes that we allow for unscaled indexing. */ 1350 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \ 1351 ((TARGET_64BIT && (MODE) == DImode) \ 1352 || (MODE) == SImode \ 1353 || (MODE) == HImode \ 1354 || (MODE) == QImode \ 1355 || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode))) 1356 1357 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ 1358 { \ 1359 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \ 1360 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \ 1361 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \ 1362 && REG_P (XEXP (X, 0)) \ 1363 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \ 1364 goto ADDR; \ 1365 else if (GET_CODE (X) == PLUS) \ 1366 { \ 1367 rtx base = 0, index = 0; \ 1368 if (REG_P (XEXP (X, 1)) \ 1369 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \ 1370 base = XEXP (X, 1), index = XEXP (X, 0); \ 1371 else if (REG_P (XEXP (X, 0)) \ 1372 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \ 1373 base = XEXP (X, 0), index = XEXP (X, 1); \ 1374 if (base \ 1375 && GET_CODE (index) == CONST_INT \ 1376 && ((INT_14_BITS (index) \ 1377 && (((MODE) != DImode \ 1378 && (MODE) != SFmode \ 1379 && (MODE) != DFmode) \ 1380 /* The base register for DImode loads and stores \ 1381 with long displacements must be aligned because \ 1382 the lower three bits in the displacement are \ 1383 assumed to be zero. */ \ 1384 || ((MODE) == DImode \ 1385 && (!TARGET_64BIT \ 1386 || (INTVAL (index) % 8) == 0)) \ 1387 /* Similarly, the base register for SFmode/DFmode \ 1388 loads and stores with long displacements must \ 1389 be aligned. \ 1390 \ 1391 FIXME: the ELF32 linker clobbers the LSB of \ 1392 the FP register number in PA 2.0 floating-point \ 1393 insns with long displacements. This is because \ 1394 R_PARISC_DPREL14WR and other relocations like \ 1395 it are not supported. For now, we reject long \ 1396 displacements on this target. */ \ 1397 || (((MODE) == SFmode || (MODE) == DFmode) \ 1398 && (TARGET_SOFT_FLOAT \ 1399 || (TARGET_PA_20 \ 1400 && !TARGET_ELF32 \ 1401 && (INTVAL (index) \ 1402 % GET_MODE_SIZE (MODE)) == 0))))) \ 1403 || INT_5_BITS (index))) \ 1404 goto ADDR; \ 1405 if (!TARGET_DISABLE_INDEXING \ 1406 /* Only accept the "canonical" INDEX+BASE operand order \ 1407 on targets with non-equivalent space registers. */ \ 1408 && (TARGET_NO_SPACE_REGS \ 1409 ? (base && REG_P (index)) \ 1410 : (base == XEXP (X, 1) && REG_P (index) \ 1411 && (reload_completed \ 1412 || (reload_in_progress && HARD_REGISTER_P (base)) \ 1413 || REG_POINTER (base)) \ 1414 && (reload_completed \ 1415 || (reload_in_progress && HARD_REGISTER_P (index)) \ 1416 || !REG_POINTER (index)))) \ 1417 && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE) \ 1418 && REG_OK_FOR_INDEX_P (index) \ 1419 && borx_reg_operand (base, Pmode) \ 1420 && borx_reg_operand (index, Pmode)) \ 1421 goto ADDR; \ 1422 if (!TARGET_DISABLE_INDEXING \ 1423 && base \ 1424 && GET_CODE (index) == MULT \ 1425 && MODE_OK_FOR_SCALED_INDEXING_P (MODE) \ 1426 && REG_P (XEXP (index, 0)) \ 1427 && GET_MODE (XEXP (index, 0)) == Pmode \ 1428 && REG_OK_FOR_INDEX_P (XEXP (index, 0)) \ 1429 && GET_CODE (XEXP (index, 1)) == CONST_INT \ 1430 && INTVAL (XEXP (index, 1)) \ 1431 == (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \ 1432 && borx_reg_operand (base, Pmode)) \ 1433 goto ADDR; \ 1434 } \ 1435 else if (GET_CODE (X) == LO_SUM \ 1436 && GET_CODE (XEXP (X, 0)) == REG \ 1437 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ 1438 && CONSTANT_P (XEXP (X, 1)) \ 1439 && (TARGET_SOFT_FLOAT \ 1440 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \ 1441 || (TARGET_PA_20 \ 1442 && !TARGET_ELF32 \ 1443 && GET_CODE (XEXP (X, 1)) != CONST_INT) \ 1444 || ((MODE) != SFmode \ 1445 && (MODE) != DFmode))) \ 1446 goto ADDR; \ 1447 else if (GET_CODE (X) == LO_SUM \ 1448 && GET_CODE (XEXP (X, 0)) == SUBREG \ 1449 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG \ 1450 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0))) \ 1451 && CONSTANT_P (XEXP (X, 1)) \ 1452 && (TARGET_SOFT_FLOAT \ 1453 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \ 1454 || (TARGET_PA_20 \ 1455 && !TARGET_ELF32 \ 1456 && GET_CODE (XEXP (X, 1)) != CONST_INT) \ 1457 || ((MODE) != SFmode \ 1458 && (MODE) != DFmode))) \ 1459 goto ADDR; \ 1460 else if (GET_CODE (X) == LABEL_REF \ 1461 || (GET_CODE (X) == CONST_INT \ 1462 && INT_5_BITS (X))) \ 1463 goto ADDR; \ 1464 /* Needed for -fPIC */ \ 1465 else if (GET_CODE (X) == LO_SUM \ 1466 && GET_CODE (XEXP (X, 0)) == REG \ 1467 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ 1468 && GET_CODE (XEXP (X, 1)) == UNSPEC \ 1469 && (TARGET_SOFT_FLOAT \ 1470 || (TARGET_PA_20 && !TARGET_ELF32) \ 1471 || ((MODE) != SFmode \ 1472 && (MODE) != DFmode))) \ 1473 goto ADDR; \ 1474 } 1475 1476 /* Look for machine dependent ways to make the invalid address AD a 1477 valid address. 1478 1479 For the PA, transform: 1480 1481 memory(X + <large int>) 1482 1483 into: 1484 1485 if (<large int> & mask) >= 16 1486 Y = (<large int> & ~mask) + mask + 1 Round up. 1487 else 1488 Y = (<large int> & ~mask) Round down. 1489 Z = X + Y 1490 memory (Z + (<large int> - Y)); 1491 1492 This makes reload inheritance and reload_cse work better since Z 1493 can be reused. 1494 1495 There may be more opportunities to improve code with this hook. */ 1496 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \ 1497 do { \ 1498 long offset, newoffset, mask; \ 1499 rtx new, temp = NULL_RTX; \ 1500 \ 1501 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \ 1502 ? (TARGET_PA_20 && !TARGET_ELF32 ? 0x3fff : 0x1f) : 0x3fff); \ 1503 \ 1504 if (optimize && GET_CODE (AD) == PLUS) \ 1505 temp = simplify_binary_operation (PLUS, Pmode, \ 1506 XEXP (AD, 0), XEXP (AD, 1)); \ 1507 \ 1508 new = temp ? temp : AD; \ 1509 \ 1510 if (optimize \ 1511 && GET_CODE (new) == PLUS \ 1512 && GET_CODE (XEXP (new, 0)) == REG \ 1513 && GET_CODE (XEXP (new, 1)) == CONST_INT) \ 1514 { \ 1515 offset = INTVAL (XEXP ((new), 1)); \ 1516 \ 1517 /* Choose rounding direction. Round up if we are >= halfway. */ \ 1518 if ((offset & mask) >= ((mask + 1) / 2)) \ 1519 newoffset = (offset & ~mask) + mask + 1; \ 1520 else \ 1521 newoffset = offset & ~mask; \ 1522 \ 1523 /* Ensure that long displacements are aligned. */ \ 1524 if (!VAL_5_BITS_P (newoffset) \ 1525 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \ 1526 newoffset &= ~(GET_MODE_SIZE (MODE) -1); \ 1527 \ 1528 if (newoffset != 0 && VAL_14_BITS_P (newoffset)) \ 1529 { \ 1530 temp = gen_rtx_PLUS (Pmode, XEXP (new, 0), \ 1531 GEN_INT (newoffset)); \ 1532 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\ 1533 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \ 1534 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \ 1535 (OPNUM), (TYPE)); \ 1536 goto WIN; \ 1537 } \ 1538 } \ 1539 } while (0) 1540 1541 1542 1543 1544 /* Try machine-dependent ways of modifying an illegitimate address 1545 to be legitimate. If we find one, return the new, valid address. 1546 This macro is used in only one place: `memory_address' in explow.c. 1547 1548 OLDX is the address as it was before break_out_memory_refs was called. 1549 In some cases it is useful to look at this to decide what needs to be done. 1550 1551 MODE and WIN are passed so that this macro can use 1552 GO_IF_LEGITIMATE_ADDRESS. 1553 1554 It is always safe for this macro to do nothing. It exists to recognize 1555 opportunities to optimize the output. */ 1556 1557 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ 1558 { rtx orig_x = (X); \ 1559 (X) = hppa_legitimize_address (X, OLDX, MODE); \ 1560 if ((X) != orig_x && memory_address_p (MODE, X)) \ 1561 goto WIN; } 1562 1563 /* Go to LABEL if ADDR (a legitimate address expression) 1564 has an effect that depends on the machine mode it is used for. */ 1565 1566 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ 1567 if (GET_CODE (ADDR) == PRE_DEC \ 1568 || GET_CODE (ADDR) == POST_DEC \ 1569 || GET_CODE (ADDR) == PRE_INC \ 1570 || GET_CODE (ADDR) == POST_INC) \ 1571 goto LABEL 1572 1573 #define TARGET_ASM_SELECT_SECTION pa_select_section 1574 1575 /* Return a nonzero value if DECL has a section attribute. */ 1576 #define IN_NAMED_SECTION_P(DECL) \ 1577 ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \ 1578 && DECL_SECTION_NAME (DECL) != NULL_TREE) 1579 1580 /* Define this macro if references to a symbol must be treated 1581 differently depending on something about the variable or 1582 function named by the symbol (such as what section it is in). 1583 1584 The macro definition, if any, is executed immediately after the 1585 rtl for DECL or other node is created. 1586 The value of the rtl will be a `mem' whose address is a 1587 `symbol_ref'. 1588 1589 The usual thing for this macro to do is to a flag in the 1590 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified 1591 name string in the `symbol_ref' (if one bit is not enough 1592 information). 1593 1594 On the HP-PA we use this to indicate if a symbol is in text or 1595 data space. Also, function labels need special treatment. */ 1596 1597 #define TEXT_SPACE_P(DECL)\ 1598 (TREE_CODE (DECL) == FUNCTION_DECL \ 1599 || (TREE_CODE (DECL) == VAR_DECL \ 1600 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \ 1601 && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \ 1602 && !flag_pic) \ 1603 || CONSTANT_CLASS_P (DECL)) 1604 1605 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@') 1606 1607 /* Specify the machine mode that this machine uses for the index in the 1608 tablejump instruction. For small tables, an element consists of a 1609 ia-relative branch and its delay slot. When -mbig-switch is specified, 1610 we use a 32-bit absolute address for non-pic code, and a 32-bit offset 1611 for both 32 and 64-bit pic code. */ 1612 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode) 1613 1614 /* Jump tables must be 32-bit aligned, no matter the size of the element. */ 1615 #define ADDR_VEC_ALIGN(ADDR_VEC) 2 1616 1617 /* Define this as 1 if `char' should by default be signed; else as 0. */ 1618 #define DEFAULT_SIGNED_CHAR 1 1619 1620 /* Max number of bytes we can move from memory to memory 1621 in one reasonably fast instruction. */ 1622 #define MOVE_MAX 8 1623 1624 /* Higher than the default as we prefer to use simple move insns 1625 (better scheduling and delay slot filling) and because our 1626 built-in block move is really a 2X unrolled loop. 1627 1628 Believe it or not, this has to be big enough to allow for copying all 1629 arguments passed in registers to avoid infinite recursion during argument 1630 setup for a function call. Why? Consider how we copy the stack slots 1631 reserved for parameters when they may be trashed by a call. */ 1632 #define MOVE_RATIO (TARGET_64BIT ? 8 : 4) 1633 1634 /* Define if operations between registers always perform the operation 1635 on the full register even if a narrower mode is specified. */ 1636 #define WORD_REGISTER_OPERATIONS 1637 1638 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD 1639 will either zero-extend or sign-extend. The value of this macro should 1640 be the code that says which one of the two operations is implicitly 1641 done, UNKNOWN if none. */ 1642 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND 1643 1644 /* Nonzero if access to memory by bytes is slow and undesirable. */ 1645 #define SLOW_BYTE_ACCESS 1 1646 1647 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits 1648 is done just by pretending it is already truncated. */ 1649 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 1650 1651 /* Specify the machine mode that pointers have. 1652 After generation of rtl, the compiler makes no further distinction 1653 between pointers and any other objects of this machine mode. */ 1654 #define Pmode word_mode 1655 1656 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, 1657 return the mode to be used for the comparison. For floating-point, CCFPmode 1658 should be used. CC_NOOVmode should be used when the first operand is a 1659 PLUS, MINUS, or NEG. CCmode should be used when no special processing is 1660 needed. */ 1661 #define SELECT_CC_MODE(OP,X,Y) \ 1662 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \ 1663 1664 /* A function address in a call instruction 1665 is a byte address (for indexing purposes) 1666 so give the MEM rtx a byte's mode. */ 1667 #define FUNCTION_MODE SImode 1668 1669 /* Define this if addresses of constant functions 1670 shouldn't be put through pseudo regs where they can be cse'd. 1671 Desirable on machines where ordinary constants are expensive 1672 but a CALL with constant address is cheap. */ 1673 #define NO_FUNCTION_CSE 1674 1675 /* Define this to be nonzero if shift instructions ignore all but the low-order 1676 few bits. */ 1677 #define SHIFT_COUNT_TRUNCATED 1 1678 1679 /* Compute extra cost of moving data between one register class 1680 and another. 1681 1682 Make moves from SAR so expensive they should never happen. We used to 1683 have 0xffff here, but that generates overflow in rare cases. 1684 1685 Copies involving a FP register and a non-FP register are relatively 1686 expensive because they must go through memory. 1687 1688 Other copies are reasonably cheap. */ 1689 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \ 1690 (CLASS1 == SHIFT_REGS ? 0x100 \ 1691 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \ 1692 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \ 1693 : 2) 1694 1695 /* Adjust the cost of branches. */ 1696 #define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1) 1697 1698 /* Handling the special cases is going to get too complicated for a macro, 1699 just call `pa_adjust_insn_length' to do the real work. */ 1700 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \ 1701 LENGTH += pa_adjust_insn_length (INSN, LENGTH); 1702 1703 /* Millicode insns are actually function calls with some special 1704 constraints on arguments and register usage. 1705 1706 Millicode calls always expect their arguments in the integer argument 1707 registers, and always return their result in %r29 (ret1). They 1708 are expected to clobber their arguments, %r1, %r29, and the return 1709 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else. 1710 1711 This macro tells reorg that the references to arguments and 1712 millicode calls do not appear to happen until after the millicode call. 1713 This allows reorg to put insns which set the argument registers into the 1714 delay slot of the millicode call -- thus they act more like traditional 1715 CALL_INSNs. 1716 1717 Note we cannot consider side effects of the insn to be delayed because 1718 the branch and link insn will clobber the return pointer. If we happened 1719 to use the return pointer in the delay slot of the call, then we lose. 1720 1721 get_attr_type will try to recognize the given insn, so make sure to 1722 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns 1723 in particular. */ 1724 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X)) 1725 1726 1727 /* Control the assembler format that we output. */ 1728 1729 /* A C string constant describing how to begin a comment in the target 1730 assembler language. The compiler assumes that the comment will end at 1731 the end of the line. */ 1732 1733 #define ASM_COMMENT_START ";" 1734 1735 /* Output to assembler file text saying following lines 1736 may contain character constants, extra white space, comments, etc. */ 1737 1738 #define ASM_APP_ON "" 1739 1740 /* Output to assembler file text saying following lines 1741 no longer contain unusual constructs. */ 1742 1743 #define ASM_APP_OFF "" 1744 1745 /* This is how to output the definition of a user-level label named NAME, 1746 such as the label on a static function or variable NAME. */ 1747 1748 #define ASM_OUTPUT_LABEL(FILE,NAME) \ 1749 do { \ 1750 assemble_name ((FILE), (NAME)); \ 1751 if (TARGET_GAS) \ 1752 fputs (":\n", (FILE)); \ 1753 else \ 1754 fputc ('\n', (FILE)); \ 1755 } while (0) 1756 1757 /* This is how to output a reference to a user-level label named NAME. 1758 `assemble_name' uses this. */ 1759 1760 #define ASM_OUTPUT_LABELREF(FILE,NAME) \ 1761 do { \ 1762 const char *xname = (NAME); \ 1763 if (FUNCTION_NAME_P (NAME)) \ 1764 xname += 1; \ 1765 if (xname[0] == '*') \ 1766 xname += 1; \ 1767 else \ 1768 fputs (user_label_prefix, FILE); \ 1769 fputs (xname, FILE); \ 1770 } while (0) 1771 1772 /* This how we output the symbol_ref X. */ 1773 1774 #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \ 1775 do { \ 1776 SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED; \ 1777 assemble_name (FILE, XSTR (X, 0)); \ 1778 } while (0) 1779 1780 /* This is how to store into the string LABEL 1781 the symbol_ref name of an internal numbered label where 1782 PREFIX is the class of label and NUM is the number within the class. 1783 This is suitable for output with `assemble_name'. */ 1784 1785 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ 1786 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM)) 1787 1788 /* Output the definition of a compiler-generated label named NAME. */ 1789 1790 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \ 1791 do { \ 1792 assemble_name_raw ((FILE), (NAME)); \ 1793 if (TARGET_GAS) \ 1794 fputs (":\n", (FILE)); \ 1795 else \ 1796 fputc ('\n', (FILE)); \ 1797 } while (0) 1798 1799 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label 1800 1801 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \ 1802 output_ascii ((FILE), (P), (SIZE)) 1803 1804 /* Jump tables are always placed in the text section. Technically, it 1805 is possible to put them in the readonly data section when -mbig-switch 1806 is specified. This has the benefit of getting the table out of .text 1807 and reducing branch lengths as a result. The downside is that an 1808 additional insn (addil) is needed to access the table when generating 1809 PIC code. The address difference table also has to use 32-bit 1810 pc-relative relocations. Currently, GAS does not support these 1811 relocations, although it is easily modified to do this operation. 1812 The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0" 1813 when using ELF GAS. A simple difference can be used when using 1814 SOM GAS or the HP assembler. The final downside is GDB complains 1815 about the nesting of the label for the table when debugging. */ 1816 1817 #define JUMP_TABLES_IN_TEXT_SECTION 1 1818 1819 /* This is how to output an element of a case-vector that is absolute. */ 1820 1821 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ 1822 if (TARGET_BIG_SWITCH) \ 1823 fprintf (FILE, "\t.word L$%04d\n", VALUE); \ 1824 else \ 1825 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE) 1826 1827 /* This is how to output an element of a case-vector that is relative. 1828 Since we always place jump tables in the text section, the difference 1829 is absolute and requires no relocation. */ 1830 1831 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ 1832 if (TARGET_BIG_SWITCH) \ 1833 fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL); \ 1834 else \ 1835 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE) 1836 1837 /* This is how to output an assembler line that says to advance the 1838 location counter to a multiple of 2**LOG bytes. */ 1839 1840 #define ASM_OUTPUT_ALIGN(FILE,LOG) \ 1841 fprintf (FILE, "\t.align %d\n", (1<<(LOG))) 1842 1843 #define ASM_OUTPUT_SKIP(FILE,SIZE) \ 1844 fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n", \ 1845 (unsigned HOST_WIDE_INT)(SIZE)) 1846 1847 /* This says how to output an assembler line to define an uninitialized 1848 global variable with size SIZE (in bytes) and alignment ALIGN (in bits). 1849 This macro exists to properly support languages like C++ which do not 1850 have common data. */ 1851 1852 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \ 1853 pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN) 1854 1855 /* This says how to output an assembler line to define a global common symbol 1856 with size SIZE (in bytes) and alignment ALIGN (in bits). */ 1857 1858 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \ 1859 pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN) 1860 1861 /* This says how to output an assembler line to define a local common symbol 1862 with size SIZE (in bytes) and alignment ALIGN (in bits). This macro 1863 controls how the assembler definitions of uninitialized static variables 1864 are output. */ 1865 1866 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \ 1867 pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN) 1868 1869 1870 #define ASM_PN_FORMAT "%s___%lu" 1871 1872 /* All HP assemblers use "!" to separate logical lines. */ 1873 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!') 1874 1875 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \ 1876 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^') 1877 1878 /* Print operand X (an rtx) in assembler syntax to file FILE. 1879 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. 1880 For `%' followed by punctuation, CODE is the punctuation and X is null. 1881 1882 On the HP-PA, the CODE can be `r', meaning this is a register-only operand 1883 and an immediate zero should be represented as `r0'. 1884 1885 Several % codes are defined: 1886 O an operation 1887 C compare conditions 1888 N extract conditions 1889 M modifier to handle preincrement addressing for memory refs. 1890 F modifier to handle preincrement addressing for fp memory refs */ 1891 1892 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) 1893 1894 1895 /* Print a memory address as an operand to reference that memory location. */ 1896 1897 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ 1898 { rtx addr = ADDR; \ 1899 switch (GET_CODE (addr)) \ 1900 { \ 1901 case REG: \ 1902 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \ 1903 break; \ 1904 case PLUS: \ 1905 gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT); \ 1906 fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)), \ 1907 reg_names [REGNO (XEXP (addr, 0))]); \ 1908 break; \ 1909 case LO_SUM: \ 1910 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \ 1911 fputs ("R'", FILE); \ 1912 else if (flag_pic == 0) \ 1913 fputs ("RR'", FILE); \ 1914 else \ 1915 fputs ("RT'", FILE); \ 1916 output_global_address (FILE, XEXP (addr, 1), 0); \ 1917 fputs ("(", FILE); \ 1918 output_operand (XEXP (addr, 0), 0); \ 1919 fputs (")", FILE); \ 1920 break; \ 1921 case CONST_INT: \ 1922 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr)); \ 1923 break; \ 1924 default: \ 1925 output_addr_const (FILE, addr); \ 1926 }} 1927 1928 1929 /* Find the return address associated with the frame given by 1930 FRAMEADDR. */ 1931 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \ 1932 (return_addr_rtx (COUNT, FRAMEADDR)) 1933 1934 /* Used to mask out junk bits from the return address, such as 1935 processor state, interrupt status, condition codes and the like. */ 1936 #define MASK_RETURN_ADDR \ 1937 /* The privilege level is in the two low order bits, mask em out \ 1938 of the return address. */ \ 1939 (GEN_INT (-4)) 1940 1941 /* The number of Pmode words for the setjmp buffer. */ 1942 #define JMP_BUF_SIZE 50 1943 1944 /* We need a libcall to canonicalize function pointers on TARGET_ELF32. */ 1945 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \ 1946 "__canonicalize_funcptr_for_compare" 1947 1948 #ifdef HAVE_AS_TLS 1949 #undef TARGET_HAVE_TLS 1950 #define TARGET_HAVE_TLS true 1951 #endif 1952