1 /* Standard register usage. */ 2 3 /* Number of actual hardware registers. 4 The hardware registers are assigned numbers for the compiler 5 from 0 to just below FIRST_PSEUDO_REGISTER. 6 All registers that the compiler knows about must be given numbers, 7 even those that are not normally considered general registers. 8 9 HP-PA 1.0 has 32 fullword registers and 16 floating point 10 registers. The floating point registers hold either word or double 11 word values. 12 13 16 additional registers are reserved. 14 15 HP-PA 1.1 has 32 fullword registers and 32 floating point 16 registers. However, the floating point registers behave 17 differently: the left and right halves of registers are addressable 18 as 32 bit registers. So, we will set things up like the 68k which 19 has different fp units: define separate register sets for the 1.0 20 and 1.1 fp units. */ 21 22 #define FIRST_PSEUDO_REGISTER 89 /* 32 general regs + 56 fp regs + 23 + 1 shift reg */ 24 25 /* 1 for registers that have pervasive standard uses 26 and are not available for the register allocator. 27 28 On the HP-PA, these are: 29 Reg 0 = 0 (hardware). However, 0 is used for condition code, 30 so is not fixed. 31 Reg 1 = ADDIL target/Temporary (hardware). 32 Reg 2 = Return Pointer 33 Reg 3 = Frame Pointer 34 Reg 4 = Frame Pointer (>8k varying frame with HP compilers only) 35 Reg 4-18 = Preserved Registers 36 Reg 19 = Linkage Table Register in HPUX 8.0 shared library scheme. 37 Reg 20-22 = Temporary Registers 38 Reg 23-26 = Temporary/Parameter Registers 39 Reg 27 = Global Data Pointer (hp) 40 Reg 28 = Temporary/Return Value register 41 Reg 29 = Temporary/Static Chain/Return Value register #2 42 Reg 30 = stack pointer 43 Reg 31 = Temporary/Millicode Return Pointer (hp) 44 45 Freg 0-3 = Status Registers -- Not known to the compiler. 46 Freg 4-7 = Arguments/Return Value 47 Freg 8-11 = Temporary Registers 48 Freg 12-15 = Preserved Registers 49 50 Freg 16-31 = Reserved 51 52 On the Snake, fp regs are 53 54 Freg 0-3 = Status Registers -- Not known to the compiler. 55 Freg 4L-7R = Arguments/Return Value 56 Freg 8L-11R = Temporary Registers 57 Freg 12L-21R = Preserved Registers 58 Freg 22L-31R = Temporary Registers 59 60 */ 61 62 #define FIXED_REGISTERS \ 63 {0, 0, 0, 0, 0, 0, 0, 0, \ 64 0, 0, 0, 0, 0, 0, 0, 0, \ 65 0, 0, 0, 0, 0, 0, 0, 0, \ 66 0, 0, 0, 1, 0, 0, 1, 0, \ 67 /* fp registers */ \ 68 0, 0, 0, 0, 0, 0, 0, 0, \ 69 0, 0, 0, 0, 0, 0, 0, 0, \ 70 0, 0, 0, 0, 0, 0, 0, 0, \ 71 0, 0, 0, 0, 0, 0, 0, 0, \ 72 0, 0, 0, 0, 0, 0, 0, 0, \ 73 0, 0, 0, 0, 0, 0, 0, 0, \ 74 0, 0, 0, 0, 0, 0, 0, 0, \ 75 0} 76 77 /* 1 for registers not available across function calls. 78 These must include the FIXED_REGISTERS and also any 79 registers that can be used without being saved. 80 The latter must include the registers where values are returned 81 and the register where structure-value addresses are passed. 82 Aside from that, you can include as many other registers as you like. */ 83 #define CALL_USED_REGISTERS \ 84 {1, 1, 1, 0, 0, 0, 0, 0, \ 85 0, 0, 0, 0, 0, 0, 0, 0, \ 86 0, 0, 0, 1, 1, 1, 1, 1, \ 87 1, 1, 1, 1, 1, 1, 1, 1, \ 88 /* fp registers */ \ 89 1, 1, 1, 1, 1, 1, 1, 1, \ 90 1, 1, 1, 1, 1, 1, 1, 1, \ 91 0, 0, 0, 0, 0, 0, 0, 0, \ 92 0, 0, 0, 0, 0, 0, 0, 0, \ 93 0, 0, 0, 0, 1, 1, 1, 1, \ 94 1, 1, 1, 1, 1, 1, 1, 1, \ 95 1, 1, 1, 1, 1, 1, 1, 1, \ 96 1} 97 98 #define CONDITIONAL_REGISTER_USAGE \ 99 { \ 100 int i; \ 101 if (!TARGET_PA_11) \ 102 { \ 103 for (i = 56; i < 88; i++) \ 104 fixed_regs[i] = call_used_regs[i] = 1; \ 105 for (i = 33; i < 88; i += 2) \ 106 fixed_regs[i] = call_used_regs[i] = 1; \ 107 } \ 108 if (TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT)\ 109 { \ 110 for (i = 32; i < 88; i++) \ 111 fixed_regs[i] = call_used_regs[i] = 1; \ 112 } \ 113 if (flag_pic) \ 114 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ 115 } 116 117 /* Allocate the call used registers first. This should minimize 118 the number of registers that need to be saved (as call used 119 registers will generally not be allocated across a call). 120 121 Experimentation has shown slightly better results by allocating 122 FP registers first. We allocate the caller-saved registers more 123 or less in reverse order to their allocation as arguments. 124 125 FP registers are ordered so that all L registers are selected before 126 R registers. This works around a false dependency interlock on the 127 PA8000 when accessing the high and low parts of an FP register 128 independently. */ 129 130 #define REG_ALLOC_ORDER \ 131 { \ 132 /* caller-saved fp regs. */ \ 133 68, 70, 72, 74, 76, 78, 80, 82, \ 134 84, 86, 40, 42, 44, 46, 38, 36, \ 135 34, 32, \ 136 69, 71, 73, 75, 77, 79, 81, 83, \ 137 85, 87, 41, 43, 45, 47, 39, 37, \ 138 35, 33, \ 139 /* caller-saved general regs. */ \ 140 28, 19, 20, 21, 22, 31, 27, 29, \ 141 23, 24, 25, 26, 2, \ 142 /* callee-saved fp regs. */ \ 143 48, 50, 52, 54, 56, 58, 60, 62, \ 144 64, 66, \ 145 49, 51, 53, 55, 57, 59, 61, 63, \ 146 65, 67, \ 147 /* callee-saved general regs. */ \ 148 3, 4, 5, 6, 7, 8, 9, 10, \ 149 11, 12, 13, 14, 15, 16, 17, 18, \ 150 /* special registers. */ \ 151 1, 30, 0, 88} 152 153 154 /* Return number of consecutive hard regs needed starting at reg REGNO 155 to hold something of mode MODE. 156 This is ordinarily the length in words of a value of mode MODE 157 but can be less for certain modes in special long registers. 158 159 On the HP-PA, general registers are 32 bits wide. The floating 160 point registers are 64 bits wide. Snake fp regs are treated as 161 32 bits wide since the left and right parts are independently 162 accessible. */ 163 #define HARD_REGNO_NREGS(REGNO, MODE) \ 164 (FP_REGNO_P (REGNO) \ 165 ? (!TARGET_PA_11 \ 166 ? COMPLEX_MODE_P (MODE) ? 2 : 1 \ 167 : (GET_MODE_SIZE (MODE) + 4 - 1) / 4) \ 168 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) 169 170 /* There are no instructions that use DImode in PA 1.0, so we only 171 allow it in PA 1.1 and later. */ 172 #define VALID_FP_MODE_P(MODE) \ 173 ((MODE) == SFmode || (MODE) == DFmode \ 174 || (MODE) == SCmode || (MODE) == DCmode \ 175 || (MODE) == QImode || (MODE) == HImode || (MODE) == SImode \ 176 || (TARGET_PA_11 && (MODE) == DImode)) 177 178 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. 179 180 On the HP-PA, the cpu registers can hold any mode that fits in 32 bits. 181 For the 64-bit modes, we choose a set of non-overlapping general registers 182 that includes the incoming arguments and the return value. We specify a 183 set with no overlaps so that we don't have to specify that the destination 184 register is an early clobber in patterns using this mode. Except for the 185 return value, the starting registers are odd. For 128 and 256 bit modes, 186 we similarly specify non-overlapping sets of cpu registers. However, 187 there aren't any patterns defined for modes larger than 64 bits at the 188 moment. 189 190 We limit the modes allowed in the floating point registers to the 191 set of modes used in the machine definition. In addition, we allow 192 the complex modes SCmode and DCmode. The real and imaginary parts 193 of complex modes are allocated to separate registers. This might 194 allow patterns to be defined in the future to operate on these values. 195 196 The PA 2.0 architecture specifies that quad-precision floating-point 197 values should start on an even floating point register. Thus, we 198 choose non-overlapping sets of registers starting on even register 199 boundaries for large modes. However, there is currently no support 200 in the machine definition for modes larger than 64 bits. TFmode is 201 supported under HP-UX using libcalls. Since TFmode values are passed 202 by reference, they never need to be loaded into the floating-point 203 registers. */ 204 #define HARD_REGNO_MODE_OK(REGNO, MODE) \ 205 ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode \ 206 : !TARGET_PA_11 && FP_REGNO_P (REGNO) \ 207 ? (VALID_FP_MODE_P (MODE) \ 208 && (GET_MODE_SIZE (MODE) <= 8 \ 209 || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0))) \ 210 : FP_REGNO_P (REGNO) \ 211 ? (VALID_FP_MODE_P (MODE) \ 212 && (GET_MODE_SIZE (MODE) <= 4 \ 213 || (GET_MODE_SIZE (MODE) == 8 && ((REGNO) & 1) == 0) \ 214 || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0) \ 215 || (GET_MODE_SIZE (MODE) == 32 && ((REGNO) & 7) == 0))) \ 216 : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \ 217 || (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD \ 218 && ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28)) \ 219 || (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD \ 220 && ((REGNO) & 3) == 3 && (REGNO) <= 23) \ 221 || (GET_MODE_SIZE (MODE) == 8 * UNITS_PER_WORD \ 222 && ((REGNO) & 7) == 3 && (REGNO) <= 19))) 223 224 /* How to renumber registers for dbx and gdb. 225 226 Registers 0 - 31 remain unchanged. 227 228 Registers 32 - 87 are mapped to 72 - 127 229 230 Register 88 is mapped to 32. */ 231 232 #define DBX_REGISTER_NUMBER(REGNO) \ 233 ((REGNO) <= 31 ? (REGNO) : \ 234 ((REGNO) <= 87 ? (REGNO) + 40 : 32)) 235 236 /* We must not use the DBX register numbers for the DWARF 2 CFA column 237 numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER. 238 Instead use the identity mapping. */ 239 #define DWARF_FRAME_REGNUM(REG) REG 240 241 /* Define the classes of registers for register constraints in the 242 machine description. Also define ranges of constants. 243 244 One of the classes must always be named ALL_REGS and include all hard regs. 245 If there is more than one class, another class must be named NO_REGS 246 and contain no registers. 247 248 The name GENERAL_REGS must be the name of a class (or an alias for 249 another name such as ALL_REGS). This is the class of registers 250 that is allowed by "g" or "r" in a register constraint. 251 Also, registers outside this class are allocated only when 252 instructions express preferences for them. 253 254 The classes must be numbered in nondecreasing order; that is, 255 a larger-numbered class must never be contained completely 256 in a smaller-numbered class. 257 258 For any two classes, it is very desirable that there be another 259 class that represents their union. */ 260 261 /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs, 262 1.1 fp regs, and the high 1.1 fp regs, to which the operands of 263 fmpyadd and fmpysub are restricted. */ 264 265 enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS, 266 GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES}; 267 268 #define N_REG_CLASSES (int) LIM_REG_CLASSES 269 270 /* Give names of register classes as strings for dump file. */ 271 272 #define REG_CLASS_NAMES \ 273 {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \ 274 "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"} 275 276 /* Define which registers fit in which classes. 277 This is an initializer for a vector of HARD_REG_SET 278 of length N_REG_CLASSES. Register 0, the "condition code" register, 279 is in no class. */ 280 281 #define REG_CLASS_CONTENTS \ 282 {{0x00000000, 0x00000000, 0x00000000}, /* NO_REGS */ \ 283 {0x00000002, 0x00000000, 0x00000000}, /* R1_REGS */ \ 284 {0xfffffffe, 0x00000000, 0x00000000}, /* GENERAL_REGS */ \ 285 {0x00000000, 0xff000000, 0x00ffffff}, /* FPUPPER_REGS */ \ 286 {0x00000000, 0xffffffff, 0x00ffffff}, /* FP_REGS */ \ 287 {0xfffffffe, 0xffffffff, 0x00ffffff}, /* GENERAL_OR_FP_REGS */ \ 288 {0x00000000, 0x00000000, 0x01000000}, /* SHIFT_REGS */ \ 289 {0xfffffffe, 0xffffffff, 0x01ffffff}} /* ALL_REGS */ 290 291 /* Return the class number of the smallest class containing 292 reg number REGNO. This could be a conditional expression 293 or could index an array. */ 294 295 #define REGNO_REG_CLASS(REGNO) \ 296 ((REGNO) == 0 ? NO_REGS \ 297 : (REGNO) == 1 ? R1_REGS \ 298 : (REGNO) < 32 ? GENERAL_REGS \ 299 : (REGNO) < 56 ? FP_REGS \ 300 : (REGNO) < 88 ? FPUPPER_REGS \ 301 : SHIFT_REGS) 302 303 /* Get reg_class from a letter such as appears in the machine description. */ 304 /* Keep 'x' for backward compatibility with user asm. */ 305 #define REG_CLASS_FROM_LETTER(C) \ 306 ((C) == 'f' ? FP_REGS : \ 307 (C) == 'y' ? FPUPPER_REGS : \ 308 (C) == 'x' ? FP_REGS : \ 309 (C) == 'q' ? SHIFT_REGS : \ 310 (C) == 'a' ? R1_REGS : \ 311 (C) == 'Z' ? ALL_REGS : NO_REGS) 312 313 /* Return the maximum number of consecutive registers 314 needed to represent mode MODE in a register of class CLASS. */ 315 #define CLASS_MAX_NREGS(CLASS, MODE) \ 316 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS \ 317 ? (!TARGET_PA_11 \ 318 ? COMPLEX_MODE_P (MODE) ? 2 : 1 \ 319 : (GET_MODE_SIZE (MODE) + 4 - 1) / 4) \ 320 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) 321 322 /* 1 if N is a possible register number for function argument passing. */ 323 324 #define FUNCTION_ARG_REGNO_P(N) \ 325 (((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39)) 326 327 /* How to refer to registers in assembler output. 328 This sequence is indexed by compiler's hard-register-number (see above). */ 329 330 #define REGISTER_NAMES \ 331 {"%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \ 332 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \ 333 "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", \ 334 "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", \ 335 "%fr4", "%fr4R", "%fr5", "%fr5R", "%fr6", "%fr6R", "%fr7", "%fr7R", \ 336 "%fr8", "%fr8R", "%fr9", "%fr9R", "%fr10", "%fr10R", "%fr11", "%fr11R", \ 337 "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \ 338 "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \ 339 "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \ 340 "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \ 341 "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \ 342 "SAR"} 343 344 #define ADDITIONAL_REGISTER_NAMES \ 345 {{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38}, \ 346 {"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46}, \ 347 {"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54}, \ 348 {"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62}, \ 349 {"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70}, \ 350 {"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78}, \ 351 {"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86}, \ 352 {"%cr11",88}} 353 354 #define FP_SAVED_REG_LAST 66 355 #define FP_SAVED_REG_FIRST 48 356 #define FP_REG_STEP 2 357 #define FP_REG_FIRST 32 358 #define FP_REG_LAST 87 359