1========================= 2Clang Language Extensions 3========================= 4 5.. contents:: 6 :local: 7 :depth: 1 8 9.. toctree:: 10 :hidden: 11 12 ObjectiveCLiterals 13 BlockLanguageSpec 14 Block-ABI-Apple 15 AutomaticReferenceCounting 16 MatrixTypes 17 18Introduction 19============ 20 21This document describes the language extensions provided by Clang. In addition 22to the language extensions listed here, Clang aims to support a broad range of 23GCC extensions. Please see the `GCC manual 24<https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html>`_ for more information on 25these extensions. 26 27.. _langext-feature_check: 28 29Feature Checking Macros 30======================= 31 32Language extensions can be very useful, but only if you know you can depend on 33them. In order to allow fine-grain features checks, we support three builtin 34function-like macros. This allows you to directly test for a feature in your 35code without having to resort to something like autoconf or fragile "compiler 36version checks". 37 38``__has_builtin`` 39----------------- 40 41This function-like macro takes a single identifier argument that is the name of 42a builtin function, a builtin pseudo-function (taking one or more type 43arguments), or a builtin template. 44It evaluates to 1 if the builtin is supported or 0 if not. 45It can be used like this: 46 47.. code-block:: c++ 48 49 #ifndef __has_builtin // Optional of course. 50 #define __has_builtin(x) 0 // Compatibility with non-clang compilers. 51 #endif 52 53 ... 54 #if __has_builtin(__builtin_trap) 55 __builtin_trap(); 56 #else 57 abort(); 58 #endif 59 ... 60 61.. note:: 62 63 Prior to Clang 10, ``__has_builtin`` could not be used to detect most builtin 64 pseudo-functions. 65 66 ``__has_builtin`` should not be used to detect support for a builtin macro; 67 use ``#ifdef`` instead. 68 69.. _langext-__has_feature-__has_extension: 70 71``__has_feature`` and ``__has_extension`` 72----------------------------------------- 73 74These function-like macros take a single identifier argument that is the name 75of a feature. ``__has_feature`` evaluates to 1 if the feature is both 76supported by Clang and standardized in the current language standard or 0 if 77not (but see :ref:`below <langext-has-feature-back-compat>`), while 78``__has_extension`` evaluates to 1 if the feature is supported by Clang in the 79current language (either as a language extension or a standard language 80feature) or 0 if not. They can be used like this: 81 82.. code-block:: c++ 83 84 #ifndef __has_feature // Optional of course. 85 #define __has_feature(x) 0 // Compatibility with non-clang compilers. 86 #endif 87 #ifndef __has_extension 88 #define __has_extension __has_feature // Compatibility with pre-3.0 compilers. 89 #endif 90 91 ... 92 #if __has_feature(cxx_rvalue_references) 93 // This code will only be compiled with the -std=c++11 and -std=gnu++11 94 // options, because rvalue references are only standardized in C++11. 95 #endif 96 97 #if __has_extension(cxx_rvalue_references) 98 // This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98 99 // and -std=gnu++98 options, because rvalue references are supported as a 100 // language extension in C++98. 101 #endif 102 103.. _langext-has-feature-back-compat: 104 105For backward compatibility, ``__has_feature`` can also be used to test 106for support for non-standardized features, i.e. features not prefixed ``c_``, 107``cxx_`` or ``objc_``. 108 109Another use of ``__has_feature`` is to check for compiler features not related 110to the language standard, such as e.g. :doc:`AddressSanitizer 111<AddressSanitizer>`. 112 113If the ``-pedantic-errors`` option is given, ``__has_extension`` is equivalent 114to ``__has_feature``. 115 116The feature tag is described along with the language feature below. 117 118The feature name or extension name can also be specified with a preceding and 119following ``__`` (double underscore) to avoid interference from a macro with 120the same name. For instance, ``__cxx_rvalue_references__`` can be used instead 121of ``cxx_rvalue_references``. 122 123``__has_cpp_attribute`` 124----------------------- 125 126This function-like macro is available in C++20 by default, and is provided as an 127extension in earlier language standards. It takes a single argument that is the 128name of a double-square-bracket-style attribute. The argument can either be a 129single identifier or a scoped identifier. If the attribute is supported, a 130nonzero value is returned. If the attribute is a standards-based attribute, this 131macro returns a nonzero value based on the year and month in which the attribute 132was voted into the working draft. See `WG21 SD-6 133<https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations>`_ 134for the list of values returned for standards-based attributes. If the attribute 135is not supported by the current compliation target, this macro evaluates to 0. 136It can be used like this: 137 138.. code-block:: c++ 139 140 #ifndef __has_cpp_attribute // For backwards compatibility 141 #define __has_cpp_attribute(x) 0 142 #endif 143 144 ... 145 #if __has_cpp_attribute(clang::fallthrough) 146 #define FALLTHROUGH [[clang::fallthrough]] 147 #else 148 #define FALLTHROUGH 149 #endif 150 ... 151 152The attribute scope tokens ``clang`` and ``_Clang`` are interchangeable, as are 153the attribute scope tokens ``gnu`` and ``__gnu__``. Attribute tokens in either 154of these namespaces can be specified with a preceding and following ``__`` 155(double underscore) to avoid interference from a macro with the same name. For 156instance, ``gnu::__const__`` can be used instead of ``gnu::const``. 157 158``__has_c_attribute`` 159--------------------- 160 161This function-like macro takes a single argument that is the name of an 162attribute exposed with the double square-bracket syntax in C mode. The argument 163can either be a single identifier or a scoped identifier. If the attribute is 164supported, a nonzero value is returned. If the attribute is not supported by the 165current compilation target, this macro evaluates to 0. It can be used like this: 166 167.. code-block:: c 168 169 #ifndef __has_c_attribute // Optional of course. 170 #define __has_c_attribute(x) 0 // Compatibility with non-clang compilers. 171 #endif 172 173 ... 174 #if __has_c_attribute(fallthrough) 175 #define FALLTHROUGH [[fallthrough]] 176 #else 177 #define FALLTHROUGH 178 #endif 179 ... 180 181The attribute scope tokens ``clang`` and ``_Clang`` are interchangeable, as are 182the attribute scope tokens ``gnu`` and ``__gnu__``. Attribute tokens in either 183of these namespaces can be specified with a preceding and following ``__`` 184(double underscore) to avoid interference from a macro with the same name. For 185instance, ``gnu::__const__`` can be used instead of ``gnu::const``. 186 187``__has_attribute`` 188------------------- 189 190This function-like macro takes a single identifier argument that is the name of 191a GNU-style attribute. It evaluates to 1 if the attribute is supported by the 192current compilation target, or 0 if not. It can be used like this: 193 194.. code-block:: c++ 195 196 #ifndef __has_attribute // Optional of course. 197 #define __has_attribute(x) 0 // Compatibility with non-clang compilers. 198 #endif 199 200 ... 201 #if __has_attribute(always_inline) 202 #define ALWAYS_INLINE __attribute__((always_inline)) 203 #else 204 #define ALWAYS_INLINE 205 #endif 206 ... 207 208The attribute name can also be specified with a preceding and following ``__`` 209(double underscore) to avoid interference from a macro with the same name. For 210instance, ``__always_inline__`` can be used instead of ``always_inline``. 211 212 213``__has_declspec_attribute`` 214---------------------------- 215 216This function-like macro takes a single identifier argument that is the name of 217an attribute implemented as a Microsoft-style ``__declspec`` attribute. It 218evaluates to 1 if the attribute is supported by the current compilation target, 219or 0 if not. It can be used like this: 220 221.. code-block:: c++ 222 223 #ifndef __has_declspec_attribute // Optional of course. 224 #define __has_declspec_attribute(x) 0 // Compatibility with non-clang compilers. 225 #endif 226 227 ... 228 #if __has_declspec_attribute(dllexport) 229 #define DLLEXPORT __declspec(dllexport) 230 #else 231 #define DLLEXPORT 232 #endif 233 ... 234 235The attribute name can also be specified with a preceding and following ``__`` 236(double underscore) to avoid interference from a macro with the same name. For 237instance, ``__dllexport__`` can be used instead of ``dllexport``. 238 239``__is_identifier`` 240------------------- 241 242This function-like macro takes a single identifier argument that might be either 243a reserved word or a regular identifier. It evaluates to 1 if the argument is just 244a regular identifier and not a reserved word, in the sense that it can then be 245used as the name of a user-defined function or variable. Otherwise it evaluates 246to 0. It can be used like this: 247 248.. code-block:: c++ 249 250 ... 251 #ifdef __is_identifier // Compatibility with non-clang compilers. 252 #if __is_identifier(__wchar_t) 253 typedef wchar_t __wchar_t; 254 #endif 255 #endif 256 257 __wchar_t WideCharacter; 258 ... 259 260Include File Checking Macros 261============================ 262 263Not all developments systems have the same include files. The 264:ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow 265you to check for the existence of an include file before doing a possibly 266failing ``#include`` directive. Include file checking macros must be used 267as expressions in ``#if`` or ``#elif`` preprocessing directives. 268 269.. _langext-__has_include: 270 271``__has_include`` 272----------------- 273 274This function-like macro takes a single file name string argument that is the 275name of an include file. It evaluates to 1 if the file can be found using the 276include paths, or 0 otherwise: 277 278.. code-block:: c++ 279 280 // Note the two possible file name string formats. 281 #if __has_include("myinclude.h") && __has_include(<stdint.h>) 282 # include "myinclude.h" 283 #endif 284 285To test for this feature, use ``#if defined(__has_include)``: 286 287.. code-block:: c++ 288 289 // To avoid problem with non-clang compilers not having this macro. 290 #if defined(__has_include) 291 #if __has_include("myinclude.h") 292 # include "myinclude.h" 293 #endif 294 #endif 295 296.. _langext-__has_include_next: 297 298``__has_include_next`` 299---------------------- 300 301This function-like macro takes a single file name string argument that is the 302name of an include file. It is like ``__has_include`` except that it looks for 303the second instance of the given file found in the include paths. It evaluates 304to 1 if the second instance of the file can be found using the include paths, 305or 0 otherwise: 306 307.. code-block:: c++ 308 309 // Note the two possible file name string formats. 310 #if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>) 311 # include_next "myinclude.h" 312 #endif 313 314 // To avoid problem with non-clang compilers not having this macro. 315 #if defined(__has_include_next) 316 #if __has_include_next("myinclude.h") 317 # include_next "myinclude.h" 318 #endif 319 #endif 320 321Note that ``__has_include_next``, like the GNU extension ``#include_next`` 322directive, is intended for use in headers only, and will issue a warning if 323used in the top-level compilation file. A warning will also be issued if an 324absolute path is used in the file argument. 325 326``__has_warning`` 327----------------- 328 329This function-like macro takes a string literal that represents a command line 330option for a warning and returns true if that is a valid warning option. 331 332.. code-block:: c++ 333 334 #if __has_warning("-Wformat") 335 ... 336 #endif 337 338.. _languageextensions-builtin-macros: 339 340Builtin Macros 341============== 342 343``__BASE_FILE__`` 344 Defined to a string that contains the name of the main input file passed to 345 Clang. 346 347``__FILE_NAME__`` 348 Clang-specific extension that functions similar to ``__FILE__`` but only 349 renders the last path component (the filename) instead of an invocation 350 dependent full path to that file. 351 352``__COUNTER__`` 353 Defined to an integer value that starts at zero and is incremented each time 354 the ``__COUNTER__`` macro is expanded. 355 356``__INCLUDE_LEVEL__`` 357 Defined to an integral value that is the include depth of the file currently 358 being translated. For the main file, this value is zero. 359 360``__TIMESTAMP__`` 361 Defined to the date and time of the last modification of the current source 362 file. 363 364``__clang__`` 365 Defined when compiling with Clang 366 367``__clang_major__`` 368 Defined to the major marketing version number of Clang (e.g., the 2 in 369 2.0.1). Note that marketing version numbers should not be used to check for 370 language features, as different vendors use different numbering schemes. 371 Instead, use the :ref:`langext-feature_check`. 372 373``__clang_minor__`` 374 Defined to the minor version number of Clang (e.g., the 0 in 2.0.1). Note 375 that marketing version numbers should not be used to check for language 376 features, as different vendors use different numbering schemes. Instead, use 377 the :ref:`langext-feature_check`. 378 379``__clang_patchlevel__`` 380 Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1). 381 382``__clang_version__`` 383 Defined to a string that captures the Clang marketing version, including the 384 Subversion tag or revision number, e.g., "``1.5 (trunk 102332)``". 385 386.. _langext-vectors: 387 388Vectors and Extended Vectors 389============================ 390 391Supports the GCC, OpenCL, AltiVec and NEON vector extensions. 392 393OpenCL vector types are created using the ``ext_vector_type`` attribute. It 394supports the ``V.xyzw`` syntax and other tidbits as seen in OpenCL. An example 395is: 396 397.. code-block:: c++ 398 399 typedef float float4 __attribute__((ext_vector_type(4))); 400 typedef float float2 __attribute__((ext_vector_type(2))); 401 402 float4 foo(float2 a, float2 b) { 403 float4 c; 404 c.xz = a; 405 c.yw = b; 406 return c; 407 } 408 409Query for this feature with ``__has_attribute(ext_vector_type)``. 410 411Giving ``-maltivec`` option to clang enables support for AltiVec vector syntax 412and functions. For example: 413 414.. code-block:: c++ 415 416 vector float foo(vector int a) { 417 vector int b; 418 b = vec_add(a, a) + a; 419 return (vector float)b; 420 } 421 422NEON vector types are created using ``neon_vector_type`` and 423``neon_polyvector_type`` attributes. For example: 424 425.. code-block:: c++ 426 427 typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t; 428 typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t; 429 430 int8x8_t foo(int8x8_t a) { 431 int8x8_t v; 432 v = a; 433 return v; 434 } 435 436Vector Literals 437--------------- 438 439Vector literals can be used to create vectors from a set of scalars, or 440vectors. Either parentheses or braces form can be used. In the parentheses 441form the number of literal values specified must be one, i.e. referring to a 442scalar value, or must match the size of the vector type being created. If a 443single scalar literal value is specified, the scalar literal value will be 444replicated to all the components of the vector type. In the brackets form any 445number of literals can be specified. For example: 446 447.. code-block:: c++ 448 449 typedef int v4si __attribute__((__vector_size__(16))); 450 typedef float float4 __attribute__((ext_vector_type(4))); 451 typedef float float2 __attribute__((ext_vector_type(2))); 452 453 v4si vsi = (v4si){1, 2, 3, 4}; 454 float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f); 455 vector int vi1 = (vector int)(1); // vi1 will be (1, 1, 1, 1). 456 vector int vi2 = (vector int){1}; // vi2 will be (1, 0, 0, 0). 457 vector int vi3 = (vector int)(1, 2); // error 458 vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0). 459 vector int vi5 = (vector int)(1, 2, 3, 4); 460 float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f)); 461 462Vector Operations 463----------------- 464 465The table below shows the support for each operation by vector extension. A 466dash indicates that an operation is not accepted according to a corresponding 467specification. 468 469============================== ======= ======= ============= ======= 470 Operator OpenCL AltiVec GCC NEON 471============================== ======= ======= ============= ======= 472[] yes yes yes -- 473unary operators +, -- yes yes yes -- 474++, -- -- yes yes yes -- 475+,--,*,/,% yes yes yes -- 476bitwise operators &,|,^,~ yes yes yes -- 477>>,<< yes yes yes -- 478!, &&, || yes -- yes -- 479==, !=, >, <, >=, <= yes yes yes -- 480= yes yes yes yes 481?: [#]_ yes -- yes -- 482sizeof yes yes yes yes 483C-style cast yes yes yes no 484reinterpret_cast yes no yes no 485static_cast yes no yes no 486const_cast no no no no 487============================== ======= ======= ============= ======= 488 489See also :ref:`langext-__builtin_shufflevector`, :ref:`langext-__builtin_convertvector`. 490 491.. [#] ternary operator(?:) has different behaviors depending on condition 492 operand's vector type. If the condition is a GNU vector (i.e. __vector_size__), 493 it's only available in C++ and uses normal bool conversions (that is, != 0). 494 If it's an extension (OpenCL) vector, it's only available in C and OpenCL C. 495 And it selects base on signedness of the condition operands (OpenCL v1.1 s6.3.9). 496 497Matrix Types 498============ 499 500Clang provides an extension for matrix types, which is currently being 501implemented. See :ref:`the draft specification <matrixtypes>` for more details. 502 503For example, the code below uses the matrix types extension to multiply two 4x4 504float matrices and add the result to a third 4x4 matrix. 505 506.. code-block:: c++ 507 508 typedef float m4x4_t __attribute__((matrix_type(4, 4))); 509 510 m4x4_t f(m4x4_t a, m4x4_t b, m4x4_t c) { 511 return a + b * c; 512 } 513 514 515Half-Precision Floating Point 516============================= 517 518Clang supports three half-precision (16-bit) floating point types: ``__fp16``, 519``_Float16`` and ``__bf16``. These types are supported in all language modes. 520 521``__fp16`` is supported on every target, as it is purely a storage format; see below. 522``_Float16`` is currently only supported on the following targets, with further 523targets pending ABI standardization: 524 525* 32-bit ARM 526* 64-bit ARM (AArch64) 527* SPIR 528 529``_Float16`` will be supported on more targets as they define ABIs for it. 530 531``__bf16`` is purely a storage format; it is currently only supported on the following targets: 532* 32-bit ARM 533* 64-bit ARM (AArch64) 534 535The ``__bf16`` type is only available when supported in hardware. 536 537``__fp16`` is a storage and interchange format only. This means that values of 538``__fp16`` are immediately promoted to (at least) ``float`` when used in arithmetic 539operations, so that e.g. the result of adding two ``__fp16`` values has type ``float``. 540The behavior of ``__fp16`` is specified by the ARM C Language Extensions (`ACLE <http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053d/IHI0053D_acle_2_1.pdf>`_). 541Clang uses the ``binary16`` format from IEEE 754-2008 for ``__fp16``, not the ARM 542alternative format. 543 544``_Float16`` is an extended floating-point type. This means that, just like arithmetic on 545``float`` or ``double``, arithmetic on ``_Float16`` operands is formally performed in the 546``_Float16`` type, so that e.g. the result of adding two ``_Float16`` values has type 547``_Float16``. The behavior of ``_Float16`` is specified by ISO/IEC TS 18661-3:2015 548("Floating-point extensions for C"). As with ``__fp16``, Clang uses the ``binary16`` 549format from IEEE 754-2008 for ``_Float16``. 550 551``_Float16`` arithmetic will be performed using native half-precision support 552when available on the target (e.g. on ARMv8.2a); otherwise it will be performed 553at a higher precision (currently always ``float``) and then truncated down to 554``_Float16``. Note that C and C++ allow intermediate floating-point operands 555of an expression to be computed with greater precision than is expressible in 556their type, so Clang may avoid intermediate truncations in certain cases; this may 557lead to results that are inconsistent with native arithmetic. 558 559It is recommended that portable code use ``_Float16`` instead of ``__fp16``, 560as it has been defined by the C standards committee and has behavior that is 561more familiar to most programmers. 562 563Because ``__fp16`` operands are always immediately promoted to ``float``, the 564common real type of ``__fp16`` and ``_Float16`` for the purposes of the usual 565arithmetic conversions is ``float``. 566 567A literal can be given ``_Float16`` type using the suffix ``f16``. For example, 568``3.14f16``. 569 570Because default argument promotion only applies to the standard floating-point 571types, ``_Float16`` values are not promoted to ``double`` when passed as variadic 572or untyped arguments. As a consequence, some caution must be taken when using 573certain library facilities with ``_Float16``; for example, there is no ``printf`` format 574specifier for ``_Float16``, and (unlike ``float``) it will not be implicitly promoted to 575``double`` when passed to ``printf``, so the programmer must explicitly cast it to 576``double`` before using it with an ``%f`` or similar specifier. 577 578Messages on ``deprecated`` and ``unavailable`` Attributes 579========================================================= 580 581An optional string message can be added to the ``deprecated`` and 582``unavailable`` attributes. For example: 583 584.. code-block:: c++ 585 586 void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!"))); 587 588If the deprecated or unavailable declaration is used, the message will be 589incorporated into the appropriate diagnostic: 590 591.. code-block:: none 592 593 harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!! 594 [-Wdeprecated-declarations] 595 explode(); 596 ^ 597 598Query for this feature with 599``__has_extension(attribute_deprecated_with_message)`` and 600``__has_extension(attribute_unavailable_with_message)``. 601 602Attributes on Enumerators 603========================= 604 605Clang allows attributes to be written on individual enumerators. This allows 606enumerators to be deprecated, made unavailable, etc. The attribute must appear 607after the enumerator name and before any initializer, like so: 608 609.. code-block:: c++ 610 611 enum OperationMode { 612 OM_Invalid, 613 OM_Normal, 614 OM_Terrified __attribute__((deprecated)), 615 OM_AbortOnError __attribute__((deprecated)) = 4 616 }; 617 618Attributes on the ``enum`` declaration do not apply to individual enumerators. 619 620Query for this feature with ``__has_extension(enumerator_attributes)``. 621 622'User-Specified' System Frameworks 623================================== 624 625Clang provides a mechanism by which frameworks can be built in such a way that 626they will always be treated as being "system frameworks", even if they are not 627present in a system framework directory. This can be useful to system 628framework developers who want to be able to test building other applications 629with development builds of their framework, including the manner in which the 630compiler changes warning behavior for system headers. 631 632Framework developers can opt-in to this mechanism by creating a 633"``.system_framework``" file at the top-level of their framework. That is, the 634framework should have contents like: 635 636.. code-block:: none 637 638 .../TestFramework.framework 639 .../TestFramework.framework/.system_framework 640 .../TestFramework.framework/Headers 641 .../TestFramework.framework/Headers/TestFramework.h 642 ... 643 644Clang will treat the presence of this file as an indicator that the framework 645should be treated as a system framework, regardless of how it was found in the 646framework search path. For consistency, we recommend that such files never be 647included in installed versions of the framework. 648 649Checks for Standard Language Features 650===================================== 651 652The ``__has_feature`` macro can be used to query if certain standard language 653features are enabled. The ``__has_extension`` macro can be used to query if 654language features are available as an extension when compiling for a standard 655which does not provide them. The features which can be tested are listed here. 656 657Since Clang 3.4, the C++ SD-6 feature test macros are also supported. 658These are macros with names of the form ``__cpp_<feature_name>``, and are 659intended to be a portable way to query the supported features of the compiler. 660See `the C++ status page <https://clang.llvm.org/cxx_status.html#ts>`_ for 661information on the version of SD-6 supported by each Clang release, and the 662macros provided by that revision of the recommendations. 663 664C++98 665----- 666 667The features listed below are part of the C++98 standard. These features are 668enabled by default when compiling C++ code. 669 670C++ exceptions 671^^^^^^^^^^^^^^ 672 673Use ``__has_feature(cxx_exceptions)`` to determine if C++ exceptions have been 674enabled. For example, compiling code with ``-fno-exceptions`` disables C++ 675exceptions. 676 677C++ RTTI 678^^^^^^^^ 679 680Use ``__has_feature(cxx_rtti)`` to determine if C++ RTTI has been enabled. For 681example, compiling code with ``-fno-rtti`` disables the use of RTTI. 682 683C++11 684----- 685 686The features listed below are part of the C++11 standard. As a result, all 687these features are enabled with the ``-std=c++11`` or ``-std=gnu++11`` option 688when compiling C++ code. 689 690C++11 SFINAE includes access control 691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 692 693Use ``__has_feature(cxx_access_control_sfinae)`` or 694``__has_extension(cxx_access_control_sfinae)`` to determine whether 695access-control errors (e.g., calling a private constructor) are considered to 696be template argument deduction errors (aka SFINAE errors), per `C++ DR1170 697<http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170>`_. 698 699C++11 alias templates 700^^^^^^^^^^^^^^^^^^^^^ 701 702Use ``__has_feature(cxx_alias_templates)`` or 703``__has_extension(cxx_alias_templates)`` to determine if support for C++11's 704alias declarations and alias templates is enabled. 705 706C++11 alignment specifiers 707^^^^^^^^^^^^^^^^^^^^^^^^^^ 708 709Use ``__has_feature(cxx_alignas)`` or ``__has_extension(cxx_alignas)`` to 710determine if support for alignment specifiers using ``alignas`` is enabled. 711 712Use ``__has_feature(cxx_alignof)`` or ``__has_extension(cxx_alignof)`` to 713determine if support for the ``alignof`` keyword is enabled. 714 715C++11 attributes 716^^^^^^^^^^^^^^^^ 717 718Use ``__has_feature(cxx_attributes)`` or ``__has_extension(cxx_attributes)`` to 719determine if support for attribute parsing with C++11's square bracket notation 720is enabled. 721 722C++11 generalized constant expressions 723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 724 725Use ``__has_feature(cxx_constexpr)`` to determine if support for generalized 726constant expressions (e.g., ``constexpr``) is enabled. 727 728C++11 ``decltype()`` 729^^^^^^^^^^^^^^^^^^^^ 730 731Use ``__has_feature(cxx_decltype)`` or ``__has_extension(cxx_decltype)`` to 732determine if support for the ``decltype()`` specifier is enabled. C++11's 733``decltype`` does not require type-completeness of a function call expression. 734Use ``__has_feature(cxx_decltype_incomplete_return_types)`` or 735``__has_extension(cxx_decltype_incomplete_return_types)`` to determine if 736support for this feature is enabled. 737 738C++11 default template arguments in function templates 739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 740 741Use ``__has_feature(cxx_default_function_template_args)`` or 742``__has_extension(cxx_default_function_template_args)`` to determine if support 743for default template arguments in function templates is enabled. 744 745C++11 ``default``\ ed functions 746^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 747 748Use ``__has_feature(cxx_defaulted_functions)`` or 749``__has_extension(cxx_defaulted_functions)`` to determine if support for 750defaulted function definitions (with ``= default``) is enabled. 751 752C++11 delegating constructors 753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 754 755Use ``__has_feature(cxx_delegating_constructors)`` to determine if support for 756delegating constructors is enabled. 757 758C++11 ``deleted`` functions 759^^^^^^^^^^^^^^^^^^^^^^^^^^^ 760 761Use ``__has_feature(cxx_deleted_functions)`` or 762``__has_extension(cxx_deleted_functions)`` to determine if support for deleted 763function definitions (with ``= delete``) is enabled. 764 765C++11 explicit conversion functions 766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 767 768Use ``__has_feature(cxx_explicit_conversions)`` to determine if support for 769``explicit`` conversion functions is enabled. 770 771C++11 generalized initializers 772^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 773 774Use ``__has_feature(cxx_generalized_initializers)`` to determine if support for 775generalized initializers (using braced lists and ``std::initializer_list``) is 776enabled. 777 778C++11 implicit move constructors/assignment operators 779^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 780 781Use ``__has_feature(cxx_implicit_moves)`` to determine if Clang will implicitly 782generate move constructors and move assignment operators where needed. 783 784C++11 inheriting constructors 785^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 786 787Use ``__has_feature(cxx_inheriting_constructors)`` to determine if support for 788inheriting constructors is enabled. 789 790C++11 inline namespaces 791^^^^^^^^^^^^^^^^^^^^^^^ 792 793Use ``__has_feature(cxx_inline_namespaces)`` or 794``__has_extension(cxx_inline_namespaces)`` to determine if support for inline 795namespaces is enabled. 796 797C++11 lambdas 798^^^^^^^^^^^^^ 799 800Use ``__has_feature(cxx_lambdas)`` or ``__has_extension(cxx_lambdas)`` to 801determine if support for lambdas is enabled. 802 803C++11 local and unnamed types as template arguments 804^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 805 806Use ``__has_feature(cxx_local_type_template_args)`` or 807``__has_extension(cxx_local_type_template_args)`` to determine if support for 808local and unnamed types as template arguments is enabled. 809 810C++11 noexcept 811^^^^^^^^^^^^^^ 812 813Use ``__has_feature(cxx_noexcept)`` or ``__has_extension(cxx_noexcept)`` to 814determine if support for noexcept exception specifications is enabled. 815 816C++11 in-class non-static data member initialization 817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 818 819Use ``__has_feature(cxx_nonstatic_member_init)`` to determine whether in-class 820initialization of non-static data members is enabled. 821 822C++11 ``nullptr`` 823^^^^^^^^^^^^^^^^^ 824 825Use ``__has_feature(cxx_nullptr)`` or ``__has_extension(cxx_nullptr)`` to 826determine if support for ``nullptr`` is enabled. 827 828C++11 ``override control`` 829^^^^^^^^^^^^^^^^^^^^^^^^^^ 830 831Use ``__has_feature(cxx_override_control)`` or 832``__has_extension(cxx_override_control)`` to determine if support for the 833override control keywords is enabled. 834 835C++11 reference-qualified functions 836^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 837 838Use ``__has_feature(cxx_reference_qualified_functions)`` or 839``__has_extension(cxx_reference_qualified_functions)`` to determine if support 840for reference-qualified functions (e.g., member functions with ``&`` or ``&&`` 841applied to ``*this``) is enabled. 842 843C++11 range-based ``for`` loop 844^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 845 846Use ``__has_feature(cxx_range_for)`` or ``__has_extension(cxx_range_for)`` to 847determine if support for the range-based for loop is enabled. 848 849C++11 raw string literals 850^^^^^^^^^^^^^^^^^^^^^^^^^ 851 852Use ``__has_feature(cxx_raw_string_literals)`` to determine if support for raw 853string literals (e.g., ``R"x(foo\bar)x"``) is enabled. 854 855C++11 rvalue references 856^^^^^^^^^^^^^^^^^^^^^^^ 857 858Use ``__has_feature(cxx_rvalue_references)`` or 859``__has_extension(cxx_rvalue_references)`` to determine if support for rvalue 860references is enabled. 861 862C++11 ``static_assert()`` 863^^^^^^^^^^^^^^^^^^^^^^^^^ 864 865Use ``__has_feature(cxx_static_assert)`` or 866``__has_extension(cxx_static_assert)`` to determine if support for compile-time 867assertions using ``static_assert`` is enabled. 868 869C++11 ``thread_local`` 870^^^^^^^^^^^^^^^^^^^^^^ 871 872Use ``__has_feature(cxx_thread_local)`` to determine if support for 873``thread_local`` variables is enabled. 874 875C++11 type inference 876^^^^^^^^^^^^^^^^^^^^ 877 878Use ``__has_feature(cxx_auto_type)`` or ``__has_extension(cxx_auto_type)`` to 879determine C++11 type inference is supported using the ``auto`` specifier. If 880this is disabled, ``auto`` will instead be a storage class specifier, as in C 881or C++98. 882 883C++11 strongly typed enumerations 884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 885 886Use ``__has_feature(cxx_strong_enums)`` or 887``__has_extension(cxx_strong_enums)`` to determine if support for strongly 888typed, scoped enumerations is enabled. 889 890C++11 trailing return type 891^^^^^^^^^^^^^^^^^^^^^^^^^^ 892 893Use ``__has_feature(cxx_trailing_return)`` or 894``__has_extension(cxx_trailing_return)`` to determine if support for the 895alternate function declaration syntax with trailing return type is enabled. 896 897C++11 Unicode string literals 898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 899 900Use ``__has_feature(cxx_unicode_literals)`` to determine if support for Unicode 901string literals is enabled. 902 903C++11 unrestricted unions 904^^^^^^^^^^^^^^^^^^^^^^^^^ 905 906Use ``__has_feature(cxx_unrestricted_unions)`` to determine if support for 907unrestricted unions is enabled. 908 909C++11 user-defined literals 910^^^^^^^^^^^^^^^^^^^^^^^^^^^ 911 912Use ``__has_feature(cxx_user_literals)`` to determine if support for 913user-defined literals is enabled. 914 915C++11 variadic templates 916^^^^^^^^^^^^^^^^^^^^^^^^ 917 918Use ``__has_feature(cxx_variadic_templates)`` or 919``__has_extension(cxx_variadic_templates)`` to determine if support for 920variadic templates is enabled. 921 922C++14 923----- 924 925The features listed below are part of the C++14 standard. As a result, all 926these features are enabled with the ``-std=C++14`` or ``-std=gnu++14`` option 927when compiling C++ code. 928 929C++14 binary literals 930^^^^^^^^^^^^^^^^^^^^^ 931 932Use ``__has_feature(cxx_binary_literals)`` or 933``__has_extension(cxx_binary_literals)`` to determine whether 934binary literals (for instance, ``0b10010``) are recognized. Clang supports this 935feature as an extension in all language modes. 936 937C++14 contextual conversions 938^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 939 940Use ``__has_feature(cxx_contextual_conversions)`` or 941``__has_extension(cxx_contextual_conversions)`` to determine if the C++14 rules 942are used when performing an implicit conversion for an array bound in a 943*new-expression*, the operand of a *delete-expression*, an integral constant 944expression, or a condition in a ``switch`` statement. 945 946C++14 decltype(auto) 947^^^^^^^^^^^^^^^^^^^^ 948 949Use ``__has_feature(cxx_decltype_auto)`` or 950``__has_extension(cxx_decltype_auto)`` to determine if support 951for the ``decltype(auto)`` placeholder type is enabled. 952 953C++14 default initializers for aggregates 954^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 955 956Use ``__has_feature(cxx_aggregate_nsdmi)`` or 957``__has_extension(cxx_aggregate_nsdmi)`` to determine if support 958for default initializers in aggregate members is enabled. 959 960C++14 digit separators 961^^^^^^^^^^^^^^^^^^^^^^ 962 963Use ``__cpp_digit_separators`` to determine if support for digit separators 964using single quotes (for instance, ``10'000``) is enabled. At this time, there 965is no corresponding ``__has_feature`` name 966 967C++14 generalized lambda capture 968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 969 970Use ``__has_feature(cxx_init_captures)`` or 971``__has_extension(cxx_init_captures)`` to determine if support for 972lambda captures with explicit initializers is enabled 973(for instance, ``[n(0)] { return ++n; }``). 974 975C++14 generic lambdas 976^^^^^^^^^^^^^^^^^^^^^ 977 978Use ``__has_feature(cxx_generic_lambdas)`` or 979``__has_extension(cxx_generic_lambdas)`` to determine if support for generic 980(polymorphic) lambdas is enabled 981(for instance, ``[] (auto x) { return x + 1; }``). 982 983C++14 relaxed constexpr 984^^^^^^^^^^^^^^^^^^^^^^^ 985 986Use ``__has_feature(cxx_relaxed_constexpr)`` or 987``__has_extension(cxx_relaxed_constexpr)`` to determine if variable 988declarations, local variable modification, and control flow constructs 989are permitted in ``constexpr`` functions. 990 991C++14 return type deduction 992^^^^^^^^^^^^^^^^^^^^^^^^^^^ 993 994Use ``__has_feature(cxx_return_type_deduction)`` or 995``__has_extension(cxx_return_type_deduction)`` to determine if support 996for return type deduction for functions (using ``auto`` as a return type) 997is enabled. 998 999C++14 runtime-sized arrays 1000^^^^^^^^^^^^^^^^^^^^^^^^^^ 1001 1002Use ``__has_feature(cxx_runtime_array)`` or 1003``__has_extension(cxx_runtime_array)`` to determine if support 1004for arrays of runtime bound (a restricted form of variable-length arrays) 1005is enabled. 1006Clang's implementation of this feature is incomplete. 1007 1008C++14 variable templates 1009^^^^^^^^^^^^^^^^^^^^^^^^ 1010 1011Use ``__has_feature(cxx_variable_templates)`` or 1012``__has_extension(cxx_variable_templates)`` to determine if support for 1013templated variable declarations is enabled. 1014 1015C11 1016--- 1017 1018The features listed below are part of the C11 standard. As a result, all these 1019features are enabled with the ``-std=c11`` or ``-std=gnu11`` option when 1020compiling C code. Additionally, because these features are all 1021backward-compatible, they are available as extensions in all language modes. 1022 1023C11 alignment specifiers 1024^^^^^^^^^^^^^^^^^^^^^^^^ 1025 1026Use ``__has_feature(c_alignas)`` or ``__has_extension(c_alignas)`` to determine 1027if support for alignment specifiers using ``_Alignas`` is enabled. 1028 1029Use ``__has_feature(c_alignof)`` or ``__has_extension(c_alignof)`` to determine 1030if support for the ``_Alignof`` keyword is enabled. 1031 1032C11 atomic operations 1033^^^^^^^^^^^^^^^^^^^^^ 1034 1035Use ``__has_feature(c_atomic)`` or ``__has_extension(c_atomic)`` to determine 1036if support for atomic types using ``_Atomic`` is enabled. Clang also provides 1037:ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement 1038the ``<stdatomic.h>`` operations on ``_Atomic`` types. Use 1039``__has_include(<stdatomic.h>)`` to determine if C11's ``<stdatomic.h>`` header 1040is available. 1041 1042Clang will use the system's ``<stdatomic.h>`` header when one is available, and 1043will otherwise use its own. When using its own, implementations of the atomic 1044operations are provided as macros. In the cases where C11 also requires a real 1045function, this header provides only the declaration of that function (along 1046with a shadowing macro implementation), and you must link to a library which 1047provides a definition of the function if you use it instead of the macro. 1048 1049C11 generic selections 1050^^^^^^^^^^^^^^^^^^^^^^ 1051 1052Use ``__has_feature(c_generic_selections)`` or 1053``__has_extension(c_generic_selections)`` to determine if support for generic 1054selections is enabled. 1055 1056As an extension, the C11 generic selection expression is available in all 1057languages supported by Clang. The syntax is the same as that given in the C11 1058standard. 1059 1060In C, type compatibility is decided according to the rules given in the 1061appropriate standard, but in C++, which lacks the type compatibility rules used 1062in C, types are considered compatible only if they are equivalent. 1063 1064C11 ``_Static_assert()`` 1065^^^^^^^^^^^^^^^^^^^^^^^^ 1066 1067Use ``__has_feature(c_static_assert)`` or ``__has_extension(c_static_assert)`` 1068to determine if support for compile-time assertions using ``_Static_assert`` is 1069enabled. 1070 1071C11 ``_Thread_local`` 1072^^^^^^^^^^^^^^^^^^^^^ 1073 1074Use ``__has_feature(c_thread_local)`` or ``__has_extension(c_thread_local)`` 1075to determine if support for ``_Thread_local`` variables is enabled. 1076 1077Modules 1078------- 1079 1080Use ``__has_feature(modules)`` to determine if Modules have been enabled. 1081For example, compiling code with ``-fmodules`` enables the use of Modules. 1082 1083More information could be found `here <https://clang.llvm.org/docs/Modules.html>`_. 1084 1085Type Trait Primitives 1086===================== 1087 1088Type trait primitives are special builtin constant expressions that can be used 1089by the standard C++ library to facilitate or simplify the implementation of 1090user-facing type traits in the <type_traits> header. 1091 1092They are not intended to be used directly by user code because they are 1093implementation-defined and subject to change -- as such they're tied closely to 1094the supported set of system headers, currently: 1095 1096* LLVM's own libc++ 1097* GNU libstdc++ 1098* The Microsoft standard C++ library 1099 1100Clang supports the `GNU C++ type traits 1101<https://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html>`_ and a subset of the 1102`Microsoft Visual C++ type traits 1103<https://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx>`_, 1104as well as nearly all of the 1105`Embarcadero C++ type traits 1106<http://docwiki.embarcadero.com/RADStudio/Rio/en/Type_Trait_Functions_(C%2B%2B11)_Index>`_. 1107 1108The following type trait primitives are supported by Clang. Those traits marked 1109(C++) provide implementations for type traits specified by the C++ standard; 1110``__X(...)`` has the same semantics and constraints as the corresponding 1111``std::X_t<...>`` or ``std::X_v<...>`` type trait. 1112 1113* ``__array_rank(type)`` (Embarcadero): 1114 Returns the number of levels of array in the type ``type``: 1115 ``0`` if ``type`` is not an array type, and 1116 ``__array_rank(element) + 1`` if ``type`` is an array of ``element``. 1117* ``__array_extent(type, dim)`` (Embarcadero): 1118 The ``dim``'th array bound in the type ``type``, or ``0`` if 1119 ``dim >= __array_rank(type)``. 1120* ``__has_nothrow_assign`` (GNU, Microsoft, Embarcadero): 1121 Deprecated, use ``__is_nothrow_assignable`` instead. 1122* ``__has_nothrow_move_assign`` (GNU, Microsoft): 1123 Deprecated, use ``__is_nothrow_assignable`` instead. 1124* ``__has_nothrow_copy`` (GNU, Microsoft): 1125 Deprecated, use ``__is_nothrow_constructible`` instead. 1126* ``__has_nothrow_constructor`` (GNU, Microsoft): 1127 Deprecated, use ``__is_nothrow_constructible`` instead. 1128* ``__has_trivial_assign`` (GNU, Microsoft, Embarcadero): 1129 Deprecated, use ``__is_trivially_assignable`` instead. 1130* ``__has_trivial_move_assign`` (GNU, Microsoft): 1131 Deprecated, use ``__is_trivially_assignable`` instead. 1132* ``__has_trivial_copy`` (GNU, Microsoft): 1133 Deprecated, use ``__is_trivially_constructible`` instead. 1134* ``__has_trivial_constructor`` (GNU, Microsoft): 1135 Deprecated, use ``__is_trivially_constructible`` instead. 1136* ``__has_trivial_move_constructor`` (GNU, Microsoft): 1137 Deprecated, use ``__is_trivially_constructible`` instead. 1138* ``__has_trivial_destructor`` (GNU, Microsoft, Embarcadero): 1139 Deprecated, use ``__is_trivially_destructible`` instead. 1140* ``__has_unique_object_representations`` (C++, GNU) 1141* ``__has_virtual_destructor`` (C++, GNU, Microsoft, Embarcadero) 1142* ``__is_abstract`` (C++, GNU, Microsoft, Embarcadero) 1143* ``__is_aggregate`` (C++, GNU, Microsoft) 1144* ``__is_arithmetic`` (C++, Embarcadero) 1145* ``__is_array`` (C++, Embarcadero) 1146* ``__is_assignable`` (C++, MSVC 2015) 1147* ``__is_base_of`` (C++, GNU, Microsoft, Embarcadero) 1148* ``__is_class`` (C++, GNU, Microsoft, Embarcadero) 1149* ``__is_complete_type(type)`` (Embarcadero): 1150 Return ``true`` if ``type`` is a complete type. 1151 Warning: this trait is dangerous because it can return different values at 1152 different points in the same program. 1153* ``__is_compound`` (C++, Embarcadero) 1154* ``__is_const`` (C++, Embarcadero) 1155* ``__is_constructible`` (C++, MSVC 2013) 1156* ``__is_convertible`` (C++, Embarcadero) 1157* ``__is_convertible_to`` (Microsoft): 1158 Synonym for ``__is_convertible``. 1159* ``__is_destructible`` (C++, MSVC 2013): 1160 Only available in ``-fms-extensions`` mode. 1161* ``__is_empty`` (C++, GNU, Microsoft, Embarcadero) 1162* ``__is_enum`` (C++, GNU, Microsoft, Embarcadero) 1163* ``__is_final`` (C++, GNU, Microsoft) 1164* ``__is_floating_point`` (C++, Embarcadero) 1165* ``__is_function`` (C++, Embarcadero) 1166* ``__is_fundamental`` (C++, Embarcadero) 1167* ``__is_integral`` (C++, Embarcadero) 1168* ``__is_interface_class`` (Microsoft): 1169 Returns ``false``, even for types defined with ``__interface``. 1170* ``__is_literal`` (Clang): 1171 Synonym for ``__is_literal_type``. 1172* ``__is_literal_type`` (C++, GNU, Microsoft): 1173 Note, the corresponding standard trait was deprecated in C++17 1174 and removed in C++20. 1175* ``__is_lvalue_reference`` (C++, Embarcadero) 1176* ``__is_member_object_pointer`` (C++, Embarcadero) 1177* ``__is_member_function_pointer`` (C++, Embarcadero) 1178* ``__is_member_pointer`` (C++, Embarcadero) 1179* ``__is_nothrow_assignable`` (C++, MSVC 2013) 1180* ``__is_nothrow_constructible`` (C++, MSVC 2013) 1181* ``__is_nothrow_destructible`` (C++, MSVC 2013) 1182 Only available in ``-fms-extensions`` mode. 1183* ``__is_object`` (C++, Embarcadero) 1184* ``__is_pod`` (C++, GNU, Microsoft, Embarcadero): 1185 Note, the corresponding standard trait was deprecated in C++20. 1186* ``__is_pointer`` (C++, Embarcadero) 1187* ``__is_polymorphic`` (C++, GNU, Microsoft, Embarcadero) 1188* ``__is_reference`` (C++, Embarcadero) 1189* ``__is_rvalue_reference`` (C++, Embarcadero) 1190* ``__is_same`` (C++, Embarcadero) 1191* ``__is_same_as`` (GCC): Synonym for ``__is_same``. 1192* ``__is_scalar`` (C++, Embarcadero) 1193* ``__is_sealed`` (Microsoft): 1194 Synonym for ``__is_final``. 1195* ``__is_signed`` (C++, Embarcadero): 1196 Returns false for enumeration types, and returns true for floating-point types. Note, before Clang 10, returned true for enumeration types if the underlying type was signed, and returned false for floating-point types. 1197* ``__is_standard_layout`` (C++, GNU, Microsoft, Embarcadero) 1198* ``__is_trivial`` (C++, GNU, Microsoft, Embarcadero) 1199* ``__is_trivially_assignable`` (C++, GNU, Microsoft) 1200* ``__is_trivially_constructible`` (C++, GNU, Microsoft) 1201* ``__is_trivially_copyable`` (C++, GNU, Microsoft) 1202* ``__is_trivially_destructible`` (C++, MSVC 2013) 1203* ``__is_union`` (C++, GNU, Microsoft, Embarcadero) 1204* ``__is_unsigned`` (C++, Embarcadero) 1205 Note that this currently returns true for enumeration types if the underlying 1206 type is unsigned, in violation of the requirements for ``std::is_unsigned``. 1207 This behavior is likely to change in a future version of Clang. 1208* ``__is_void`` (C++, Embarcadero) 1209* ``__is_volatile`` (C++, Embarcadero) 1210* ``__reference_binds_to_temporary(T, U)`` (Clang): Determines whether a 1211 reference of type ``T`` bound to an expression of type ``U`` would bind to a 1212 materialized temporary object. If ``T`` is not a reference type the result 1213 is false. Note this trait will also return false when the initialization of 1214 ``T`` from ``U`` is ill-formed. 1215* ``__underlying_type`` (C++, GNU, Microsoft) 1216 1217In addition, the following expression traits are supported: 1218 1219* ``__is_lvalue_expr(e)`` (Embarcadero): 1220 Returns true if ``e`` is an lvalue expression. 1221 Deprecated, use ``__is_lvalue_reference(decltype((e)))`` instead. 1222* ``__is_rvalue_expr(e)`` (Embarcadero): 1223 Returns true if ``e`` is a prvalue expression. 1224 Deprecated, use ``!__is_reference(decltype((e)))`` instead. 1225 1226There are multiple ways to detect support for a type trait ``__X`` in the 1227compiler, depending on the oldest version of Clang you wish to support. 1228 1229* From Clang 10 onwards, ``__has_builtin(__X)`` can be used. 1230* From Clang 6 onwards, ``!__is_identifier(__X)`` can be used. 1231* From Clang 3 onwards, ``__has_feature(X)`` can be used, but only supports 1232 the following traits: 1233 1234 * ``__has_nothrow_assign`` 1235 * ``__has_nothrow_copy`` 1236 * ``__has_nothrow_constructor`` 1237 * ``__has_trivial_assign`` 1238 * ``__has_trivial_copy`` 1239 * ``__has_trivial_constructor`` 1240 * ``__has_trivial_destructor`` 1241 * ``__has_virtual_destructor`` 1242 * ``__is_abstract`` 1243 * ``__is_base_of`` 1244 * ``__is_class`` 1245 * ``__is_constructible`` 1246 * ``__is_convertible_to`` 1247 * ``__is_empty`` 1248 * ``__is_enum`` 1249 * ``__is_final`` 1250 * ``__is_literal`` 1251 * ``__is_standard_layout`` 1252 * ``__is_pod`` 1253 * ``__is_polymorphic`` 1254 * ``__is_sealed`` 1255 * ``__is_trivial`` 1256 * ``__is_trivially_assignable`` 1257 * ``__is_trivially_constructible`` 1258 * ``__is_trivially_copyable`` 1259 * ``__is_union`` 1260 * ``__underlying_type`` 1261 1262A simplistic usage example as might be seen in standard C++ headers follows: 1263 1264.. code-block:: c++ 1265 1266 #if __has_builtin(__is_convertible_to) 1267 template<typename From, typename To> 1268 struct is_convertible_to { 1269 static const bool value = __is_convertible_to(From, To); 1270 }; 1271 #else 1272 // Emulate type trait for compatibility with other compilers. 1273 #endif 1274 1275Blocks 1276====== 1277 1278The syntax and high level language feature description is in 1279:doc:`BlockLanguageSpec<BlockLanguageSpec>`. Implementation and ABI details for 1280the clang implementation are in :doc:`Block-ABI-Apple<Block-ABI-Apple>`. 1281 1282Query for this feature with ``__has_extension(blocks)``. 1283 1284ASM Goto with Output Constraints 1285================================ 1286 1287In addition to the functionality provided by `GCC's extended 1288assembly <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_, clang 1289supports output constraints with the `goto` form. 1290 1291The goto form of GCC's extended assembly allows the programmer to branch to a C 1292label from within an inline assembly block. Clang extends this behavior by 1293allowing the programmer to use output constraints: 1294 1295.. code-block:: c++ 1296 1297 int foo(int x) { 1298 int y; 1299 asm goto("# %0 %1 %l2" : "=r"(y) : "r"(x) : : err); 1300 return y; 1301 err: 1302 return -1; 1303 } 1304 1305It's important to note that outputs are valid only on the "fallthrough" branch. 1306Using outputs on an indirect branch may result in undefined behavior. For 1307example, in the function above, use of the value assigned to `y` in the `err` 1308block is undefined behavior. 1309 1310Query for this feature with ``__has_extension(gnu_asm_goto_with_outputs)``. 1311 1312Objective-C Features 1313==================== 1314 1315Related result types 1316-------------------- 1317 1318According to Cocoa conventions, Objective-C methods with certain names 1319("``init``", "``alloc``", etc.) always return objects that are an instance of 1320the receiving class's type. Such methods are said to have a "related result 1321type", meaning that a message send to one of these methods will have the same 1322static type as an instance of the receiver class. For example, given the 1323following classes: 1324 1325.. code-block:: objc 1326 1327 @interface NSObject 1328 + (id)alloc; 1329 - (id)init; 1330 @end 1331 1332 @interface NSArray : NSObject 1333 @end 1334 1335and this common initialization pattern 1336 1337.. code-block:: objc 1338 1339 NSArray *array = [[NSArray alloc] init]; 1340 1341the type of the expression ``[NSArray alloc]`` is ``NSArray*`` because 1342``alloc`` implicitly has a related result type. Similarly, the type of the 1343expression ``[[NSArray alloc] init]`` is ``NSArray*``, since ``init`` has a 1344related result type and its receiver is known to have the type ``NSArray *``. 1345If neither ``alloc`` nor ``init`` had a related result type, the expressions 1346would have had type ``id``, as declared in the method signature. 1347 1348A method with a related result type can be declared by using the type 1349``instancetype`` as its result type. ``instancetype`` is a contextual keyword 1350that is only permitted in the result type of an Objective-C method, e.g. 1351 1352.. code-block:: objc 1353 1354 @interface A 1355 + (instancetype)constructAnA; 1356 @end 1357 1358The related result type can also be inferred for some methods. To determine 1359whether a method has an inferred related result type, the first word in the 1360camel-case selector (e.g., "``init``" in "``initWithObjects``") is considered, 1361and the method will have a related result type if its return type is compatible 1362with the type of its class and if: 1363 1364* the first word is "``alloc``" or "``new``", and the method is a class method, 1365 or 1366 1367* the first word is "``autorelease``", "``init``", "``retain``", or "``self``", 1368 and the method is an instance method. 1369 1370If a method with a related result type is overridden by a subclass method, the 1371subclass method must also return a type that is compatible with the subclass 1372type. For example: 1373 1374.. code-block:: objc 1375 1376 @interface NSString : NSObject 1377 - (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString 1378 @end 1379 1380Related result types only affect the type of a message send or property access 1381via the given method. In all other respects, a method with a related result 1382type is treated the same way as method that returns ``id``. 1383 1384Use ``__has_feature(objc_instancetype)`` to determine whether the 1385``instancetype`` contextual keyword is available. 1386 1387Automatic reference counting 1388---------------------------- 1389 1390Clang provides support for :doc:`automated reference counting 1391<AutomaticReferenceCounting>` in Objective-C, which eliminates the need 1392for manual ``retain``/``release``/``autorelease`` message sends. There are three 1393feature macros associated with automatic reference counting: 1394``__has_feature(objc_arc)`` indicates the availability of automated reference 1395counting in general, while ``__has_feature(objc_arc_weak)`` indicates that 1396automated reference counting also includes support for ``__weak`` pointers to 1397Objective-C objects. ``__has_feature(objc_arc_fields)`` indicates that C structs 1398are allowed to have fields that are pointers to Objective-C objects managed by 1399automatic reference counting. 1400 1401.. _objc-weak: 1402 1403Weak references 1404--------------- 1405 1406Clang supports ARC-style weak and unsafe references in Objective-C even 1407outside of ARC mode. Weak references must be explicitly enabled with 1408the ``-fobjc-weak`` option; use ``__has_feature((objc_arc_weak))`` 1409to test whether they are enabled. Unsafe references are enabled 1410unconditionally. ARC-style weak and unsafe references cannot be used 1411when Objective-C garbage collection is enabled. 1412 1413Except as noted below, the language rules for the ``__weak`` and 1414``__unsafe_unretained`` qualifiers (and the ``weak`` and 1415``unsafe_unretained`` property attributes) are just as laid out 1416in the :doc:`ARC specification <AutomaticReferenceCounting>`. 1417In particular, note that some classes do not support forming weak 1418references to their instances, and note that special care must be 1419taken when storing weak references in memory where initialization 1420and deinitialization are outside the responsibility of the compiler 1421(such as in ``malloc``-ed memory). 1422 1423Loading from a ``__weak`` variable always implicitly retains the 1424loaded value. In non-ARC modes, this retain is normally balanced 1425by an implicit autorelease. This autorelease can be suppressed 1426by performing the load in the receiver position of a ``-retain`` 1427message send (e.g. ``[weakReference retain]``); note that this performs 1428only a single retain (the retain done when primitively loading from 1429the weak reference). 1430 1431For the most part, ``__unsafe_unretained`` in non-ARC modes is just the 1432default behavior of variables and therefore is not needed. However, 1433it does have an effect on the semantics of block captures: normally, 1434copying a block which captures an Objective-C object or block pointer 1435causes the captured pointer to be retained or copied, respectively, 1436but that behavior is suppressed when the captured variable is qualified 1437with ``__unsafe_unretained``. 1438 1439Note that the ``__weak`` qualifier formerly meant the GC qualifier in 1440all non-ARC modes and was silently ignored outside of GC modes. It now 1441means the ARC-style qualifier in all non-GC modes and is no longer 1442allowed if not enabled by either ``-fobjc-arc`` or ``-fobjc-weak``. 1443It is expected that ``-fobjc-weak`` will eventually be enabled by default 1444in all non-GC Objective-C modes. 1445 1446.. _objc-fixed-enum: 1447 1448Enumerations with a fixed underlying type 1449----------------------------------------- 1450 1451Clang provides support for C++11 enumerations with a fixed underlying type 1452within Objective-C. For example, one can write an enumeration type as: 1453 1454.. code-block:: c++ 1455 1456 typedef enum : unsigned char { Red, Green, Blue } Color; 1457 1458This specifies that the underlying type, which is used to store the enumeration 1459value, is ``unsigned char``. 1460 1461Use ``__has_feature(objc_fixed_enum)`` to determine whether support for fixed 1462underlying types is available in Objective-C. 1463 1464Interoperability with C++11 lambdas 1465----------------------------------- 1466 1467Clang provides interoperability between C++11 lambdas and blocks-based APIs, by 1468permitting a lambda to be implicitly converted to a block pointer with the 1469corresponding signature. For example, consider an API such as ``NSArray``'s 1470array-sorting method: 1471 1472.. code-block:: objc 1473 1474 - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr; 1475 1476``NSComparator`` is simply a typedef for the block pointer ``NSComparisonResult 1477(^)(id, id)``, and parameters of this type are generally provided with block 1478literals as arguments. However, one can also use a C++11 lambda so long as it 1479provides the same signature (in this case, accepting two parameters of type 1480``id`` and returning an ``NSComparisonResult``): 1481 1482.. code-block:: objc 1483 1484 NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11", 1485 @"String 02"]; 1486 const NSStringCompareOptions comparisonOptions 1487 = NSCaseInsensitiveSearch | NSNumericSearch | 1488 NSWidthInsensitiveSearch | NSForcedOrderingSearch; 1489 NSLocale *currentLocale = [NSLocale currentLocale]; 1490 NSArray *sorted 1491 = [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult { 1492 NSRange string1Range = NSMakeRange(0, [s1 length]); 1493 return [s1 compare:s2 options:comparisonOptions 1494 range:string1Range locale:currentLocale]; 1495 }]; 1496 NSLog(@"sorted: %@", sorted); 1497 1498This code relies on an implicit conversion from the type of the lambda 1499expression (an unnamed, local class type called the *closure type*) to the 1500corresponding block pointer type. The conversion itself is expressed by a 1501conversion operator in that closure type that produces a block pointer with the 1502same signature as the lambda itself, e.g., 1503 1504.. code-block:: objc 1505 1506 operator NSComparisonResult (^)(id, id)() const; 1507 1508This conversion function returns a new block that simply forwards the two 1509parameters to the lambda object (which it captures by copy), then returns the 1510result. The returned block is first copied (with ``Block_copy``) and then 1511autoreleased. As an optimization, if a lambda expression is immediately 1512converted to a block pointer (as in the first example, above), then the block 1513is not copied and autoreleased: rather, it is given the same lifetime as a 1514block literal written at that point in the program, which avoids the overhead 1515of copying a block to the heap in the common case. 1516 1517The conversion from a lambda to a block pointer is only available in 1518Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory 1519management (autorelease). 1520 1521Object Literals and Subscripting 1522-------------------------------- 1523 1524Clang provides support for :doc:`Object Literals and Subscripting 1525<ObjectiveCLiterals>` in Objective-C, which simplifies common Objective-C 1526programming patterns, makes programs more concise, and improves the safety of 1527container creation. There are several feature macros associated with object 1528literals and subscripting: ``__has_feature(objc_array_literals)`` tests the 1529availability of array literals; ``__has_feature(objc_dictionary_literals)`` 1530tests the availability of dictionary literals; 1531``__has_feature(objc_subscripting)`` tests the availability of object 1532subscripting. 1533 1534Objective-C Autosynthesis of Properties 1535--------------------------------------- 1536 1537Clang provides support for autosynthesis of declared properties. Using this 1538feature, clang provides default synthesis of those properties not declared 1539@dynamic and not having user provided backing getter and setter methods. 1540``__has_feature(objc_default_synthesize_properties)`` checks for availability 1541of this feature in version of clang being used. 1542 1543.. _langext-objc-retain-release: 1544 1545Objective-C retaining behavior attributes 1546----------------------------------------- 1547 1548In Objective-C, functions and methods are generally assumed to follow the 1549`Cocoa Memory Management 1550<https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html>`_ 1551conventions for ownership of object arguments and 1552return values. However, there are exceptions, and so Clang provides attributes 1553to allow these exceptions to be documented. This are used by ARC and the 1554`static analyzer <https://clang-analyzer.llvm.org>`_ Some exceptions may be 1555better described using the ``objc_method_family`` attribute instead. 1556 1557**Usage**: The ``ns_returns_retained``, ``ns_returns_not_retained``, 1558``ns_returns_autoreleased``, ``cf_returns_retained``, and 1559``cf_returns_not_retained`` attributes can be placed on methods and functions 1560that return Objective-C or CoreFoundation objects. They are commonly placed at 1561the end of a function prototype or method declaration: 1562 1563.. code-block:: objc 1564 1565 id foo() __attribute__((ns_returns_retained)); 1566 1567 - (NSString *)bar:(int)x __attribute__((ns_returns_retained)); 1568 1569The ``*_returns_retained`` attributes specify that the returned object has a +1 1570retain count. The ``*_returns_not_retained`` attributes specify that the return 1571object has a +0 retain count, even if the normal convention for its selector 1572would be +1. ``ns_returns_autoreleased`` specifies that the returned object is 1573+0, but is guaranteed to live at least as long as the next flush of an 1574autorelease pool. 1575 1576**Usage**: The ``ns_consumed`` and ``cf_consumed`` attributes can be placed on 1577an parameter declaration; they specify that the argument is expected to have a 1578+1 retain count, which will be balanced in some way by the function or method. 1579The ``ns_consumes_self`` attribute can only be placed on an Objective-C 1580method; it specifies that the method expects its ``self`` parameter to have a 1581+1 retain count, which it will balance in some way. 1582 1583.. code-block:: objc 1584 1585 void foo(__attribute__((ns_consumed)) NSString *string); 1586 1587 - (void) bar __attribute__((ns_consumes_self)); 1588 - (void) baz:(id) __attribute__((ns_consumed)) x; 1589 1590Further examples of these attributes are available in the static analyzer's `list of annotations for analysis 1591<https://clang-analyzer.llvm.org/annotations.html#cocoa_mem>`_. 1592 1593Query for these features with ``__has_attribute(ns_consumed)``, 1594``__has_attribute(ns_returns_retained)``, etc. 1595 1596Objective-C @available 1597---------------------- 1598 1599It is possible to use the newest SDK but still build a program that can run on 1600older versions of macOS and iOS by passing ``-mmacosx-version-min=`` / 1601``-miphoneos-version-min=``. 1602 1603Before LLVM 5.0, when calling a function that exists only in the OS that's 1604newer than the target OS (as determined by the minimum deployment version), 1605programmers had to carefully check if the function exists at runtime, using 1606null checks for weakly-linked C functions, ``+class`` for Objective-C classes, 1607and ``-respondsToSelector:`` or ``+instancesRespondToSelector:`` for 1608Objective-C methods. If such a check was missed, the program would compile 1609fine, run fine on newer systems, but crash on older systems. 1610 1611As of LLVM 5.0, ``-Wunguarded-availability`` uses the `availability attributes 1612<https://clang.llvm.org/docs/AttributeReference.html#availability>`_ together 1613with the new ``@available()`` keyword to assist with this issue. 1614When a method that's introduced in the OS newer than the target OS is called, a 1615-Wunguarded-availability warning is emitted if that call is not guarded: 1616 1617.. code-block:: objc 1618 1619 void my_fun(NSSomeClass* var) { 1620 // If fancyNewMethod was added in e.g. macOS 10.12, but the code is 1621 // built with -mmacosx-version-min=10.11, then this unconditional call 1622 // will emit a -Wunguarded-availability warning: 1623 [var fancyNewMethod]; 1624 } 1625 1626To fix the warning and to avoid the crash on macOS 10.11, wrap it in 1627``if(@available())``: 1628 1629.. code-block:: objc 1630 1631 void my_fun(NSSomeClass* var) { 1632 if (@available(macOS 10.12, *)) { 1633 [var fancyNewMethod]; 1634 } else { 1635 // Put fallback behavior for old macOS versions (and for non-mac 1636 // platforms) here. 1637 } 1638 } 1639 1640The ``*`` is required and means that platforms not explicitly listed will take 1641the true branch, and the compiler will emit ``-Wunguarded-availability`` 1642warnings for unlisted platforms based on those platform's deployment target. 1643More than one platform can be listed in ``@available()``: 1644 1645.. code-block:: objc 1646 1647 void my_fun(NSSomeClass* var) { 1648 if (@available(macOS 10.12, iOS 10, *)) { 1649 [var fancyNewMethod]; 1650 } 1651 } 1652 1653If the caller of ``my_fun()`` already checks that ``my_fun()`` is only called 1654on 10.12, then add an `availability attribute 1655<https://clang.llvm.org/docs/AttributeReference.html#availability>`_ to it, 1656which will also suppress the warning and require that calls to my_fun() are 1657checked: 1658 1659.. code-block:: objc 1660 1661 API_AVAILABLE(macos(10.12)) void my_fun(NSSomeClass* var) { 1662 [var fancyNewMethod]; // Now ok. 1663 } 1664 1665``@available()`` is only available in Objective-C code. To use the feature 1666in C and C++ code, use the ``__builtin_available()`` spelling instead. 1667 1668If existing code uses null checks or ``-respondsToSelector:``, it should 1669be changed to use ``@available()`` (or ``__builtin_available``) instead. 1670 1671``-Wunguarded-availability`` is disabled by default, but 1672``-Wunguarded-availability-new``, which only emits this warning for APIs 1673that have been introduced in macOS >= 10.13, iOS >= 11, watchOS >= 4 and 1674tvOS >= 11, is enabled by default. 1675 1676.. _langext-overloading: 1677 1678Objective-C++ ABI: protocol-qualifier mangling of parameters 1679------------------------------------------------------------ 1680 1681Starting with LLVM 3.4, Clang produces a new mangling for parameters whose 1682type is a qualified-``id`` (e.g., ``id<Foo>``). This mangling allows such 1683parameters to be differentiated from those with the regular unqualified ``id`` 1684type. 1685 1686This was a non-backward compatible mangling change to the ABI. This change 1687allows proper overloading, and also prevents mangling conflicts with template 1688parameters of protocol-qualified type. 1689 1690Query the presence of this new mangling with 1691``__has_feature(objc_protocol_qualifier_mangling)``. 1692 1693Initializer lists for complex numbers in C 1694========================================== 1695 1696clang supports an extension which allows the following in C: 1697 1698.. code-block:: c++ 1699 1700 #include <math.h> 1701 #include <complex.h> 1702 complex float x = { 1.0f, INFINITY }; // Init to (1, Inf) 1703 1704This construct is useful because there is no way to separately initialize the 1705real and imaginary parts of a complex variable in standard C, given that clang 1706does not support ``_Imaginary``. (Clang also supports the ``__real__`` and 1707``__imag__`` extensions from gcc, which help in some cases, but are not usable 1708in static initializers.) 1709 1710Note that this extension does not allow eliding the braces; the meaning of the 1711following two lines is different: 1712 1713.. code-block:: c++ 1714 1715 complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1) 1716 complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0) 1717 1718This extension also works in C++ mode, as far as that goes, but does not apply 1719to the C++ ``std::complex``. (In C++11, list initialization allows the same 1720syntax to be used with ``std::complex`` with the same meaning.) 1721 1722Builtin Functions 1723================= 1724 1725Clang supports a number of builtin library functions with the same syntax as 1726GCC, including things like ``__builtin_nan``, ``__builtin_constant_p``, 1727``__builtin_choose_expr``, ``__builtin_types_compatible_p``, 1728``__builtin_assume_aligned``, ``__sync_fetch_and_add``, etc. In addition to 1729the GCC builtins, Clang supports a number of builtins that GCC does not, which 1730are listed here. 1731 1732Please note that Clang does not and will not support all of the GCC builtins 1733for vector operations. Instead of using builtins, you should use the functions 1734defined in target-specific header files like ``<xmmintrin.h>``, which define 1735portable wrappers for these. Many of the Clang versions of these functions are 1736implemented directly in terms of :ref:`extended vector support 1737<langext-vectors>` instead of builtins, in order to reduce the number of 1738builtins that we need to implement. 1739 1740``__builtin_assume`` 1741------------------------------ 1742 1743``__builtin_assume`` is used to provide the optimizer with a boolean 1744invariant that is defined to be true. 1745 1746**Syntax**: 1747 1748.. code-block:: c++ 1749 1750 __builtin_assume(bool) 1751 1752**Example of Use**: 1753 1754.. code-block:: c++ 1755 1756 int foo(int x) { 1757 __builtin_assume(x != 0); 1758 1759 // The optimizer may short-circuit this check using the invariant. 1760 if (x == 0) 1761 return do_something(); 1762 1763 return do_something_else(); 1764 } 1765 1766**Description**: 1767 1768The boolean argument to this function is defined to be true. The optimizer may 1769analyze the form of the expression provided as the argument and deduce from 1770that information used to optimize the program. If the condition is violated 1771during execution, the behavior is undefined. The argument itself is never 1772evaluated, so any side effects of the expression will be discarded. 1773 1774Query for this feature with ``__has_builtin(__builtin_assume)``. 1775 1776``__builtin_readcyclecounter`` 1777------------------------------ 1778 1779``__builtin_readcyclecounter`` is used to access the cycle counter register (or 1780a similar low-latency, high-accuracy clock) on those targets that support it. 1781 1782**Syntax**: 1783 1784.. code-block:: c++ 1785 1786 __builtin_readcyclecounter() 1787 1788**Example of Use**: 1789 1790.. code-block:: c++ 1791 1792 unsigned long long t0 = __builtin_readcyclecounter(); 1793 do_something(); 1794 unsigned long long t1 = __builtin_readcyclecounter(); 1795 unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow 1796 1797**Description**: 1798 1799The ``__builtin_readcyclecounter()`` builtin returns the cycle counter value, 1800which may be either global or process/thread-specific depending on the target. 1801As the backing counters often overflow quickly (on the order of seconds) this 1802should only be used for timing small intervals. When not supported by the 1803target, the return value is always zero. This builtin takes no arguments and 1804produces an unsigned long long result. 1805 1806Query for this feature with ``__has_builtin(__builtin_readcyclecounter)``. Note 1807that even if present, its use may depend on run-time privilege or other OS 1808controlled state. 1809 1810.. _langext-__builtin_shufflevector: 1811 1812``__builtin_dump_struct`` 1813------------------------- 1814 1815**Syntax**: 1816 1817.. code-block:: c++ 1818 1819 __builtin_dump_struct(&some_struct, &some_printf_func); 1820 1821**Examples**: 1822 1823.. code-block:: c++ 1824 1825 struct S { 1826 int x, y; 1827 float f; 1828 struct T { 1829 int i; 1830 } t; 1831 }; 1832 1833 void func(struct S *s) { 1834 __builtin_dump_struct(s, &printf); 1835 } 1836 1837Example output: 1838 1839.. code-block:: none 1840 1841 struct S { 1842 int i : 100 1843 int j : 42 1844 float f : 3.14159 1845 struct T t : struct T { 1846 int i : 1997 1847 } 1848 } 1849 1850**Description**: 1851 1852The '``__builtin_dump_struct``' function is used to print the fields of a simple 1853structure and their values for debugging purposes. The builtin accepts a pointer 1854to a structure to dump the fields of, and a pointer to a formatted output 1855function whose signature must be: ``int (*)(const char *, ...)`` and must 1856support the format specifiers used by ``printf()``. 1857 1858``__builtin_shufflevector`` 1859--------------------------- 1860 1861``__builtin_shufflevector`` is used to express generic vector 1862permutation/shuffle/swizzle operations. This builtin is also very important 1863for the implementation of various target-specific header files like 1864``<xmmintrin.h>``. 1865 1866**Syntax**: 1867 1868.. code-block:: c++ 1869 1870 __builtin_shufflevector(vec1, vec2, index1, index2, ...) 1871 1872**Examples**: 1873 1874.. code-block:: c++ 1875 1876 // identity operation - return 4-element vector v1. 1877 __builtin_shufflevector(v1, v1, 0, 1, 2, 3) 1878 1879 // "Splat" element 0 of V1 into a 4-element result. 1880 __builtin_shufflevector(V1, V1, 0, 0, 0, 0) 1881 1882 // Reverse 4-element vector V1. 1883 __builtin_shufflevector(V1, V1, 3, 2, 1, 0) 1884 1885 // Concatenate every other element of 4-element vectors V1 and V2. 1886 __builtin_shufflevector(V1, V2, 0, 2, 4, 6) 1887 1888 // Concatenate every other element of 8-element vectors V1 and V2. 1889 __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14) 1890 1891 // Shuffle v1 with some elements being undefined 1892 __builtin_shufflevector(v1, v1, 3, -1, 1, -1) 1893 1894**Description**: 1895 1896The first two arguments to ``__builtin_shufflevector`` are vectors that have 1897the same element type. The remaining arguments are a list of integers that 1898specify the elements indices of the first two vectors that should be extracted 1899and returned in a new vector. These element indices are numbered sequentially 1900starting with the first vector, continuing into the second vector. Thus, if 1901``vec1`` is a 4-element vector, index 5 would refer to the second element of 1902``vec2``. An index of -1 can be used to indicate that the corresponding element 1903in the returned vector is a don't care and can be optimized by the backend. 1904 1905The result of ``__builtin_shufflevector`` is a vector with the same element 1906type as ``vec1``/``vec2`` but that has an element count equal to the number of 1907indices specified. 1908 1909Query for this feature with ``__has_builtin(__builtin_shufflevector)``. 1910 1911.. _langext-__builtin_convertvector: 1912 1913``__builtin_convertvector`` 1914--------------------------- 1915 1916``__builtin_convertvector`` is used to express generic vector 1917type-conversion operations. The input vector and the output vector 1918type must have the same number of elements. 1919 1920**Syntax**: 1921 1922.. code-block:: c++ 1923 1924 __builtin_convertvector(src_vec, dst_vec_type) 1925 1926**Examples**: 1927 1928.. code-block:: c++ 1929 1930 typedef double vector4double __attribute__((__vector_size__(32))); 1931 typedef float vector4float __attribute__((__vector_size__(16))); 1932 typedef short vector4short __attribute__((__vector_size__(8))); 1933 vector4float vf; vector4short vs; 1934 1935 // convert from a vector of 4 floats to a vector of 4 doubles. 1936 __builtin_convertvector(vf, vector4double) 1937 // equivalent to: 1938 (vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] } 1939 1940 // convert from a vector of 4 shorts to a vector of 4 floats. 1941 __builtin_convertvector(vs, vector4float) 1942 // equivalent to: 1943 (vector4float) { (float) vs[0], (float) vs[1], (float) vs[2], (float) vs[3] } 1944 1945**Description**: 1946 1947The first argument to ``__builtin_convertvector`` is a vector, and the second 1948argument is a vector type with the same number of elements as the first 1949argument. 1950 1951The result of ``__builtin_convertvector`` is a vector with the same element 1952type as the second argument, with a value defined in terms of the action of a 1953C-style cast applied to each element of the first argument. 1954 1955Query for this feature with ``__has_builtin(__builtin_convertvector)``. 1956 1957``__builtin_bitreverse`` 1958------------------------ 1959 1960* ``__builtin_bitreverse8`` 1961* ``__builtin_bitreverse16`` 1962* ``__builtin_bitreverse32`` 1963* ``__builtin_bitreverse64`` 1964 1965**Syntax**: 1966 1967.. code-block:: c++ 1968 1969 __builtin_bitreverse32(x) 1970 1971**Examples**: 1972 1973.. code-block:: c++ 1974 1975 uint8_t rev_x = __builtin_bitreverse8(x); 1976 uint16_t rev_x = __builtin_bitreverse16(x); 1977 uint32_t rev_y = __builtin_bitreverse32(y); 1978 uint64_t rev_z = __builtin_bitreverse64(z); 1979 1980**Description**: 1981 1982The '``__builtin_bitreverse``' family of builtins is used to reverse 1983the bitpattern of an integer value; for example ``0b10110110`` becomes 1984``0b01101101``. 1985 1986``__builtin_rotateleft`` 1987------------------------ 1988 1989* ``__builtin_rotateleft8`` 1990* ``__builtin_rotateleft16`` 1991* ``__builtin_rotateleft32`` 1992* ``__builtin_rotateleft64`` 1993 1994**Syntax**: 1995 1996.. code-block:: c++ 1997 1998 __builtin_rotateleft32(x, y) 1999 2000**Examples**: 2001 2002.. code-block:: c++ 2003 2004 uint8_t rot_x = __builtin_rotateleft8(x, y); 2005 uint16_t rot_x = __builtin_rotateleft16(x, y); 2006 uint32_t rot_x = __builtin_rotateleft32(x, y); 2007 uint64_t rot_x = __builtin_rotateleft64(x, y); 2008 2009**Description**: 2010 2011The '``__builtin_rotateleft``' family of builtins is used to rotate 2012the bits in the first argument by the amount in the second argument. 2013For example, ``0b10000110`` rotated left by 11 becomes ``0b00110100``. 2014The shift value is treated as an unsigned amount modulo the size of 2015the arguments. Both arguments and the result have the bitwidth specified 2016by the name of the builtin. 2017 2018``__builtin_rotateright`` 2019------------------------- 2020 2021* ``__builtin_rotateright8`` 2022* ``__builtin_rotateright16`` 2023* ``__builtin_rotateright32`` 2024* ``__builtin_rotateright64`` 2025 2026**Syntax**: 2027 2028.. code-block:: c++ 2029 2030 __builtin_rotateright32(x, y) 2031 2032**Examples**: 2033 2034.. code-block:: c++ 2035 2036 uint8_t rot_x = __builtin_rotateright8(x, y); 2037 uint16_t rot_x = __builtin_rotateright16(x, y); 2038 uint32_t rot_x = __builtin_rotateright32(x, y); 2039 uint64_t rot_x = __builtin_rotateright64(x, y); 2040 2041**Description**: 2042 2043The '``__builtin_rotateright``' family of builtins is used to rotate 2044the bits in the first argument by the amount in the second argument. 2045For example, ``0b10000110`` rotated right by 3 becomes ``0b11010000``. 2046The shift value is treated as an unsigned amount modulo the size of 2047the arguments. Both arguments and the result have the bitwidth specified 2048by the name of the builtin. 2049 2050``__builtin_unreachable`` 2051------------------------- 2052 2053``__builtin_unreachable`` is used to indicate that a specific point in the 2054program cannot be reached, even if the compiler might otherwise think it can. 2055This is useful to improve optimization and eliminates certain warnings. For 2056example, without the ``__builtin_unreachable`` in the example below, the 2057compiler assumes that the inline asm can fall through and prints a "function 2058declared '``noreturn``' should not return" warning. 2059 2060**Syntax**: 2061 2062.. code-block:: c++ 2063 2064 __builtin_unreachable() 2065 2066**Example of use**: 2067 2068.. code-block:: c++ 2069 2070 void myabort(void) __attribute__((noreturn)); 2071 void myabort(void) { 2072 asm("int3"); 2073 __builtin_unreachable(); 2074 } 2075 2076**Description**: 2077 2078The ``__builtin_unreachable()`` builtin has completely undefined behavior. 2079Since it has undefined behavior, it is a statement that it is never reached and 2080the optimizer can take advantage of this to produce better code. This builtin 2081takes no arguments and produces a void result. 2082 2083Query for this feature with ``__has_builtin(__builtin_unreachable)``. 2084 2085``__builtin_unpredictable`` 2086--------------------------- 2087 2088``__builtin_unpredictable`` is used to indicate that a branch condition is 2089unpredictable by hardware mechanisms such as branch prediction logic. 2090 2091**Syntax**: 2092 2093.. code-block:: c++ 2094 2095 __builtin_unpredictable(long long) 2096 2097**Example of use**: 2098 2099.. code-block:: c++ 2100 2101 if (__builtin_unpredictable(x > 0)) { 2102 foo(); 2103 } 2104 2105**Description**: 2106 2107The ``__builtin_unpredictable()`` builtin is expected to be used with control 2108flow conditions such as in ``if`` and ``switch`` statements. 2109 2110Query for this feature with ``__has_builtin(__builtin_unpredictable)``. 2111 2112``__sync_swap`` 2113--------------- 2114 2115``__sync_swap`` is used to atomically swap integers or pointers in memory. 2116 2117**Syntax**: 2118 2119.. code-block:: c++ 2120 2121 type __sync_swap(type *ptr, type value, ...) 2122 2123**Example of Use**: 2124 2125.. code-block:: c++ 2126 2127 int old_value = __sync_swap(&value, new_value); 2128 2129**Description**: 2130 2131The ``__sync_swap()`` builtin extends the existing ``__sync_*()`` family of 2132atomic intrinsics to allow code to atomically swap the current value with the 2133new value. More importantly, it helps developers write more efficient and 2134correct code by avoiding expensive loops around 2135``__sync_bool_compare_and_swap()`` or relying on the platform specific 2136implementation details of ``__sync_lock_test_and_set()``. The 2137``__sync_swap()`` builtin is a full barrier. 2138 2139``__builtin_addressof`` 2140----------------------- 2141 2142``__builtin_addressof`` performs the functionality of the built-in ``&`` 2143operator, ignoring any ``operator&`` overload. This is useful in constant 2144expressions in C++11, where there is no other way to take the address of an 2145object that overloads ``operator&``. 2146 2147**Example of use**: 2148 2149.. code-block:: c++ 2150 2151 template<typename T> constexpr T *addressof(T &value) { 2152 return __builtin_addressof(value); 2153 } 2154 2155``__builtin_operator_new`` and ``__builtin_operator_delete`` 2156------------------------------------------------------------ 2157 2158A call to ``__builtin_operator_new(args)`` is exactly the same as a call to 2159``::operator new(args)``, except that it allows certain optimizations 2160that the C++ standard does not permit for a direct function call to 2161``::operator new`` (in particular, removing ``new`` / ``delete`` pairs and 2162merging allocations), and that the call is required to resolve to a 2163`replaceable global allocation function 2164<https://en.cppreference.com/w/cpp/memory/new/operator_new>`_. 2165 2166Likewise, ``__builtin_operator_delete`` is exactly the same as a call to 2167``::operator delete(args)``, except that it permits optimizations 2168and that the call is required to resolve to a 2169`replaceable global deallocation function 2170<https://en.cppreference.com/w/cpp/memory/new/operator_delete>`_. 2171 2172These builtins are intended for use in the implementation of ``std::allocator`` 2173and other similar allocation libraries, and are only available in C++. 2174 2175Query for this feature with ``__has_builtin(__builtin_operator_new)`` or 2176``__has_builtin(__builtin_operator_delete)``: 2177 2178 * If the value is at least ``201802L``, the builtins behave as described above. 2179 2180 * If the value is non-zero, the builtins may not support calling arbitrary 2181 replaceable global (de)allocation functions, but do support calling at least 2182 ``::operator new(size_t)`` and ``::operator delete(void*)``. 2183 2184``__builtin_preserve_access_index`` 2185----------------------------------- 2186 2187``__builtin_preserve_access_index`` specifies a code section where 2188array subscript access and structure/union member access are relocatable 2189under bpf compile-once run-everywhere framework. Debuginfo (typically 2190with ``-g``) is needed, otherwise, the compiler will exit with an error. 2191The return type for the intrinsic is the same as the type of the 2192argument. 2193 2194**Syntax**: 2195 2196.. code-block:: c 2197 2198 type __builtin_preserve_access_index(type arg) 2199 2200**Example of Use**: 2201 2202.. code-block:: c 2203 2204 struct t { 2205 int i; 2206 int j; 2207 union { 2208 int a; 2209 int b; 2210 } c[4]; 2211 }; 2212 struct t *v = ...; 2213 int *pb =__builtin_preserve_access_index(&v->c[3].b); 2214 __builtin_preserve_access_index(v->j); 2215 2216``__builtin_unique_stable_name`` 2217-------------------------------- 2218 2219``__builtin_unique_stable_name()`` is a builtin that takes a type or expression and 2220produces a string literal containing a unique name for the type (or type of the 2221expression) that is stable across split compilations. 2222 2223In cases where the split compilation needs to share a unique token for a type 2224across the boundary (such as in an offloading situation), this name can be used 2225for lookup purposes. 2226 2227This builtin is superior to RTTI for this purpose for two reasons. First, this 2228value is computed entirely at compile time, so it can be used in constant 2229expressions. Second, this value encodes lambda functions based on line-number 2230rather than the order in which it appears in a function. This is valuable 2231because it is stable in cases where an unrelated lambda is introduced 2232conditionally in the same function. 2233 2234The current implementation of this builtin uses a slightly modified Itanium 2235Mangler to produce the unique name. The lambda ordinal is replaced with one or 2236more line/column pairs in the format ``LINE->COL``, separated with a ``~`` 2237character. Typically, only one pair will be included, however in the case of 2238macro expansions the entire macro expansion stack is expressed. 2239 2240Multiprecision Arithmetic Builtins 2241---------------------------------- 2242 2243Clang provides a set of builtins which expose multiprecision arithmetic in a 2244manner amenable to C. They all have the following form: 2245 2246.. code-block:: c 2247 2248 unsigned x = ..., y = ..., carryin = ..., carryout; 2249 unsigned sum = __builtin_addc(x, y, carryin, &carryout); 2250 2251Thus one can form a multiprecision addition chain in the following manner: 2252 2253.. code-block:: c 2254 2255 unsigned *x, *y, *z, carryin=0, carryout; 2256 z[0] = __builtin_addc(x[0], y[0], carryin, &carryout); 2257 carryin = carryout; 2258 z[1] = __builtin_addc(x[1], y[1], carryin, &carryout); 2259 carryin = carryout; 2260 z[2] = __builtin_addc(x[2], y[2], carryin, &carryout); 2261 carryin = carryout; 2262 z[3] = __builtin_addc(x[3], y[3], carryin, &carryout); 2263 2264The complete list of builtins are: 2265 2266.. code-block:: c 2267 2268 unsigned char __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout); 2269 unsigned short __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout); 2270 unsigned __builtin_addc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout); 2271 unsigned long __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout); 2272 unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout); 2273 unsigned char __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout); 2274 unsigned short __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout); 2275 unsigned __builtin_subc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout); 2276 unsigned long __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout); 2277 unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout); 2278 2279Checked Arithmetic Builtins 2280--------------------------- 2281 2282Clang provides a set of builtins that implement checked arithmetic for security 2283critical applications in a manner that is fast and easily expressible in C. As 2284an example of their usage: 2285 2286.. code-block:: c 2287 2288 errorcode_t security_critical_application(...) { 2289 unsigned x, y, result; 2290 ... 2291 if (__builtin_mul_overflow(x, y, &result)) 2292 return kErrorCodeHackers; 2293 ... 2294 use_multiply(result); 2295 ... 2296 } 2297 2298Clang provides the following checked arithmetic builtins: 2299 2300.. code-block:: c 2301 2302 bool __builtin_add_overflow (type1 x, type2 y, type3 *sum); 2303 bool __builtin_sub_overflow (type1 x, type2 y, type3 *diff); 2304 bool __builtin_mul_overflow (type1 x, type2 y, type3 *prod); 2305 bool __builtin_uadd_overflow (unsigned x, unsigned y, unsigned *sum); 2306 bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum); 2307 bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum); 2308 bool __builtin_usub_overflow (unsigned x, unsigned y, unsigned *diff); 2309 bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff); 2310 bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff); 2311 bool __builtin_umul_overflow (unsigned x, unsigned y, unsigned *prod); 2312 bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod); 2313 bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod); 2314 bool __builtin_sadd_overflow (int x, int y, int *sum); 2315 bool __builtin_saddl_overflow (long x, long y, long *sum); 2316 bool __builtin_saddll_overflow(long long x, long long y, long long *sum); 2317 bool __builtin_ssub_overflow (int x, int y, int *diff); 2318 bool __builtin_ssubl_overflow (long x, long y, long *diff); 2319 bool __builtin_ssubll_overflow(long long x, long long y, long long *diff); 2320 bool __builtin_smul_overflow (int x, int y, int *prod); 2321 bool __builtin_smull_overflow (long x, long y, long *prod); 2322 bool __builtin_smulll_overflow(long long x, long long y, long long *prod); 2323 2324Each builtin performs the specified mathematical operation on the 2325first two arguments and stores the result in the third argument. If 2326possible, the result will be equal to mathematically-correct result 2327and the builtin will return 0. Otherwise, the builtin will return 23281 and the result will be equal to the unique value that is equivalent 2329to the mathematically-correct result modulo two raised to the *k* 2330power, where *k* is the number of bits in the result type. The 2331behavior of these builtins is well-defined for all argument values. 2332 2333The first three builtins work generically for operands of any integer type, 2334including boolean types. The operands need not have the same type as each 2335other, or as the result. The other builtins may implicitly promote or 2336convert their operands before performing the operation. 2337 2338Query for this feature with ``__has_builtin(__builtin_add_overflow)``, etc. 2339 2340Floating point builtins 2341--------------------------------------- 2342 2343``__builtin_canonicalize`` 2344-------------------------- 2345 2346.. code-block:: c 2347 2348 double __builtin_canonicalize(double); 2349 float __builtin_canonicalizef(float); 2350 long double__builtin_canonicalizel(long double); 2351 2352Returns the platform specific canonical encoding of a floating point 2353number. This canonicalization is useful for implementing certain 2354numeric primitives such as frexp. See `LLVM canonicalize intrinsic 2355<https://llvm.org/docs/LangRef.html#llvm-canonicalize-intrinsic>`_ for 2356more information on the semantics. 2357 2358String builtins 2359--------------- 2360 2361Clang provides constant expression evaluation support for builtins forms of 2362the following functions from the C standard library headers 2363``<string.h>`` and ``<wchar.h>``: 2364 2365* ``memchr`` 2366* ``memcmp`` (and its deprecated BSD / POSIX alias ``bcmp``) 2367* ``strchr`` 2368* ``strcmp`` 2369* ``strlen`` 2370* ``strncmp`` 2371* ``wcschr`` 2372* ``wcscmp`` 2373* ``wcslen`` 2374* ``wcsncmp`` 2375* ``wmemchr`` 2376* ``wmemcmp`` 2377 2378In each case, the builtin form has the name of the C library function prefixed 2379by ``__builtin_``. Example: 2380 2381.. code-block:: c 2382 2383 void *p = __builtin_memchr("foobar", 'b', 5); 2384 2385In addition to the above, one further builtin is provided: 2386 2387.. code-block:: c 2388 2389 char *__builtin_char_memchr(const char *haystack, int needle, size_t size); 2390 2391``__builtin_char_memchr(a, b, c)`` is identical to 2392``(char*)__builtin_memchr(a, b, c)`` except that its use is permitted within 2393constant expressions in C++11 onwards (where a cast from ``void*`` to ``char*`` 2394is disallowed in general). 2395 2396Constant evaluation support for the ``__builtin_mem*`` functions is provided 2397only for arrays of ``char``, ``signed char``, ``unsigned char``, or ``char8_t``, 2398despite these functions accepting an argument of type ``const void*``. 2399 2400Support for constant expression evaluation for the above builtins can be detected 2401with ``__has_feature(cxx_constexpr_string_builtins)``. 2402 2403Memory builtins 2404--------------- 2405 2406 * ``__builtin_memcpy_inline`` 2407 2408.. code-block:: c 2409 2410 void __builtin_memcpy_inline(void *dst, const void *src, size_t size); 2411 2412``__builtin_memcpy_inline(dst, src, size)`` is identical to 2413``__builtin_memcpy(dst, src, size)`` except that the generated code is 2414guaranteed not to call any external functions. See [LLVM IR ‘llvm.memcpy.inline’ 2415Intrinsic](https://llvm.org/docs/LangRef.html#llvm-memcpy-inline-intrinsic) for 2416more information. 2417 2418Note that the `size` argument must be a compile time constant. 2419 2420Clang provides constant expression evaluation support for builtin forms of the 2421following functions from the C standard library headers 2422``<string.h>`` and ``<wchar.h>``: 2423 2424* ``memcpy`` 2425* ``memmove`` 2426* ``wmemcpy`` 2427* ``wmemmove`` 2428 2429In each case, the builtin form has the name of the C library function prefixed 2430by ``__builtin_``. 2431 2432Constant evaluation support is only provided when the source and destination 2433are pointers to arrays with the same trivially copyable element type, and the 2434given size is an exact multiple of the element size that is no greater than 2435the number of elements accessible through the source and destination operands. 2436 2437Constant evaluation support is not yet provided for ``__builtin_memcpy_inline``. 2438 2439Atomic Min/Max builtins with memory ordering 2440-------------------------------------------- 2441 2442There are two atomic builtins with min/max in-memory comparison and swap. 2443The syntax and semantics are similar to GCC-compatible __atomic_* builtins. 2444 2445* ``__atomic_fetch_min`` 2446* ``__atomic_fetch_max`` 2447 2448The builtins work with signed and unsigned integers and require to specify memory ordering. 2449The return value is the original value that was stored in memory before comparison. 2450 2451Example: 2452 2453.. code-block:: c 2454 2455 unsigned int val = __atomic_fetch_min(unsigned int *pi, unsigned int ui, __ATOMIC_RELAXED); 2456 2457The third argument is one of the memory ordering specifiers ``__ATOMIC_RELAXED``, 2458``__ATOMIC_CONSUME``, ``__ATOMIC_ACQUIRE``, ``__ATOMIC_RELEASE``, 2459``__ATOMIC_ACQ_REL``, or ``__ATOMIC_SEQ_CST`` following C++11 memory model semantics. 2460 2461In terms or aquire-release ordering barriers these two operations are always 2462considered as operations with *load-store* semantics, even when the original value 2463is not actually modified after comparison. 2464 2465.. _langext-__c11_atomic: 2466 2467__c11_atomic builtins 2468--------------------- 2469 2470Clang provides a set of builtins which are intended to be used to implement 2471C11's ``<stdatomic.h>`` header. These builtins provide the semantics of the 2472``_explicit`` form of the corresponding C11 operation, and are named with a 2473``__c11_`` prefix. The supported operations, and the differences from 2474the corresponding C11 operations, are: 2475 2476* ``__c11_atomic_init`` 2477* ``__c11_atomic_thread_fence`` 2478* ``__c11_atomic_signal_fence`` 2479* ``__c11_atomic_is_lock_free`` (The argument is the size of the 2480 ``_Atomic(...)`` object, instead of its address) 2481* ``__c11_atomic_store`` 2482* ``__c11_atomic_load`` 2483* ``__c11_atomic_exchange`` 2484* ``__c11_atomic_compare_exchange_strong`` 2485* ``__c11_atomic_compare_exchange_weak`` 2486* ``__c11_atomic_fetch_add`` 2487* ``__c11_atomic_fetch_sub`` 2488* ``__c11_atomic_fetch_and`` 2489* ``__c11_atomic_fetch_or`` 2490* ``__c11_atomic_fetch_xor`` 2491* ``__c11_atomic_fetch_max`` 2492* ``__c11_atomic_fetch_min`` 2493 2494The macros ``__ATOMIC_RELAXED``, ``__ATOMIC_CONSUME``, ``__ATOMIC_ACQUIRE``, 2495``__ATOMIC_RELEASE``, ``__ATOMIC_ACQ_REL``, and ``__ATOMIC_SEQ_CST`` are 2496provided, with values corresponding to the enumerators of C11's 2497``memory_order`` enumeration. 2498 2499(Note that Clang additionally provides GCC-compatible ``__atomic_*`` 2500builtins and OpenCL 2.0 ``__opencl_atomic_*`` builtins. The OpenCL 2.0 2501atomic builtins are an explicit form of the corresponding OpenCL 2.0 2502builtin function, and are named with a ``__opencl_`` prefix. The macros 2503``__OPENCL_MEMORY_SCOPE_WORK_ITEM``, ``__OPENCL_MEMORY_SCOPE_WORK_GROUP``, 2504``__OPENCL_MEMORY_SCOPE_DEVICE``, ``__OPENCL_MEMORY_SCOPE_ALL_SVM_DEVICES``, 2505and ``__OPENCL_MEMORY_SCOPE_SUB_GROUP`` are provided, with values 2506corresponding to the enumerators of OpenCL's ``memory_scope`` enumeration.) 2507 2508Low-level ARM exclusive memory builtins 2509--------------------------------------- 2510 2511Clang provides overloaded builtins giving direct access to the three key ARM 2512instructions for implementing atomic operations. 2513 2514.. code-block:: c 2515 2516 T __builtin_arm_ldrex(const volatile T *addr); 2517 T __builtin_arm_ldaex(const volatile T *addr); 2518 int __builtin_arm_strex(T val, volatile T *addr); 2519 int __builtin_arm_stlex(T val, volatile T *addr); 2520 void __builtin_arm_clrex(void); 2521 2522The types ``T`` currently supported are: 2523 2524* Integer types with width at most 64 bits (or 128 bits on AArch64). 2525* Floating-point types 2526* Pointer types. 2527 2528Note that the compiler does not guarantee it will not insert stores which clear 2529the exclusive monitor in between an ``ldrex`` type operation and its paired 2530``strex``. In practice this is only usually a risk when the extra store is on 2531the same cache line as the variable being modified and Clang will only insert 2532stack stores on its own, so it is best not to use these operations on variables 2533with automatic storage duration. 2534 2535Also, loads and stores may be implicit in code written between the ``ldrex`` and 2536``strex``. Clang will not necessarily mitigate the effects of these either, so 2537care should be exercised. 2538 2539For these reasons the higher level atomic primitives should be preferred where 2540possible. 2541 2542Non-temporal load/store builtins 2543-------------------------------- 2544 2545Clang provides overloaded builtins allowing generation of non-temporal memory 2546accesses. 2547 2548.. code-block:: c 2549 2550 T __builtin_nontemporal_load(T *addr); 2551 void __builtin_nontemporal_store(T value, T *addr); 2552 2553The types ``T`` currently supported are: 2554 2555* Integer types. 2556* Floating-point types. 2557* Vector types. 2558 2559Note that the compiler does not guarantee that non-temporal loads or stores 2560will be used. 2561 2562C++ Coroutines support builtins 2563-------------------------------- 2564 2565.. warning:: 2566 This is a work in progress. Compatibility across Clang/LLVM releases is not 2567 guaranteed. 2568 2569Clang provides experimental builtins to support C++ Coroutines as defined by 2570https://wg21.link/P0057. The following four are intended to be used by the 2571standard library to implement `std::experimental::coroutine_handle` type. 2572 2573**Syntax**: 2574 2575.. code-block:: c 2576 2577 void __builtin_coro_resume(void *addr); 2578 void __builtin_coro_destroy(void *addr); 2579 bool __builtin_coro_done(void *addr); 2580 void *__builtin_coro_promise(void *addr, int alignment, bool from_promise) 2581 2582**Example of use**: 2583 2584.. code-block:: c++ 2585 2586 template <> struct coroutine_handle<void> { 2587 void resume() const { __builtin_coro_resume(ptr); } 2588 void destroy() const { __builtin_coro_destroy(ptr); } 2589 bool done() const { return __builtin_coro_done(ptr); } 2590 // ... 2591 protected: 2592 void *ptr; 2593 }; 2594 2595 template <typename Promise> struct coroutine_handle : coroutine_handle<> { 2596 // ... 2597 Promise &promise() const { 2598 return *reinterpret_cast<Promise *>( 2599 __builtin_coro_promise(ptr, alignof(Promise), /*from-promise=*/false)); 2600 } 2601 static coroutine_handle from_promise(Promise &promise) { 2602 coroutine_handle p; 2603 p.ptr = __builtin_coro_promise(&promise, alignof(Promise), 2604 /*from-promise=*/true); 2605 return p; 2606 } 2607 }; 2608 2609 2610Other coroutine builtins are either for internal clang use or for use during 2611development of the coroutine feature. See `Coroutines in LLVM 2612<https://llvm.org/docs/Coroutines.html#intrinsics>`_ for 2613more information on their semantics. Note that builtins matching the intrinsics 2614that take token as the first parameter (llvm.coro.begin, llvm.coro.alloc, 2615llvm.coro.free and llvm.coro.suspend) omit the token parameter and fill it to 2616an appropriate value during the emission. 2617 2618**Syntax**: 2619 2620.. code-block:: c 2621 2622 size_t __builtin_coro_size() 2623 void *__builtin_coro_frame() 2624 void *__builtin_coro_free(void *coro_frame) 2625 2626 void *__builtin_coro_id(int align, void *promise, void *fnaddr, void *parts) 2627 bool __builtin_coro_alloc() 2628 void *__builtin_coro_begin(void *memory) 2629 void __builtin_coro_end(void *coro_frame, bool unwind) 2630 char __builtin_coro_suspend(bool final) 2631 bool __builtin_coro_param(void *original, void *copy) 2632 2633Note that there is no builtin matching the `llvm.coro.save` intrinsic. LLVM 2634automatically will insert one if the first argument to `llvm.coro.suspend` is 2635token `none`. If a user calls `__builin_suspend`, clang will insert `token none` 2636as the first argument to the intrinsic. 2637 2638Source location builtins 2639------------------------ 2640 2641Clang provides experimental builtins to support C++ standard library implementation 2642of ``std::experimental::source_location`` as specified in http://wg21.link/N4600. 2643With the exception of ``__builtin_COLUMN``, these builtins are also implemented by 2644GCC. 2645 2646**Syntax**: 2647 2648.. code-block:: c 2649 2650 const char *__builtin_FILE(); 2651 const char *__builtin_FUNCTION(); 2652 unsigned __builtin_LINE(); 2653 unsigned __builtin_COLUMN(); // Clang only 2654 2655**Example of use**: 2656 2657.. code-block:: c++ 2658 2659 void my_assert(bool pred, int line = __builtin_LINE(), // Captures line of caller 2660 const char* file = __builtin_FILE(), 2661 const char* function = __builtin_FUNCTION()) { 2662 if (pred) return; 2663 printf("%s:%d assertion failed in function %s\n", file, line, function); 2664 std::abort(); 2665 } 2666 2667 struct MyAggregateType { 2668 int x; 2669 int line = __builtin_LINE(); // captures line where aggregate initialization occurs 2670 }; 2671 static_assert(MyAggregateType{42}.line == __LINE__); 2672 2673 struct MyClassType { 2674 int line = __builtin_LINE(); // captures line of the constructor used during initialization 2675 constexpr MyClassType(int) { assert(line == __LINE__); } 2676 }; 2677 2678**Description**: 2679 2680The builtins ``__builtin_LINE``, ``__builtin_FUNCTION``, and ``__builtin_FILE`` return 2681the values, at the "invocation point", for ``__LINE__``, ``__FUNCTION__``, and 2682``__FILE__`` respectively. These builtins are constant expressions. 2683 2684When the builtins appear as part of a default function argument the invocation 2685point is the location of the caller. When the builtins appear as part of a 2686default member initializer, the invocation point is the location of the 2687constructor or aggregate initialization used to create the object. Otherwise 2688the invocation point is the same as the location of the builtin. 2689 2690When the invocation point of ``__builtin_FUNCTION`` is not a function scope the 2691empty string is returned. 2692 2693Alignment builtins 2694------------------ 2695Clang provides builtins to support checking and adjusting alignment of 2696pointers and integers. 2697These builtins can be used to avoid relying on implementation-defined behavior 2698of arithmetic on integers derived from pointers. 2699Additionally, these builtins retain type information and, unlike bitwise 2700arithmetic, they can perform semantic checking on the alignment value. 2701 2702**Syntax**: 2703 2704.. code-block:: c 2705 2706 Type __builtin_align_up(Type value, size_t alignment); 2707 Type __builtin_align_down(Type value, size_t alignment); 2708 bool __builtin_is_aligned(Type value, size_t alignment); 2709 2710 2711**Example of use**: 2712 2713.. code-block:: c++ 2714 2715 char* global_alloc_buffer; 2716 void* my_aligned_allocator(size_t alloc_size, size_t alignment) { 2717 char* result = __builtin_align_up(global_alloc_buffer, alignment); 2718 // result now contains the value of global_alloc_buffer rounded up to the 2719 // next multiple of alignment. 2720 global_alloc_buffer = result + alloc_size; 2721 return result; 2722 } 2723 2724 void* get_start_of_page(void* ptr) { 2725 return __builtin_align_down(ptr, PAGE_SIZE); 2726 } 2727 2728 void example(char* buffer) { 2729 if (__builtin_is_aligned(buffer, 64)) { 2730 do_fast_aligned_copy(buffer); 2731 } else { 2732 do_unaligned_copy(buffer); 2733 } 2734 } 2735 2736 // In addition to pointers, the builtins can also be used on integer types 2737 // and are evaluatable inside constant expressions. 2738 static_assert(__builtin_align_up(123, 64) == 128, ""); 2739 static_assert(__builtin_align_down(123u, 64) == 64u, ""); 2740 static_assert(!__builtin_is_aligned(123, 64), ""); 2741 2742 2743**Description**: 2744 2745The builtins ``__builtin_align_up``, ``__builtin_align_down``, return their 2746first argument aligned up/down to the next multiple of the second argument. 2747If the value is already sufficiently aligned, it is returned unchanged. 2748The builtin ``__builtin_is_aligned`` returns whether the first argument is 2749aligned to a multiple of the second argument. 2750All of these builtins expect the alignment to be expressed as a number of bytes. 2751 2752These builtins can be used for all integer types as well as (non-function) 2753pointer types. For pointer types, these builtins operate in terms of the integer 2754address of the pointer and return a new pointer of the same type (including 2755qualifiers such as ``const``) with an adjusted address. 2756When aligning pointers up or down, the resulting value must be within the same 2757underlying allocation or one past the end (see C17 6.5.6p8, C++ [expr.add]). 2758This means that arbitrary integer values stored in pointer-type variables must 2759not be passed to these builtins. For those use cases, the builtins can still be 2760used, but the operation must be performed on the pointer cast to ``uintptr_t``. 2761 2762If Clang can determine that the alignment is not a power of two at compile time, 2763it will result in a compilation failure. If the alignment argument is not a 2764power of two at run time, the behavior of these builtins is undefined. 2765 2766Non-standard C++11 Attributes 2767============================= 2768 2769Clang's non-standard C++11 attributes live in the ``clang`` attribute 2770namespace. 2771 2772Clang supports GCC's ``gnu`` attribute namespace. All GCC attributes which 2773are accepted with the ``__attribute__((foo))`` syntax are also accepted as 2774``[[gnu::foo]]``. This only extends to attributes which are specified by GCC 2775(see the list of `GCC function attributes 2776<https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_, `GCC variable 2777attributes <https://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html>`_, and 2778`GCC type attributes 2779<https://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html>`_). As with the GCC 2780implementation, these attributes must appertain to the *declarator-id* in a 2781declaration, which means they must go either at the start of the declaration or 2782immediately after the name being declared. 2783 2784For example, this applies the GNU ``unused`` attribute to ``a`` and ``f``, and 2785also applies the GNU ``noreturn`` attribute to ``f``. 2786 2787.. code-block:: c++ 2788 2789 [[gnu::unused]] int a, f [[gnu::noreturn]] (); 2790 2791Target-Specific Extensions 2792========================== 2793 2794Clang supports some language features conditionally on some targets. 2795 2796ARM/AArch64 Language Extensions 2797------------------------------- 2798 2799Memory Barrier Intrinsics 2800^^^^^^^^^^^^^^^^^^^^^^^^^ 2801Clang implements the ``__dmb``, ``__dsb`` and ``__isb`` intrinsics as defined 2802in the `ARM C Language Extensions Release 2.0 2803<http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf>`_. 2804Note that these intrinsics are implemented as motion barriers that block 2805reordering of memory accesses and side effect instructions. Other instructions 2806like simple arithmetic may be reordered around the intrinsic. If you expect to 2807have no reordering at all, use inline assembly instead. 2808 2809X86/X86-64 Language Extensions 2810------------------------------ 2811 2812The X86 backend has these language extensions: 2813 2814Memory references to specified segments 2815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2816 2817Annotating a pointer with address space #256 causes it to be code generated 2818relative to the X86 GS segment register, address space #257 causes it to be 2819relative to the X86 FS segment, and address space #258 causes it to be 2820relative to the X86 SS segment. Note that this is a very very low-level 2821feature that should only be used if you know what you're doing (for example in 2822an OS kernel). 2823 2824Here is an example: 2825 2826.. code-block:: c++ 2827 2828 #define GS_RELATIVE __attribute__((address_space(256))) 2829 int foo(int GS_RELATIVE *P) { 2830 return *P; 2831 } 2832 2833Which compiles to (on X86-32): 2834 2835.. code-block:: gas 2836 2837 _foo: 2838 movl 4(%esp), %eax 2839 movl %gs:(%eax), %eax 2840 ret 2841 2842You can also use the GCC compatibility macros ``__seg_fs`` and ``__seg_gs`` for 2843the same purpose. The preprocessor symbols ``__SEG_FS`` and ``__SEG_GS`` 2844indicate their support. 2845 2846PowerPC Language Extensions 2847------------------------------ 2848 2849Set the Floating Point Rounding Mode 2850^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2851PowerPC64/PowerPC64le supports the builtin function ``__builtin_setrnd`` to set 2852the floating point rounding mode. This function will use the least significant 2853two bits of integer argument to set the floating point rounding mode. 2854 2855.. code-block:: c++ 2856 2857 double __builtin_setrnd(int mode); 2858 2859The effective values for mode are: 2860 2861 - 0 - round to nearest 2862 - 1 - round to zero 2863 - 2 - round to +infinity 2864 - 3 - round to -infinity 2865 2866Note that the mode argument will modulo 4, so if the integer argument is greater 2867than 3, it will only use the least significant two bits of the mode. 2868Namely, ``__builtin_setrnd(102))`` is equal to ``__builtin_setrnd(2)``. 2869 2870PowerPC cache builtins 2871^^^^^^^^^^^^^^^^^^^^^^ 2872 2873The PowerPC architecture specifies instructions implementing cache operations. 2874Clang provides builtins that give direct programmer access to these cache 2875instructions. 2876 2877Currently the following builtins are implemented in clang: 2878 2879``__builtin_dcbf`` copies the contents of a modified block from the data cache 2880to main memory and flushes the copy from the data cache. 2881 2882**Syntax**: 2883 2884.. code-block:: c 2885 2886 void __dcbf(const void* addr); /* Data Cache Block Flush */ 2887 2888**Example of Use**: 2889 2890.. code-block:: c 2891 2892 int a = 1; 2893 __builtin_dcbf (&a); 2894 2895Extensions for Static Analysis 2896============================== 2897 2898Clang supports additional attributes that are useful for documenting program 2899invariants and rules for static analysis tools, such as the `Clang Static 2900Analyzer <https://clang-analyzer.llvm.org/>`_. These attributes are documented 2901in the analyzer's `list of source-level annotations 2902<https://clang-analyzer.llvm.org/annotations.html>`_. 2903 2904 2905Extensions for Dynamic Analysis 2906=============================== 2907 2908Use ``__has_feature(address_sanitizer)`` to check if the code is being built 2909with :doc:`AddressSanitizer`. 2910 2911Use ``__has_feature(thread_sanitizer)`` to check if the code is being built 2912with :doc:`ThreadSanitizer`. 2913 2914Use ``__has_feature(memory_sanitizer)`` to check if the code is being built 2915with :doc:`MemorySanitizer`. 2916 2917Use ``__has_feature(safe_stack)`` to check if the code is being built 2918with :doc:`SafeStack`. 2919 2920 2921Extensions for selectively disabling optimization 2922================================================= 2923 2924Clang provides a mechanism for selectively disabling optimizations in functions 2925and methods. 2926 2927To disable optimizations in a single function definition, the GNU-style or C++11 2928non-standard attribute ``optnone`` can be used. 2929 2930.. code-block:: c++ 2931 2932 // The following functions will not be optimized. 2933 // GNU-style attribute 2934 __attribute__((optnone)) int foo() { 2935 // ... code 2936 } 2937 // C++11 attribute 2938 [[clang::optnone]] int bar() { 2939 // ... code 2940 } 2941 2942To facilitate disabling optimization for a range of function definitions, a 2943range-based pragma is provided. Its syntax is ``#pragma clang optimize`` 2944followed by ``off`` or ``on``. 2945 2946All function definitions in the region between an ``off`` and the following 2947``on`` will be decorated with the ``optnone`` attribute unless doing so would 2948conflict with explicit attributes already present on the function (e.g. the 2949ones that control inlining). 2950 2951.. code-block:: c++ 2952 2953 #pragma clang optimize off 2954 // This function will be decorated with optnone. 2955 int foo() { 2956 // ... code 2957 } 2958 2959 // optnone conflicts with always_inline, so bar() will not be decorated. 2960 __attribute__((always_inline)) int bar() { 2961 // ... code 2962 } 2963 #pragma clang optimize on 2964 2965If no ``on`` is found to close an ``off`` region, the end of the region is the 2966end of the compilation unit. 2967 2968Note that a stray ``#pragma clang optimize on`` does not selectively enable 2969additional optimizations when compiling at low optimization levels. This feature 2970can only be used to selectively disable optimizations. 2971 2972The pragma has an effect on functions only at the point of their definition; for 2973function templates, this means that the state of the pragma at the point of an 2974instantiation is not necessarily relevant. Consider the following example: 2975 2976.. code-block:: c++ 2977 2978 template<typename T> T twice(T t) { 2979 return 2 * t; 2980 } 2981 2982 #pragma clang optimize off 2983 template<typename T> T thrice(T t) { 2984 return 3 * t; 2985 } 2986 2987 int container(int a, int b) { 2988 return twice(a) + thrice(b); 2989 } 2990 #pragma clang optimize on 2991 2992In this example, the definition of the template function ``twice`` is outside 2993the pragma region, whereas the definition of ``thrice`` is inside the region. 2994The ``container`` function is also in the region and will not be optimized, but 2995it causes the instantiation of ``twice`` and ``thrice`` with an ``int`` type; of 2996these two instantiations, ``twice`` will be optimized (because its definition 2997was outside the region) and ``thrice`` will not be optimized. 2998 2999Extensions for loop hint optimizations 3000====================================== 3001 3002The ``#pragma clang loop`` directive is used to specify hints for optimizing the 3003subsequent for, while, do-while, or c++11 range-based for loop. The directive 3004provides options for vectorization, interleaving, predication, unrolling and 3005distribution. Loop hints can be specified before any loop and will be ignored if 3006the optimization is not safe to apply. 3007 3008There are loop hints that control transformations (e.g. vectorization, loop 3009unrolling) and there are loop hints that set transformation options (e.g. 3010``vectorize_width``, ``unroll_count``). Pragmas setting transformation options 3011imply the transformation is enabled, as if it was enabled via the corresponding 3012transformation pragma (e.g. ``vectorize(enable)``). If the transformation is 3013disabled (e.g. ``vectorize(disable)``), that takes precedence over 3014transformations option pragmas implying that transformation. 3015 3016Vectorization, Interleaving, and Predication 3017-------------------------------------------- 3018 3019A vectorized loop performs multiple iterations of the original loop 3020in parallel using vector instructions. The instruction set of the target 3021processor determines which vector instructions are available and their vector 3022widths. This restricts the types of loops that can be vectorized. The vectorizer 3023automatically determines if the loop is safe and profitable to vectorize. A 3024vector instruction cost model is used to select the vector width. 3025 3026Interleaving multiple loop iterations allows modern processors to further 3027improve instruction-level parallelism (ILP) using advanced hardware features, 3028such as multiple execution units and out-of-order execution. The vectorizer uses 3029a cost model that depends on the register pressure and generated code size to 3030select the interleaving count. 3031 3032Vectorization is enabled by ``vectorize(enable)`` and interleaving is enabled 3033by ``interleave(enable)``. This is useful when compiling with ``-Os`` to 3034manually enable vectorization or interleaving. 3035 3036.. code-block:: c++ 3037 3038 #pragma clang loop vectorize(enable) 3039 #pragma clang loop interleave(enable) 3040 for(...) { 3041 ... 3042 } 3043 3044The vector width is specified by ``vectorize_width(_value_)`` and the interleave 3045count is specified by ``interleave_count(_value_)``, where 3046_value_ is a positive integer. This is useful for specifying the optimal 3047width/count of the set of target architectures supported by your application. 3048 3049.. code-block:: c++ 3050 3051 #pragma clang loop vectorize_width(2) 3052 #pragma clang loop interleave_count(2) 3053 for(...) { 3054 ... 3055 } 3056 3057Specifying a width/count of 1 disables the optimization, and is equivalent to 3058``vectorize(disable)`` or ``interleave(disable)``. 3059 3060Vector predication is enabled by ``vectorize_predicate(enable)``, for example: 3061 3062.. code-block:: c++ 3063 3064 #pragma clang loop vectorize(enable) 3065 #pragma clang loop vectorize_predicate(enable) 3066 for(...) { 3067 ... 3068 } 3069 3070This predicates (masks) all instructions in the loop, which allows the scalar 3071remainder loop (the tail) to be folded into the main vectorized loop. This 3072might be more efficient when vector predication is efficiently supported by the 3073target platform. 3074 3075Loop Unrolling 3076-------------- 3077 3078Unrolling a loop reduces the loop control overhead and exposes more 3079opportunities for ILP. Loops can be fully or partially unrolled. Full unrolling 3080eliminates the loop and replaces it with an enumerated sequence of loop 3081iterations. Full unrolling is only possible if the loop trip count is known at 3082compile time. Partial unrolling replicates the loop body within the loop and 3083reduces the trip count. 3084 3085If ``unroll(enable)`` is specified the unroller will attempt to fully unroll the 3086loop if the trip count is known at compile time. If the fully unrolled code size 3087is greater than an internal limit the loop will be partially unrolled up to this 3088limit. If the trip count is not known at compile time the loop will be partially 3089unrolled with a heuristically chosen unroll factor. 3090 3091.. code-block:: c++ 3092 3093 #pragma clang loop unroll(enable) 3094 for(...) { 3095 ... 3096 } 3097 3098If ``unroll(full)`` is specified the unroller will attempt to fully unroll the 3099loop if the trip count is known at compile time identically to 3100``unroll(enable)``. However, with ``unroll(full)`` the loop will not be unrolled 3101if the loop count is not known at compile time. 3102 3103.. code-block:: c++ 3104 3105 #pragma clang loop unroll(full) 3106 for(...) { 3107 ... 3108 } 3109 3110The unroll count can be specified explicitly with ``unroll_count(_value_)`` where 3111_value_ is a positive integer. If this value is greater than the trip count the 3112loop will be fully unrolled. Otherwise the loop is partially unrolled subject 3113to the same code size limit as with ``unroll(enable)``. 3114 3115.. code-block:: c++ 3116 3117 #pragma clang loop unroll_count(8) 3118 for(...) { 3119 ... 3120 } 3121 3122Unrolling of a loop can be prevented by specifying ``unroll(disable)``. 3123 3124Loop Distribution 3125----------------- 3126 3127Loop Distribution allows splitting a loop into multiple loops. This is 3128beneficial for example when the entire loop cannot be vectorized but some of the 3129resulting loops can. 3130 3131If ``distribute(enable))`` is specified and the loop has memory dependencies 3132that inhibit vectorization, the compiler will attempt to isolate the offending 3133operations into a new loop. This optimization is not enabled by default, only 3134loops marked with the pragma are considered. 3135 3136.. code-block:: c++ 3137 3138 #pragma clang loop distribute(enable) 3139 for (i = 0; i < N; ++i) { 3140 S1: A[i + 1] = A[i] + B[i]; 3141 S2: C[i] = D[i] * E[i]; 3142 } 3143 3144This loop will be split into two loops between statements S1 and S2. The 3145second loop containing S2 will be vectorized. 3146 3147Loop Distribution is currently not enabled by default in the optimizer because 3148it can hurt performance in some cases. For example, instruction-level 3149parallelism could be reduced by sequentializing the execution of the 3150statements S1 and S2 above. 3151 3152If Loop Distribution is turned on globally with 3153``-mllvm -enable-loop-distribution``, specifying ``distribute(disable)`` can 3154be used the disable it on a per-loop basis. 3155 3156Additional Information 3157---------------------- 3158 3159For convenience multiple loop hints can be specified on a single line. 3160 3161.. code-block:: c++ 3162 3163 #pragma clang loop vectorize_width(4) interleave_count(8) 3164 for(...) { 3165 ... 3166 } 3167 3168If an optimization cannot be applied any hints that apply to it will be ignored. 3169For example, the hint ``vectorize_width(4)`` is ignored if the loop is not 3170proven safe to vectorize. To identify and diagnose optimization issues use 3171`-Rpass`, `-Rpass-missed`, and `-Rpass-analysis` command line options. See the 3172user guide for details. 3173 3174Extensions to specify floating-point flags 3175==================================================== 3176 3177The ``#pragma clang fp`` pragma allows floating-point options to be specified 3178for a section of the source code. This pragma can only appear at file scope or 3179at the start of a compound statement (excluding comments). When using within a 3180compound statement, the pragma is active within the scope of the compound 3181statement. 3182 3183Currently, the following settings can be controlled with this pragma: 3184 3185``#pragma clang fp reassociate`` allows control over the reassociation 3186of floating point expressions. When enabled, this pragma allows the expression 3187``x + (y + z)`` to be reassociated as ``(x + y) + z``. 3188Reassociation can also occur across multiple statements. 3189This pragma can be used to disable reassociation when it is otherwise 3190enabled for the translation unit with the ``-fassociative-math`` flag. 3191The pragma can take two values: ``on`` and ``off``. 3192 3193.. code-block:: c++ 3194 3195 float f(float x, float y, float z) 3196 { 3197 // Enable floating point reassociation across statements 3198 #pragma fp reassociate(on) 3199 float t = x + y; 3200 float v = t + z; 3201 } 3202 3203 3204``#pragma clang fp contract`` specifies whether the compiler should 3205contract a multiply and an addition (or subtraction) into a fused FMA 3206operation when supported by the target. 3207 3208The pragma can take three values: ``on``, ``fast`` and ``off``. The ``on`` 3209option is identical to using ``#pragma STDC FP_CONTRACT(ON)`` and it allows 3210fusion as specified the language standard. The ``fast`` option allows fusion 3211in cases when the language standard does not make this possible (e.g. across 3212statements in C). 3213 3214.. code-block:: c++ 3215 3216 for(...) { 3217 #pragma clang fp contract(fast) 3218 a = b[i] * c[i]; 3219 d[i] += a; 3220 } 3221 3222 3223The pragma can also be used with ``off`` which turns FP contraction off for a 3224section of the code. This can be useful when fast contraction is otherwise 3225enabled for the translation unit with the ``-ffp-contract=fast`` flag. 3226 3227The ``#pragma float_control`` pragma allows precise floating-point 3228semantics and floating-point exception behavior to be specified 3229for a section of the source code. This pragma can only appear at file scope or 3230at the start of a compound statement (excluding comments). When using within a 3231compound statement, the pragma is active within the scope of the compound 3232statement. This pragma is modeled after a Microsoft pragma with the 3233same spelling and syntax. For pragmas specified at file scope, a stack 3234is supported so that the ``pragma float_control`` settings can be pushed or popped. 3235 3236When ``pragma float_control(precise, on)`` is enabled, the section of code 3237governed by the pragma uses precise floating point semantics, effectively 3238``-ffast-math`` is disabled and ``-ffp-contract=on`` 3239(fused multiply add) is enabled. 3240 3241When ``pragma float_control(except, on)`` is enabled, the section of code governed 3242by the pragma behaves as though the command-line option 3243``-ffp-exception-behavior=strict`` is enabled, 3244when ``pragma float_control(precise, off)`` is enabled, the section of code 3245governed by the pragma behaves as though the command-line option 3246``-ffp-exception-behavior=ignore`` is enabled. 3247 3248The full syntax this pragma supports is 3249``float_control(except|precise, on|off [, push])`` and 3250``float_control(push|pop)``. 3251The ``push`` and ``pop`` forms, including using ``push`` as the optional 3252third argument, can only occur at file scope. 3253 3254.. code-block:: c++ 3255 3256 for(...) { 3257 // This block will be compiled with -fno-fast-math and -ffp-contract=on 3258 #pragma float_control(precise, on) 3259 a = b[i] * c[i] + e; 3260 } 3261 3262Specifying an attribute for multiple declarations (#pragma clang attribute) 3263=========================================================================== 3264 3265The ``#pragma clang attribute`` directive can be used to apply an attribute to 3266multiple declarations. The ``#pragma clang attribute push`` variation of the 3267directive pushes a new "scope" of ``#pragma clang attribute`` that attributes 3268can be added to. The ``#pragma clang attribute (...)`` variation adds an 3269attribute to that scope, and the ``#pragma clang attribute pop`` variation pops 3270the scope. You can also use ``#pragma clang attribute push (...)``, which is a 3271shorthand for when you want to add one attribute to a new scope. Multiple push 3272directives can be nested inside each other. 3273 3274The attributes that are used in the ``#pragma clang attribute`` directives 3275can be written using the GNU-style syntax: 3276 3277.. code-block:: c++ 3278 3279 #pragma clang attribute push (__attribute__((annotate("custom"))), apply_to = function) 3280 3281 void function(); // The function now has the annotate("custom") attribute 3282 3283 #pragma clang attribute pop 3284 3285The attributes can also be written using the C++11 style syntax: 3286 3287.. code-block:: c++ 3288 3289 #pragma clang attribute push ([[noreturn]], apply_to = function) 3290 3291 void function(); // The function now has the [[noreturn]] attribute 3292 3293 #pragma clang attribute pop 3294 3295The ``__declspec`` style syntax is also supported: 3296 3297.. code-block:: c++ 3298 3299 #pragma clang attribute push (__declspec(dllexport), apply_to = function) 3300 3301 void function(); // The function now has the __declspec(dllexport) attribute 3302 3303 #pragma clang attribute pop 3304 3305A single push directive accepts only one attribute regardless of the syntax 3306used. 3307 3308Because multiple push directives can be nested, if you're writing a macro that 3309expands to ``_Pragma("clang attribute")`` it's good hygiene (though not 3310required) to add a namespace to your push/pop directives. A pop directive with a 3311namespace will pop the innermost push that has that same namespace. This will 3312ensure that another macro's ``pop`` won't inadvertently pop your attribute. Note 3313that an ``pop`` without a namespace will pop the innermost ``push`` without a 3314namespace. ``push``es with a namespace can only be popped by ``pop`` with the 3315same namespace. For instance: 3316 3317.. code-block:: c++ 3318 3319 #define ASSUME_NORETURN_BEGIN _Pragma("clang attribute AssumeNoreturn.push ([[noreturn]], apply_to = function)") 3320 #define ASSUME_NORETURN_END _Pragma("clang attribute AssumeNoreturn.pop") 3321 3322 #define ASSUME_UNAVAILABLE_BEGIN _Pragma("clang attribute Unavailable.push (__attribute__((unavailable)), apply_to=function)") 3323 #define ASSUME_UNAVAILABLE_END _Pragma("clang attribute Unavailable.pop") 3324 3325 3326 ASSUME_NORETURN_BEGIN 3327 ASSUME_UNAVAILABLE_BEGIN 3328 void function(); // function has [[noreturn]] and __attribute__((unavailable)) 3329 ASSUME_NORETURN_END 3330 void other_function(); // function has __attribute__((unavailable)) 3331 ASSUME_UNAVAILABLE_END 3332 3333Without the namespaces on the macros, ``other_function`` will be annotated with 3334``[[noreturn]]`` instead of ``__attribute__((unavailable))``. This may seem like 3335a contrived example, but its very possible for this kind of situation to appear 3336in real code if the pragmas are spread out across a large file. You can test if 3337your version of clang supports namespaces on ``#pragma clang attribute`` with 3338``__has_extension(pragma_clang_attribute_namespaces)``. 3339 3340Subject Match Rules 3341------------------- 3342 3343The set of declarations that receive a single attribute from the attribute stack 3344depends on the subject match rules that were specified in the pragma. Subject 3345match rules are specified after the attribute. The compiler expects an 3346identifier that corresponds to the subject set specifier. The ``apply_to`` 3347specifier is currently the only supported subject set specifier. It allows you 3348to specify match rules that form a subset of the attribute's allowed subject 3349set, i.e. the compiler doesn't require all of the attribute's subjects. For 3350example, an attribute like ``[[nodiscard]]`` whose subject set includes 3351``enum``, ``record`` and ``hasType(functionType)``, requires the presence of at 3352least one of these rules after ``apply_to``: 3353 3354.. code-block:: c++ 3355 3356 #pragma clang attribute push([[nodiscard]], apply_to = enum) 3357 3358 enum Enum1 { A1, B1 }; // The enum will receive [[nodiscard]] 3359 3360 struct Record1 { }; // The struct will *not* receive [[nodiscard]] 3361 3362 #pragma clang attribute pop 3363 3364 #pragma clang attribute push([[nodiscard]], apply_to = any(record, enum)) 3365 3366 enum Enum2 { A2, B2 }; // The enum will receive [[nodiscard]] 3367 3368 struct Record2 { }; // The struct *will* receive [[nodiscard]] 3369 3370 #pragma clang attribute pop 3371 3372 // This is an error, since [[nodiscard]] can't be applied to namespaces: 3373 #pragma clang attribute push([[nodiscard]], apply_to = any(record, namespace)) 3374 3375 #pragma clang attribute pop 3376 3377Multiple match rules can be specified using the ``any`` match rule, as shown 3378in the example above. The ``any`` rule applies attributes to all declarations 3379that are matched by at least one of the rules in the ``any``. It doesn't nest 3380and can't be used inside the other match rules. Redundant match rules or rules 3381that conflict with one another should not be used inside of ``any``. 3382 3383Clang supports the following match rules: 3384 3385- ``function``: Can be used to apply attributes to functions. This includes C++ 3386 member functions, static functions, operators, and constructors/destructors. 3387 3388- ``function(is_member)``: Can be used to apply attributes to C++ member 3389 functions. This includes members like static functions, operators, and 3390 constructors/destructors. 3391 3392- ``hasType(functionType)``: Can be used to apply attributes to functions, C++ 3393 member functions, and variables/fields whose type is a function pointer. It 3394 does not apply attributes to Objective-C methods or blocks. 3395 3396- ``type_alias``: Can be used to apply attributes to ``typedef`` declarations 3397 and C++11 type aliases. 3398 3399- ``record``: Can be used to apply attributes to ``struct``, ``class``, and 3400 ``union`` declarations. 3401 3402- ``record(unless(is_union))``: Can be used to apply attributes only to 3403 ``struct`` and ``class`` declarations. 3404 3405- ``enum``: Can be be used to apply attributes to enumeration declarations. 3406 3407- ``enum_constant``: Can be used to apply attributes to enumerators. 3408 3409- ``variable``: Can be used to apply attributes to variables, including 3410 local variables, parameters, global variables, and static member variables. 3411 It does not apply attributes to instance member variables or Objective-C 3412 ivars. 3413 3414- ``variable(is_thread_local)``: Can be used to apply attributes to thread-local 3415 variables only. 3416 3417- ``variable(is_global)``: Can be used to apply attributes to global variables 3418 only. 3419 3420- ``variable(is_local)``: Can be used to apply attributes to local variables 3421 only. 3422 3423- ``variable(is_parameter)``: Can be used to apply attributes to parameters 3424 only. 3425 3426- ``variable(unless(is_parameter))``: Can be used to apply attributes to all 3427 the variables that are not parameters. 3428 3429- ``field``: Can be used to apply attributes to non-static member variables 3430 in a record. This includes Objective-C ivars. 3431 3432- ``namespace``: Can be used to apply attributes to ``namespace`` declarations. 3433 3434- ``objc_interface``: Can be used to apply attributes to ``@interface`` 3435 declarations. 3436 3437- ``objc_protocol``: Can be used to apply attributes to ``@protocol`` 3438 declarations. 3439 3440- ``objc_category``: Can be used to apply attributes to category declarations, 3441 including class extensions. 3442 3443- ``objc_method``: Can be used to apply attributes to Objective-C methods, 3444 including instance and class methods. Implicit methods like implicit property 3445 getters and setters do not receive the attribute. 3446 3447- ``objc_method(is_instance)``: Can be used to apply attributes to Objective-C 3448 instance methods. 3449 3450- ``objc_property``: Can be used to apply attributes to ``@property`` 3451 declarations. 3452 3453- ``block``: Can be used to apply attributes to block declarations. This does 3454 not include variables/fields of block pointer type. 3455 3456The use of ``unless`` in match rules is currently restricted to a strict set of 3457sub-rules that are used by the supported attributes. That means that even though 3458``variable(unless(is_parameter))`` is a valid match rule, 3459``variable(unless(is_thread_local))`` is not. 3460 3461Supported Attributes 3462-------------------- 3463 3464Not all attributes can be used with the ``#pragma clang attribute`` directive. 3465Notably, statement attributes like ``[[fallthrough]]`` or type attributes 3466like ``address_space`` aren't supported by this directive. You can determine 3467whether or not an attribute is supported by the pragma by referring to the 3468:doc:`individual documentation for that attribute <AttributeReference>`. 3469 3470The attributes are applied to all matching declarations individually, even when 3471the attribute is semantically incorrect. The attributes that aren't applied to 3472any declaration are not verified semantically. 3473 3474Specifying section names for global objects (#pragma clang section) 3475=================================================================== 3476 3477The ``#pragma clang section`` directive provides a means to assign section-names 3478to global variables, functions and static variables. 3479 3480The section names can be specified as: 3481 3482.. code-block:: c++ 3483 3484 #pragma clang section bss="myBSS" data="myData" rodata="myRodata" relro="myRelro" text="myText" 3485 3486The section names can be reverted back to default name by supplying an empty 3487string to the section kind, for example: 3488 3489.. code-block:: c++ 3490 3491 #pragma clang section bss="" data="" text="" rodata="" relro="" 3492 3493The ``#pragma clang section`` directive obeys the following rules: 3494 3495* The pragma applies to all global variable, statics and function declarations 3496 from the pragma to the end of the translation unit. 3497 3498* The pragma clang section is enabled automatically, without need of any flags. 3499 3500* This feature is only defined to work sensibly for ELF targets. 3501 3502* If section name is specified through _attribute_((section("myname"))), then 3503 the attribute name gains precedence. 3504 3505* Global variables that are initialized to zero will be placed in the named 3506 bss section, if one is present. 3507 3508* The ``#pragma clang section`` directive does not does try to infer section-kind 3509 from the name. For example, naming a section "``.bss.mySec``" does NOT mean 3510 it will be a bss section name. 3511 3512* The decision about which section-kind applies to each global is taken in the back-end. 3513 Once the section-kind is known, appropriate section name, as specified by the user using 3514 ``#pragma clang section`` directive, is applied to that global. 3515 3516Specifying Linker Options on ELF Targets 3517======================================== 3518 3519The ``#pragma comment(lib, ...)`` directive is supported on all ELF targets. 3520The second parameter is the library name (without the traditional Unix prefix of 3521``lib``). This allows you to provide an implicit link of dependent libraries. 3522 3523Evaluating Object Size Dynamically 3524================================== 3525 3526Clang supports the builtin ``__builtin_dynamic_object_size``, the semantics are 3527the same as GCC's ``__builtin_object_size`` (which Clang also supports), but 3528``__builtin_dynamic_object_size`` can evaluate the object's size at runtime. 3529``__builtin_dynamic_object_size`` is meant to be used as a drop-in replacement 3530for ``__builtin_object_size`` in libraries that support it. 3531 3532For instance, here is a program that ``__builtin_dynamic_object_size`` will make 3533safer: 3534 3535.. code-block:: c 3536 3537 void copy_into_buffer(size_t size) { 3538 char* buffer = malloc(size); 3539 strlcpy(buffer, "some string", strlen("some string")); 3540 // Previous line preprocesses to: 3541 // __builtin___strlcpy_chk(buffer, "some string", strlen("some string"), __builtin_object_size(buffer, 0)) 3542 } 3543 3544Since the size of ``buffer`` can't be known at compile time, Clang will fold 3545``__builtin_object_size(buffer, 0)`` into ``-1``. However, if this was written 3546as ``__builtin_dynamic_object_size(buffer, 0)``, Clang will fold it into 3547``size``, providing some extra runtime safety. 3548 3549Extended Integer Types 3550====================== 3551 3552Clang supports a set of extended integer types under the syntax ``_ExtInt(N)`` 3553where ``N`` is an integer that specifies the number of bits that are used to represent 3554the type, including the sign bit. The keyword ``_ExtInt`` is a type specifier, thus 3555it can be used in any place a type can, including as a non-type-template-parameter, 3556as the type of a bitfield, and as the underlying type of an enumeration. 3557 3558An extended integer can be declared either signed, or unsigned by using the 3559``signed``/``unsigned`` keywords. If no sign specifier is used or if the ``signed`` 3560keyword is used, the extended integer type is a signed integer and can represent 3561negative values. 3562 3563The ``N`` expression is an integer constant expression, which specifies the number 3564of bits used to represent the type, following normal integer representations for 3565both signed and unsigned types. Both a signed and unsigned extended integer of the 3566same ``N`` value will have the same number of bits in its representation. Many 3567architectures don't have a way of representing non power-of-2 integers, so these 3568architectures emulate these types using larger integers. In these cases, they are 3569expected to follow the 'as-if' rule and do math 'as-if' they were done at the 3570specified number of bits. 3571 3572In order to be consistent with the C language specification, and make the extended 3573integer types useful for their intended purpose, extended integers follow the C 3574standard integer conversion ranks. An extended integer type has a greater rank than 3575any integer type with less precision. However, they have lower rank than any 3576of the built in or other integer types (such as __int128). Usual arithmetic conversions 3577also work the same, where the smaller ranked integer is converted to the larger. 3578 3579The one exception to the C rules for integers for these types is Integer Promotion. 3580Unary +, -, and ~ operators typically will promote operands to ``int``. Doing these 3581promotions would inflate the size of required hardware on some platforms, so extended 3582integer types aren't subject to the integer promotion rules in these cases. 3583 3584In languages (such as OpenCL) that define shift by-out-of-range behavior as a mask, 3585non-power-of-two versions of these types use an unsigned remainder operation to constrain 3586the value to the proper range, preventing undefined behavior. 3587 3588Extended integer types are aligned to the next greatest power-of-2 up to 64 bits. 3589The size of these types for the purposes of layout and ``sizeof`` are the number of 3590bits aligned to this calculated alignment. This permits the use of these types in 3591allocated arrays using common ``sizeof(Array)/sizeof(ElementType)`` pattern. 3592 3593Extended integer types work with the C _Atomic type modifier, however only precisions 3594that are powers-of-2 greater than 8 bit are accepted. 3595 3596Extended integer types align with existing calling conventions. They have the same size 3597and alignment as the smallest basic type that can contain them. Types that are larger 3598than 64 bits are handled in the same way as _int128 is handled; they are conceptually 3599treated as struct of register size chunks. They number of chunks are the smallest 3600number that can contain the types which does not necessarily mean a power-of-2 size. 3601