1 /* Calculate (post)dominators in slightly super-linear time. 2 Copyright (C) 2000, 2003, 2004, 2005 Free Software Foundation, Inc. 3 Contributed by Michael Matz (matz@ifh.de). 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it 8 under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT 13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public 15 License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING. If not, write to the Free 19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 20 02110-1301, USA. */ 21 22 /* This file implements the well known algorithm from Lengauer and Tarjan 23 to compute the dominators in a control flow graph. A basic block D is said 24 to dominate another block X, when all paths from the entry node of the CFG 25 to X go also over D. The dominance relation is a transitive reflexive 26 relation and its minimal transitive reduction is a tree, called the 27 dominator tree. So for each block X besides the entry block exists a 28 block I(X), called the immediate dominator of X, which is the parent of X 29 in the dominator tree. 30 31 The algorithm computes this dominator tree implicitly by computing for 32 each block its immediate dominator. We use tree balancing and path 33 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very 34 slowly growing functional inverse of the Ackerman function. */ 35 36 #include "config.h" 37 #include "system.h" 38 #include "coretypes.h" 39 #include "tm.h" 40 #include "rtl.h" 41 #include "hard-reg-set.h" 42 #include "obstack.h" 43 #include "basic-block.h" 44 #include "toplev.h" 45 #include "et-forest.h" 46 #include "timevar.h" 47 48 /* Whether the dominators and the postdominators are available. */ 49 enum dom_state dom_computed[2]; 50 51 /* We name our nodes with integers, beginning with 1. Zero is reserved for 52 'undefined' or 'end of list'. The name of each node is given by the dfs 53 number of the corresponding basic block. Please note, that we include the 54 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to 55 support multiple entry points. Its dfs number is of course 1. */ 56 57 /* Type of Basic Block aka. TBB */ 58 typedef unsigned int TBB; 59 60 /* We work in a poor-mans object oriented fashion, and carry an instance of 61 this structure through all our 'methods'. It holds various arrays 62 reflecting the (sub)structure of the flowgraph. Most of them are of type 63 TBB and are also indexed by TBB. */ 64 65 struct dom_info 66 { 67 /* The parent of a node in the DFS tree. */ 68 TBB *dfs_parent; 69 /* For a node x key[x] is roughly the node nearest to the root from which 70 exists a way to x only over nodes behind x. Such a node is also called 71 semidominator. */ 72 TBB *key; 73 /* The value in path_min[x] is the node y on the path from x to the root of 74 the tree x is in with the smallest key[y]. */ 75 TBB *path_min; 76 /* bucket[x] points to the first node of the set of nodes having x as key. */ 77 TBB *bucket; 78 /* And next_bucket[x] points to the next node. */ 79 TBB *next_bucket; 80 /* After the algorithm is done, dom[x] contains the immediate dominator 81 of x. */ 82 TBB *dom; 83 84 /* The following few fields implement the structures needed for disjoint 85 sets. */ 86 /* set_chain[x] is the next node on the path from x to the representant 87 of the set containing x. If set_chain[x]==0 then x is a root. */ 88 TBB *set_chain; 89 /* set_size[x] is the number of elements in the set named by x. */ 90 unsigned int *set_size; 91 /* set_child[x] is used for balancing the tree representing a set. It can 92 be understood as the next sibling of x. */ 93 TBB *set_child; 94 95 /* If b is the number of a basic block (BB->index), dfs_order[b] is the 96 number of that node in DFS order counted from 1. This is an index 97 into most of the other arrays in this structure. */ 98 TBB *dfs_order; 99 /* If x is the DFS-index of a node which corresponds with a basic block, 100 dfs_to_bb[x] is that basic block. Note, that in our structure there are 101 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb 102 is true for every basic block bb, but not the opposite. */ 103 basic_block *dfs_to_bb; 104 105 /* This is the next free DFS number when creating the DFS tree. */ 106 unsigned int dfsnum; 107 /* The number of nodes in the DFS tree (==dfsnum-1). */ 108 unsigned int nodes; 109 110 /* Blocks with bits set here have a fake edge to EXIT. These are used 111 to turn a DFS forest into a proper tree. */ 112 bitmap fake_exit_edge; 113 }; 114 115 static void init_dom_info (struct dom_info *, enum cdi_direction); 116 static void free_dom_info (struct dom_info *); 117 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, 118 enum cdi_direction); 119 static void calc_dfs_tree (struct dom_info *, enum cdi_direction); 120 static void compress (struct dom_info *, TBB); 121 static TBB eval (struct dom_info *, TBB); 122 static void link_roots (struct dom_info *, TBB, TBB); 123 static void calc_idoms (struct dom_info *, enum cdi_direction); 124 void debug_dominance_info (enum cdi_direction); 125 126 /* Keeps track of the*/ 127 static unsigned n_bbs_in_dom_tree[2]; 128 129 /* Helper macro for allocating and initializing an array, 130 for aesthetic reasons. */ 131 #define init_ar(var, type, num, content) \ 132 do \ 133 { \ 134 unsigned int i = 1; /* Catch content == i. */ \ 135 if (! (content)) \ 136 (var) = XCNEWVEC (type, num); \ 137 else \ 138 { \ 139 (var) = XNEWVEC (type, (num)); \ 140 for (i = 0; i < num; i++) \ 141 (var)[i] = (content); \ 142 } \ 143 } \ 144 while (0) 145 146 /* Allocate all needed memory in a pessimistic fashion (so we round up). 147 This initializes the contents of DI, which already must be allocated. */ 148 149 static void 150 init_dom_info (struct dom_info *di, enum cdi_direction dir) 151 { 152 unsigned int num = n_basic_blocks; 153 init_ar (di->dfs_parent, TBB, num, 0); 154 init_ar (di->path_min, TBB, num, i); 155 init_ar (di->key, TBB, num, i); 156 init_ar (di->dom, TBB, num, 0); 157 158 init_ar (di->bucket, TBB, num, 0); 159 init_ar (di->next_bucket, TBB, num, 0); 160 161 init_ar (di->set_chain, TBB, num, 0); 162 init_ar (di->set_size, unsigned int, num, 1); 163 init_ar (di->set_child, TBB, num, 0); 164 165 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0); 166 init_ar (di->dfs_to_bb, basic_block, num, 0); 167 168 di->dfsnum = 1; 169 di->nodes = 0; 170 171 di->fake_exit_edge = dir ? BITMAP_ALLOC (NULL) : NULL; 172 } 173 174 #undef init_ar 175 176 /* Free all allocated memory in DI, but not DI itself. */ 177 178 static void 179 free_dom_info (struct dom_info *di) 180 { 181 free (di->dfs_parent); 182 free (di->path_min); 183 free (di->key); 184 free (di->dom); 185 free (di->bucket); 186 free (di->next_bucket); 187 free (di->set_chain); 188 free (di->set_size); 189 free (di->set_child); 190 free (di->dfs_order); 191 free (di->dfs_to_bb); 192 BITMAP_FREE (di->fake_exit_edge); 193 } 194 195 /* The nonrecursive variant of creating a DFS tree. DI is our working 196 structure, BB the starting basic block for this tree and REVERSE 197 is true, if predecessors should be visited instead of successors of a 198 node. After this is done all nodes reachable from BB were visited, have 199 assigned their dfs number and are linked together to form a tree. */ 200 201 static void 202 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, 203 enum cdi_direction reverse) 204 { 205 /* We call this _only_ if bb is not already visited. */ 206 edge e; 207 TBB child_i, my_i = 0; 208 edge_iterator *stack; 209 edge_iterator ei, einext; 210 int sp; 211 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward 212 problem). */ 213 basic_block en_block; 214 /* Ending block. */ 215 basic_block ex_block; 216 217 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1); 218 sp = 0; 219 220 /* Initialize our border blocks, and the first edge. */ 221 if (reverse) 222 { 223 ei = ei_start (bb->preds); 224 en_block = EXIT_BLOCK_PTR; 225 ex_block = ENTRY_BLOCK_PTR; 226 } 227 else 228 { 229 ei = ei_start (bb->succs); 230 en_block = ENTRY_BLOCK_PTR; 231 ex_block = EXIT_BLOCK_PTR; 232 } 233 234 /* When the stack is empty we break out of this loop. */ 235 while (1) 236 { 237 basic_block bn; 238 239 /* This loop traverses edges e in depth first manner, and fills the 240 stack. */ 241 while (!ei_end_p (ei)) 242 { 243 e = ei_edge (ei); 244 245 /* Deduce from E the current and the next block (BB and BN), and the 246 next edge. */ 247 if (reverse) 248 { 249 bn = e->src; 250 251 /* If the next node BN is either already visited or a border 252 block the current edge is useless, and simply overwritten 253 with the next edge out of the current node. */ 254 if (bn == ex_block || di->dfs_order[bn->index]) 255 { 256 ei_next (&ei); 257 continue; 258 } 259 bb = e->dest; 260 einext = ei_start (bn->preds); 261 } 262 else 263 { 264 bn = e->dest; 265 if (bn == ex_block || di->dfs_order[bn->index]) 266 { 267 ei_next (&ei); 268 continue; 269 } 270 bb = e->src; 271 einext = ei_start (bn->succs); 272 } 273 274 gcc_assert (bn != en_block); 275 276 /* Fill the DFS tree info calculatable _before_ recursing. */ 277 if (bb != en_block) 278 my_i = di->dfs_order[bb->index]; 279 else 280 my_i = di->dfs_order[last_basic_block]; 281 child_i = di->dfs_order[bn->index] = di->dfsnum++; 282 di->dfs_to_bb[child_i] = bn; 283 di->dfs_parent[child_i] = my_i; 284 285 /* Save the current point in the CFG on the stack, and recurse. */ 286 stack[sp++] = ei; 287 ei = einext; 288 } 289 290 if (!sp) 291 break; 292 ei = stack[--sp]; 293 294 /* OK. The edge-list was exhausted, meaning normally we would 295 end the recursion. After returning from the recursive call, 296 there were (may be) other statements which were run after a 297 child node was completely considered by DFS. Here is the 298 point to do it in the non-recursive variant. 299 E.g. The block just completed is in e->dest for forward DFS, 300 the block not yet completed (the parent of the one above) 301 in e->src. This could be used e.g. for computing the number of 302 descendants or the tree depth. */ 303 ei_next (&ei); 304 } 305 free (stack); 306 } 307 308 /* The main entry for calculating the DFS tree or forest. DI is our working 309 structure and REVERSE is true, if we are interested in the reverse flow 310 graph. In that case the result is not necessarily a tree but a forest, 311 because there may be nodes from which the EXIT_BLOCK is unreachable. */ 312 313 static void 314 calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse) 315 { 316 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */ 317 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR; 318 di->dfs_order[last_basic_block] = di->dfsnum; 319 di->dfs_to_bb[di->dfsnum] = begin; 320 di->dfsnum++; 321 322 calc_dfs_tree_nonrec (di, begin, reverse); 323 324 if (reverse) 325 { 326 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK. 327 They are reverse-unreachable. In the dom-case we disallow such 328 nodes, but in post-dom we have to deal with them. 329 330 There are two situations in which this occurs. First, noreturn 331 functions. Second, infinite loops. In the first case we need to 332 pretend that there is an edge to the exit block. In the second 333 case, we wind up with a forest. We need to process all noreturn 334 blocks before we know if we've got any infinite loops. */ 335 336 basic_block b; 337 bool saw_unconnected = false; 338 339 FOR_EACH_BB_REVERSE (b) 340 { 341 if (EDGE_COUNT (b->succs) > 0) 342 { 343 if (di->dfs_order[b->index] == 0) 344 saw_unconnected = true; 345 continue; 346 } 347 bitmap_set_bit (di->fake_exit_edge, b->index); 348 di->dfs_order[b->index] = di->dfsnum; 349 di->dfs_to_bb[di->dfsnum] = b; 350 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block]; 351 di->dfsnum++; 352 calc_dfs_tree_nonrec (di, b, reverse); 353 } 354 355 if (saw_unconnected) 356 { 357 FOR_EACH_BB_REVERSE (b) 358 { 359 if (di->dfs_order[b->index]) 360 continue; 361 bitmap_set_bit (di->fake_exit_edge, b->index); 362 di->dfs_order[b->index] = di->dfsnum; 363 di->dfs_to_bb[di->dfsnum] = b; 364 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block]; 365 di->dfsnum++; 366 calc_dfs_tree_nonrec (di, b, reverse); 367 } 368 } 369 } 370 371 di->nodes = di->dfsnum - 1; 372 373 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */ 374 gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1); 375 } 376 377 /* Compress the path from V to the root of its set and update path_min at the 378 same time. After compress(di, V) set_chain[V] is the root of the set V is 379 in and path_min[V] is the node with the smallest key[] value on the path 380 from V to that root. */ 381 382 static void 383 compress (struct dom_info *di, TBB v) 384 { 385 /* Btw. It's not worth to unrecurse compress() as the depth is usually not 386 greater than 5 even for huge graphs (I've not seen call depth > 4). 387 Also performance wise compress() ranges _far_ behind eval(). */ 388 TBB parent = di->set_chain[v]; 389 if (di->set_chain[parent]) 390 { 391 compress (di, parent); 392 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]]) 393 di->path_min[v] = di->path_min[parent]; 394 di->set_chain[v] = di->set_chain[parent]; 395 } 396 } 397 398 /* Compress the path from V to the set root of V if needed (when the root has 399 changed since the last call). Returns the node with the smallest key[] 400 value on the path from V to the root. */ 401 402 static inline TBB 403 eval (struct dom_info *di, TBB v) 404 { 405 /* The representant of the set V is in, also called root (as the set 406 representation is a tree). */ 407 TBB rep = di->set_chain[v]; 408 409 /* V itself is the root. */ 410 if (!rep) 411 return di->path_min[v]; 412 413 /* Compress only if necessary. */ 414 if (di->set_chain[rep]) 415 { 416 compress (di, v); 417 rep = di->set_chain[v]; 418 } 419 420 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]]) 421 return di->path_min[v]; 422 else 423 return di->path_min[rep]; 424 } 425 426 /* This essentially merges the two sets of V and W, giving a single set with 427 the new root V. The internal representation of these disjoint sets is a 428 balanced tree. Currently link(V,W) is only used with V being the parent 429 of W. */ 430 431 static void 432 link_roots (struct dom_info *di, TBB v, TBB w) 433 { 434 TBB s = w; 435 436 /* Rebalance the tree. */ 437 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]]) 438 { 439 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]] 440 >= 2 * di->set_size[di->set_child[s]]) 441 { 442 di->set_chain[di->set_child[s]] = s; 443 di->set_child[s] = di->set_child[di->set_child[s]]; 444 } 445 else 446 { 447 di->set_size[di->set_child[s]] = di->set_size[s]; 448 s = di->set_chain[s] = di->set_child[s]; 449 } 450 } 451 452 di->path_min[s] = di->path_min[w]; 453 di->set_size[v] += di->set_size[w]; 454 if (di->set_size[v] < 2 * di->set_size[w]) 455 { 456 TBB tmp = s; 457 s = di->set_child[v]; 458 di->set_child[v] = tmp; 459 } 460 461 /* Merge all subtrees. */ 462 while (s) 463 { 464 di->set_chain[s] = v; 465 s = di->set_child[s]; 466 } 467 } 468 469 /* This calculates the immediate dominators (or post-dominators if REVERSE is 470 true). DI is our working structure and should hold the DFS forest. 471 On return the immediate dominator to node V is in di->dom[V]. */ 472 473 static void 474 calc_idoms (struct dom_info *di, enum cdi_direction reverse) 475 { 476 TBB v, w, k, par; 477 basic_block en_block; 478 edge_iterator ei, einext; 479 480 if (reverse) 481 en_block = EXIT_BLOCK_PTR; 482 else 483 en_block = ENTRY_BLOCK_PTR; 484 485 /* Go backwards in DFS order, to first look at the leafs. */ 486 v = di->nodes; 487 while (v > 1) 488 { 489 basic_block bb = di->dfs_to_bb[v]; 490 edge e; 491 492 par = di->dfs_parent[v]; 493 k = v; 494 495 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds); 496 497 if (reverse) 498 { 499 /* If this block has a fake edge to exit, process that first. */ 500 if (bitmap_bit_p (di->fake_exit_edge, bb->index)) 501 { 502 einext = ei; 503 einext.index = 0; 504 goto do_fake_exit_edge; 505 } 506 } 507 508 /* Search all direct predecessors for the smallest node with a path 509 to them. That way we have the smallest node with also a path to 510 us only over nodes behind us. In effect we search for our 511 semidominator. */ 512 while (!ei_end_p (ei)) 513 { 514 TBB k1; 515 basic_block b; 516 517 e = ei_edge (ei); 518 b = (reverse) ? e->dest : e->src; 519 einext = ei; 520 ei_next (&einext); 521 522 if (b == en_block) 523 { 524 do_fake_exit_edge: 525 k1 = di->dfs_order[last_basic_block]; 526 } 527 else 528 k1 = di->dfs_order[b->index]; 529 530 /* Call eval() only if really needed. If k1 is above V in DFS tree, 531 then we know, that eval(k1) == k1 and key[k1] == k1. */ 532 if (k1 > v) 533 k1 = di->key[eval (di, k1)]; 534 if (k1 < k) 535 k = k1; 536 537 ei = einext; 538 } 539 540 di->key[v] = k; 541 link_roots (di, par, v); 542 di->next_bucket[v] = di->bucket[k]; 543 di->bucket[k] = v; 544 545 /* Transform semidominators into dominators. */ 546 for (w = di->bucket[par]; w; w = di->next_bucket[w]) 547 { 548 k = eval (di, w); 549 if (di->key[k] < di->key[w]) 550 di->dom[w] = k; 551 else 552 di->dom[w] = par; 553 } 554 /* We don't need to cleanup next_bucket[]. */ 555 di->bucket[par] = 0; 556 v--; 557 } 558 559 /* Explicitly define the dominators. */ 560 di->dom[1] = 0; 561 for (v = 2; v <= di->nodes; v++) 562 if (di->dom[v] != di->key[v]) 563 di->dom[v] = di->dom[di->dom[v]]; 564 } 565 566 /* Assign dfs numbers starting from NUM to NODE and its sons. */ 567 568 static void 569 assign_dfs_numbers (struct et_node *node, int *num) 570 { 571 struct et_node *son; 572 573 node->dfs_num_in = (*num)++; 574 575 if (node->son) 576 { 577 assign_dfs_numbers (node->son, num); 578 for (son = node->son->right; son != node->son; son = son->right) 579 assign_dfs_numbers (son, num); 580 } 581 582 node->dfs_num_out = (*num)++; 583 } 584 585 /* Compute the data necessary for fast resolving of dominator queries in a 586 static dominator tree. */ 587 588 static void 589 compute_dom_fast_query (enum cdi_direction dir) 590 { 591 int num = 0; 592 basic_block bb; 593 594 gcc_assert (dom_info_available_p (dir)); 595 596 if (dom_computed[dir] == DOM_OK) 597 return; 598 599 FOR_ALL_BB (bb) 600 { 601 if (!bb->dom[dir]->father) 602 assign_dfs_numbers (bb->dom[dir], &num); 603 } 604 605 dom_computed[dir] = DOM_OK; 606 } 607 608 /* The main entry point into this module. DIR is set depending on whether 609 we want to compute dominators or postdominators. */ 610 611 void 612 calculate_dominance_info (enum cdi_direction dir) 613 { 614 struct dom_info di; 615 basic_block b; 616 617 if (dom_computed[dir] == DOM_OK) 618 return; 619 620 timevar_push (TV_DOMINANCE); 621 if (!dom_info_available_p (dir)) 622 { 623 gcc_assert (!n_bbs_in_dom_tree[dir]); 624 625 FOR_ALL_BB (b) 626 { 627 b->dom[dir] = et_new_tree (b); 628 } 629 n_bbs_in_dom_tree[dir] = n_basic_blocks; 630 631 init_dom_info (&di, dir); 632 calc_dfs_tree (&di, dir); 633 calc_idoms (&di, dir); 634 635 FOR_EACH_BB (b) 636 { 637 TBB d = di.dom[di.dfs_order[b->index]]; 638 639 if (di.dfs_to_bb[d]) 640 et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]); 641 } 642 643 free_dom_info (&di); 644 dom_computed[dir] = DOM_NO_FAST_QUERY; 645 } 646 647 compute_dom_fast_query (dir); 648 649 timevar_pop (TV_DOMINANCE); 650 } 651 652 /* Free dominance information for direction DIR. */ 653 void 654 free_dominance_info (enum cdi_direction dir) 655 { 656 basic_block bb; 657 658 if (!dom_info_available_p (dir)) 659 return; 660 661 FOR_ALL_BB (bb) 662 { 663 et_free_tree_force (bb->dom[dir]); 664 bb->dom[dir] = NULL; 665 } 666 et_free_pools (); 667 668 n_bbs_in_dom_tree[dir] = 0; 669 670 dom_computed[dir] = DOM_NONE; 671 } 672 673 /* Return the immediate dominator of basic block BB. */ 674 basic_block 675 get_immediate_dominator (enum cdi_direction dir, basic_block bb) 676 { 677 struct et_node *node = bb->dom[dir]; 678 679 gcc_assert (dom_computed[dir]); 680 681 if (!node->father) 682 return NULL; 683 684 return node->father->data; 685 } 686 687 /* Set the immediate dominator of the block possibly removing 688 existing edge. NULL can be used to remove any edge. */ 689 inline void 690 set_immediate_dominator (enum cdi_direction dir, basic_block bb, 691 basic_block dominated_by) 692 { 693 struct et_node *node = bb->dom[dir]; 694 695 gcc_assert (dom_computed[dir]); 696 697 if (node->father) 698 { 699 if (node->father->data == dominated_by) 700 return; 701 et_split (node); 702 } 703 704 if (dominated_by) 705 et_set_father (node, dominated_by->dom[dir]); 706 707 if (dom_computed[dir] == DOM_OK) 708 dom_computed[dir] = DOM_NO_FAST_QUERY; 709 } 710 711 /* Store all basic blocks immediately dominated by BB into BBS and return 712 their number. */ 713 int 714 get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs) 715 { 716 int n; 717 struct et_node *node = bb->dom[dir], *son = node->son, *ason; 718 719 gcc_assert (dom_computed[dir]); 720 721 if (!son) 722 { 723 *bbs = NULL; 724 return 0; 725 } 726 727 for (ason = son->right, n = 1; ason != son; ason = ason->right) 728 n++; 729 730 *bbs = XNEWVEC (basic_block, n); 731 (*bbs)[0] = son->data; 732 for (ason = son->right, n = 1; ason != son; ason = ason->right) 733 (*bbs)[n++] = ason->data; 734 735 return n; 736 } 737 738 /* Find all basic blocks that are immediately dominated (in direction DIR) 739 by some block between N_REGION ones stored in REGION, except for blocks 740 in the REGION itself. The found blocks are stored to DOMS and their number 741 is returned. */ 742 743 unsigned 744 get_dominated_by_region (enum cdi_direction dir, basic_block *region, 745 unsigned n_region, basic_block *doms) 746 { 747 unsigned n_doms = 0, i; 748 basic_block dom; 749 750 for (i = 0; i < n_region; i++) 751 region[i]->flags |= BB_DUPLICATED; 752 for (i = 0; i < n_region; i++) 753 for (dom = first_dom_son (dir, region[i]); 754 dom; 755 dom = next_dom_son (dir, dom)) 756 if (!(dom->flags & BB_DUPLICATED)) 757 doms[n_doms++] = dom; 758 for (i = 0; i < n_region; i++) 759 region[i]->flags &= ~BB_DUPLICATED; 760 761 return n_doms; 762 } 763 764 /* Redirect all edges pointing to BB to TO. */ 765 void 766 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb, 767 basic_block to) 768 { 769 struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son; 770 771 gcc_assert (dom_computed[dir]); 772 773 if (!bb_node->son) 774 return; 775 776 while (bb_node->son) 777 { 778 son = bb_node->son; 779 780 et_split (son); 781 et_set_father (son, to_node); 782 } 783 784 if (dom_computed[dir] == DOM_OK) 785 dom_computed[dir] = DOM_NO_FAST_QUERY; 786 } 787 788 /* Find first basic block in the tree dominating both BB1 and BB2. */ 789 basic_block 790 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2) 791 { 792 gcc_assert (dom_computed[dir]); 793 794 if (!bb1) 795 return bb2; 796 if (!bb2) 797 return bb1; 798 799 return et_nca (bb1->dom[dir], bb2->dom[dir])->data; 800 } 801 802 803 /* Find the nearest common dominator for the basic blocks in BLOCKS, 804 using dominance direction DIR. */ 805 806 basic_block 807 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks) 808 { 809 unsigned i, first; 810 bitmap_iterator bi; 811 basic_block dom; 812 813 first = bitmap_first_set_bit (blocks); 814 dom = BASIC_BLOCK (first); 815 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi) 816 if (dom != BASIC_BLOCK (i)) 817 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i)); 818 819 return dom; 820 } 821 822 /* Given a dominator tree, we can determine whether one thing 823 dominates another in constant time by using two DFS numbers: 824 825 1. The number for when we visit a node on the way down the tree 826 2. The number for when we visit a node on the way back up the tree 827 828 You can view these as bounds for the range of dfs numbers the 829 nodes in the subtree of the dominator tree rooted at that node 830 will contain. 831 832 The dominator tree is always a simple acyclic tree, so there are 833 only three possible relations two nodes in the dominator tree have 834 to each other: 835 836 1. Node A is above Node B (and thus, Node A dominates node B) 837 838 A 839 | 840 C 841 / \ 842 B D 843 844 845 In the above case, DFS_Number_In of A will be <= DFS_Number_In of 846 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is 847 because we must hit A in the dominator tree *before* B on the walk 848 down, and we will hit A *after* B on the walk back up 849 850 2. Node A is below node B (and thus, node B dominates node A) 851 852 853 B 854 | 855 A 856 / \ 857 C D 858 859 In the above case, DFS_Number_In of A will be >= DFS_Number_In of 860 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B. 861 862 This is because we must hit A in the dominator tree *after* B on 863 the walk down, and we will hit A *before* B on the walk back up 864 865 3. Node A and B are siblings (and thus, neither dominates the other) 866 867 C 868 | 869 D 870 / \ 871 A B 872 873 In the above case, DFS_Number_In of A will *always* be <= 874 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <= 875 DFS_Number_Out of B. This is because we will always finish the dfs 876 walk of one of the subtrees before the other, and thus, the dfs 877 numbers for one subtree can't intersect with the range of dfs 878 numbers for the other subtree. If you swap A and B's position in 879 the dominator tree, the comparison changes direction, but the point 880 is that both comparisons will always go the same way if there is no 881 dominance relationship. 882 883 Thus, it is sufficient to write 884 885 A_Dominates_B (node A, node B) 886 { 887 return DFS_Number_In(A) <= DFS_Number_In(B) 888 && DFS_Number_Out (A) >= DFS_Number_Out(B); 889 } 890 891 A_Dominated_by_B (node A, node B) 892 { 893 return DFS_Number_In(A) >= DFS_Number_In(A) 894 && DFS_Number_Out (A) <= DFS_Number_Out(B); 895 } */ 896 897 /* Return TRUE in case BB1 is dominated by BB2. */ 898 bool 899 dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2) 900 { 901 struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir]; 902 903 gcc_assert (dom_computed[dir]); 904 905 if (dom_computed[dir] == DOM_OK) 906 return (n1->dfs_num_in >= n2->dfs_num_in 907 && n1->dfs_num_out <= n2->dfs_num_out); 908 909 return et_below (n1, n2); 910 } 911 912 /* Returns the entry dfs number for basic block BB, in the direction DIR. */ 913 914 unsigned 915 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb) 916 { 917 struct et_node *n = bb->dom[dir]; 918 919 gcc_assert (dom_computed[dir] == DOM_OK); 920 return n->dfs_num_in; 921 } 922 923 /* Returns the exit dfs number for basic block BB, in the direction DIR. */ 924 925 unsigned 926 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb) 927 { 928 struct et_node *n = bb->dom[dir]; 929 930 gcc_assert (dom_computed[dir] == DOM_OK); 931 return n->dfs_num_out; 932 } 933 934 /* Verify invariants of dominator structure. */ 935 void 936 verify_dominators (enum cdi_direction dir) 937 { 938 int err = 0; 939 basic_block bb; 940 941 gcc_assert (dom_info_available_p (dir)); 942 943 FOR_EACH_BB (bb) 944 { 945 basic_block dom_bb; 946 basic_block imm_bb; 947 948 dom_bb = recount_dominator (dir, bb); 949 imm_bb = get_immediate_dominator (dir, bb); 950 if (dom_bb != imm_bb) 951 { 952 if ((dom_bb == NULL) || (imm_bb == NULL)) 953 error ("dominator of %d status unknown", bb->index); 954 else 955 error ("dominator of %d should be %d, not %d", 956 bb->index, dom_bb->index, imm_bb->index); 957 err = 1; 958 } 959 } 960 961 if (dir == CDI_DOMINATORS) 962 { 963 FOR_EACH_BB (bb) 964 { 965 if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR)) 966 { 967 error ("ENTRY does not dominate bb %d", bb->index); 968 err = 1; 969 } 970 } 971 } 972 973 gcc_assert (!err); 974 } 975 976 /* Determine immediate dominator (or postdominator, according to DIR) of BB, 977 assuming that dominators of other blocks are correct. We also use it to 978 recompute the dominators in a restricted area, by iterating it until it 979 reaches a fixed point. */ 980 981 basic_block 982 recount_dominator (enum cdi_direction dir, basic_block bb) 983 { 984 basic_block dom_bb = NULL; 985 edge e; 986 edge_iterator ei; 987 988 gcc_assert (dom_computed[dir]); 989 990 if (dir == CDI_DOMINATORS) 991 { 992 FOR_EACH_EDGE (e, ei, bb->preds) 993 { 994 /* Ignore the predecessors that either are not reachable from 995 the entry block, or whose dominator was not determined yet. */ 996 if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR)) 997 continue; 998 999 if (!dominated_by_p (dir, e->src, bb)) 1000 dom_bb = nearest_common_dominator (dir, dom_bb, e->src); 1001 } 1002 } 1003 else 1004 { 1005 FOR_EACH_EDGE (e, ei, bb->succs) 1006 { 1007 if (!dominated_by_p (dir, e->dest, bb)) 1008 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest); 1009 } 1010 } 1011 1012 return dom_bb; 1013 } 1014 1015 /* Iteratively recount dominators of BBS. The change is supposed to be local 1016 and not to grow further. */ 1017 void 1018 iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n) 1019 { 1020 int i, changed = 1; 1021 basic_block old_dom, new_dom; 1022 1023 gcc_assert (dom_computed[dir]); 1024 1025 for (i = 0; i < n; i++) 1026 set_immediate_dominator (dir, bbs[i], NULL); 1027 1028 while (changed) 1029 { 1030 changed = 0; 1031 for (i = 0; i < n; i++) 1032 { 1033 old_dom = get_immediate_dominator (dir, bbs[i]); 1034 new_dom = recount_dominator (dir, bbs[i]); 1035 if (old_dom != new_dom) 1036 { 1037 changed = 1; 1038 set_immediate_dominator (dir, bbs[i], new_dom); 1039 } 1040 } 1041 } 1042 1043 for (i = 0; i < n; i++) 1044 gcc_assert (get_immediate_dominator (dir, bbs[i])); 1045 } 1046 1047 void 1048 add_to_dominance_info (enum cdi_direction dir, basic_block bb) 1049 { 1050 gcc_assert (dom_computed[dir]); 1051 gcc_assert (!bb->dom[dir]); 1052 1053 n_bbs_in_dom_tree[dir]++; 1054 1055 bb->dom[dir] = et_new_tree (bb); 1056 1057 if (dom_computed[dir] == DOM_OK) 1058 dom_computed[dir] = DOM_NO_FAST_QUERY; 1059 } 1060 1061 void 1062 delete_from_dominance_info (enum cdi_direction dir, basic_block bb) 1063 { 1064 gcc_assert (dom_computed[dir]); 1065 1066 et_free_tree (bb->dom[dir]); 1067 bb->dom[dir] = NULL; 1068 n_bbs_in_dom_tree[dir]--; 1069 1070 if (dom_computed[dir] == DOM_OK) 1071 dom_computed[dir] = DOM_NO_FAST_QUERY; 1072 } 1073 1074 /* Returns the first son of BB in the dominator or postdominator tree 1075 as determined by DIR. */ 1076 1077 basic_block 1078 first_dom_son (enum cdi_direction dir, basic_block bb) 1079 { 1080 struct et_node *son = bb->dom[dir]->son; 1081 1082 return son ? son->data : NULL; 1083 } 1084 1085 /* Returns the next dominance son after BB in the dominator or postdominator 1086 tree as determined by DIR, or NULL if it was the last one. */ 1087 1088 basic_block 1089 next_dom_son (enum cdi_direction dir, basic_block bb) 1090 { 1091 struct et_node *next = bb->dom[dir]->right; 1092 1093 return next->father->son == next ? NULL : next->data; 1094 } 1095 1096 /* Returns true if dominance information for direction DIR is available. */ 1097 1098 bool 1099 dom_info_available_p (enum cdi_direction dir) 1100 { 1101 return dom_computed[dir] != DOM_NONE; 1102 } 1103 1104 void 1105 debug_dominance_info (enum cdi_direction dir) 1106 { 1107 basic_block bb, bb2; 1108 FOR_EACH_BB (bb) 1109 if ((bb2 = get_immediate_dominator (dir, bb))) 1110 fprintf (stderr, "%i %i\n", bb->index, bb2->index); 1111 } 1112