1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/Attr.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/CharUnits.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/Mangle.h" 25 #include "clang/AST/VTableBuilder.h" 26 #include "clang/Basic/ABI.h" 27 #include "clang/Basic/DiagnosticOptions.h" 28 #include "clang/Basic/FileManager.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Support/CRC.h" 33 #include "llvm/Support/MD5.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/StringSaver.h" 36 #include "llvm/Support/xxhash.h" 37 38 using namespace clang; 39 40 namespace { 41 42 struct msvc_hashing_ostream : public llvm::raw_svector_ostream { 43 raw_ostream &OS; 44 llvm::SmallString<64> Buffer; 45 46 msvc_hashing_ostream(raw_ostream &OS) 47 : llvm::raw_svector_ostream(Buffer), OS(OS) {} 48 ~msvc_hashing_ostream() override { 49 StringRef MangledName = str(); 50 bool StartsWithEscape = MangledName.startswith("\01"); 51 if (StartsWithEscape) 52 MangledName = MangledName.drop_front(1); 53 if (MangledName.size() < 4096) { 54 OS << str(); 55 return; 56 } 57 58 llvm::MD5 Hasher; 59 llvm::MD5::MD5Result Hash; 60 Hasher.update(MangledName); 61 Hasher.final(Hash); 62 63 SmallString<32> HexString; 64 llvm::MD5::stringifyResult(Hash, HexString); 65 66 if (StartsWithEscape) 67 OS << '\01'; 68 OS << "??@" << HexString << '@'; 69 } 70 }; 71 72 static const DeclContext * 73 getLambdaDefaultArgumentDeclContext(const Decl *D) { 74 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) 75 if (RD->isLambda()) 76 if (const auto *Parm = 77 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) 78 return Parm->getDeclContext(); 79 return nullptr; 80 } 81 82 /// Retrieve the declaration context that should be used when mangling 83 /// the given declaration. 84 static const DeclContext *getEffectiveDeclContext(const Decl *D) { 85 // The ABI assumes that lambda closure types that occur within 86 // default arguments live in the context of the function. However, due to 87 // the way in which Clang parses and creates function declarations, this is 88 // not the case: the lambda closure type ends up living in the context 89 // where the function itself resides, because the function declaration itself 90 // had not yet been created. Fix the context here. 91 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D)) 92 return LDADC; 93 94 // Perform the same check for block literals. 95 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 96 if (ParmVarDecl *ContextParam = 97 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) 98 return ContextParam->getDeclContext(); 99 } 100 101 const DeclContext *DC = D->getDeclContext(); 102 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) || 103 isa<OMPDeclareMapperDecl>(DC)) { 104 return getEffectiveDeclContext(cast<Decl>(DC)); 105 } 106 107 return DC->getRedeclContext(); 108 } 109 110 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { 111 return getEffectiveDeclContext(cast<Decl>(DC)); 112 } 113 114 static const FunctionDecl *getStructor(const NamedDecl *ND) { 115 if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 116 return FTD->getTemplatedDecl()->getCanonicalDecl(); 117 118 const auto *FD = cast<FunctionDecl>(ND); 119 if (const auto *FTD = FD->getPrimaryTemplate()) 120 return FTD->getTemplatedDecl()->getCanonicalDecl(); 121 122 return FD->getCanonicalDecl(); 123 } 124 125 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the 126 /// Microsoft Visual C++ ABI. 127 class MicrosoftMangleContextImpl : public MicrosoftMangleContext { 128 typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy; 129 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; 130 llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier; 131 llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds; 132 llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds; 133 llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds; 134 SmallString<16> AnonymousNamespaceHash; 135 136 public: 137 MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags); 138 bool shouldMangleCXXName(const NamedDecl *D) override; 139 bool shouldMangleStringLiteral(const StringLiteral *SL) override; 140 void mangleCXXName(GlobalDecl GD, raw_ostream &Out) override; 141 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 142 const MethodVFTableLocation &ML, 143 raw_ostream &Out) override; 144 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, 145 raw_ostream &) override; 146 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 147 const ThisAdjustment &ThisAdjustment, 148 raw_ostream &) override; 149 void mangleCXXVFTable(const CXXRecordDecl *Derived, 150 ArrayRef<const CXXRecordDecl *> BasePath, 151 raw_ostream &Out) override; 152 void mangleCXXVBTable(const CXXRecordDecl *Derived, 153 ArrayRef<const CXXRecordDecl *> BasePath, 154 raw_ostream &Out) override; 155 void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 156 const CXXRecordDecl *DstRD, 157 raw_ostream &Out) override; 158 void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile, 159 bool IsUnaligned, uint32_t NumEntries, 160 raw_ostream &Out) override; 161 void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries, 162 raw_ostream &Out) override; 163 void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD, 164 CXXCtorType CT, uint32_t Size, uint32_t NVOffset, 165 int32_t VBPtrOffset, uint32_t VBIndex, 166 raw_ostream &Out) override; 167 void mangleCXXRTTI(QualType T, raw_ostream &Out) override; 168 void mangleCXXRTTIName(QualType T, raw_ostream &Out) override; 169 void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived, 170 uint32_t NVOffset, int32_t VBPtrOffset, 171 uint32_t VBTableOffset, uint32_t Flags, 172 raw_ostream &Out) override; 173 void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived, 174 raw_ostream &Out) override; 175 void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived, 176 raw_ostream &Out) override; 177 void 178 mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived, 179 ArrayRef<const CXXRecordDecl *> BasePath, 180 raw_ostream &Out) override; 181 void mangleTypeName(QualType T, raw_ostream &) override; 182 void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber, 183 raw_ostream &) override; 184 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override; 185 void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum, 186 raw_ostream &Out) override; 187 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; 188 void mangleDynamicAtExitDestructor(const VarDecl *D, 189 raw_ostream &Out) override; 190 void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl, 191 raw_ostream &Out) override; 192 void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl, 193 raw_ostream &Out) override; 194 void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override; 195 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 196 const DeclContext *DC = getEffectiveDeclContext(ND); 197 if (!DC->isFunctionOrMethod()) 198 return false; 199 200 // Lambda closure types are already numbered, give out a phony number so 201 // that they demangle nicely. 202 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 203 if (RD->isLambda()) { 204 disc = 1; 205 return true; 206 } 207 } 208 209 // Use the canonical number for externally visible decls. 210 if (ND->isExternallyVisible()) { 211 disc = getASTContext().getManglingNumber(ND); 212 return true; 213 } 214 215 // Anonymous tags are already numbered. 216 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { 217 if (!Tag->hasNameForLinkage() && 218 !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) && 219 !getASTContext().getTypedefNameForUnnamedTagDecl(Tag)) 220 return false; 221 } 222 223 // Make up a reasonable number for internal decls. 224 unsigned &discriminator = Uniquifier[ND]; 225 if (!discriminator) 226 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; 227 disc = discriminator + 1; 228 return true; 229 } 230 231 std::string getLambdaString(const CXXRecordDecl *Lambda) override { 232 assert(Lambda->isLambda() && "RD must be a lambda!"); 233 std::string Name("<lambda_"); 234 235 Decl *LambdaContextDecl = Lambda->getLambdaContextDecl(); 236 unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber(); 237 unsigned LambdaId; 238 const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); 239 const FunctionDecl *Func = 240 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; 241 242 if (Func) { 243 unsigned DefaultArgNo = 244 Func->getNumParams() - Parm->getFunctionScopeIndex(); 245 Name += llvm::utostr(DefaultArgNo); 246 Name += "_"; 247 } 248 249 if (LambdaManglingNumber) 250 LambdaId = LambdaManglingNumber; 251 else 252 LambdaId = getLambdaIdForDebugInfo(Lambda); 253 254 Name += llvm::utostr(LambdaId); 255 Name += ">"; 256 return Name; 257 } 258 259 unsigned getLambdaId(const CXXRecordDecl *RD) { 260 assert(RD->isLambda() && "RD must be a lambda!"); 261 assert(!RD->isExternallyVisible() && "RD must not be visible!"); 262 assert(RD->getLambdaManglingNumber() == 0 && 263 "RD must not have a mangling number!"); 264 std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool> 265 Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size())); 266 return Result.first->second; 267 } 268 269 unsigned getLambdaIdForDebugInfo(const CXXRecordDecl *RD) { 270 assert(RD->isLambda() && "RD must be a lambda!"); 271 assert(!RD->isExternallyVisible() && "RD must not be visible!"); 272 assert(RD->getLambdaManglingNumber() == 0 && 273 "RD must not have a mangling number!"); 274 llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator Result = 275 LambdaIds.find(RD); 276 // The lambda should exist, but return 0 in case it doesn't. 277 if (Result == LambdaIds.end()) 278 return 0; 279 return Result->second; 280 } 281 282 /// Return a character sequence that is (somewhat) unique to the TU suitable 283 /// for mangling anonymous namespaces. 284 StringRef getAnonymousNamespaceHash() const { 285 return AnonymousNamespaceHash; 286 } 287 288 private: 289 void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out); 290 }; 291 292 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the 293 /// Microsoft Visual C++ ABI. 294 class MicrosoftCXXNameMangler { 295 MicrosoftMangleContextImpl &Context; 296 raw_ostream &Out; 297 298 /// The "structor" is the top-level declaration being mangled, if 299 /// that's not a template specialization; otherwise it's the pattern 300 /// for that specialization. 301 const NamedDecl *Structor; 302 unsigned StructorType; 303 304 typedef llvm::SmallVector<std::string, 10> BackRefVec; 305 BackRefVec NameBackReferences; 306 307 typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap; 308 ArgBackRefMap FunArgBackReferences; 309 ArgBackRefMap TemplateArgBackReferences; 310 311 typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap; 312 TemplateArgStringMap TemplateArgStrings; 313 llvm::StringSaver TemplateArgStringStorage; 314 llvm::BumpPtrAllocator TemplateArgStringStorageAlloc; 315 316 typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet; 317 PassObjectSizeArgsSet PassObjectSizeArgs; 318 319 ASTContext &getASTContext() const { return Context.getASTContext(); } 320 321 const bool PointersAre64Bit; 322 323 public: 324 enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result }; 325 326 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_) 327 : Context(C), Out(Out_), Structor(nullptr), StructorType(-1), 328 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 329 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == 330 64) {} 331 332 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 333 const CXXConstructorDecl *D, CXXCtorType Type) 334 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 335 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 336 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == 337 64) {} 338 339 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, 340 const CXXDestructorDecl *D, CXXDtorType Type) 341 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 342 TemplateArgStringStorage(TemplateArgStringStorageAlloc), 343 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == 344 64) {} 345 346 raw_ostream &getStream() const { return Out; } 347 348 void mangle(const NamedDecl *D, StringRef Prefix = "?"); 349 void mangleName(const NamedDecl *ND); 350 void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle); 351 void mangleVariableEncoding(const VarDecl *VD); 352 void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD, 353 StringRef Prefix = "$"); 354 void mangleMemberFunctionPointer(const CXXRecordDecl *RD, 355 const CXXMethodDecl *MD, 356 StringRef Prefix = "$"); 357 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, 358 const MethodVFTableLocation &ML); 359 void mangleNumber(int64_t Number); 360 void mangleNumber(llvm::APSInt Number); 361 void mangleFloat(llvm::APFloat Number); 362 void mangleBits(llvm::APInt Number); 363 void mangleTagTypeKind(TagTypeKind TK); 364 void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName, 365 ArrayRef<StringRef> NestedNames = None); 366 void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range); 367 void mangleType(QualType T, SourceRange Range, 368 QualifierMangleMode QMM = QMM_Mangle); 369 void mangleFunctionType(const FunctionType *T, 370 const FunctionDecl *D = nullptr, 371 bool ForceThisQuals = false, 372 bool MangleExceptionSpec = true); 373 void mangleNestedName(const NamedDecl *ND); 374 375 private: 376 bool isStructorDecl(const NamedDecl *ND) const { 377 return ND == Structor || getStructor(ND) == Structor; 378 } 379 380 bool is64BitPointer(Qualifiers Quals) const { 381 LangAS AddrSpace = Quals.getAddressSpace(); 382 return AddrSpace == LangAS::ptr64 || 383 (PointersAre64Bit && !(AddrSpace == LangAS::ptr32_sptr || 384 AddrSpace == LangAS::ptr32_uptr)); 385 } 386 387 void mangleUnqualifiedName(const NamedDecl *ND) { 388 mangleUnqualifiedName(ND, ND->getDeclName()); 389 } 390 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name); 391 void mangleSourceName(StringRef Name); 392 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc); 393 void mangleCXXDtorType(CXXDtorType T); 394 void mangleQualifiers(Qualifiers Quals, bool IsMember); 395 void mangleRefQualifier(RefQualifierKind RefQualifier); 396 void manglePointerCVQualifiers(Qualifiers Quals); 397 void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType); 398 399 void mangleUnscopedTemplateName(const TemplateDecl *ND); 400 void 401 mangleTemplateInstantiationName(const TemplateDecl *TD, 402 const TemplateArgumentList &TemplateArgs); 403 void mangleObjCMethodName(const ObjCMethodDecl *MD); 404 405 void mangleFunctionArgumentType(QualType T, SourceRange Range); 406 void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA); 407 408 bool isArtificialTagType(QualType T) const; 409 410 // Declare manglers for every type class. 411 #define ABSTRACT_TYPE(CLASS, PARENT) 412 #define NON_CANONICAL_TYPE(CLASS, PARENT) 413 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \ 414 Qualifiers Quals, \ 415 SourceRange Range); 416 #include "clang/AST/TypeNodes.inc" 417 #undef ABSTRACT_TYPE 418 #undef NON_CANONICAL_TYPE 419 #undef TYPE 420 421 void mangleType(const TagDecl *TD); 422 void mangleDecayedArrayType(const ArrayType *T); 423 void mangleArrayType(const ArrayType *T); 424 void mangleFunctionClass(const FunctionDecl *FD); 425 void mangleCallingConvention(CallingConv CC); 426 void mangleCallingConvention(const FunctionType *T); 427 void mangleIntegerLiteral(const llvm::APSInt &Number, 428 const NonTypeTemplateParmDecl *PD = nullptr, 429 QualType TemplateArgType = QualType()); 430 void mangleExpression(const Expr *E, const NonTypeTemplateParmDecl *PD); 431 void mangleThrowSpecification(const FunctionProtoType *T); 432 433 void mangleTemplateArgs(const TemplateDecl *TD, 434 const TemplateArgumentList &TemplateArgs); 435 void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA, 436 const NamedDecl *Parm); 437 void mangleTemplateArgValue(QualType T, const APValue &V, 438 bool WithScalarType = false); 439 440 void mangleObjCProtocol(const ObjCProtocolDecl *PD); 441 void mangleObjCLifetime(const QualType T, Qualifiers Quals, 442 SourceRange Range); 443 void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals, 444 SourceRange Range); 445 }; 446 } 447 448 MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context, 449 DiagnosticsEngine &Diags) 450 : MicrosoftMangleContext(Context, Diags) { 451 // To mangle anonymous namespaces, hash the path to the main source file. The 452 // path should be whatever (probably relative) path was passed on the command 453 // line. The goal is for the compiler to produce the same output regardless of 454 // working directory, so use the uncanonicalized relative path. 455 // 456 // It's important to make the mangled names unique because, when CodeView 457 // debug info is in use, the debugger uses mangled type names to distinguish 458 // between otherwise identically named types in anonymous namespaces. 459 // 460 // These symbols are always internal, so there is no need for the hash to 461 // match what MSVC produces. For the same reason, clang is free to change the 462 // hash at any time without breaking compatibility with old versions of clang. 463 // The generated names are intended to look similar to what MSVC generates, 464 // which are something like "?A0x01234567@". 465 SourceManager &SM = Context.getSourceManager(); 466 if (const FileEntry *FE = SM.getFileEntryForID(SM.getMainFileID())) { 467 // Truncate the hash so we get 8 characters of hexadecimal. 468 uint32_t TruncatedHash = uint32_t(xxHash64(FE->getName())); 469 AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash); 470 } else { 471 // If we don't have a path to the main file, we'll just use 0. 472 AnonymousNamespaceHash = "0"; 473 } 474 } 475 476 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { 477 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 478 LanguageLinkage L = FD->getLanguageLinkage(); 479 // Overloadable functions need mangling. 480 if (FD->hasAttr<OverloadableAttr>()) 481 return true; 482 483 // The ABI expects that we would never mangle "typical" user-defined entry 484 // points regardless of visibility or freestanding-ness. 485 // 486 // N.B. This is distinct from asking about "main". "main" has a lot of 487 // special rules associated with it in the standard while these 488 // user-defined entry points are outside of the purview of the standard. 489 // For example, there can be only one definition for "main" in a standards 490 // compliant program; however nothing forbids the existence of wmain and 491 // WinMain in the same translation unit. 492 if (FD->isMSVCRTEntryPoint()) 493 return false; 494 495 // C++ functions and those whose names are not a simple identifier need 496 // mangling. 497 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) 498 return true; 499 500 // C functions are not mangled. 501 if (L == CLanguageLinkage) 502 return false; 503 } 504 505 // Otherwise, no mangling is done outside C++ mode. 506 if (!getASTContext().getLangOpts().CPlusPlus) 507 return false; 508 509 const VarDecl *VD = dyn_cast<VarDecl>(D); 510 if (VD && !isa<DecompositionDecl>(D)) { 511 // C variables are not mangled. 512 if (VD->isExternC()) 513 return false; 514 515 // Variables at global scope with internal linkage are not mangled. 516 const DeclContext *DC = getEffectiveDeclContext(D); 517 // Check for extern variable declared locally. 518 if (DC->isFunctionOrMethod() && D->hasLinkage()) 519 while (!DC->isNamespace() && !DC->isTranslationUnit()) 520 DC = getEffectiveParentContext(DC); 521 522 if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage && 523 !isa<VarTemplateSpecializationDecl>(D) && 524 D->getIdentifier() != nullptr) 525 return false; 526 } 527 528 return true; 529 } 530 531 bool 532 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) { 533 return true; 534 } 535 536 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) { 537 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. 538 // Therefore it's really important that we don't decorate the 539 // name with leading underscores or leading/trailing at signs. So, by 540 // default, we emit an asm marker at the start so we get the name right. 541 // Callers can override this with a custom prefix. 542 543 // <mangled-name> ::= ? <name> <type-encoding> 544 Out << Prefix; 545 mangleName(D); 546 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 547 mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD)); 548 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 549 mangleVariableEncoding(VD); 550 else if (isa<MSGuidDecl>(D)) 551 // MSVC appears to mangle GUIDs as if they were variables of type 552 // 'const struct __s_GUID'. 553 Out << "3U__s_GUID@@B"; 554 else if (isa<TemplateParamObjectDecl>(D)) { 555 // Template parameter objects don't get a <type-encoding>; their type is 556 // specified as part of their value. 557 } else 558 llvm_unreachable("Tried to mangle unexpected NamedDecl!"); 559 } 560 561 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD, 562 bool ShouldMangle) { 563 // <type-encoding> ::= <function-class> <function-type> 564 565 // Since MSVC operates on the type as written and not the canonical type, it 566 // actually matters which decl we have here. MSVC appears to choose the 567 // first, since it is most likely to be the declaration in a header file. 568 FD = FD->getFirstDecl(); 569 570 // We should never ever see a FunctionNoProtoType at this point. 571 // We don't even know how to mangle their types anyway :). 572 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>(); 573 574 // extern "C" functions can hold entities that must be mangled. 575 // As it stands, these functions still need to get expressed in the full 576 // external name. They have their class and type omitted, replaced with '9'. 577 if (ShouldMangle) { 578 // We would like to mangle all extern "C" functions using this additional 579 // component but this would break compatibility with MSVC's behavior. 580 // Instead, do this when we know that compatibility isn't important (in 581 // other words, when it is an overloaded extern "C" function). 582 if (FD->isExternC() && FD->hasAttr<OverloadableAttr>()) 583 Out << "$$J0"; 584 585 mangleFunctionClass(FD); 586 587 mangleFunctionType(FT, FD, false, false); 588 } else { 589 Out << '9'; 590 } 591 } 592 593 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { 594 // <type-encoding> ::= <storage-class> <variable-type> 595 // <storage-class> ::= 0 # private static member 596 // ::= 1 # protected static member 597 // ::= 2 # public static member 598 // ::= 3 # global 599 // ::= 4 # static local 600 601 // The first character in the encoding (after the name) is the storage class. 602 if (VD->isStaticDataMember()) { 603 // If it's a static member, it also encodes the access level. 604 switch (VD->getAccess()) { 605 default: 606 case AS_private: Out << '0'; break; 607 case AS_protected: Out << '1'; break; 608 case AS_public: Out << '2'; break; 609 } 610 } 611 else if (!VD->isStaticLocal()) 612 Out << '3'; 613 else 614 Out << '4'; 615 // Now mangle the type. 616 // <variable-type> ::= <type> <cvr-qualifiers> 617 // ::= <type> <pointee-cvr-qualifiers> # pointers, references 618 // Pointers and references are odd. The type of 'int * const foo;' gets 619 // mangled as 'QAHA' instead of 'PAHB', for example. 620 SourceRange SR = VD->getSourceRange(); 621 QualType Ty = VD->getType(); 622 if (Ty->isPointerType() || Ty->isReferenceType() || 623 Ty->isMemberPointerType()) { 624 mangleType(Ty, SR, QMM_Drop); 625 manglePointerExtQualifiers( 626 Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType()); 627 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) { 628 mangleQualifiers(MPT->getPointeeType().getQualifiers(), true); 629 // Member pointers are suffixed with a back reference to the member 630 // pointer's class name. 631 mangleName(MPT->getClass()->getAsCXXRecordDecl()); 632 } else 633 mangleQualifiers(Ty->getPointeeType().getQualifiers(), false); 634 } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) { 635 // Global arrays are funny, too. 636 mangleDecayedArrayType(AT); 637 if (AT->getElementType()->isArrayType()) 638 Out << 'A'; 639 else 640 mangleQualifiers(Ty.getQualifiers(), false); 641 } else { 642 mangleType(Ty, SR, QMM_Drop); 643 mangleQualifiers(Ty.getQualifiers(), false); 644 } 645 } 646 647 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD, 648 const ValueDecl *VD, 649 StringRef Prefix) { 650 // <member-data-pointer> ::= <integer-literal> 651 // ::= $F <number> <number> 652 // ::= $G <number> <number> <number> 653 654 int64_t FieldOffset; 655 int64_t VBTableOffset; 656 MSInheritanceModel IM = RD->getMSInheritanceModel(); 657 if (VD) { 658 FieldOffset = getASTContext().getFieldOffset(VD); 659 assert(FieldOffset % getASTContext().getCharWidth() == 0 && 660 "cannot take address of bitfield"); 661 FieldOffset /= getASTContext().getCharWidth(); 662 663 VBTableOffset = 0; 664 665 if (IM == MSInheritanceModel::Virtual) 666 FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 667 } else { 668 FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1; 669 670 VBTableOffset = -1; 671 } 672 673 char Code = '\0'; 674 switch (IM) { 675 case MSInheritanceModel::Single: Code = '0'; break; 676 case MSInheritanceModel::Multiple: Code = '0'; break; 677 case MSInheritanceModel::Virtual: Code = 'F'; break; 678 case MSInheritanceModel::Unspecified: Code = 'G'; break; 679 } 680 681 Out << Prefix << Code; 682 683 mangleNumber(FieldOffset); 684 685 // The C++ standard doesn't allow base-to-derived member pointer conversions 686 // in template parameter contexts, so the vbptr offset of data member pointers 687 // is always zero. 688 if (inheritanceModelHasVBPtrOffsetField(IM)) 689 mangleNumber(0); 690 if (inheritanceModelHasVBTableOffsetField(IM)) 691 mangleNumber(VBTableOffset); 692 } 693 694 void 695 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD, 696 const CXXMethodDecl *MD, 697 StringRef Prefix) { 698 // <member-function-pointer> ::= $1? <name> 699 // ::= $H? <name> <number> 700 // ::= $I? <name> <number> <number> 701 // ::= $J? <name> <number> <number> <number> 702 703 MSInheritanceModel IM = RD->getMSInheritanceModel(); 704 705 char Code = '\0'; 706 switch (IM) { 707 case MSInheritanceModel::Single: Code = '1'; break; 708 case MSInheritanceModel::Multiple: Code = 'H'; break; 709 case MSInheritanceModel::Virtual: Code = 'I'; break; 710 case MSInheritanceModel::Unspecified: Code = 'J'; break; 711 } 712 713 // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr 714 // thunk. 715 uint64_t NVOffset = 0; 716 uint64_t VBTableOffset = 0; 717 uint64_t VBPtrOffset = 0; 718 if (MD) { 719 Out << Prefix << Code << '?'; 720 if (MD->isVirtual()) { 721 MicrosoftVTableContext *VTContext = 722 cast<MicrosoftVTableContext>(getASTContext().getVTableContext()); 723 MethodVFTableLocation ML = 724 VTContext->getMethodVFTableLocation(GlobalDecl(MD)); 725 mangleVirtualMemPtrThunk(MD, ML); 726 NVOffset = ML.VFPtrOffset.getQuantity(); 727 VBTableOffset = ML.VBTableIndex * 4; 728 if (ML.VBase) { 729 const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD); 730 VBPtrOffset = Layout.getVBPtrOffset().getQuantity(); 731 } 732 } else { 733 mangleName(MD); 734 mangleFunctionEncoding(MD, /*ShouldMangle=*/true); 735 } 736 737 if (VBTableOffset == 0 && IM == MSInheritanceModel::Virtual) 738 NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); 739 } else { 740 // Null single inheritance member functions are encoded as a simple nullptr. 741 if (IM == MSInheritanceModel::Single) { 742 Out << Prefix << "0A@"; 743 return; 744 } 745 if (IM == MSInheritanceModel::Unspecified) 746 VBTableOffset = -1; 747 Out << Prefix << Code; 748 } 749 750 if (inheritanceModelHasNVOffsetField(/*IsMemberFunction=*/true, IM)) 751 mangleNumber(static_cast<uint32_t>(NVOffset)); 752 if (inheritanceModelHasVBPtrOffsetField(IM)) 753 mangleNumber(VBPtrOffset); 754 if (inheritanceModelHasVBTableOffsetField(IM)) 755 mangleNumber(VBTableOffset); 756 } 757 758 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk( 759 const CXXMethodDecl *MD, const MethodVFTableLocation &ML) { 760 // Get the vftable offset. 761 CharUnits PointerWidth = getASTContext().toCharUnitsFromBits( 762 getASTContext().getTargetInfo().getPointerWidth(0)); 763 uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity(); 764 765 Out << "?_9"; 766 mangleName(MD->getParent()); 767 Out << "$B"; 768 mangleNumber(OffsetInVFTable); 769 Out << 'A'; 770 mangleCallingConvention(MD->getType()->castAs<FunctionProtoType>()); 771 } 772 773 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) { 774 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 775 776 // Always start with the unqualified name. 777 mangleUnqualifiedName(ND); 778 779 mangleNestedName(ND); 780 781 // Terminate the whole name with an '@'. 782 Out << '@'; 783 } 784 785 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { 786 mangleNumber(llvm::APSInt(llvm::APInt(64, Number), /*IsUnsigned*/false)); 787 } 788 789 void MicrosoftCXXNameMangler::mangleNumber(llvm::APSInt Number) { 790 // MSVC never mangles any integer wider than 64 bits. In general it appears 791 // to convert every integer to signed 64 bit before mangling (including 792 // unsigned 64 bit values). Do the same, but preserve bits beyond the bottom 793 // 64. 794 llvm::APInt Value = 795 Number.isSigned() ? Number.sextOrSelf(64) : Number.zextOrSelf(64); 796 797 // <non-negative integer> ::= A@ # when Number == 0 798 // ::= <decimal digit> # when 1 <= Number <= 10 799 // ::= <hex digit>+ @ # when Number >= 10 800 // 801 // <number> ::= [?] <non-negative integer> 802 803 if (Value.isNegative()) { 804 Value = -Value; 805 Out << '?'; 806 } 807 mangleBits(Value); 808 } 809 810 void MicrosoftCXXNameMangler::mangleFloat(llvm::APFloat Number) { 811 using llvm::APFloat; 812 813 switch (APFloat::SemanticsToEnum(Number.getSemantics())) { 814 case APFloat::S_IEEEsingle: Out << 'A'; break; 815 case APFloat::S_IEEEdouble: Out << 'B'; break; 816 817 // The following are all Clang extensions. We try to pick manglings that are 818 // unlikely to conflict with MSVC's scheme. 819 case APFloat::S_IEEEhalf: Out << 'V'; break; 820 case APFloat::S_BFloat: Out << 'W'; break; 821 case APFloat::S_x87DoubleExtended: Out << 'X'; break; 822 case APFloat::S_IEEEquad: Out << 'Y'; break; 823 case APFloat::S_PPCDoubleDouble: Out << 'Z'; break; 824 } 825 826 mangleBits(Number.bitcastToAPInt()); 827 } 828 829 void MicrosoftCXXNameMangler::mangleBits(llvm::APInt Value) { 830 if (Value == 0) 831 Out << "A@"; 832 else if (Value.uge(1) && Value.ule(10)) 833 Out << (Value - 1); 834 else { 835 // Numbers that are not encoded as decimal digits are represented as nibbles 836 // in the range of ASCII characters 'A' to 'P'. 837 // The number 0x123450 would be encoded as 'BCDEFA' 838 llvm::SmallString<32> EncodedNumberBuffer; 839 for (; Value != 0; Value.lshrInPlace(4)) 840 EncodedNumberBuffer.push_back('A' + (Value & 0xf).getZExtValue()); 841 std::reverse(EncodedNumberBuffer.begin(), EncodedNumberBuffer.end()); 842 Out.write(EncodedNumberBuffer.data(), EncodedNumberBuffer.size()); 843 Out << '@'; 844 } 845 } 846 847 static const TemplateDecl * 848 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { 849 // Check if we have a function template. 850 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 851 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 852 TemplateArgs = FD->getTemplateSpecializationArgs(); 853 return TD; 854 } 855 } 856 857 // Check if we have a class template. 858 if (const ClassTemplateSpecializationDecl *Spec = 859 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 860 TemplateArgs = &Spec->getTemplateArgs(); 861 return Spec->getSpecializedTemplate(); 862 } 863 864 // Check if we have a variable template. 865 if (const VarTemplateSpecializationDecl *Spec = 866 dyn_cast<VarTemplateSpecializationDecl>(ND)) { 867 TemplateArgs = &Spec->getTemplateArgs(); 868 return Spec->getSpecializedTemplate(); 869 } 870 871 return nullptr; 872 } 873 874 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, 875 DeclarationName Name) { 876 // <unqualified-name> ::= <operator-name> 877 // ::= <ctor-dtor-name> 878 // ::= <source-name> 879 // ::= <template-name> 880 881 // Check if we have a template. 882 const TemplateArgumentList *TemplateArgs = nullptr; 883 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { 884 // Function templates aren't considered for name back referencing. This 885 // makes sense since function templates aren't likely to occur multiple 886 // times in a symbol. 887 if (isa<FunctionTemplateDecl>(TD)) { 888 mangleTemplateInstantiationName(TD, *TemplateArgs); 889 Out << '@'; 890 return; 891 } 892 893 // Here comes the tricky thing: if we need to mangle something like 894 // void foo(A::X<Y>, B::X<Y>), 895 // the X<Y> part is aliased. However, if you need to mangle 896 // void foo(A::X<A::Y>, A::X<B::Y>), 897 // the A::X<> part is not aliased. 898 // That is, from the mangler's perspective we have a structure like this: 899 // namespace[s] -> type[ -> template-parameters] 900 // but from the Clang perspective we have 901 // type [ -> template-parameters] 902 // \-> namespace[s] 903 // What we do is we create a new mangler, mangle the same type (without 904 // a namespace suffix) to a string using the extra mangler and then use 905 // the mangled type name as a key to check the mangling of different types 906 // for aliasing. 907 908 // It's important to key cache reads off ND, not TD -- the same TD can 909 // be used with different TemplateArgs, but ND uniquely identifies 910 // TD / TemplateArg pairs. 911 ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(ND); 912 if (Found == TemplateArgBackReferences.end()) { 913 914 TemplateArgStringMap::iterator Found = TemplateArgStrings.find(ND); 915 if (Found == TemplateArgStrings.end()) { 916 // Mangle full template name into temporary buffer. 917 llvm::SmallString<64> TemplateMangling; 918 llvm::raw_svector_ostream Stream(TemplateMangling); 919 MicrosoftCXXNameMangler Extra(Context, Stream); 920 Extra.mangleTemplateInstantiationName(TD, *TemplateArgs); 921 922 // Use the string backref vector to possibly get a back reference. 923 mangleSourceName(TemplateMangling); 924 925 // Memoize back reference for this type if one exist, else memoize 926 // the mangling itself. 927 BackRefVec::iterator StringFound = 928 llvm::find(NameBackReferences, TemplateMangling); 929 if (StringFound != NameBackReferences.end()) { 930 TemplateArgBackReferences[ND] = 931 StringFound - NameBackReferences.begin(); 932 } else { 933 TemplateArgStrings[ND] = 934 TemplateArgStringStorage.save(TemplateMangling.str()); 935 } 936 } else { 937 Out << Found->second << '@'; // Outputs a StringRef. 938 } 939 } else { 940 Out << Found->second; // Outputs a back reference (an int). 941 } 942 return; 943 } 944 945 switch (Name.getNameKind()) { 946 case DeclarationName::Identifier: { 947 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { 948 mangleSourceName(II->getName()); 949 break; 950 } 951 952 // Otherwise, an anonymous entity. We must have a declaration. 953 assert(ND && "mangling empty name without declaration"); 954 955 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 956 if (NS->isAnonymousNamespace()) { 957 Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@'; 958 break; 959 } 960 } 961 962 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) { 963 // Decomposition declarations are considered anonymous, and get 964 // numbered with a $S prefix. 965 llvm::SmallString<64> Name("$S"); 966 // Get a unique id for the anonymous struct. 967 Name += llvm::utostr(Context.getAnonymousStructId(DD) + 1); 968 mangleSourceName(Name); 969 break; 970 } 971 972 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 973 // We must have an anonymous union or struct declaration. 974 const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl(); 975 assert(RD && "expected variable decl to have a record type"); 976 // Anonymous types with no tag or typedef get the name of their 977 // declarator mangled in. If they have no declarator, number them with 978 // a $S prefix. 979 llvm::SmallString<64> Name("$S"); 980 // Get a unique id for the anonymous struct. 981 Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1); 982 mangleSourceName(Name.str()); 983 break; 984 } 985 986 if (const MSGuidDecl *GD = dyn_cast<MSGuidDecl>(ND)) { 987 // Mangle a GUID object as if it were a variable with the corresponding 988 // mangled name. 989 SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID; 990 llvm::raw_svector_ostream GUIDOS(GUID); 991 Context.mangleMSGuidDecl(GD, GUIDOS); 992 mangleSourceName(GUID); 993 break; 994 } 995 996 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 997 Out << "?__N"; 998 mangleTemplateArgValue(TPO->getType().getUnqualifiedType(), 999 TPO->getValue()); 1000 break; 1001 } 1002 1003 // We must have an anonymous struct. 1004 const TagDecl *TD = cast<TagDecl>(ND); 1005 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 1006 assert(TD->getDeclContext() == D->getDeclContext() && 1007 "Typedef should not be in another decl context!"); 1008 assert(D->getDeclName().getAsIdentifierInfo() && 1009 "Typedef was not named!"); 1010 mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName()); 1011 break; 1012 } 1013 1014 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { 1015 if (Record->isLambda()) { 1016 llvm::SmallString<10> Name("<lambda_"); 1017 1018 Decl *LambdaContextDecl = Record->getLambdaContextDecl(); 1019 unsigned LambdaManglingNumber = Record->getLambdaManglingNumber(); 1020 unsigned LambdaId; 1021 const ParmVarDecl *Parm = 1022 dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); 1023 const FunctionDecl *Func = 1024 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; 1025 1026 if (Func) { 1027 unsigned DefaultArgNo = 1028 Func->getNumParams() - Parm->getFunctionScopeIndex(); 1029 Name += llvm::utostr(DefaultArgNo); 1030 Name += "_"; 1031 } 1032 1033 if (LambdaManglingNumber) 1034 LambdaId = LambdaManglingNumber; 1035 else 1036 LambdaId = Context.getLambdaId(Record); 1037 1038 Name += llvm::utostr(LambdaId); 1039 Name += ">"; 1040 1041 mangleSourceName(Name); 1042 1043 // If the context is a variable or a class member and not a parameter, 1044 // it is encoded in a qualified name. 1045 if (LambdaManglingNumber && LambdaContextDecl) { 1046 if ((isa<VarDecl>(LambdaContextDecl) || 1047 isa<FieldDecl>(LambdaContextDecl)) && 1048 !isa<ParmVarDecl>(LambdaContextDecl)) { 1049 mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl)); 1050 } 1051 } 1052 break; 1053 } 1054 } 1055 1056 llvm::SmallString<64> Name; 1057 if (DeclaratorDecl *DD = 1058 Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) { 1059 // Anonymous types without a name for linkage purposes have their 1060 // declarator mangled in if they have one. 1061 Name += "<unnamed-type-"; 1062 Name += DD->getName(); 1063 } else if (TypedefNameDecl *TND = 1064 Context.getASTContext().getTypedefNameForUnnamedTagDecl( 1065 TD)) { 1066 // Anonymous types without a name for linkage purposes have their 1067 // associate typedef mangled in if they have one. 1068 Name += "<unnamed-type-"; 1069 Name += TND->getName(); 1070 } else if (isa<EnumDecl>(TD) && 1071 cast<EnumDecl>(TD)->enumerator_begin() != 1072 cast<EnumDecl>(TD)->enumerator_end()) { 1073 // Anonymous non-empty enums mangle in the first enumerator. 1074 auto *ED = cast<EnumDecl>(TD); 1075 Name += "<unnamed-enum-"; 1076 Name += ED->enumerator_begin()->getName(); 1077 } else { 1078 // Otherwise, number the types using a $S prefix. 1079 Name += "<unnamed-type-$S"; 1080 Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1); 1081 } 1082 Name += ">"; 1083 mangleSourceName(Name.str()); 1084 break; 1085 } 1086 1087 case DeclarationName::ObjCZeroArgSelector: 1088 case DeclarationName::ObjCOneArgSelector: 1089 case DeclarationName::ObjCMultiArgSelector: { 1090 // This is reachable only when constructing an outlined SEH finally 1091 // block. Nothing depends on this mangling and it's used only with 1092 // functinos with internal linkage. 1093 llvm::SmallString<64> Name; 1094 mangleSourceName(Name.str()); 1095 break; 1096 } 1097 1098 case DeclarationName::CXXConstructorName: 1099 if (isStructorDecl(ND)) { 1100 if (StructorType == Ctor_CopyingClosure) { 1101 Out << "?_O"; 1102 return; 1103 } 1104 if (StructorType == Ctor_DefaultClosure) { 1105 Out << "?_F"; 1106 return; 1107 } 1108 } 1109 Out << "?0"; 1110 return; 1111 1112 case DeclarationName::CXXDestructorName: 1113 if (isStructorDecl(ND)) 1114 // If the named decl is the C++ destructor we're mangling, 1115 // use the type we were given. 1116 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 1117 else 1118 // Otherwise, use the base destructor name. This is relevant if a 1119 // class with a destructor is declared within a destructor. 1120 mangleCXXDtorType(Dtor_Base); 1121 break; 1122 1123 case DeclarationName::CXXConversionFunctionName: 1124 // <operator-name> ::= ?B # (cast) 1125 // The target type is encoded as the return type. 1126 Out << "?B"; 1127 break; 1128 1129 case DeclarationName::CXXOperatorName: 1130 mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation()); 1131 break; 1132 1133 case DeclarationName::CXXLiteralOperatorName: { 1134 Out << "?__K"; 1135 mangleSourceName(Name.getCXXLiteralIdentifier()->getName()); 1136 break; 1137 } 1138 1139 case DeclarationName::CXXDeductionGuideName: 1140 llvm_unreachable("Can't mangle a deduction guide name!"); 1141 1142 case DeclarationName::CXXUsingDirective: 1143 llvm_unreachable("Can't mangle a using directive name!"); 1144 } 1145 } 1146 1147 // <postfix> ::= <unqualified-name> [<postfix>] 1148 // ::= <substitution> [<postfix>] 1149 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) { 1150 const DeclContext *DC = getEffectiveDeclContext(ND); 1151 while (!DC->isTranslationUnit()) { 1152 if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) { 1153 unsigned Disc; 1154 if (Context.getNextDiscriminator(ND, Disc)) { 1155 Out << '?'; 1156 mangleNumber(Disc); 1157 Out << '?'; 1158 } 1159 } 1160 1161 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 1162 auto Discriminate = 1163 [](StringRef Name, const unsigned Discriminator, 1164 const unsigned ParameterDiscriminator) -> std::string { 1165 std::string Buffer; 1166 llvm::raw_string_ostream Stream(Buffer); 1167 Stream << Name; 1168 if (Discriminator) 1169 Stream << '_' << Discriminator; 1170 if (ParameterDiscriminator) 1171 Stream << '_' << ParameterDiscriminator; 1172 return Stream.str(); 1173 }; 1174 1175 unsigned Discriminator = BD->getBlockManglingNumber(); 1176 if (!Discriminator) 1177 Discriminator = Context.getBlockId(BD, /*Local=*/false); 1178 1179 // Mangle the parameter position as a discriminator to deal with unnamed 1180 // parameters. Rather than mangling the unqualified parameter name, 1181 // always use the position to give a uniform mangling. 1182 unsigned ParameterDiscriminator = 0; 1183 if (const auto *MC = BD->getBlockManglingContextDecl()) 1184 if (const auto *P = dyn_cast<ParmVarDecl>(MC)) 1185 if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext())) 1186 ParameterDiscriminator = 1187 F->getNumParams() - P->getFunctionScopeIndex(); 1188 1189 DC = getEffectiveDeclContext(BD); 1190 1191 Out << '?'; 1192 mangleSourceName(Discriminate("_block_invoke", Discriminator, 1193 ParameterDiscriminator)); 1194 // If we have a block mangling context, encode that now. This allows us 1195 // to discriminate between named static data initializers in the same 1196 // scope. This is handled differently from parameters, which use 1197 // positions to discriminate between multiple instances. 1198 if (const auto *MC = BD->getBlockManglingContextDecl()) 1199 if (!isa<ParmVarDecl>(MC)) 1200 if (const auto *ND = dyn_cast<NamedDecl>(MC)) 1201 mangleUnqualifiedName(ND); 1202 // MS ABI and Itanium manglings are in inverted scopes. In the case of a 1203 // RecordDecl, mangle the entire scope hierarchy at this point rather than 1204 // just the unqualified name to get the ordering correct. 1205 if (const auto *RD = dyn_cast<RecordDecl>(DC)) 1206 mangleName(RD); 1207 else 1208 Out << '@'; 1209 // void __cdecl 1210 Out << "YAX"; 1211 // struct __block_literal * 1212 Out << 'P'; 1213 // __ptr64 1214 if (PointersAre64Bit) 1215 Out << 'E'; 1216 Out << 'A'; 1217 mangleArtificialTagType(TTK_Struct, 1218 Discriminate("__block_literal", Discriminator, 1219 ParameterDiscriminator)); 1220 Out << "@Z"; 1221 1222 // If the effective context was a Record, we have fully mangled the 1223 // qualified name and do not need to continue. 1224 if (isa<RecordDecl>(DC)) 1225 break; 1226 continue; 1227 } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) { 1228 mangleObjCMethodName(Method); 1229 } else if (isa<NamedDecl>(DC)) { 1230 ND = cast<NamedDecl>(DC); 1231 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1232 mangle(FD, "?"); 1233 break; 1234 } else { 1235 mangleUnqualifiedName(ND); 1236 // Lambdas in default arguments conceptually belong to the function the 1237 // parameter corresponds to. 1238 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) { 1239 DC = LDADC; 1240 continue; 1241 } 1242 } 1243 } 1244 DC = DC->getParent(); 1245 } 1246 } 1247 1248 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 1249 // Microsoft uses the names on the case labels for these dtor variants. Clang 1250 // uses the Itanium terminology internally. Everything in this ABI delegates 1251 // towards the base dtor. 1252 switch (T) { 1253 // <operator-name> ::= ?1 # destructor 1254 case Dtor_Base: Out << "?1"; return; 1255 // <operator-name> ::= ?_D # vbase destructor 1256 case Dtor_Complete: Out << "?_D"; return; 1257 // <operator-name> ::= ?_G # scalar deleting destructor 1258 case Dtor_Deleting: Out << "?_G"; return; 1259 // <operator-name> ::= ?_E # vector deleting destructor 1260 // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need 1261 // it. 1262 case Dtor_Comdat: 1263 llvm_unreachable("not expecting a COMDAT"); 1264 } 1265 llvm_unreachable("Unsupported dtor type?"); 1266 } 1267 1268 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, 1269 SourceLocation Loc) { 1270 switch (OO) { 1271 // ?0 # constructor 1272 // ?1 # destructor 1273 // <operator-name> ::= ?2 # new 1274 case OO_New: Out << "?2"; break; 1275 // <operator-name> ::= ?3 # delete 1276 case OO_Delete: Out << "?3"; break; 1277 // <operator-name> ::= ?4 # = 1278 case OO_Equal: Out << "?4"; break; 1279 // <operator-name> ::= ?5 # >> 1280 case OO_GreaterGreater: Out << "?5"; break; 1281 // <operator-name> ::= ?6 # << 1282 case OO_LessLess: Out << "?6"; break; 1283 // <operator-name> ::= ?7 # ! 1284 case OO_Exclaim: Out << "?7"; break; 1285 // <operator-name> ::= ?8 # == 1286 case OO_EqualEqual: Out << "?8"; break; 1287 // <operator-name> ::= ?9 # != 1288 case OO_ExclaimEqual: Out << "?9"; break; 1289 // <operator-name> ::= ?A # [] 1290 case OO_Subscript: Out << "?A"; break; 1291 // ?B # conversion 1292 // <operator-name> ::= ?C # -> 1293 case OO_Arrow: Out << "?C"; break; 1294 // <operator-name> ::= ?D # * 1295 case OO_Star: Out << "?D"; break; 1296 // <operator-name> ::= ?E # ++ 1297 case OO_PlusPlus: Out << "?E"; break; 1298 // <operator-name> ::= ?F # -- 1299 case OO_MinusMinus: Out << "?F"; break; 1300 // <operator-name> ::= ?G # - 1301 case OO_Minus: Out << "?G"; break; 1302 // <operator-name> ::= ?H # + 1303 case OO_Plus: Out << "?H"; break; 1304 // <operator-name> ::= ?I # & 1305 case OO_Amp: Out << "?I"; break; 1306 // <operator-name> ::= ?J # ->* 1307 case OO_ArrowStar: Out << "?J"; break; 1308 // <operator-name> ::= ?K # / 1309 case OO_Slash: Out << "?K"; break; 1310 // <operator-name> ::= ?L # % 1311 case OO_Percent: Out << "?L"; break; 1312 // <operator-name> ::= ?M # < 1313 case OO_Less: Out << "?M"; break; 1314 // <operator-name> ::= ?N # <= 1315 case OO_LessEqual: Out << "?N"; break; 1316 // <operator-name> ::= ?O # > 1317 case OO_Greater: Out << "?O"; break; 1318 // <operator-name> ::= ?P # >= 1319 case OO_GreaterEqual: Out << "?P"; break; 1320 // <operator-name> ::= ?Q # , 1321 case OO_Comma: Out << "?Q"; break; 1322 // <operator-name> ::= ?R # () 1323 case OO_Call: Out << "?R"; break; 1324 // <operator-name> ::= ?S # ~ 1325 case OO_Tilde: Out << "?S"; break; 1326 // <operator-name> ::= ?T # ^ 1327 case OO_Caret: Out << "?T"; break; 1328 // <operator-name> ::= ?U # | 1329 case OO_Pipe: Out << "?U"; break; 1330 // <operator-name> ::= ?V # && 1331 case OO_AmpAmp: Out << "?V"; break; 1332 // <operator-name> ::= ?W # || 1333 case OO_PipePipe: Out << "?W"; break; 1334 // <operator-name> ::= ?X # *= 1335 case OO_StarEqual: Out << "?X"; break; 1336 // <operator-name> ::= ?Y # += 1337 case OO_PlusEqual: Out << "?Y"; break; 1338 // <operator-name> ::= ?Z # -= 1339 case OO_MinusEqual: Out << "?Z"; break; 1340 // <operator-name> ::= ?_0 # /= 1341 case OO_SlashEqual: Out << "?_0"; break; 1342 // <operator-name> ::= ?_1 # %= 1343 case OO_PercentEqual: Out << "?_1"; break; 1344 // <operator-name> ::= ?_2 # >>= 1345 case OO_GreaterGreaterEqual: Out << "?_2"; break; 1346 // <operator-name> ::= ?_3 # <<= 1347 case OO_LessLessEqual: Out << "?_3"; break; 1348 // <operator-name> ::= ?_4 # &= 1349 case OO_AmpEqual: Out << "?_4"; break; 1350 // <operator-name> ::= ?_5 # |= 1351 case OO_PipeEqual: Out << "?_5"; break; 1352 // <operator-name> ::= ?_6 # ^= 1353 case OO_CaretEqual: Out << "?_6"; break; 1354 // ?_7 # vftable 1355 // ?_8 # vbtable 1356 // ?_9 # vcall 1357 // ?_A # typeof 1358 // ?_B # local static guard 1359 // ?_C # string 1360 // ?_D # vbase destructor 1361 // ?_E # vector deleting destructor 1362 // ?_F # default constructor closure 1363 // ?_G # scalar deleting destructor 1364 // ?_H # vector constructor iterator 1365 // ?_I # vector destructor iterator 1366 // ?_J # vector vbase constructor iterator 1367 // ?_K # virtual displacement map 1368 // ?_L # eh vector constructor iterator 1369 // ?_M # eh vector destructor iterator 1370 // ?_N # eh vector vbase constructor iterator 1371 // ?_O # copy constructor closure 1372 // ?_P<name> # udt returning <name> 1373 // ?_Q # <unknown> 1374 // ?_R0 # RTTI Type Descriptor 1375 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) 1376 // ?_R2 # RTTI Base Class Array 1377 // ?_R3 # RTTI Class Hierarchy Descriptor 1378 // ?_R4 # RTTI Complete Object Locator 1379 // ?_S # local vftable 1380 // ?_T # local vftable constructor closure 1381 // <operator-name> ::= ?_U # new[] 1382 case OO_Array_New: Out << "?_U"; break; 1383 // <operator-name> ::= ?_V # delete[] 1384 case OO_Array_Delete: Out << "?_V"; break; 1385 // <operator-name> ::= ?__L # co_await 1386 case OO_Coawait: Out << "?__L"; break; 1387 // <operator-name> ::= ?__M # <=> 1388 case OO_Spaceship: Out << "?__M"; break; 1389 1390 case OO_Conditional: { 1391 DiagnosticsEngine &Diags = Context.getDiags(); 1392 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 1393 "cannot mangle this conditional operator yet"); 1394 Diags.Report(Loc, DiagID); 1395 break; 1396 } 1397 1398 case OO_None: 1399 case NUM_OVERLOADED_OPERATORS: 1400 llvm_unreachable("Not an overloaded operator"); 1401 } 1402 } 1403 1404 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) { 1405 // <source name> ::= <identifier> @ 1406 BackRefVec::iterator Found = llvm::find(NameBackReferences, Name); 1407 if (Found == NameBackReferences.end()) { 1408 if (NameBackReferences.size() < 10) 1409 NameBackReferences.push_back(std::string(Name)); 1410 Out << Name << '@'; 1411 } else { 1412 Out << (Found - NameBackReferences.begin()); 1413 } 1414 } 1415 1416 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 1417 Context.mangleObjCMethodNameAsSourceName(MD, Out); 1418 } 1419 1420 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName( 1421 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { 1422 // <template-name> ::= <unscoped-template-name> <template-args> 1423 // ::= <substitution> 1424 // Always start with the unqualified name. 1425 1426 // Templates have their own context for back references. 1427 ArgBackRefMap OuterFunArgsContext; 1428 ArgBackRefMap OuterTemplateArgsContext; 1429 BackRefVec OuterTemplateContext; 1430 PassObjectSizeArgsSet OuterPassObjectSizeArgs; 1431 NameBackReferences.swap(OuterTemplateContext); 1432 FunArgBackReferences.swap(OuterFunArgsContext); 1433 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 1434 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); 1435 1436 mangleUnscopedTemplateName(TD); 1437 mangleTemplateArgs(TD, TemplateArgs); 1438 1439 // Restore the previous back reference contexts. 1440 NameBackReferences.swap(OuterTemplateContext); 1441 FunArgBackReferences.swap(OuterFunArgsContext); 1442 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 1443 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); 1444 } 1445 1446 void 1447 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) { 1448 // <unscoped-template-name> ::= ?$ <unqualified-name> 1449 Out << "?$"; 1450 mangleUnqualifiedName(TD); 1451 } 1452 1453 void MicrosoftCXXNameMangler::mangleIntegerLiteral( 1454 const llvm::APSInt &Value, const NonTypeTemplateParmDecl *PD, 1455 QualType TemplateArgType) { 1456 // <integer-literal> ::= $0 <number> 1457 Out << "$"; 1458 1459 // Since MSVC 2019, add 'M[<type>]' after '$' for auto template parameter when 1460 // argument is integer. 1461 if (getASTContext().getLangOpts().isCompatibleWithMSVC( 1462 LangOptions::MSVC2019) && 1463 PD && PD->getType()->getTypeClass() == Type::Auto && 1464 !TemplateArgType.isNull()) { 1465 Out << "M"; 1466 mangleType(TemplateArgType, SourceRange(), QMM_Drop); 1467 } 1468 1469 Out << "0"; 1470 1471 mangleNumber(Value); 1472 } 1473 1474 void MicrosoftCXXNameMangler::mangleExpression( 1475 const Expr *E, const NonTypeTemplateParmDecl *PD) { 1476 // See if this is a constant expression. 1477 if (Optional<llvm::APSInt> Value = 1478 E->getIntegerConstantExpr(Context.getASTContext())) { 1479 mangleIntegerLiteral(*Value, PD, E->getType()); 1480 return; 1481 } 1482 1483 // As bad as this diagnostic is, it's better than crashing. 1484 DiagnosticsEngine &Diags = Context.getDiags(); 1485 unsigned DiagID = Diags.getCustomDiagID( 1486 DiagnosticsEngine::Error, "cannot yet mangle expression type %0"); 1487 Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName() 1488 << E->getSourceRange(); 1489 } 1490 1491 void MicrosoftCXXNameMangler::mangleTemplateArgs( 1492 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { 1493 // <template-args> ::= <template-arg>+ 1494 const TemplateParameterList *TPL = TD->getTemplateParameters(); 1495 assert(TPL->size() == TemplateArgs.size() && 1496 "size mismatch between args and parms!"); 1497 1498 for (size_t i = 0; i < TemplateArgs.size(); ++i) { 1499 const TemplateArgument &TA = TemplateArgs[i]; 1500 1501 // Separate consecutive packs by $$Z. 1502 if (i > 0 && TA.getKind() == TemplateArgument::Pack && 1503 TemplateArgs[i - 1].getKind() == TemplateArgument::Pack) 1504 Out << "$$Z"; 1505 1506 mangleTemplateArg(TD, TA, TPL->getParam(i)); 1507 } 1508 } 1509 1510 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD, 1511 const TemplateArgument &TA, 1512 const NamedDecl *Parm) { 1513 // <template-arg> ::= <type> 1514 // ::= <integer-literal> 1515 // ::= <member-data-pointer> 1516 // ::= <member-function-pointer> 1517 // ::= $ <constant-value> 1518 // ::= <template-args> 1519 // 1520 // <constant-value> ::= 0 <number> # integer 1521 // ::= 1 <mangled-name> # address of D 1522 // ::= 2 <type> <typed-constant-value>* @ # struct 1523 // ::= 3 <type> <constant-value>* @ # array 1524 // ::= 4 ??? # string 1525 // ::= 5 <constant-value> @ # address of subobject 1526 // ::= 6 <constant-value> <unqualified-name> @ # a.b 1527 // ::= 7 <type> [<unqualified-name> <constant-value>] @ 1528 // # union, with or without an active member 1529 // # pointer to member, symbolically 1530 // ::= 8 <class> <unqualified-name> @ 1531 // ::= A <type> <non-negative integer> # float 1532 // ::= B <type> <non-negative integer> # double 1533 // ::= E <mangled-name> # reference to D 1534 // # pointer to member, by component value 1535 // ::= F <number> <number> 1536 // ::= G <number> <number> <number> 1537 // ::= H <mangled-name> <number> 1538 // ::= I <mangled-name> <number> <number> 1539 // ::= J <mangled-name> <number> <number> <number> 1540 // 1541 // <typed-constant-value> ::= [<type>] <constant-value> 1542 // 1543 // The <type> appears to be included in a <typed-constant-value> only in the 1544 // '0', '1', '8', 'A', 'B', and 'E' cases. 1545 1546 switch (TA.getKind()) { 1547 case TemplateArgument::Null: 1548 llvm_unreachable("Can't mangle null template arguments!"); 1549 case TemplateArgument::TemplateExpansion: 1550 llvm_unreachable("Can't mangle template expansion arguments!"); 1551 case TemplateArgument::Type: { 1552 QualType T = TA.getAsType(); 1553 mangleType(T, SourceRange(), QMM_Escape); 1554 break; 1555 } 1556 case TemplateArgument::Declaration: { 1557 const NamedDecl *ND = TA.getAsDecl(); 1558 if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) { 1559 mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext()) 1560 ->getMostRecentNonInjectedDecl(), 1561 cast<ValueDecl>(ND)); 1562 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 1563 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1564 if (MD && MD->isInstance()) { 1565 mangleMemberFunctionPointer( 1566 MD->getParent()->getMostRecentNonInjectedDecl(), MD); 1567 } else { 1568 Out << "$1?"; 1569 mangleName(FD); 1570 mangleFunctionEncoding(FD, /*ShouldMangle=*/true); 1571 } 1572 } else if (TA.getParamTypeForDecl()->isRecordType()) { 1573 Out << "$"; 1574 auto *TPO = cast<TemplateParamObjectDecl>(ND); 1575 mangleTemplateArgValue(TPO->getType().getUnqualifiedType(), 1576 TPO->getValue()); 1577 } else { 1578 mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?"); 1579 } 1580 break; 1581 } 1582 case TemplateArgument::Integral: { 1583 QualType T = TA.getIntegralType(); 1584 mangleIntegerLiteral(TA.getAsIntegral(), 1585 cast<NonTypeTemplateParmDecl>(Parm), T); 1586 break; 1587 } 1588 case TemplateArgument::NullPtr: { 1589 QualType T = TA.getNullPtrType(); 1590 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) { 1591 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 1592 if (MPT->isMemberFunctionPointerType() && 1593 !isa<FunctionTemplateDecl>(TD)) { 1594 mangleMemberFunctionPointer(RD, nullptr); 1595 return; 1596 } 1597 if (MPT->isMemberDataPointer()) { 1598 if (!isa<FunctionTemplateDecl>(TD)) { 1599 mangleMemberDataPointer(RD, nullptr); 1600 return; 1601 } 1602 // nullptr data pointers are always represented with a single field 1603 // which is initialized with either 0 or -1. Why -1? Well, we need to 1604 // distinguish the case where the data member is at offset zero in the 1605 // record. 1606 // However, we are free to use 0 *if* we would use multiple fields for 1607 // non-nullptr member pointers. 1608 if (!RD->nullFieldOffsetIsZero()) { 1609 mangleIntegerLiteral(llvm::APSInt::get(-1), 1610 cast<NonTypeTemplateParmDecl>(Parm), T); 1611 return; 1612 } 1613 } 1614 } 1615 mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), 1616 cast<NonTypeTemplateParmDecl>(Parm), T); 1617 break; 1618 } 1619 case TemplateArgument::Expression: 1620 mangleExpression(TA.getAsExpr(), cast<NonTypeTemplateParmDecl>(Parm)); 1621 break; 1622 case TemplateArgument::Pack: { 1623 ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray(); 1624 if (TemplateArgs.empty()) { 1625 if (isa<TemplateTypeParmDecl>(Parm) || 1626 isa<TemplateTemplateParmDecl>(Parm)) 1627 // MSVC 2015 changed the mangling for empty expanded template packs, 1628 // use the old mangling for link compatibility for old versions. 1629 Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC( 1630 LangOptions::MSVC2015) 1631 ? "$$V" 1632 : "$$$V"); 1633 else if (isa<NonTypeTemplateParmDecl>(Parm)) 1634 Out << "$S"; 1635 else 1636 llvm_unreachable("unexpected template parameter decl!"); 1637 } else { 1638 for (const TemplateArgument &PA : TemplateArgs) 1639 mangleTemplateArg(TD, PA, Parm); 1640 } 1641 break; 1642 } 1643 case TemplateArgument::Template: { 1644 const NamedDecl *ND = 1645 TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl(); 1646 if (const auto *TD = dyn_cast<TagDecl>(ND)) { 1647 mangleType(TD); 1648 } else if (isa<TypeAliasDecl>(ND)) { 1649 Out << "$$Y"; 1650 mangleName(ND); 1651 } else { 1652 llvm_unreachable("unexpected template template NamedDecl!"); 1653 } 1654 break; 1655 } 1656 } 1657 } 1658 1659 void MicrosoftCXXNameMangler::mangleTemplateArgValue(QualType T, 1660 const APValue &V, 1661 bool WithScalarType) { 1662 switch (V.getKind()) { 1663 case APValue::None: 1664 case APValue::Indeterminate: 1665 // FIXME: MSVC doesn't allow this, so we can't be sure how it should be 1666 // mangled. 1667 if (WithScalarType) 1668 mangleType(T, SourceRange(), QMM_Escape); 1669 Out << '@'; 1670 return; 1671 1672 case APValue::Int: 1673 if (WithScalarType) 1674 mangleType(T, SourceRange(), QMM_Escape); 1675 Out << '0'; 1676 mangleNumber(V.getInt()); 1677 return; 1678 1679 case APValue::Float: 1680 if (WithScalarType) 1681 mangleType(T, SourceRange(), QMM_Escape); 1682 mangleFloat(V.getFloat()); 1683 return; 1684 1685 case APValue::LValue: { 1686 if (WithScalarType) 1687 mangleType(T, SourceRange(), QMM_Escape); 1688 1689 // We don't know how to mangle past-the-end pointers yet. 1690 if (V.isLValueOnePastTheEnd()) 1691 break; 1692 1693 APValue::LValueBase Base = V.getLValueBase(); 1694 if (!V.hasLValuePath() || V.getLValuePath().empty()) { 1695 // Taking the address of a complete object has a special-case mangling. 1696 if (Base.isNull()) { 1697 // MSVC emits 0A@ for null pointers. Generalize this for arbitrary 1698 // integers cast to pointers. 1699 // FIXME: This mangles 0 cast to a pointer the same as a null pointer, 1700 // even in cases where the two are different values. 1701 Out << "0"; 1702 mangleNumber(V.getLValueOffset().getQuantity()); 1703 } else if (!V.hasLValuePath()) { 1704 // FIXME: This can only happen as an extension. Invent a mangling. 1705 break; 1706 } else if (auto *VD = Base.dyn_cast<const ValueDecl*>()) { 1707 Out << (T->isReferenceType() ? "E" : "1"); 1708 mangle(VD); 1709 } else { 1710 break; 1711 } 1712 } else { 1713 unsigned NumAts = 0; 1714 if (T->isPointerType()) { 1715 Out << "5"; 1716 ++NumAts; 1717 } 1718 1719 QualType T = Base.getType(); 1720 for (APValue::LValuePathEntry E : V.getLValuePath()) { 1721 // We don't know how to mangle array subscripting yet. 1722 if (T->isArrayType()) 1723 goto mangling_unknown; 1724 1725 const Decl *D = E.getAsBaseOrMember().getPointer(); 1726 auto *FD = dyn_cast<FieldDecl>(D); 1727 // We don't know how to mangle derived-to-base conversions yet. 1728 if (!FD) 1729 goto mangling_unknown; 1730 1731 Out << "6"; 1732 ++NumAts; 1733 T = FD->getType(); 1734 } 1735 1736 auto *VD = Base.dyn_cast<const ValueDecl*>(); 1737 if (!VD) 1738 break; 1739 Out << "E"; 1740 mangle(VD); 1741 1742 for (APValue::LValuePathEntry E : V.getLValuePath()) { 1743 const Decl *D = E.getAsBaseOrMember().getPointer(); 1744 mangleUnqualifiedName(cast<FieldDecl>(D)); 1745 } 1746 for (unsigned I = 0; I != NumAts; ++I) 1747 Out << '@'; 1748 } 1749 1750 return; 1751 } 1752 1753 case APValue::MemberPointer: { 1754 if (WithScalarType) 1755 mangleType(T, SourceRange(), QMM_Escape); 1756 1757 // FIXME: The below manglings don't include a conversion, so bail if there 1758 // would be one. MSVC mangles the (possibly converted) value of the 1759 // pointer-to-member object as if it were a struct, leading to collisions 1760 // in some cases. 1761 if (!V.getMemberPointerPath().empty()) 1762 break; 1763 1764 const CXXRecordDecl *RD = 1765 T->castAs<MemberPointerType>()->getMostRecentCXXRecordDecl(); 1766 const ValueDecl *D = V.getMemberPointerDecl(); 1767 if (T->isMemberDataPointerType()) 1768 mangleMemberDataPointer(RD, D, ""); 1769 else 1770 mangleMemberFunctionPointer(RD, cast_or_null<CXXMethodDecl>(D), ""); 1771 return; 1772 } 1773 1774 case APValue::Struct: { 1775 Out << '2'; 1776 mangleType(T, SourceRange(), QMM_Escape); 1777 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 1778 assert(RD && "unexpected type for record value"); 1779 1780 unsigned BaseIndex = 0; 1781 for (const CXXBaseSpecifier &B : RD->bases()) 1782 mangleTemplateArgValue(B.getType(), V.getStructBase(BaseIndex++)); 1783 for (const FieldDecl *FD : RD->fields()) 1784 if (!FD->isUnnamedBitfield()) 1785 mangleTemplateArgValue(FD->getType(), 1786 V.getStructField(FD->getFieldIndex()), 1787 /*WithScalarType*/ true); 1788 Out << '@'; 1789 return; 1790 } 1791 1792 case APValue::Union: 1793 Out << '7'; 1794 mangleType(T, SourceRange(), QMM_Escape); 1795 if (const FieldDecl *FD = V.getUnionField()) { 1796 mangleUnqualifiedName(FD); 1797 mangleTemplateArgValue(FD->getType(), V.getUnionValue()); 1798 } 1799 Out << '@'; 1800 return; 1801 1802 case APValue::ComplexInt: 1803 // We mangle complex types as structs, so mangle the value as a struct too. 1804 Out << '2'; 1805 mangleType(T, SourceRange(), QMM_Escape); 1806 Out << '0'; 1807 mangleNumber(V.getComplexIntReal()); 1808 Out << '0'; 1809 mangleNumber(V.getComplexIntImag()); 1810 Out << '@'; 1811 return; 1812 1813 case APValue::ComplexFloat: 1814 Out << '2'; 1815 mangleType(T, SourceRange(), QMM_Escape); 1816 mangleFloat(V.getComplexFloatReal()); 1817 mangleFloat(V.getComplexFloatImag()); 1818 Out << '@'; 1819 return; 1820 1821 case APValue::Array: { 1822 Out << '3'; 1823 QualType ElemT = getASTContext().getAsArrayType(T)->getElementType(); 1824 mangleType(ElemT, SourceRange(), QMM_Escape); 1825 for (unsigned I = 0, N = V.getArraySize(); I != N; ++I) { 1826 const APValue &ElemV = I < V.getArrayInitializedElts() 1827 ? V.getArrayInitializedElt(I) 1828 : V.getArrayFiller(); 1829 mangleTemplateArgValue(ElemT, ElemV); 1830 Out << '@'; 1831 } 1832 Out << '@'; 1833 return; 1834 } 1835 1836 case APValue::Vector: { 1837 // __m128 is mangled as a struct containing an array. We follow this 1838 // approach for all vector types. 1839 Out << '2'; 1840 mangleType(T, SourceRange(), QMM_Escape); 1841 Out << '3'; 1842 QualType ElemT = T->castAs<VectorType>()->getElementType(); 1843 mangleType(ElemT, SourceRange(), QMM_Escape); 1844 for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) { 1845 const APValue &ElemV = V.getVectorElt(I); 1846 mangleTemplateArgValue(ElemT, ElemV); 1847 Out << '@'; 1848 } 1849 Out << "@@"; 1850 return; 1851 } 1852 1853 case APValue::AddrLabelDiff: 1854 case APValue::FixedPoint: 1855 break; 1856 } 1857 1858 mangling_unknown: 1859 DiagnosticsEngine &Diags = Context.getDiags(); 1860 unsigned DiagID = Diags.getCustomDiagID( 1861 DiagnosticsEngine::Error, "cannot mangle this template argument yet"); 1862 Diags.Report(DiagID); 1863 } 1864 1865 void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) { 1866 llvm::SmallString<64> TemplateMangling; 1867 llvm::raw_svector_ostream Stream(TemplateMangling); 1868 MicrosoftCXXNameMangler Extra(Context, Stream); 1869 1870 Stream << "?$"; 1871 Extra.mangleSourceName("Protocol"); 1872 Extra.mangleArtificialTagType(TTK_Struct, PD->getName()); 1873 1874 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); 1875 } 1876 1877 void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type, 1878 Qualifiers Quals, 1879 SourceRange Range) { 1880 llvm::SmallString<64> TemplateMangling; 1881 llvm::raw_svector_ostream Stream(TemplateMangling); 1882 MicrosoftCXXNameMangler Extra(Context, Stream); 1883 1884 Stream << "?$"; 1885 switch (Quals.getObjCLifetime()) { 1886 case Qualifiers::OCL_None: 1887 case Qualifiers::OCL_ExplicitNone: 1888 break; 1889 case Qualifiers::OCL_Autoreleasing: 1890 Extra.mangleSourceName("Autoreleasing"); 1891 break; 1892 case Qualifiers::OCL_Strong: 1893 Extra.mangleSourceName("Strong"); 1894 break; 1895 case Qualifiers::OCL_Weak: 1896 Extra.mangleSourceName("Weak"); 1897 break; 1898 } 1899 Extra.manglePointerCVQualifiers(Quals); 1900 Extra.manglePointerExtQualifiers(Quals, Type); 1901 Extra.mangleType(Type, Range); 1902 1903 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); 1904 } 1905 1906 void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T, 1907 Qualifiers Quals, 1908 SourceRange Range) { 1909 llvm::SmallString<64> TemplateMangling; 1910 llvm::raw_svector_ostream Stream(TemplateMangling); 1911 MicrosoftCXXNameMangler Extra(Context, Stream); 1912 1913 Stream << "?$"; 1914 Extra.mangleSourceName("KindOf"); 1915 Extra.mangleType(QualType(T, 0) 1916 .stripObjCKindOfType(getASTContext()) 1917 ->getAs<ObjCObjectType>(), 1918 Quals, Range); 1919 1920 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); 1921 } 1922 1923 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, 1924 bool IsMember) { 1925 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers> 1926 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); 1927 // 'I' means __restrict (32/64-bit). 1928 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict 1929 // keyword! 1930 // <base-cvr-qualifiers> ::= A # near 1931 // ::= B # near const 1932 // ::= C # near volatile 1933 // ::= D # near const volatile 1934 // ::= E # far (16-bit) 1935 // ::= F # far const (16-bit) 1936 // ::= G # far volatile (16-bit) 1937 // ::= H # far const volatile (16-bit) 1938 // ::= I # huge (16-bit) 1939 // ::= J # huge const (16-bit) 1940 // ::= K # huge volatile (16-bit) 1941 // ::= L # huge const volatile (16-bit) 1942 // ::= M <basis> # based 1943 // ::= N <basis> # based const 1944 // ::= O <basis> # based volatile 1945 // ::= P <basis> # based const volatile 1946 // ::= Q # near member 1947 // ::= R # near const member 1948 // ::= S # near volatile member 1949 // ::= T # near const volatile member 1950 // ::= U # far member (16-bit) 1951 // ::= V # far const member (16-bit) 1952 // ::= W # far volatile member (16-bit) 1953 // ::= X # far const volatile member (16-bit) 1954 // ::= Y # huge member (16-bit) 1955 // ::= Z # huge const member (16-bit) 1956 // ::= 0 # huge volatile member (16-bit) 1957 // ::= 1 # huge const volatile member (16-bit) 1958 // ::= 2 <basis> # based member 1959 // ::= 3 <basis> # based const member 1960 // ::= 4 <basis> # based volatile member 1961 // ::= 5 <basis> # based const volatile member 1962 // ::= 6 # near function (pointers only) 1963 // ::= 7 # far function (pointers only) 1964 // ::= 8 # near method (pointers only) 1965 // ::= 9 # far method (pointers only) 1966 // ::= _A <basis> # based function (pointers only) 1967 // ::= _B <basis> # based function (far?) (pointers only) 1968 // ::= _C <basis> # based method (pointers only) 1969 // ::= _D <basis> # based method (far?) (pointers only) 1970 // ::= _E # block (Clang) 1971 // <basis> ::= 0 # __based(void) 1972 // ::= 1 # __based(segment)? 1973 // ::= 2 <name> # __based(name) 1974 // ::= 3 # ? 1975 // ::= 4 # ? 1976 // ::= 5 # not really based 1977 bool HasConst = Quals.hasConst(), 1978 HasVolatile = Quals.hasVolatile(); 1979 1980 if (!IsMember) { 1981 if (HasConst && HasVolatile) { 1982 Out << 'D'; 1983 } else if (HasVolatile) { 1984 Out << 'C'; 1985 } else if (HasConst) { 1986 Out << 'B'; 1987 } else { 1988 Out << 'A'; 1989 } 1990 } else { 1991 if (HasConst && HasVolatile) { 1992 Out << 'T'; 1993 } else if (HasVolatile) { 1994 Out << 'S'; 1995 } else if (HasConst) { 1996 Out << 'R'; 1997 } else { 1998 Out << 'Q'; 1999 } 2000 } 2001 2002 // FIXME: For now, just drop all extension qualifiers on the floor. 2003 } 2004 2005 void 2006 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 2007 // <ref-qualifier> ::= G # lvalue reference 2008 // ::= H # rvalue-reference 2009 switch (RefQualifier) { 2010 case RQ_None: 2011 break; 2012 2013 case RQ_LValue: 2014 Out << 'G'; 2015 break; 2016 2017 case RQ_RValue: 2018 Out << 'H'; 2019 break; 2020 } 2021 } 2022 2023 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals, 2024 QualType PointeeType) { 2025 // Check if this is a default 64-bit pointer or has __ptr64 qualifier. 2026 bool is64Bit = PointeeType.isNull() ? PointersAre64Bit : 2027 is64BitPointer(PointeeType.getQualifiers()); 2028 if (is64Bit && (PointeeType.isNull() || !PointeeType->isFunctionType())) 2029 Out << 'E'; 2030 2031 if (Quals.hasRestrict()) 2032 Out << 'I'; 2033 2034 if (Quals.hasUnaligned() || 2035 (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned())) 2036 Out << 'F'; 2037 } 2038 2039 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) { 2040 // <pointer-cv-qualifiers> ::= P # no qualifiers 2041 // ::= Q # const 2042 // ::= R # volatile 2043 // ::= S # const volatile 2044 bool HasConst = Quals.hasConst(), 2045 HasVolatile = Quals.hasVolatile(); 2046 2047 if (HasConst && HasVolatile) { 2048 Out << 'S'; 2049 } else if (HasVolatile) { 2050 Out << 'R'; 2051 } else if (HasConst) { 2052 Out << 'Q'; 2053 } else { 2054 Out << 'P'; 2055 } 2056 } 2057 2058 void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T, 2059 SourceRange Range) { 2060 // MSVC will backreference two canonically equivalent types that have slightly 2061 // different manglings when mangled alone. 2062 2063 // Decayed types do not match up with non-decayed versions of the same type. 2064 // 2065 // e.g. 2066 // void (*x)(void) will not form a backreference with void x(void) 2067 void *TypePtr; 2068 if (const auto *DT = T->getAs<DecayedType>()) { 2069 QualType OriginalType = DT->getOriginalType(); 2070 // All decayed ArrayTypes should be treated identically; as-if they were 2071 // a decayed IncompleteArrayType. 2072 if (const auto *AT = getASTContext().getAsArrayType(OriginalType)) 2073 OriginalType = getASTContext().getIncompleteArrayType( 2074 AT->getElementType(), AT->getSizeModifier(), 2075 AT->getIndexTypeCVRQualifiers()); 2076 2077 TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr(); 2078 // If the original parameter was textually written as an array, 2079 // instead treat the decayed parameter like it's const. 2080 // 2081 // e.g. 2082 // int [] -> int * const 2083 if (OriginalType->isArrayType()) 2084 T = T.withConst(); 2085 } else { 2086 TypePtr = T.getCanonicalType().getAsOpaquePtr(); 2087 } 2088 2089 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); 2090 2091 if (Found == FunArgBackReferences.end()) { 2092 size_t OutSizeBefore = Out.tell(); 2093 2094 mangleType(T, Range, QMM_Drop); 2095 2096 // See if it's worth creating a back reference. 2097 // Only types longer than 1 character are considered 2098 // and only 10 back references slots are available: 2099 bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1); 2100 if (LongerThanOneChar && FunArgBackReferences.size() < 10) { 2101 size_t Size = FunArgBackReferences.size(); 2102 FunArgBackReferences[TypePtr] = Size; 2103 } 2104 } else { 2105 Out << Found->second; 2106 } 2107 } 2108 2109 void MicrosoftCXXNameMangler::manglePassObjectSizeArg( 2110 const PassObjectSizeAttr *POSA) { 2111 int Type = POSA->getType(); 2112 bool Dynamic = POSA->isDynamic(); 2113 2114 auto Iter = PassObjectSizeArgs.insert({Type, Dynamic}).first; 2115 auto *TypePtr = (const void *)&*Iter; 2116 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); 2117 2118 if (Found == FunArgBackReferences.end()) { 2119 std::string Name = 2120 Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size"; 2121 mangleArtificialTagType(TTK_Enum, Name + llvm::utostr(Type), {"__clang"}); 2122 2123 if (FunArgBackReferences.size() < 10) { 2124 size_t Size = FunArgBackReferences.size(); 2125 FunArgBackReferences[TypePtr] = Size; 2126 } 2127 } else { 2128 Out << Found->second; 2129 } 2130 } 2131 2132 void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T, 2133 Qualifiers Quals, 2134 SourceRange Range) { 2135 // Address space is mangled as an unqualified templated type in the __clang 2136 // namespace. The demangled version of this is: 2137 // In the case of a language specific address space: 2138 // __clang::struct _AS[language_addr_space]<Type> 2139 // where: 2140 // <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace> 2141 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | 2142 // "private"| "generic" | "device" | "host" ] 2143 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] 2144 // Note that the above were chosen to match the Itanium mangling for this. 2145 // 2146 // In the case of a non-language specific address space: 2147 // __clang::struct _AS<TargetAS, Type> 2148 assert(Quals.hasAddressSpace() && "Not valid without address space"); 2149 llvm::SmallString<32> ASMangling; 2150 llvm::raw_svector_ostream Stream(ASMangling); 2151 MicrosoftCXXNameMangler Extra(Context, Stream); 2152 Stream << "?$"; 2153 2154 LangAS AS = Quals.getAddressSpace(); 2155 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { 2156 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); 2157 Extra.mangleSourceName("_AS"); 2158 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(TargetAS)); 2159 } else { 2160 switch (AS) { 2161 default: 2162 llvm_unreachable("Not a language specific address space"); 2163 case LangAS::opencl_global: 2164 Extra.mangleSourceName("_ASCLglobal"); 2165 break; 2166 case LangAS::opencl_global_device: 2167 Extra.mangleSourceName("_ASCLdevice"); 2168 break; 2169 case LangAS::opencl_global_host: 2170 Extra.mangleSourceName("_ASCLhost"); 2171 break; 2172 case LangAS::opencl_local: 2173 Extra.mangleSourceName("_ASCLlocal"); 2174 break; 2175 case LangAS::opencl_constant: 2176 Extra.mangleSourceName("_ASCLconstant"); 2177 break; 2178 case LangAS::opencl_private: 2179 Extra.mangleSourceName("_ASCLprivate"); 2180 break; 2181 case LangAS::opencl_generic: 2182 Extra.mangleSourceName("_ASCLgeneric"); 2183 break; 2184 case LangAS::cuda_device: 2185 Extra.mangleSourceName("_ASCUdevice"); 2186 break; 2187 case LangAS::cuda_constant: 2188 Extra.mangleSourceName("_ASCUconstant"); 2189 break; 2190 case LangAS::cuda_shared: 2191 Extra.mangleSourceName("_ASCUshared"); 2192 break; 2193 case LangAS::ptr32_sptr: 2194 case LangAS::ptr32_uptr: 2195 case LangAS::ptr64: 2196 llvm_unreachable("don't mangle ptr address spaces with _AS"); 2197 } 2198 } 2199 2200 Extra.mangleType(T, Range, QMM_Escape); 2201 mangleQualifiers(Qualifiers(), false); 2202 mangleArtificialTagType(TTK_Struct, ASMangling, {"__clang"}); 2203 } 2204 2205 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range, 2206 QualifierMangleMode QMM) { 2207 // Don't use the canonical types. MSVC includes things like 'const' on 2208 // pointer arguments to function pointers that canonicalization strips away. 2209 T = T.getDesugaredType(getASTContext()); 2210 Qualifiers Quals = T.getLocalQualifiers(); 2211 2212 if (const ArrayType *AT = getASTContext().getAsArrayType(T)) { 2213 // If there were any Quals, getAsArrayType() pushed them onto the array 2214 // element type. 2215 if (QMM == QMM_Mangle) 2216 Out << 'A'; 2217 else if (QMM == QMM_Escape || QMM == QMM_Result) 2218 Out << "$$B"; 2219 mangleArrayType(AT); 2220 return; 2221 } 2222 2223 bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() || 2224 T->isReferenceType() || T->isBlockPointerType(); 2225 2226 switch (QMM) { 2227 case QMM_Drop: 2228 if (Quals.hasObjCLifetime()) 2229 Quals = Quals.withoutObjCLifetime(); 2230 break; 2231 case QMM_Mangle: 2232 if (const FunctionType *FT = dyn_cast<FunctionType>(T)) { 2233 Out << '6'; 2234 mangleFunctionType(FT); 2235 return; 2236 } 2237 mangleQualifiers(Quals, false); 2238 break; 2239 case QMM_Escape: 2240 if (!IsPointer && Quals) { 2241 Out << "$$C"; 2242 mangleQualifiers(Quals, false); 2243 } 2244 break; 2245 case QMM_Result: 2246 // Presence of __unaligned qualifier shouldn't affect mangling here. 2247 Quals.removeUnaligned(); 2248 if (Quals.hasObjCLifetime()) 2249 Quals = Quals.withoutObjCLifetime(); 2250 if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) { 2251 Out << '?'; 2252 mangleQualifiers(Quals, false); 2253 } 2254 break; 2255 } 2256 2257 const Type *ty = T.getTypePtr(); 2258 2259 switch (ty->getTypeClass()) { 2260 #define ABSTRACT_TYPE(CLASS, PARENT) 2261 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 2262 case Type::CLASS: \ 2263 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 2264 return; 2265 #define TYPE(CLASS, PARENT) \ 2266 case Type::CLASS: \ 2267 mangleType(cast<CLASS##Type>(ty), Quals, Range); \ 2268 break; 2269 #include "clang/AST/TypeNodes.inc" 2270 #undef ABSTRACT_TYPE 2271 #undef NON_CANONICAL_TYPE 2272 #undef TYPE 2273 } 2274 } 2275 2276 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers, 2277 SourceRange Range) { 2278 // <type> ::= <builtin-type> 2279 // <builtin-type> ::= X # void 2280 // ::= C # signed char 2281 // ::= D # char 2282 // ::= E # unsigned char 2283 // ::= F # short 2284 // ::= G # unsigned short (or wchar_t if it's not a builtin) 2285 // ::= H # int 2286 // ::= I # unsigned int 2287 // ::= J # long 2288 // ::= K # unsigned long 2289 // L # <none> 2290 // ::= M # float 2291 // ::= N # double 2292 // ::= O # long double (__float80 is mangled differently) 2293 // ::= _J # long long, __int64 2294 // ::= _K # unsigned long long, __int64 2295 // ::= _L # __int128 2296 // ::= _M # unsigned __int128 2297 // ::= _N # bool 2298 // _O # <array in parameter> 2299 // ::= _Q # char8_t 2300 // ::= _S # char16_t 2301 // ::= _T # __float80 (Intel) 2302 // ::= _U # char32_t 2303 // ::= _W # wchar_t 2304 // ::= _Z # __float80 (Digital Mars) 2305 switch (T->getKind()) { 2306 case BuiltinType::Void: 2307 Out << 'X'; 2308 break; 2309 case BuiltinType::SChar: 2310 Out << 'C'; 2311 break; 2312 case BuiltinType::Char_U: 2313 case BuiltinType::Char_S: 2314 Out << 'D'; 2315 break; 2316 case BuiltinType::UChar: 2317 Out << 'E'; 2318 break; 2319 case BuiltinType::Short: 2320 Out << 'F'; 2321 break; 2322 case BuiltinType::UShort: 2323 Out << 'G'; 2324 break; 2325 case BuiltinType::Int: 2326 Out << 'H'; 2327 break; 2328 case BuiltinType::UInt: 2329 Out << 'I'; 2330 break; 2331 case BuiltinType::Long: 2332 Out << 'J'; 2333 break; 2334 case BuiltinType::ULong: 2335 Out << 'K'; 2336 break; 2337 case BuiltinType::Float: 2338 Out << 'M'; 2339 break; 2340 case BuiltinType::Double: 2341 Out << 'N'; 2342 break; 2343 // TODO: Determine size and mangle accordingly 2344 case BuiltinType::LongDouble: 2345 Out << 'O'; 2346 break; 2347 case BuiltinType::LongLong: 2348 Out << "_J"; 2349 break; 2350 case BuiltinType::ULongLong: 2351 Out << "_K"; 2352 break; 2353 case BuiltinType::Int128: 2354 Out << "_L"; 2355 break; 2356 case BuiltinType::UInt128: 2357 Out << "_M"; 2358 break; 2359 case BuiltinType::Bool: 2360 Out << "_N"; 2361 break; 2362 case BuiltinType::Char8: 2363 Out << "_Q"; 2364 break; 2365 case BuiltinType::Char16: 2366 Out << "_S"; 2367 break; 2368 case BuiltinType::Char32: 2369 Out << "_U"; 2370 break; 2371 case BuiltinType::WChar_S: 2372 case BuiltinType::WChar_U: 2373 Out << "_W"; 2374 break; 2375 2376 #define BUILTIN_TYPE(Id, SingletonId) 2377 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 2378 case BuiltinType::Id: 2379 #include "clang/AST/BuiltinTypes.def" 2380 case BuiltinType::Dependent: 2381 llvm_unreachable("placeholder types shouldn't get to name mangling"); 2382 2383 case BuiltinType::ObjCId: 2384 mangleArtificialTagType(TTK_Struct, "objc_object"); 2385 break; 2386 case BuiltinType::ObjCClass: 2387 mangleArtificialTagType(TTK_Struct, "objc_class"); 2388 break; 2389 case BuiltinType::ObjCSel: 2390 mangleArtificialTagType(TTK_Struct, "objc_selector"); 2391 break; 2392 2393 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 2394 case BuiltinType::Id: \ 2395 Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \ 2396 break; 2397 #include "clang/Basic/OpenCLImageTypes.def" 2398 case BuiltinType::OCLSampler: 2399 Out << "PA"; 2400 mangleArtificialTagType(TTK_Struct, "ocl_sampler"); 2401 break; 2402 case BuiltinType::OCLEvent: 2403 Out << "PA"; 2404 mangleArtificialTagType(TTK_Struct, "ocl_event"); 2405 break; 2406 case BuiltinType::OCLClkEvent: 2407 Out << "PA"; 2408 mangleArtificialTagType(TTK_Struct, "ocl_clkevent"); 2409 break; 2410 case BuiltinType::OCLQueue: 2411 Out << "PA"; 2412 mangleArtificialTagType(TTK_Struct, "ocl_queue"); 2413 break; 2414 case BuiltinType::OCLReserveID: 2415 Out << "PA"; 2416 mangleArtificialTagType(TTK_Struct, "ocl_reserveid"); 2417 break; 2418 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 2419 case BuiltinType::Id: \ 2420 mangleArtificialTagType(TTK_Struct, "ocl_" #ExtType); \ 2421 break; 2422 #include "clang/Basic/OpenCLExtensionTypes.def" 2423 2424 case BuiltinType::NullPtr: 2425 Out << "$$T"; 2426 break; 2427 2428 case BuiltinType::Float16: 2429 mangleArtificialTagType(TTK_Struct, "_Float16", {"__clang"}); 2430 break; 2431 2432 case BuiltinType::Half: 2433 mangleArtificialTagType(TTK_Struct, "_Half", {"__clang"}); 2434 break; 2435 2436 #define SVE_TYPE(Name, Id, SingletonId) \ 2437 case BuiltinType::Id: 2438 #include "clang/Basic/AArch64SVEACLETypes.def" 2439 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 2440 case BuiltinType::Id: 2441 #include "clang/Basic/PPCTypes.def" 2442 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 2443 #include "clang/Basic/RISCVVTypes.def" 2444 case BuiltinType::ShortAccum: 2445 case BuiltinType::Accum: 2446 case BuiltinType::LongAccum: 2447 case BuiltinType::UShortAccum: 2448 case BuiltinType::UAccum: 2449 case BuiltinType::ULongAccum: 2450 case BuiltinType::ShortFract: 2451 case BuiltinType::Fract: 2452 case BuiltinType::LongFract: 2453 case BuiltinType::UShortFract: 2454 case BuiltinType::UFract: 2455 case BuiltinType::ULongFract: 2456 case BuiltinType::SatShortAccum: 2457 case BuiltinType::SatAccum: 2458 case BuiltinType::SatLongAccum: 2459 case BuiltinType::SatUShortAccum: 2460 case BuiltinType::SatUAccum: 2461 case BuiltinType::SatULongAccum: 2462 case BuiltinType::SatShortFract: 2463 case BuiltinType::SatFract: 2464 case BuiltinType::SatLongFract: 2465 case BuiltinType::SatUShortFract: 2466 case BuiltinType::SatUFract: 2467 case BuiltinType::SatULongFract: 2468 case BuiltinType::BFloat16: 2469 case BuiltinType::Float128: { 2470 DiagnosticsEngine &Diags = Context.getDiags(); 2471 unsigned DiagID = Diags.getCustomDiagID( 2472 DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet"); 2473 Diags.Report(Range.getBegin(), DiagID) 2474 << T->getName(Context.getASTContext().getPrintingPolicy()) << Range; 2475 break; 2476 } 2477 } 2478 } 2479 2480 // <type> ::= <function-type> 2481 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers, 2482 SourceRange) { 2483 // Structors only appear in decls, so at this point we know it's not a 2484 // structor type. 2485 // FIXME: This may not be lambda-friendly. 2486 if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) { 2487 Out << "$$A8@@"; 2488 mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true); 2489 } else { 2490 Out << "$$A6"; 2491 mangleFunctionType(T); 2492 } 2493 } 2494 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T, 2495 Qualifiers, SourceRange) { 2496 Out << "$$A6"; 2497 mangleFunctionType(T); 2498 } 2499 2500 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T, 2501 const FunctionDecl *D, 2502 bool ForceThisQuals, 2503 bool MangleExceptionSpec) { 2504 // <function-type> ::= <this-cvr-qualifiers> <calling-convention> 2505 // <return-type> <argument-list> <throw-spec> 2506 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T); 2507 2508 SourceRange Range; 2509 if (D) Range = D->getSourceRange(); 2510 2511 bool IsInLambda = false; 2512 bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false; 2513 CallingConv CC = T->getCallConv(); 2514 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) { 2515 if (MD->getParent()->isLambda()) 2516 IsInLambda = true; 2517 if (MD->isInstance()) 2518 HasThisQuals = true; 2519 if (isa<CXXDestructorDecl>(MD)) { 2520 IsStructor = true; 2521 } else if (isa<CXXConstructorDecl>(MD)) { 2522 IsStructor = true; 2523 IsCtorClosure = (StructorType == Ctor_CopyingClosure || 2524 StructorType == Ctor_DefaultClosure) && 2525 isStructorDecl(MD); 2526 if (IsCtorClosure) 2527 CC = getASTContext().getDefaultCallingConvention( 2528 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 2529 } 2530 } 2531 2532 // If this is a C++ instance method, mangle the CVR qualifiers for the 2533 // this pointer. 2534 if (HasThisQuals) { 2535 Qualifiers Quals = Proto->getMethodQuals(); 2536 manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType()); 2537 mangleRefQualifier(Proto->getRefQualifier()); 2538 mangleQualifiers(Quals, /*IsMember=*/false); 2539 } 2540 2541 mangleCallingConvention(CC); 2542 2543 // <return-type> ::= <type> 2544 // ::= @ # structors (they have no declared return type) 2545 if (IsStructor) { 2546 if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) { 2547 // The scalar deleting destructor takes an extra int argument which is not 2548 // reflected in the AST. 2549 if (StructorType == Dtor_Deleting) { 2550 Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z"); 2551 return; 2552 } 2553 // The vbase destructor returns void which is not reflected in the AST. 2554 if (StructorType == Dtor_Complete) { 2555 Out << "XXZ"; 2556 return; 2557 } 2558 } 2559 if (IsCtorClosure) { 2560 // Default constructor closure and copy constructor closure both return 2561 // void. 2562 Out << 'X'; 2563 2564 if (StructorType == Ctor_DefaultClosure) { 2565 // Default constructor closure always has no arguments. 2566 Out << 'X'; 2567 } else if (StructorType == Ctor_CopyingClosure) { 2568 // Copy constructor closure always takes an unqualified reference. 2569 mangleFunctionArgumentType(getASTContext().getLValueReferenceType( 2570 Proto->getParamType(0) 2571 ->getAs<LValueReferenceType>() 2572 ->getPointeeType(), 2573 /*SpelledAsLValue=*/true), 2574 Range); 2575 Out << '@'; 2576 } else { 2577 llvm_unreachable("unexpected constructor closure!"); 2578 } 2579 Out << 'Z'; 2580 return; 2581 } 2582 Out << '@'; 2583 } else if (IsInLambda && D && isa<CXXConversionDecl>(D)) { 2584 // The only lambda conversion operators are to function pointers, which 2585 // can differ by their calling convention and are typically deduced. So 2586 // we make sure that this type gets mangled properly. 2587 mangleType(T->getReturnType(), Range, QMM_Result); 2588 } else { 2589 QualType ResultType = T->getReturnType(); 2590 if (IsInLambda && isa<CXXConversionDecl>(D)) { 2591 // The only lambda conversion operators are to function pointers, which 2592 // can differ by their calling convention and are typically deduced. So 2593 // we make sure that this type gets mangled properly. 2594 mangleType(ResultType, Range, QMM_Result); 2595 } else if (const auto *AT = dyn_cast_or_null<AutoType>( 2596 ResultType->getContainedAutoType())) { 2597 Out << '?'; 2598 mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false); 2599 Out << '?'; 2600 assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType && 2601 "shouldn't need to mangle __auto_type!"); 2602 mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>"); 2603 Out << '@'; 2604 } else if (IsInLambda) { 2605 Out << '@'; 2606 } else { 2607 if (ResultType->isVoidType()) 2608 ResultType = ResultType.getUnqualifiedType(); 2609 mangleType(ResultType, Range, QMM_Result); 2610 } 2611 } 2612 2613 // <argument-list> ::= X # void 2614 // ::= <type>+ @ 2615 // ::= <type>* Z # varargs 2616 if (!Proto) { 2617 // Function types without prototypes can arise when mangling a function type 2618 // within an overloadable function in C. We mangle these as the absence of 2619 // any parameter types (not even an empty parameter list). 2620 Out << '@'; 2621 } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { 2622 Out << 'X'; 2623 } else { 2624 // Happens for function pointer type arguments for example. 2625 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { 2626 mangleFunctionArgumentType(Proto->getParamType(I), Range); 2627 // Mangle each pass_object_size parameter as if it's a parameter of enum 2628 // type passed directly after the parameter with the pass_object_size 2629 // attribute. The aforementioned enum's name is __pass_object_size, and we 2630 // pretend it resides in a top-level namespace called __clang. 2631 // 2632 // FIXME: Is there a defined extension notation for the MS ABI, or is it 2633 // necessary to just cross our fingers and hope this type+namespace 2634 // combination doesn't conflict with anything? 2635 if (D) 2636 if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) 2637 manglePassObjectSizeArg(P); 2638 } 2639 // <builtin-type> ::= Z # ellipsis 2640 if (Proto->isVariadic()) 2641 Out << 'Z'; 2642 else 2643 Out << '@'; 2644 } 2645 2646 if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 && 2647 getASTContext().getLangOpts().isCompatibleWithMSVC( 2648 LangOptions::MSVC2017_5)) 2649 mangleThrowSpecification(Proto); 2650 else 2651 Out << 'Z'; 2652 } 2653 2654 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { 2655 // <function-class> ::= <member-function> E? # E designates a 64-bit 'this' 2656 // # pointer. in 64-bit mode *all* 2657 // # 'this' pointers are 64-bit. 2658 // ::= <global-function> 2659 // <member-function> ::= A # private: near 2660 // ::= B # private: far 2661 // ::= C # private: static near 2662 // ::= D # private: static far 2663 // ::= E # private: virtual near 2664 // ::= F # private: virtual far 2665 // ::= I # protected: near 2666 // ::= J # protected: far 2667 // ::= K # protected: static near 2668 // ::= L # protected: static far 2669 // ::= M # protected: virtual near 2670 // ::= N # protected: virtual far 2671 // ::= Q # public: near 2672 // ::= R # public: far 2673 // ::= S # public: static near 2674 // ::= T # public: static far 2675 // ::= U # public: virtual near 2676 // ::= V # public: virtual far 2677 // <global-function> ::= Y # global near 2678 // ::= Z # global far 2679 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 2680 bool IsVirtual = MD->isVirtual(); 2681 // When mangling vbase destructor variants, ignore whether or not the 2682 // underlying destructor was defined to be virtual. 2683 if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) && 2684 StructorType == Dtor_Complete) { 2685 IsVirtual = false; 2686 } 2687 switch (MD->getAccess()) { 2688 case AS_none: 2689 llvm_unreachable("Unsupported access specifier"); 2690 case AS_private: 2691 if (MD->isStatic()) 2692 Out << 'C'; 2693 else if (IsVirtual) 2694 Out << 'E'; 2695 else 2696 Out << 'A'; 2697 break; 2698 case AS_protected: 2699 if (MD->isStatic()) 2700 Out << 'K'; 2701 else if (IsVirtual) 2702 Out << 'M'; 2703 else 2704 Out << 'I'; 2705 break; 2706 case AS_public: 2707 if (MD->isStatic()) 2708 Out << 'S'; 2709 else if (IsVirtual) 2710 Out << 'U'; 2711 else 2712 Out << 'Q'; 2713 } 2714 } else { 2715 Out << 'Y'; 2716 } 2717 } 2718 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) { 2719 // <calling-convention> ::= A # __cdecl 2720 // ::= B # __export __cdecl 2721 // ::= C # __pascal 2722 // ::= D # __export __pascal 2723 // ::= E # __thiscall 2724 // ::= F # __export __thiscall 2725 // ::= G # __stdcall 2726 // ::= H # __export __stdcall 2727 // ::= I # __fastcall 2728 // ::= J # __export __fastcall 2729 // ::= Q # __vectorcall 2730 // ::= S # __attribute__((__swiftcall__)) // Clang-only 2731 // ::= T # __attribute__((__swiftasynccall__)) 2732 // // Clang-only 2733 // ::= w # __regcall 2734 // The 'export' calling conventions are from a bygone era 2735 // (*cough*Win16*cough*) when functions were declared for export with 2736 // that keyword. (It didn't actually export them, it just made them so 2737 // that they could be in a DLL and somebody from another module could call 2738 // them.) 2739 2740 switch (CC) { 2741 default: 2742 llvm_unreachable("Unsupported CC for mangling"); 2743 case CC_Win64: 2744 case CC_X86_64SysV: 2745 case CC_C: Out << 'A'; break; 2746 case CC_X86Pascal: Out << 'C'; break; 2747 case CC_X86ThisCall: Out << 'E'; break; 2748 case CC_X86StdCall: Out << 'G'; break; 2749 case CC_X86FastCall: Out << 'I'; break; 2750 case CC_X86VectorCall: Out << 'Q'; break; 2751 case CC_Swift: Out << 'S'; break; 2752 case CC_SwiftAsync: Out << 'W'; break; 2753 case CC_PreserveMost: Out << 'U'; break; 2754 case CC_X86RegCall: Out << 'w'; break; 2755 } 2756 } 2757 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) { 2758 mangleCallingConvention(T->getCallConv()); 2759 } 2760 2761 void MicrosoftCXXNameMangler::mangleThrowSpecification( 2762 const FunctionProtoType *FT) { 2763 // <throw-spec> ::= Z # (default) 2764 // ::= _E # noexcept 2765 if (FT->canThrow()) 2766 Out << 'Z'; 2767 else 2768 Out << "_E"; 2769 } 2770 2771 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T, 2772 Qualifiers, SourceRange Range) { 2773 // Probably should be mangled as a template instantiation; need to see what 2774 // VC does first. 2775 DiagnosticsEngine &Diags = Context.getDiags(); 2776 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2777 "cannot mangle this unresolved dependent type yet"); 2778 Diags.Report(Range.getBegin(), DiagID) 2779 << Range; 2780 } 2781 2782 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type> 2783 // <union-type> ::= T <name> 2784 // <struct-type> ::= U <name> 2785 // <class-type> ::= V <name> 2786 // <enum-type> ::= W4 <name> 2787 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) { 2788 switch (TTK) { 2789 case TTK_Union: 2790 Out << 'T'; 2791 break; 2792 case TTK_Struct: 2793 case TTK_Interface: 2794 Out << 'U'; 2795 break; 2796 case TTK_Class: 2797 Out << 'V'; 2798 break; 2799 case TTK_Enum: 2800 Out << "W4"; 2801 break; 2802 } 2803 } 2804 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers, 2805 SourceRange) { 2806 mangleType(cast<TagType>(T)->getDecl()); 2807 } 2808 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers, 2809 SourceRange) { 2810 mangleType(cast<TagType>(T)->getDecl()); 2811 } 2812 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) { 2813 mangleTagTypeKind(TD->getTagKind()); 2814 mangleName(TD); 2815 } 2816 2817 // If you add a call to this, consider updating isArtificialTagType() too. 2818 void MicrosoftCXXNameMangler::mangleArtificialTagType( 2819 TagTypeKind TK, StringRef UnqualifiedName, 2820 ArrayRef<StringRef> NestedNames) { 2821 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ 2822 mangleTagTypeKind(TK); 2823 2824 // Always start with the unqualified name. 2825 mangleSourceName(UnqualifiedName); 2826 2827 for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I) 2828 mangleSourceName(*I); 2829 2830 // Terminate the whole name with an '@'. 2831 Out << '@'; 2832 } 2833 2834 // <type> ::= <array-type> 2835 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 2836 // [Y <dimension-count> <dimension>+] 2837 // <element-type> # as global, E is never required 2838 // It's supposed to be the other way around, but for some strange reason, it 2839 // isn't. Today this behavior is retained for the sole purpose of backwards 2840 // compatibility. 2841 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) { 2842 // This isn't a recursive mangling, so now we have to do it all in this 2843 // one call. 2844 manglePointerCVQualifiers(T->getElementType().getQualifiers()); 2845 mangleType(T->getElementType(), SourceRange()); 2846 } 2847 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers, 2848 SourceRange) { 2849 llvm_unreachable("Should have been special cased"); 2850 } 2851 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers, 2852 SourceRange) { 2853 llvm_unreachable("Should have been special cased"); 2854 } 2855 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T, 2856 Qualifiers, SourceRange) { 2857 llvm_unreachable("Should have been special cased"); 2858 } 2859 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T, 2860 Qualifiers, SourceRange) { 2861 llvm_unreachable("Should have been special cased"); 2862 } 2863 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) { 2864 QualType ElementTy(T, 0); 2865 SmallVector<llvm::APInt, 3> Dimensions; 2866 for (;;) { 2867 if (ElementTy->isConstantArrayType()) { 2868 const ConstantArrayType *CAT = 2869 getASTContext().getAsConstantArrayType(ElementTy); 2870 Dimensions.push_back(CAT->getSize()); 2871 ElementTy = CAT->getElementType(); 2872 } else if (ElementTy->isIncompleteArrayType()) { 2873 const IncompleteArrayType *IAT = 2874 getASTContext().getAsIncompleteArrayType(ElementTy); 2875 Dimensions.push_back(llvm::APInt(32, 0)); 2876 ElementTy = IAT->getElementType(); 2877 } else if (ElementTy->isVariableArrayType()) { 2878 const VariableArrayType *VAT = 2879 getASTContext().getAsVariableArrayType(ElementTy); 2880 Dimensions.push_back(llvm::APInt(32, 0)); 2881 ElementTy = VAT->getElementType(); 2882 } else if (ElementTy->isDependentSizedArrayType()) { 2883 // The dependent expression has to be folded into a constant (TODO). 2884 const DependentSizedArrayType *DSAT = 2885 getASTContext().getAsDependentSizedArrayType(ElementTy); 2886 DiagnosticsEngine &Diags = Context.getDiags(); 2887 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2888 "cannot mangle this dependent-length array yet"); 2889 Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID) 2890 << DSAT->getBracketsRange(); 2891 return; 2892 } else { 2893 break; 2894 } 2895 } 2896 Out << 'Y'; 2897 // <dimension-count> ::= <number> # number of extra dimensions 2898 mangleNumber(Dimensions.size()); 2899 for (const llvm::APInt &Dimension : Dimensions) 2900 mangleNumber(Dimension.getLimitedValue()); 2901 mangleType(ElementTy, SourceRange(), QMM_Escape); 2902 } 2903 2904 // <type> ::= <pointer-to-member-type> 2905 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> 2906 // <class name> <type> 2907 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, 2908 Qualifiers Quals, SourceRange Range) { 2909 QualType PointeeType = T->getPointeeType(); 2910 manglePointerCVQualifiers(Quals); 2911 manglePointerExtQualifiers(Quals, PointeeType); 2912 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) { 2913 Out << '8'; 2914 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 2915 mangleFunctionType(FPT, nullptr, true); 2916 } else { 2917 mangleQualifiers(PointeeType.getQualifiers(), true); 2918 mangleName(T->getClass()->castAs<RecordType>()->getDecl()); 2919 mangleType(PointeeType, Range, QMM_Drop); 2920 } 2921 } 2922 2923 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T, 2924 Qualifiers, SourceRange Range) { 2925 DiagnosticsEngine &Diags = Context.getDiags(); 2926 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2927 "cannot mangle this template type parameter type yet"); 2928 Diags.Report(Range.getBegin(), DiagID) 2929 << Range; 2930 } 2931 2932 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T, 2933 Qualifiers, SourceRange Range) { 2934 DiagnosticsEngine &Diags = Context.getDiags(); 2935 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 2936 "cannot mangle this substituted parameter pack yet"); 2937 Diags.Report(Range.getBegin(), DiagID) 2938 << Range; 2939 } 2940 2941 // <type> ::= <pointer-type> 2942 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type> 2943 // # the E is required for 64-bit non-static pointers 2944 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals, 2945 SourceRange Range) { 2946 QualType PointeeType = T->getPointeeType(); 2947 manglePointerCVQualifiers(Quals); 2948 manglePointerExtQualifiers(Quals, PointeeType); 2949 2950 // For pointer size address spaces, go down the same type mangling path as 2951 // non address space types. 2952 LangAS AddrSpace = PointeeType.getQualifiers().getAddressSpace(); 2953 if (isPtrSizeAddressSpace(AddrSpace) || AddrSpace == LangAS::Default) 2954 mangleType(PointeeType, Range); 2955 else 2956 mangleAddressSpaceType(PointeeType, PointeeType.getQualifiers(), Range); 2957 } 2958 2959 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T, 2960 Qualifiers Quals, SourceRange Range) { 2961 QualType PointeeType = T->getPointeeType(); 2962 switch (Quals.getObjCLifetime()) { 2963 case Qualifiers::OCL_None: 2964 case Qualifiers::OCL_ExplicitNone: 2965 break; 2966 case Qualifiers::OCL_Autoreleasing: 2967 case Qualifiers::OCL_Strong: 2968 case Qualifiers::OCL_Weak: 2969 return mangleObjCLifetime(PointeeType, Quals, Range); 2970 } 2971 manglePointerCVQualifiers(Quals); 2972 manglePointerExtQualifiers(Quals, PointeeType); 2973 mangleType(PointeeType, Range); 2974 } 2975 2976 // <type> ::= <reference-type> 2977 // <reference-type> ::= A E? <cvr-qualifiers> <type> 2978 // # the E is required for 64-bit non-static lvalue references 2979 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T, 2980 Qualifiers Quals, SourceRange Range) { 2981 QualType PointeeType = T->getPointeeType(); 2982 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); 2983 Out << 'A'; 2984 manglePointerExtQualifiers(Quals, PointeeType); 2985 mangleType(PointeeType, Range); 2986 } 2987 2988 // <type> ::= <r-value-reference-type> 2989 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type> 2990 // # the E is required for 64-bit non-static rvalue references 2991 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T, 2992 Qualifiers Quals, SourceRange Range) { 2993 QualType PointeeType = T->getPointeeType(); 2994 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); 2995 Out << "$$Q"; 2996 manglePointerExtQualifiers(Quals, PointeeType); 2997 mangleType(PointeeType, Range); 2998 } 2999 3000 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers, 3001 SourceRange Range) { 3002 QualType ElementType = T->getElementType(); 3003 3004 llvm::SmallString<64> TemplateMangling; 3005 llvm::raw_svector_ostream Stream(TemplateMangling); 3006 MicrosoftCXXNameMangler Extra(Context, Stream); 3007 Stream << "?$"; 3008 Extra.mangleSourceName("_Complex"); 3009 Extra.mangleType(ElementType, Range, QMM_Escape); 3010 3011 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 3012 } 3013 3014 // Returns true for types that mangleArtificialTagType() gets called for with 3015 // TTK_Union, TTK_Struct, TTK_Class and where compatibility with MSVC's 3016 // mangling matters. 3017 // (It doesn't matter for Objective-C types and the like that cl.exe doesn't 3018 // support.) 3019 bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const { 3020 const Type *ty = T.getTypePtr(); 3021 switch (ty->getTypeClass()) { 3022 default: 3023 return false; 3024 3025 case Type::Vector: { 3026 // For ABI compatibility only __m64, __m128(id), and __m256(id) matter, 3027 // but since mangleType(VectorType*) always calls mangleArtificialTagType() 3028 // just always return true (the other vector types are clang-only). 3029 return true; 3030 } 3031 } 3032 } 3033 3034 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals, 3035 SourceRange Range) { 3036 const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>(); 3037 assert(ET && "vectors with non-builtin elements are unsupported"); 3038 uint64_t Width = getASTContext().getTypeSize(T); 3039 // Pattern match exactly the typedefs in our intrinsic headers. Anything that 3040 // doesn't match the Intel types uses a custom mangling below. 3041 size_t OutSizeBefore = Out.tell(); 3042 if (!isa<ExtVectorType>(T)) { 3043 if (getASTContext().getTargetInfo().getTriple().isX86()) { 3044 if (Width == 64 && ET->getKind() == BuiltinType::LongLong) { 3045 mangleArtificialTagType(TTK_Union, "__m64"); 3046 } else if (Width >= 128) { 3047 if (ET->getKind() == BuiltinType::Float) 3048 mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width)); 3049 else if (ET->getKind() == BuiltinType::LongLong) 3050 mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i'); 3051 else if (ET->getKind() == BuiltinType::Double) 3052 mangleArtificialTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd'); 3053 } 3054 } 3055 } 3056 3057 bool IsBuiltin = Out.tell() != OutSizeBefore; 3058 if (!IsBuiltin) { 3059 // The MS ABI doesn't have a special mangling for vector types, so we define 3060 // our own mangling to handle uses of __vector_size__ on user-specified 3061 // types, and for extensions like __v4sf. 3062 3063 llvm::SmallString<64> TemplateMangling; 3064 llvm::raw_svector_ostream Stream(TemplateMangling); 3065 MicrosoftCXXNameMangler Extra(Context, Stream); 3066 Stream << "?$"; 3067 Extra.mangleSourceName("__vector"); 3068 Extra.mangleType(QualType(ET, 0), Range, QMM_Escape); 3069 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements())); 3070 3071 mangleArtificialTagType(TTK_Union, TemplateMangling, {"__clang"}); 3072 } 3073 } 3074 3075 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T, 3076 Qualifiers Quals, SourceRange Range) { 3077 mangleType(static_cast<const VectorType *>(T), Quals, Range); 3078 } 3079 3080 void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T, 3081 Qualifiers, SourceRange Range) { 3082 DiagnosticsEngine &Diags = Context.getDiags(); 3083 unsigned DiagID = Diags.getCustomDiagID( 3084 DiagnosticsEngine::Error, 3085 "cannot mangle this dependent-sized vector type yet"); 3086 Diags.Report(Range.getBegin(), DiagID) << Range; 3087 } 3088 3089 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T, 3090 Qualifiers, SourceRange Range) { 3091 DiagnosticsEngine &Diags = Context.getDiags(); 3092 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3093 "cannot mangle this dependent-sized extended vector type yet"); 3094 Diags.Report(Range.getBegin(), DiagID) 3095 << Range; 3096 } 3097 3098 void MicrosoftCXXNameMangler::mangleType(const ConstantMatrixType *T, 3099 Qualifiers quals, SourceRange Range) { 3100 DiagnosticsEngine &Diags = Context.getDiags(); 3101 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3102 "Cannot mangle this matrix type yet"); 3103 Diags.Report(Range.getBegin(), DiagID) << Range; 3104 } 3105 3106 void MicrosoftCXXNameMangler::mangleType(const DependentSizedMatrixType *T, 3107 Qualifiers quals, SourceRange Range) { 3108 DiagnosticsEngine &Diags = Context.getDiags(); 3109 unsigned DiagID = Diags.getCustomDiagID( 3110 DiagnosticsEngine::Error, 3111 "Cannot mangle this dependent-sized matrix type yet"); 3112 Diags.Report(Range.getBegin(), DiagID) << Range; 3113 } 3114 3115 void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T, 3116 Qualifiers, SourceRange Range) { 3117 DiagnosticsEngine &Diags = Context.getDiags(); 3118 unsigned DiagID = Diags.getCustomDiagID( 3119 DiagnosticsEngine::Error, 3120 "cannot mangle this dependent address space type yet"); 3121 Diags.Report(Range.getBegin(), DiagID) << Range; 3122 } 3123 3124 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers, 3125 SourceRange) { 3126 // ObjC interfaces have structs underlying them. 3127 mangleTagTypeKind(TTK_Struct); 3128 mangleName(T->getDecl()); 3129 } 3130 3131 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, 3132 Qualifiers Quals, SourceRange Range) { 3133 if (T->isKindOfType()) 3134 return mangleObjCKindOfType(T, Quals, Range); 3135 3136 if (T->qual_empty() && !T->isSpecialized()) 3137 return mangleType(T->getBaseType(), Range, QMM_Drop); 3138 3139 ArgBackRefMap OuterFunArgsContext; 3140 ArgBackRefMap OuterTemplateArgsContext; 3141 BackRefVec OuterTemplateContext; 3142 3143 FunArgBackReferences.swap(OuterFunArgsContext); 3144 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 3145 NameBackReferences.swap(OuterTemplateContext); 3146 3147 mangleTagTypeKind(TTK_Struct); 3148 3149 Out << "?$"; 3150 if (T->isObjCId()) 3151 mangleSourceName("objc_object"); 3152 else if (T->isObjCClass()) 3153 mangleSourceName("objc_class"); 3154 else 3155 mangleSourceName(T->getInterface()->getName()); 3156 3157 for (const auto &Q : T->quals()) 3158 mangleObjCProtocol(Q); 3159 3160 if (T->isSpecialized()) 3161 for (const auto &TA : T->getTypeArgs()) 3162 mangleType(TA, Range, QMM_Drop); 3163 3164 Out << '@'; 3165 3166 Out << '@'; 3167 3168 FunArgBackReferences.swap(OuterFunArgsContext); 3169 TemplateArgBackReferences.swap(OuterTemplateArgsContext); 3170 NameBackReferences.swap(OuterTemplateContext); 3171 } 3172 3173 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T, 3174 Qualifiers Quals, SourceRange Range) { 3175 QualType PointeeType = T->getPointeeType(); 3176 manglePointerCVQualifiers(Quals); 3177 manglePointerExtQualifiers(Quals, PointeeType); 3178 3179 Out << "_E"; 3180 3181 mangleFunctionType(PointeeType->castAs<FunctionProtoType>()); 3182 } 3183 3184 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *, 3185 Qualifiers, SourceRange) { 3186 llvm_unreachable("Cannot mangle injected class name type."); 3187 } 3188 3189 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T, 3190 Qualifiers, SourceRange Range) { 3191 DiagnosticsEngine &Diags = Context.getDiags(); 3192 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3193 "cannot mangle this template specialization type yet"); 3194 Diags.Report(Range.getBegin(), DiagID) 3195 << Range; 3196 } 3197 3198 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers, 3199 SourceRange Range) { 3200 DiagnosticsEngine &Diags = Context.getDiags(); 3201 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3202 "cannot mangle this dependent name type yet"); 3203 Diags.Report(Range.getBegin(), DiagID) 3204 << Range; 3205 } 3206 3207 void MicrosoftCXXNameMangler::mangleType( 3208 const DependentTemplateSpecializationType *T, Qualifiers, 3209 SourceRange Range) { 3210 DiagnosticsEngine &Diags = Context.getDiags(); 3211 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3212 "cannot mangle this dependent template specialization type yet"); 3213 Diags.Report(Range.getBegin(), DiagID) 3214 << Range; 3215 } 3216 3217 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers, 3218 SourceRange Range) { 3219 DiagnosticsEngine &Diags = Context.getDiags(); 3220 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3221 "cannot mangle this pack expansion yet"); 3222 Diags.Report(Range.getBegin(), DiagID) 3223 << Range; 3224 } 3225 3226 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers, 3227 SourceRange Range) { 3228 DiagnosticsEngine &Diags = Context.getDiags(); 3229 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3230 "cannot mangle this typeof(type) yet"); 3231 Diags.Report(Range.getBegin(), DiagID) 3232 << Range; 3233 } 3234 3235 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers, 3236 SourceRange Range) { 3237 DiagnosticsEngine &Diags = Context.getDiags(); 3238 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3239 "cannot mangle this typeof(expression) yet"); 3240 Diags.Report(Range.getBegin(), DiagID) 3241 << Range; 3242 } 3243 3244 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers, 3245 SourceRange Range) { 3246 DiagnosticsEngine &Diags = Context.getDiags(); 3247 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3248 "cannot mangle this decltype() yet"); 3249 Diags.Report(Range.getBegin(), DiagID) 3250 << Range; 3251 } 3252 3253 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T, 3254 Qualifiers, SourceRange Range) { 3255 DiagnosticsEngine &Diags = Context.getDiags(); 3256 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3257 "cannot mangle this unary transform type yet"); 3258 Diags.Report(Range.getBegin(), DiagID) 3259 << Range; 3260 } 3261 3262 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers, 3263 SourceRange Range) { 3264 assert(T->getDeducedType().isNull() && "expecting a dependent type!"); 3265 3266 DiagnosticsEngine &Diags = Context.getDiags(); 3267 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3268 "cannot mangle this 'auto' type yet"); 3269 Diags.Report(Range.getBegin(), DiagID) 3270 << Range; 3271 } 3272 3273 void MicrosoftCXXNameMangler::mangleType( 3274 const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) { 3275 assert(T->getDeducedType().isNull() && "expecting a dependent type!"); 3276 3277 DiagnosticsEngine &Diags = Context.getDiags(); 3278 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 3279 "cannot mangle this deduced class template specialization type yet"); 3280 Diags.Report(Range.getBegin(), DiagID) 3281 << Range; 3282 } 3283 3284 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers, 3285 SourceRange Range) { 3286 QualType ValueType = T->getValueType(); 3287 3288 llvm::SmallString<64> TemplateMangling; 3289 llvm::raw_svector_ostream Stream(TemplateMangling); 3290 MicrosoftCXXNameMangler Extra(Context, Stream); 3291 Stream << "?$"; 3292 Extra.mangleSourceName("_Atomic"); 3293 Extra.mangleType(ValueType, Range, QMM_Escape); 3294 3295 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 3296 } 3297 3298 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers, 3299 SourceRange Range) { 3300 QualType ElementType = T->getElementType(); 3301 3302 llvm::SmallString<64> TemplateMangling; 3303 llvm::raw_svector_ostream Stream(TemplateMangling); 3304 MicrosoftCXXNameMangler Extra(Context, Stream); 3305 Stream << "?$"; 3306 Extra.mangleSourceName("ocl_pipe"); 3307 Extra.mangleType(ElementType, Range, QMM_Escape); 3308 Extra.mangleIntegerLiteral(llvm::APSInt::get(T->isReadOnly())); 3309 3310 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 3311 } 3312 3313 void MicrosoftMangleContextImpl::mangleCXXName(GlobalDecl GD, 3314 raw_ostream &Out) { 3315 const NamedDecl *D = cast<NamedDecl>(GD.getDecl()); 3316 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 3317 getASTContext().getSourceManager(), 3318 "Mangling declaration"); 3319 3320 msvc_hashing_ostream MHO(Out); 3321 3322 if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) { 3323 auto Type = GD.getCtorType(); 3324 MicrosoftCXXNameMangler mangler(*this, MHO, CD, Type); 3325 return mangler.mangle(D); 3326 } 3327 3328 if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) { 3329 auto Type = GD.getDtorType(); 3330 MicrosoftCXXNameMangler mangler(*this, MHO, DD, Type); 3331 return mangler.mangle(D); 3332 } 3333 3334 MicrosoftCXXNameMangler Mangler(*this, MHO); 3335 return Mangler.mangle(D); 3336 } 3337 3338 void MicrosoftCXXNameMangler::mangleType(const ExtIntType *T, Qualifiers, 3339 SourceRange Range) { 3340 llvm::SmallString<64> TemplateMangling; 3341 llvm::raw_svector_ostream Stream(TemplateMangling); 3342 MicrosoftCXXNameMangler Extra(Context, Stream); 3343 Stream << "?$"; 3344 if (T->isUnsigned()) 3345 Extra.mangleSourceName("_UExtInt"); 3346 else 3347 Extra.mangleSourceName("_ExtInt"); 3348 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumBits())); 3349 3350 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); 3351 } 3352 3353 void MicrosoftCXXNameMangler::mangleType(const DependentExtIntType *T, 3354 Qualifiers, SourceRange Range) { 3355 DiagnosticsEngine &Diags = Context.getDiags(); 3356 unsigned DiagID = Diags.getCustomDiagID( 3357 DiagnosticsEngine::Error, "cannot mangle this DependentExtInt type yet"); 3358 Diags.Report(Range.getBegin(), DiagID) << Range; 3359 } 3360 3361 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> | 3362 // <virtual-adjustment> 3363 // <no-adjustment> ::= A # private near 3364 // ::= B # private far 3365 // ::= I # protected near 3366 // ::= J # protected far 3367 // ::= Q # public near 3368 // ::= R # public far 3369 // <static-adjustment> ::= G <static-offset> # private near 3370 // ::= H <static-offset> # private far 3371 // ::= O <static-offset> # protected near 3372 // ::= P <static-offset> # protected far 3373 // ::= W <static-offset> # public near 3374 // ::= X <static-offset> # public far 3375 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near 3376 // ::= $1 <virtual-shift> <static-offset> # private far 3377 // ::= $2 <virtual-shift> <static-offset> # protected near 3378 // ::= $3 <virtual-shift> <static-offset> # protected far 3379 // ::= $4 <virtual-shift> <static-offset> # public near 3380 // ::= $5 <virtual-shift> <static-offset> # public far 3381 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift> 3382 // <vtordisp-shift> ::= <offset-to-vtordisp> 3383 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset> 3384 // <offset-to-vtordisp> 3385 static void mangleThunkThisAdjustment(AccessSpecifier AS, 3386 const ThisAdjustment &Adjustment, 3387 MicrosoftCXXNameMangler &Mangler, 3388 raw_ostream &Out) { 3389 if (!Adjustment.Virtual.isEmpty()) { 3390 Out << '$'; 3391 char AccessSpec; 3392 switch (AS) { 3393 case AS_none: 3394 llvm_unreachable("Unsupported access specifier"); 3395 case AS_private: 3396 AccessSpec = '0'; 3397 break; 3398 case AS_protected: 3399 AccessSpec = '2'; 3400 break; 3401 case AS_public: 3402 AccessSpec = '4'; 3403 } 3404 if (Adjustment.Virtual.Microsoft.VBPtrOffset) { 3405 Out << 'R' << AccessSpec; 3406 Mangler.mangleNumber( 3407 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset)); 3408 Mangler.mangleNumber( 3409 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset)); 3410 Mangler.mangleNumber( 3411 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 3412 Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual)); 3413 } else { 3414 Out << AccessSpec; 3415 Mangler.mangleNumber( 3416 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); 3417 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 3418 } 3419 } else if (Adjustment.NonVirtual != 0) { 3420 switch (AS) { 3421 case AS_none: 3422 llvm_unreachable("Unsupported access specifier"); 3423 case AS_private: 3424 Out << 'G'; 3425 break; 3426 case AS_protected: 3427 Out << 'O'; 3428 break; 3429 case AS_public: 3430 Out << 'W'; 3431 } 3432 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); 3433 } else { 3434 switch (AS) { 3435 case AS_none: 3436 llvm_unreachable("Unsupported access specifier"); 3437 case AS_private: 3438 Out << 'A'; 3439 break; 3440 case AS_protected: 3441 Out << 'I'; 3442 break; 3443 case AS_public: 3444 Out << 'Q'; 3445 } 3446 } 3447 } 3448 3449 void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk( 3450 const CXXMethodDecl *MD, const MethodVFTableLocation &ML, 3451 raw_ostream &Out) { 3452 msvc_hashing_ostream MHO(Out); 3453 MicrosoftCXXNameMangler Mangler(*this, MHO); 3454 Mangler.getStream() << '?'; 3455 Mangler.mangleVirtualMemPtrThunk(MD, ML); 3456 } 3457 3458 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, 3459 const ThunkInfo &Thunk, 3460 raw_ostream &Out) { 3461 msvc_hashing_ostream MHO(Out); 3462 MicrosoftCXXNameMangler Mangler(*this, MHO); 3463 Mangler.getStream() << '?'; 3464 Mangler.mangleName(MD); 3465 3466 // Usually the thunk uses the access specifier of the new method, but if this 3467 // is a covariant return thunk, then MSVC always uses the public access 3468 // specifier, and we do the same. 3469 AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public; 3470 mangleThunkThisAdjustment(AS, Thunk.This, Mangler, MHO); 3471 3472 if (!Thunk.Return.isEmpty()) 3473 assert(Thunk.Method != nullptr && 3474 "Thunk info should hold the overridee decl"); 3475 3476 const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD; 3477 Mangler.mangleFunctionType( 3478 DeclForFPT->getType()->castAs<FunctionProtoType>(), MD); 3479 } 3480 3481 void MicrosoftMangleContextImpl::mangleCXXDtorThunk( 3482 const CXXDestructorDecl *DD, CXXDtorType Type, 3483 const ThisAdjustment &Adjustment, raw_ostream &Out) { 3484 // FIXME: Actually, the dtor thunk should be emitted for vector deleting 3485 // dtors rather than scalar deleting dtors. Just use the vector deleting dtor 3486 // mangling manually until we support both deleting dtor types. 3487 assert(Type == Dtor_Deleting); 3488 msvc_hashing_ostream MHO(Out); 3489 MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type); 3490 Mangler.getStream() << "??_E"; 3491 Mangler.mangleName(DD->getParent()); 3492 mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO); 3493 Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD); 3494 } 3495 3496 void MicrosoftMangleContextImpl::mangleCXXVFTable( 3497 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3498 raw_ostream &Out) { 3499 // <mangled-name> ::= ?_7 <class-name> <storage-class> 3500 // <cvr-qualifiers> [<name>] @ 3501 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3502 // is always '6' for vftables. 3503 msvc_hashing_ostream MHO(Out); 3504 MicrosoftCXXNameMangler Mangler(*this, MHO); 3505 if (Derived->hasAttr<DLLImportAttr>()) 3506 Mangler.getStream() << "??_S"; 3507 else 3508 Mangler.getStream() << "??_7"; 3509 Mangler.mangleName(Derived); 3510 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const. 3511 for (const CXXRecordDecl *RD : BasePath) 3512 Mangler.mangleName(RD); 3513 Mangler.getStream() << '@'; 3514 } 3515 3516 void MicrosoftMangleContextImpl::mangleCXXVBTable( 3517 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3518 raw_ostream &Out) { 3519 // <mangled-name> ::= ?_8 <class-name> <storage-class> 3520 // <cvr-qualifiers> [<name>] @ 3521 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3522 // is always '7' for vbtables. 3523 msvc_hashing_ostream MHO(Out); 3524 MicrosoftCXXNameMangler Mangler(*this, MHO); 3525 Mangler.getStream() << "??_8"; 3526 Mangler.mangleName(Derived); 3527 Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const. 3528 for (const CXXRecordDecl *RD : BasePath) 3529 Mangler.mangleName(RD); 3530 Mangler.getStream() << '@'; 3531 } 3532 3533 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) { 3534 msvc_hashing_ostream MHO(Out); 3535 MicrosoftCXXNameMangler Mangler(*this, MHO); 3536 Mangler.getStream() << "??_R0"; 3537 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3538 Mangler.getStream() << "@8"; 3539 } 3540 3541 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T, 3542 raw_ostream &Out) { 3543 MicrosoftCXXNameMangler Mangler(*this, Out); 3544 Mangler.getStream() << '.'; 3545 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3546 } 3547 3548 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap( 3549 const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) { 3550 msvc_hashing_ostream MHO(Out); 3551 MicrosoftCXXNameMangler Mangler(*this, MHO); 3552 Mangler.getStream() << "??_K"; 3553 Mangler.mangleName(SrcRD); 3554 Mangler.getStream() << "$C"; 3555 Mangler.mangleName(DstRD); 3556 } 3557 3558 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst, 3559 bool IsVolatile, 3560 bool IsUnaligned, 3561 uint32_t NumEntries, 3562 raw_ostream &Out) { 3563 msvc_hashing_ostream MHO(Out); 3564 MicrosoftCXXNameMangler Mangler(*this, MHO); 3565 Mangler.getStream() << "_TI"; 3566 if (IsConst) 3567 Mangler.getStream() << 'C'; 3568 if (IsVolatile) 3569 Mangler.getStream() << 'V'; 3570 if (IsUnaligned) 3571 Mangler.getStream() << 'U'; 3572 Mangler.getStream() << NumEntries; 3573 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3574 } 3575 3576 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray( 3577 QualType T, uint32_t NumEntries, raw_ostream &Out) { 3578 msvc_hashing_ostream MHO(Out); 3579 MicrosoftCXXNameMangler Mangler(*this, MHO); 3580 Mangler.getStream() << "_CTA"; 3581 Mangler.getStream() << NumEntries; 3582 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); 3583 } 3584 3585 void MicrosoftMangleContextImpl::mangleCXXCatchableType( 3586 QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size, 3587 uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex, 3588 raw_ostream &Out) { 3589 MicrosoftCXXNameMangler Mangler(*this, Out); 3590 Mangler.getStream() << "_CT"; 3591 3592 llvm::SmallString<64> RTTIMangling; 3593 { 3594 llvm::raw_svector_ostream Stream(RTTIMangling); 3595 msvc_hashing_ostream MHO(Stream); 3596 mangleCXXRTTI(T, MHO); 3597 } 3598 Mangler.getStream() << RTTIMangling; 3599 3600 // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but 3601 // both older and newer versions include it. 3602 // FIXME: It is known that the Ctor is present in 2013, and in 2017.7 3603 // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4 3604 // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914? 3605 // Or 1912, 1913 aleady?). 3606 bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC( 3607 LangOptions::MSVC2015) && 3608 !getASTContext().getLangOpts().isCompatibleWithMSVC( 3609 LangOptions::MSVC2017_7); 3610 llvm::SmallString<64> CopyCtorMangling; 3611 if (!OmitCopyCtor && CD) { 3612 llvm::raw_svector_ostream Stream(CopyCtorMangling); 3613 msvc_hashing_ostream MHO(Stream); 3614 mangleCXXName(GlobalDecl(CD, CT), MHO); 3615 } 3616 Mangler.getStream() << CopyCtorMangling; 3617 3618 Mangler.getStream() << Size; 3619 if (VBPtrOffset == -1) { 3620 if (NVOffset) { 3621 Mangler.getStream() << NVOffset; 3622 } 3623 } else { 3624 Mangler.getStream() << NVOffset; 3625 Mangler.getStream() << VBPtrOffset; 3626 Mangler.getStream() << VBIndex; 3627 } 3628 } 3629 3630 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor( 3631 const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset, 3632 uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) { 3633 msvc_hashing_ostream MHO(Out); 3634 MicrosoftCXXNameMangler Mangler(*this, MHO); 3635 Mangler.getStream() << "??_R1"; 3636 Mangler.mangleNumber(NVOffset); 3637 Mangler.mangleNumber(VBPtrOffset); 3638 Mangler.mangleNumber(VBTableOffset); 3639 Mangler.mangleNumber(Flags); 3640 Mangler.mangleName(Derived); 3641 Mangler.getStream() << "8"; 3642 } 3643 3644 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray( 3645 const CXXRecordDecl *Derived, raw_ostream &Out) { 3646 msvc_hashing_ostream MHO(Out); 3647 MicrosoftCXXNameMangler Mangler(*this, MHO); 3648 Mangler.getStream() << "??_R2"; 3649 Mangler.mangleName(Derived); 3650 Mangler.getStream() << "8"; 3651 } 3652 3653 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor( 3654 const CXXRecordDecl *Derived, raw_ostream &Out) { 3655 msvc_hashing_ostream MHO(Out); 3656 MicrosoftCXXNameMangler Mangler(*this, MHO); 3657 Mangler.getStream() << "??_R3"; 3658 Mangler.mangleName(Derived); 3659 Mangler.getStream() << "8"; 3660 } 3661 3662 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator( 3663 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, 3664 raw_ostream &Out) { 3665 // <mangled-name> ::= ?_R4 <class-name> <storage-class> 3666 // <cvr-qualifiers> [<name>] @ 3667 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> 3668 // is always '6' for vftables. 3669 llvm::SmallString<64> VFTableMangling; 3670 llvm::raw_svector_ostream Stream(VFTableMangling); 3671 mangleCXXVFTable(Derived, BasePath, Stream); 3672 3673 if (VFTableMangling.startswith("??@")) { 3674 assert(VFTableMangling.endswith("@")); 3675 Out << VFTableMangling << "??_R4@"; 3676 return; 3677 } 3678 3679 assert(VFTableMangling.startswith("??_7") || 3680 VFTableMangling.startswith("??_S")); 3681 3682 Out << "??_R4" << VFTableMangling.str().drop_front(4); 3683 } 3684 3685 void MicrosoftMangleContextImpl::mangleSEHFilterExpression( 3686 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 3687 msvc_hashing_ostream MHO(Out); 3688 MicrosoftCXXNameMangler Mangler(*this, MHO); 3689 // The function body is in the same comdat as the function with the handler, 3690 // so the numbering here doesn't have to be the same across TUs. 3691 // 3692 // <mangled-name> ::= ?filt$ <filter-number> @0 3693 Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@"; 3694 Mangler.mangleName(EnclosingDecl); 3695 } 3696 3697 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock( 3698 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 3699 msvc_hashing_ostream MHO(Out); 3700 MicrosoftCXXNameMangler Mangler(*this, MHO); 3701 // The function body is in the same comdat as the function with the handler, 3702 // so the numbering here doesn't have to be the same across TUs. 3703 // 3704 // <mangled-name> ::= ?fin$ <filter-number> @0 3705 Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@"; 3706 Mangler.mangleName(EnclosingDecl); 3707 } 3708 3709 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) { 3710 // This is just a made up unique string for the purposes of tbaa. undname 3711 // does *not* know how to demangle it. 3712 MicrosoftCXXNameMangler Mangler(*this, Out); 3713 Mangler.getStream() << '?'; 3714 Mangler.mangleType(T, SourceRange()); 3715 } 3716 3717 void MicrosoftMangleContextImpl::mangleReferenceTemporary( 3718 const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) { 3719 msvc_hashing_ostream MHO(Out); 3720 MicrosoftCXXNameMangler Mangler(*this, MHO); 3721 3722 Mangler.getStream() << "?$RT" << ManglingNumber << '@'; 3723 Mangler.mangle(VD, ""); 3724 } 3725 3726 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable( 3727 const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) { 3728 msvc_hashing_ostream MHO(Out); 3729 MicrosoftCXXNameMangler Mangler(*this, MHO); 3730 3731 Mangler.getStream() << "?$TSS" << GuardNum << '@'; 3732 Mangler.mangleNestedName(VD); 3733 Mangler.getStream() << "@4HA"; 3734 } 3735 3736 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD, 3737 raw_ostream &Out) { 3738 // <guard-name> ::= ?_B <postfix> @5 <scope-depth> 3739 // ::= ?__J <postfix> @5 <scope-depth> 3740 // ::= ?$S <guard-num> @ <postfix> @4IA 3741 3742 // The first mangling is what MSVC uses to guard static locals in inline 3743 // functions. It uses a different mangling in external functions to support 3744 // guarding more than 32 variables. MSVC rejects inline functions with more 3745 // than 32 static locals. We don't fully implement the second mangling 3746 // because those guards are not externally visible, and instead use LLVM's 3747 // default renaming when creating a new guard variable. 3748 msvc_hashing_ostream MHO(Out); 3749 MicrosoftCXXNameMangler Mangler(*this, MHO); 3750 3751 bool Visible = VD->isExternallyVisible(); 3752 if (Visible) { 3753 Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B"); 3754 } else { 3755 Mangler.getStream() << "?$S1@"; 3756 } 3757 unsigned ScopeDepth = 0; 3758 if (Visible && !getNextDiscriminator(VD, ScopeDepth)) 3759 // If we do not have a discriminator and are emitting a guard variable for 3760 // use at global scope, then mangling the nested name will not be enough to 3761 // remove ambiguities. 3762 Mangler.mangle(VD, ""); 3763 else 3764 Mangler.mangleNestedName(VD); 3765 Mangler.getStream() << (Visible ? "@5" : "@4IA"); 3766 if (ScopeDepth) 3767 Mangler.mangleNumber(ScopeDepth); 3768 } 3769 3770 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D, 3771 char CharCode, 3772 raw_ostream &Out) { 3773 msvc_hashing_ostream MHO(Out); 3774 MicrosoftCXXNameMangler Mangler(*this, MHO); 3775 Mangler.getStream() << "??__" << CharCode; 3776 if (D->isStaticDataMember()) { 3777 Mangler.getStream() << '?'; 3778 Mangler.mangleName(D); 3779 Mangler.mangleVariableEncoding(D); 3780 Mangler.getStream() << "@@"; 3781 } else { 3782 Mangler.mangleName(D); 3783 } 3784 // This is the function class mangling. These stubs are global, non-variadic, 3785 // cdecl functions that return void and take no args. 3786 Mangler.getStream() << "YAXXZ"; 3787 } 3788 3789 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D, 3790 raw_ostream &Out) { 3791 // <initializer-name> ::= ?__E <name> YAXXZ 3792 mangleInitFiniStub(D, 'E', Out); 3793 } 3794 3795 void 3796 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, 3797 raw_ostream &Out) { 3798 // <destructor-name> ::= ?__F <name> YAXXZ 3799 mangleInitFiniStub(D, 'F', Out); 3800 } 3801 3802 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL, 3803 raw_ostream &Out) { 3804 // <char-type> ::= 0 # char, char16_t, char32_t 3805 // # (little endian char data in mangling) 3806 // ::= 1 # wchar_t (big endian char data in mangling) 3807 // 3808 // <literal-length> ::= <non-negative integer> # the length of the literal 3809 // 3810 // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including 3811 // # trailing null bytes 3812 // 3813 // <encoded-string> ::= <simple character> # uninteresting character 3814 // ::= '?$' <hex digit> <hex digit> # these two nibbles 3815 // # encode the byte for the 3816 // # character 3817 // ::= '?' [a-z] # \xe1 - \xfa 3818 // ::= '?' [A-Z] # \xc1 - \xda 3819 // ::= '?' [0-9] # [,/\:. \n\t'-] 3820 // 3821 // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc> 3822 // <encoded-string> '@' 3823 MicrosoftCXXNameMangler Mangler(*this, Out); 3824 Mangler.getStream() << "??_C@_"; 3825 3826 // The actual string length might be different from that of the string literal 3827 // in cases like: 3828 // char foo[3] = "foobar"; 3829 // char bar[42] = "foobar"; 3830 // Where it is truncated or zero-padded to fit the array. This is the length 3831 // used for mangling, and any trailing null-bytes also need to be mangled. 3832 unsigned StringLength = getASTContext() 3833 .getAsConstantArrayType(SL->getType()) 3834 ->getSize() 3835 .getZExtValue(); 3836 unsigned StringByteLength = StringLength * SL->getCharByteWidth(); 3837 3838 // <char-type>: The "kind" of string literal is encoded into the mangled name. 3839 if (SL->isWide()) 3840 Mangler.getStream() << '1'; 3841 else 3842 Mangler.getStream() << '0'; 3843 3844 // <literal-length>: The next part of the mangled name consists of the length 3845 // of the string in bytes. 3846 Mangler.mangleNumber(StringByteLength); 3847 3848 auto GetLittleEndianByte = [&SL](unsigned Index) { 3849 unsigned CharByteWidth = SL->getCharByteWidth(); 3850 if (Index / CharByteWidth >= SL->getLength()) 3851 return static_cast<char>(0); 3852 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 3853 unsigned OffsetInCodeUnit = Index % CharByteWidth; 3854 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 3855 }; 3856 3857 auto GetBigEndianByte = [&SL](unsigned Index) { 3858 unsigned CharByteWidth = SL->getCharByteWidth(); 3859 if (Index / CharByteWidth >= SL->getLength()) 3860 return static_cast<char>(0); 3861 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); 3862 unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth); 3863 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); 3864 }; 3865 3866 // CRC all the bytes of the StringLiteral. 3867 llvm::JamCRC JC; 3868 for (unsigned I = 0, E = StringByteLength; I != E; ++I) 3869 JC.update(GetLittleEndianByte(I)); 3870 3871 // <encoded-crc>: The CRC is encoded utilizing the standard number mangling 3872 // scheme. 3873 Mangler.mangleNumber(JC.getCRC()); 3874 3875 // <encoded-string>: The mangled name also contains the first 32 bytes 3876 // (including null-terminator bytes) of the encoded StringLiteral. 3877 // Each character is encoded by splitting them into bytes and then encoding 3878 // the constituent bytes. 3879 auto MangleByte = [&Mangler](char Byte) { 3880 // There are five different manglings for characters: 3881 // - [a-zA-Z0-9_$]: A one-to-one mapping. 3882 // - ?[a-z]: The range from \xe1 to \xfa. 3883 // - ?[A-Z]: The range from \xc1 to \xda. 3884 // - ?[0-9]: The set of [,/\:. \n\t'-]. 3885 // - ?$XX: A fallback which maps nibbles. 3886 if (isIdentifierBody(Byte, /*AllowDollar=*/true)) { 3887 Mangler.getStream() << Byte; 3888 } else if (isLetter(Byte & 0x7f)) { 3889 Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f); 3890 } else { 3891 const char SpecialChars[] = {',', '/', '\\', ':', '.', 3892 ' ', '\n', '\t', '\'', '-'}; 3893 const char *Pos = llvm::find(SpecialChars, Byte); 3894 if (Pos != std::end(SpecialChars)) { 3895 Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars)); 3896 } else { 3897 Mangler.getStream() << "?$"; 3898 Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf)); 3899 Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf)); 3900 } 3901 } 3902 }; 3903 3904 // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead. 3905 unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U; 3906 unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength); 3907 for (unsigned I = 0; I != NumBytesToMangle; ++I) { 3908 if (SL->isWide()) 3909 MangleByte(GetBigEndianByte(I)); 3910 else 3911 MangleByte(GetLittleEndianByte(I)); 3912 } 3913 3914 Mangler.getStream() << '@'; 3915 } 3916 3917 MicrosoftMangleContext * 3918 MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) { 3919 return new MicrosoftMangleContextImpl(Context, Diags); 3920 } 3921