1e5dd7070Spatrick //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2e5dd7070Spatrick //
3e5dd7070Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4e5dd7070Spatrick // See https://llvm.org/LICENSE.txt for license information.
5e5dd7070Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6e5dd7070Spatrick //
7e5dd7070Spatrick //===----------------------------------------------------------------------===//
8e5dd7070Spatrick //
9e5dd7070Spatrick // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10e5dd7070Spatrick //
11e5dd7070Spatrick //===----------------------------------------------------------------------===//
12e5dd7070Spatrick 
13e5dd7070Spatrick #include "CGCXXABI.h"
14e5dd7070Spatrick #include "CGCleanup.h"
15e5dd7070Spatrick #include "CGDebugInfo.h"
16e5dd7070Spatrick #include "CGObjCRuntime.h"
17e5dd7070Spatrick #include "CGOpenMPRuntime.h"
18e5dd7070Spatrick #include "CodeGenFunction.h"
19e5dd7070Spatrick #include "CodeGenModule.h"
20e5dd7070Spatrick #include "ConstantEmitter.h"
21e5dd7070Spatrick #include "TargetInfo.h"
22e5dd7070Spatrick #include "clang/AST/ASTContext.h"
23e5dd7070Spatrick #include "clang/AST/Attr.h"
24e5dd7070Spatrick #include "clang/AST/DeclObjC.h"
25e5dd7070Spatrick #include "clang/AST/Expr.h"
26e5dd7070Spatrick #include "clang/AST/RecordLayout.h"
27e5dd7070Spatrick #include "clang/AST/StmtVisitor.h"
28e5dd7070Spatrick #include "clang/Basic/CodeGenOptions.h"
29e5dd7070Spatrick #include "clang/Basic/TargetInfo.h"
30a9ac8606Spatrick #include "llvm/ADT/APFixedPoint.h"
31e5dd7070Spatrick #include "llvm/IR/CFG.h"
32e5dd7070Spatrick #include "llvm/IR/Constants.h"
33e5dd7070Spatrick #include "llvm/IR/DataLayout.h"
34*12c85518Srobert #include "llvm/IR/DerivedTypes.h"
35a9ac8606Spatrick #include "llvm/IR/FixedPointBuilder.h"
36e5dd7070Spatrick #include "llvm/IR/Function.h"
37e5dd7070Spatrick #include "llvm/IR/GetElementPtrTypeIterator.h"
38e5dd7070Spatrick #include "llvm/IR/GlobalVariable.h"
39e5dd7070Spatrick #include "llvm/IR/Intrinsics.h"
40e5dd7070Spatrick #include "llvm/IR/IntrinsicsPowerPC.h"
41ec727ea7Spatrick #include "llvm/IR/MatrixBuilder.h"
42e5dd7070Spatrick #include "llvm/IR/Module.h"
43*12c85518Srobert #include "llvm/Support/TypeSize.h"
44e5dd7070Spatrick #include <cstdarg>
45*12c85518Srobert #include <optional>
46e5dd7070Spatrick 
47e5dd7070Spatrick using namespace clang;
48e5dd7070Spatrick using namespace CodeGen;
49e5dd7070Spatrick using llvm::Value;
50e5dd7070Spatrick 
51e5dd7070Spatrick //===----------------------------------------------------------------------===//
52e5dd7070Spatrick //                         Scalar Expression Emitter
53e5dd7070Spatrick //===----------------------------------------------------------------------===//
54e5dd7070Spatrick 
55e5dd7070Spatrick namespace {
56e5dd7070Spatrick 
57e5dd7070Spatrick /// Determine whether the given binary operation may overflow.
58e5dd7070Spatrick /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
59e5dd7070Spatrick /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
60e5dd7070Spatrick /// the returned overflow check is precise. The returned value is 'true' for
61e5dd7070Spatrick /// all other opcodes, to be conservative.
mayHaveIntegerOverflow(llvm::ConstantInt * LHS,llvm::ConstantInt * RHS,BinaryOperator::Opcode Opcode,bool Signed,llvm::APInt & Result)62e5dd7070Spatrick bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
63e5dd7070Spatrick                              BinaryOperator::Opcode Opcode, bool Signed,
64e5dd7070Spatrick                              llvm::APInt &Result) {
65e5dd7070Spatrick   // Assume overflow is possible, unless we can prove otherwise.
66e5dd7070Spatrick   bool Overflow = true;
67e5dd7070Spatrick   const auto &LHSAP = LHS->getValue();
68e5dd7070Spatrick   const auto &RHSAP = RHS->getValue();
69e5dd7070Spatrick   if (Opcode == BO_Add) {
70*12c85518Srobert     Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
71*12c85518Srobert                     : LHSAP.uadd_ov(RHSAP, Overflow);
72e5dd7070Spatrick   } else if (Opcode == BO_Sub) {
73*12c85518Srobert     Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
74*12c85518Srobert                     : LHSAP.usub_ov(RHSAP, Overflow);
75e5dd7070Spatrick   } else if (Opcode == BO_Mul) {
76*12c85518Srobert     Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
77*12c85518Srobert                     : LHSAP.umul_ov(RHSAP, Overflow);
78e5dd7070Spatrick   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
79e5dd7070Spatrick     if (Signed && !RHS->isZero())
80e5dd7070Spatrick       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
81e5dd7070Spatrick     else
82e5dd7070Spatrick       return false;
83e5dd7070Spatrick   }
84e5dd7070Spatrick   return Overflow;
85e5dd7070Spatrick }
86e5dd7070Spatrick 
87e5dd7070Spatrick struct BinOpInfo {
88e5dd7070Spatrick   Value *LHS;
89e5dd7070Spatrick   Value *RHS;
90e5dd7070Spatrick   QualType Ty;  // Computation Type.
91e5dd7070Spatrick   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
92e5dd7070Spatrick   FPOptions FPFeatures;
93e5dd7070Spatrick   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
94e5dd7070Spatrick 
95e5dd7070Spatrick   /// Check if the binop can result in integer overflow.
mayHaveIntegerOverflow__anon7dd068ea0111::BinOpInfo96e5dd7070Spatrick   bool mayHaveIntegerOverflow() const {
97e5dd7070Spatrick     // Without constant input, we can't rule out overflow.
98e5dd7070Spatrick     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
99e5dd7070Spatrick     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
100e5dd7070Spatrick     if (!LHSCI || !RHSCI)
101e5dd7070Spatrick       return true;
102e5dd7070Spatrick 
103e5dd7070Spatrick     llvm::APInt Result;
104e5dd7070Spatrick     return ::mayHaveIntegerOverflow(
105e5dd7070Spatrick         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
106e5dd7070Spatrick   }
107e5dd7070Spatrick 
108e5dd7070Spatrick   /// Check if the binop computes a division or a remainder.
isDivremOp__anon7dd068ea0111::BinOpInfo109e5dd7070Spatrick   bool isDivremOp() const {
110e5dd7070Spatrick     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
111e5dd7070Spatrick            Opcode == BO_RemAssign;
112e5dd7070Spatrick   }
113e5dd7070Spatrick 
114e5dd7070Spatrick   /// Check if the binop can result in an integer division by zero.
mayHaveIntegerDivisionByZero__anon7dd068ea0111::BinOpInfo115e5dd7070Spatrick   bool mayHaveIntegerDivisionByZero() const {
116e5dd7070Spatrick     if (isDivremOp())
117e5dd7070Spatrick       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
118e5dd7070Spatrick         return CI->isZero();
119e5dd7070Spatrick     return true;
120e5dd7070Spatrick   }
121e5dd7070Spatrick 
122e5dd7070Spatrick   /// Check if the binop can result in a float division by zero.
mayHaveFloatDivisionByZero__anon7dd068ea0111::BinOpInfo123e5dd7070Spatrick   bool mayHaveFloatDivisionByZero() const {
124e5dd7070Spatrick     if (isDivremOp())
125e5dd7070Spatrick       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
126e5dd7070Spatrick         return CFP->isZero();
127e5dd7070Spatrick     return true;
128e5dd7070Spatrick   }
129e5dd7070Spatrick 
130ec727ea7Spatrick   /// Check if at least one operand is a fixed point type. In such cases, this
131ec727ea7Spatrick   /// operation did not follow usual arithmetic conversion and both operands
132ec727ea7Spatrick   /// might not be of the same type.
isFixedPointOp__anon7dd068ea0111::BinOpInfo133ec727ea7Spatrick   bool isFixedPointOp() const {
134e5dd7070Spatrick     // We cannot simply check the result type since comparison operations return
135e5dd7070Spatrick     // an int.
136e5dd7070Spatrick     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
137e5dd7070Spatrick       QualType LHSType = BinOp->getLHS()->getType();
138e5dd7070Spatrick       QualType RHSType = BinOp->getRHS()->getType();
139e5dd7070Spatrick       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
140e5dd7070Spatrick     }
141ec727ea7Spatrick     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
142ec727ea7Spatrick       return UnOp->getSubExpr()->getType()->isFixedPointType();
143e5dd7070Spatrick     return false;
144e5dd7070Spatrick   }
145e5dd7070Spatrick };
146e5dd7070Spatrick 
MustVisitNullValue(const Expr * E)147e5dd7070Spatrick static bool MustVisitNullValue(const Expr *E) {
148e5dd7070Spatrick   // If a null pointer expression's type is the C++0x nullptr_t, then
149e5dd7070Spatrick   // it's not necessarily a simple constant and it must be evaluated
150e5dd7070Spatrick   // for its potential side effects.
151e5dd7070Spatrick   return E->getType()->isNullPtrType();
152e5dd7070Spatrick }
153e5dd7070Spatrick 
154e5dd7070Spatrick /// If \p E is a widened promoted integer, get its base (unpromoted) type.
getUnwidenedIntegerType(const ASTContext & Ctx,const Expr * E)155*12c85518Srobert static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
156e5dd7070Spatrick                                                        const Expr *E) {
157e5dd7070Spatrick   const Expr *Base = E->IgnoreImpCasts();
158e5dd7070Spatrick   if (E == Base)
159*12c85518Srobert     return std::nullopt;
160e5dd7070Spatrick 
161e5dd7070Spatrick   QualType BaseTy = Base->getType();
162*12c85518Srobert   if (!Ctx.isPromotableIntegerType(BaseTy) ||
163e5dd7070Spatrick       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
164*12c85518Srobert     return std::nullopt;
165e5dd7070Spatrick 
166e5dd7070Spatrick   return BaseTy;
167e5dd7070Spatrick }
168e5dd7070Spatrick 
169e5dd7070Spatrick /// Check if \p E is a widened promoted integer.
IsWidenedIntegerOp(const ASTContext & Ctx,const Expr * E)170e5dd7070Spatrick static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
171*12c85518Srobert   return getUnwidenedIntegerType(Ctx, E).has_value();
172e5dd7070Spatrick }
173e5dd7070Spatrick 
174e5dd7070Spatrick /// Check if we can skip the overflow check for \p Op.
CanElideOverflowCheck(const ASTContext & Ctx,const BinOpInfo & Op)175e5dd7070Spatrick static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
176e5dd7070Spatrick   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
177e5dd7070Spatrick          "Expected a unary or binary operator");
178e5dd7070Spatrick 
179e5dd7070Spatrick   // If the binop has constant inputs and we can prove there is no overflow,
180e5dd7070Spatrick   // we can elide the overflow check.
181e5dd7070Spatrick   if (!Op.mayHaveIntegerOverflow())
182e5dd7070Spatrick     return true;
183e5dd7070Spatrick 
184e5dd7070Spatrick   // If a unary op has a widened operand, the op cannot overflow.
185e5dd7070Spatrick   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
186e5dd7070Spatrick     return !UO->canOverflow();
187e5dd7070Spatrick 
188e5dd7070Spatrick   // We usually don't need overflow checks for binops with widened operands.
189e5dd7070Spatrick   // Multiplication with promoted unsigned operands is a special case.
190e5dd7070Spatrick   const auto *BO = cast<BinaryOperator>(Op.E);
191e5dd7070Spatrick   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
192e5dd7070Spatrick   if (!OptionalLHSTy)
193e5dd7070Spatrick     return false;
194e5dd7070Spatrick 
195e5dd7070Spatrick   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
196e5dd7070Spatrick   if (!OptionalRHSTy)
197e5dd7070Spatrick     return false;
198e5dd7070Spatrick 
199e5dd7070Spatrick   QualType LHSTy = *OptionalLHSTy;
200e5dd7070Spatrick   QualType RHSTy = *OptionalRHSTy;
201e5dd7070Spatrick 
202e5dd7070Spatrick   // This is the simple case: binops without unsigned multiplication, and with
203e5dd7070Spatrick   // widened operands. No overflow check is needed here.
204e5dd7070Spatrick   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
205e5dd7070Spatrick       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
206e5dd7070Spatrick     return true;
207e5dd7070Spatrick 
208e5dd7070Spatrick   // For unsigned multiplication the overflow check can be elided if either one
209e5dd7070Spatrick   // of the unpromoted types are less than half the size of the promoted type.
210e5dd7070Spatrick   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
211e5dd7070Spatrick   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
212e5dd7070Spatrick          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
213e5dd7070Spatrick }
214e5dd7070Spatrick 
215e5dd7070Spatrick class ScalarExprEmitter
216e5dd7070Spatrick   : public StmtVisitor<ScalarExprEmitter, Value*> {
217e5dd7070Spatrick   CodeGenFunction &CGF;
218e5dd7070Spatrick   CGBuilderTy &Builder;
219e5dd7070Spatrick   bool IgnoreResultAssign;
220e5dd7070Spatrick   llvm::LLVMContext &VMContext;
221e5dd7070Spatrick public:
222e5dd7070Spatrick 
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)223e5dd7070Spatrick   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
224e5dd7070Spatrick     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
225e5dd7070Spatrick       VMContext(cgf.getLLVMContext()) {
226e5dd7070Spatrick   }
227e5dd7070Spatrick 
228e5dd7070Spatrick   //===--------------------------------------------------------------------===//
229e5dd7070Spatrick   //                               Utilities
230e5dd7070Spatrick   //===--------------------------------------------------------------------===//
231e5dd7070Spatrick 
TestAndClearIgnoreResultAssign()232e5dd7070Spatrick   bool TestAndClearIgnoreResultAssign() {
233e5dd7070Spatrick     bool I = IgnoreResultAssign;
234e5dd7070Spatrick     IgnoreResultAssign = false;
235e5dd7070Spatrick     return I;
236e5dd7070Spatrick   }
237e5dd7070Spatrick 
ConvertType(QualType T)238e5dd7070Spatrick   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)239e5dd7070Spatrick   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E,CodeGenFunction::TypeCheckKind TCK)240e5dd7070Spatrick   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
241e5dd7070Spatrick     return CGF.EmitCheckedLValue(E, TCK);
242e5dd7070Spatrick   }
243e5dd7070Spatrick 
244e5dd7070Spatrick   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
245e5dd7070Spatrick                       const BinOpInfo &Info);
246e5dd7070Spatrick 
EmitLoadOfLValue(LValue LV,SourceLocation Loc)247e5dd7070Spatrick   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
248e5dd7070Spatrick     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
249e5dd7070Spatrick   }
250e5dd7070Spatrick 
EmitLValueAlignmentAssumption(const Expr * E,Value * V)251e5dd7070Spatrick   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
252e5dd7070Spatrick     const AlignValueAttr *AVAttr = nullptr;
253e5dd7070Spatrick     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
254e5dd7070Spatrick       const ValueDecl *VD = DRE->getDecl();
255e5dd7070Spatrick 
256e5dd7070Spatrick       if (VD->getType()->isReferenceType()) {
257e5dd7070Spatrick         if (const auto *TTy =
258*12c85518Srobert                 VD->getType().getNonReferenceType()->getAs<TypedefType>())
259e5dd7070Spatrick           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
260e5dd7070Spatrick       } else {
261e5dd7070Spatrick         // Assumptions for function parameters are emitted at the start of the
262e5dd7070Spatrick         // function, so there is no need to repeat that here,
263e5dd7070Spatrick         // unless the alignment-assumption sanitizer is enabled,
264e5dd7070Spatrick         // then we prefer the assumption over alignment attribute
265e5dd7070Spatrick         // on IR function param.
266e5dd7070Spatrick         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
267e5dd7070Spatrick           return;
268e5dd7070Spatrick 
269e5dd7070Spatrick         AVAttr = VD->getAttr<AlignValueAttr>();
270e5dd7070Spatrick       }
271e5dd7070Spatrick     }
272e5dd7070Spatrick 
273e5dd7070Spatrick     if (!AVAttr)
274*12c85518Srobert       if (const auto *TTy = E->getType()->getAs<TypedefType>())
275e5dd7070Spatrick         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
276e5dd7070Spatrick 
277e5dd7070Spatrick     if (!AVAttr)
278e5dd7070Spatrick       return;
279e5dd7070Spatrick 
280e5dd7070Spatrick     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
281e5dd7070Spatrick     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
282ec727ea7Spatrick     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
283e5dd7070Spatrick   }
284e5dd7070Spatrick 
285e5dd7070Spatrick   /// EmitLoadOfLValue - Given an expression with complex type that represents a
286e5dd7070Spatrick   /// value l-value, this method emits the address of the l-value, then loads
287e5dd7070Spatrick   /// and returns the result.
EmitLoadOfLValue(const Expr * E)288e5dd7070Spatrick   Value *EmitLoadOfLValue(const Expr *E) {
289e5dd7070Spatrick     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
290e5dd7070Spatrick                                 E->getExprLoc());
291e5dd7070Spatrick 
292e5dd7070Spatrick     EmitLValueAlignmentAssumption(E, V);
293e5dd7070Spatrick     return V;
294e5dd7070Spatrick   }
295e5dd7070Spatrick 
296e5dd7070Spatrick   /// EmitConversionToBool - Convert the specified expression value to a
297e5dd7070Spatrick   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
298e5dd7070Spatrick   Value *EmitConversionToBool(Value *Src, QualType DstTy);
299e5dd7070Spatrick 
300e5dd7070Spatrick   /// Emit a check that a conversion from a floating-point type does not
301e5dd7070Spatrick   /// overflow.
302e5dd7070Spatrick   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
303e5dd7070Spatrick                                 Value *Src, QualType SrcType, QualType DstType,
304e5dd7070Spatrick                                 llvm::Type *DstTy, SourceLocation Loc);
305e5dd7070Spatrick 
306e5dd7070Spatrick   /// Known implicit conversion check kinds.
307e5dd7070Spatrick   /// Keep in sync with the enum of the same name in ubsan_handlers.h
308e5dd7070Spatrick   enum ImplicitConversionCheckKind : unsigned char {
309e5dd7070Spatrick     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
310e5dd7070Spatrick     ICCK_UnsignedIntegerTruncation = 1,
311e5dd7070Spatrick     ICCK_SignedIntegerTruncation = 2,
312e5dd7070Spatrick     ICCK_IntegerSignChange = 3,
313e5dd7070Spatrick     ICCK_SignedIntegerTruncationOrSignChange = 4,
314e5dd7070Spatrick   };
315e5dd7070Spatrick 
316e5dd7070Spatrick   /// Emit a check that an [implicit] truncation of an integer  does not
317e5dd7070Spatrick   /// discard any bits. It is not UB, so we use the value after truncation.
318e5dd7070Spatrick   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
319e5dd7070Spatrick                                   QualType DstType, SourceLocation Loc);
320e5dd7070Spatrick 
321e5dd7070Spatrick   /// Emit a check that an [implicit] conversion of an integer does not change
322e5dd7070Spatrick   /// the sign of the value. It is not UB, so we use the value after conversion.
323e5dd7070Spatrick   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
324e5dd7070Spatrick   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
325e5dd7070Spatrick                                   QualType DstType, SourceLocation Loc);
326e5dd7070Spatrick 
327e5dd7070Spatrick   /// Emit a conversion from the specified type to the specified destination
328e5dd7070Spatrick   /// type, both of which are LLVM scalar types.
329e5dd7070Spatrick   struct ScalarConversionOpts {
330e5dd7070Spatrick     bool TreatBooleanAsSigned;
331e5dd7070Spatrick     bool EmitImplicitIntegerTruncationChecks;
332e5dd7070Spatrick     bool EmitImplicitIntegerSignChangeChecks;
333e5dd7070Spatrick 
ScalarConversionOpts__anon7dd068ea0111::ScalarExprEmitter::ScalarConversionOpts334e5dd7070Spatrick     ScalarConversionOpts()
335e5dd7070Spatrick         : TreatBooleanAsSigned(false),
336e5dd7070Spatrick           EmitImplicitIntegerTruncationChecks(false),
337e5dd7070Spatrick           EmitImplicitIntegerSignChangeChecks(false) {}
338e5dd7070Spatrick 
ScalarConversionOpts__anon7dd068ea0111::ScalarExprEmitter::ScalarConversionOpts339e5dd7070Spatrick     ScalarConversionOpts(clang::SanitizerSet SanOpts)
340e5dd7070Spatrick         : TreatBooleanAsSigned(false),
341e5dd7070Spatrick           EmitImplicitIntegerTruncationChecks(
342e5dd7070Spatrick               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
343e5dd7070Spatrick           EmitImplicitIntegerSignChangeChecks(
344e5dd7070Spatrick               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
345e5dd7070Spatrick   };
346a9ac8606Spatrick   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
347a9ac8606Spatrick                         llvm::Type *SrcTy, llvm::Type *DstTy,
348a9ac8606Spatrick                         ScalarConversionOpts Opts);
349e5dd7070Spatrick   Value *
350e5dd7070Spatrick   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
351e5dd7070Spatrick                        SourceLocation Loc,
352e5dd7070Spatrick                        ScalarConversionOpts Opts = ScalarConversionOpts());
353e5dd7070Spatrick 
354e5dd7070Spatrick   /// Convert between either a fixed point and other fixed point or fixed point
355e5dd7070Spatrick   /// and an integer.
356e5dd7070Spatrick   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
357e5dd7070Spatrick                                   SourceLocation Loc);
358e5dd7070Spatrick 
359e5dd7070Spatrick   /// Emit a conversion from the specified complex type to the specified
360e5dd7070Spatrick   /// destination type, where the destination type is an LLVM scalar type.
361e5dd7070Spatrick   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
362e5dd7070Spatrick                                        QualType SrcTy, QualType DstTy,
363e5dd7070Spatrick                                        SourceLocation Loc);
364e5dd7070Spatrick 
365e5dd7070Spatrick   /// EmitNullValue - Emit a value that corresponds to null for the given type.
366e5dd7070Spatrick   Value *EmitNullValue(QualType Ty);
367e5dd7070Spatrick 
368e5dd7070Spatrick   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)369e5dd7070Spatrick   Value *EmitFloatToBoolConversion(Value *V) {
370e5dd7070Spatrick     // Compare against 0.0 for fp scalars.
371e5dd7070Spatrick     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
372e5dd7070Spatrick     return Builder.CreateFCmpUNE(V, Zero, "tobool");
373e5dd7070Spatrick   }
374e5dd7070Spatrick 
375e5dd7070Spatrick   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V,QualType QT)376e5dd7070Spatrick   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
377e5dd7070Spatrick     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
378e5dd7070Spatrick 
379e5dd7070Spatrick     return Builder.CreateICmpNE(V, Zero, "tobool");
380e5dd7070Spatrick   }
381e5dd7070Spatrick 
EmitIntToBoolConversion(Value * V)382e5dd7070Spatrick   Value *EmitIntToBoolConversion(Value *V) {
383e5dd7070Spatrick     // Because of the type rules of C, we often end up computing a
384e5dd7070Spatrick     // logical value, then zero extending it to int, then wanting it
385e5dd7070Spatrick     // as a logical value again.  Optimize this common case.
386e5dd7070Spatrick     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
387e5dd7070Spatrick       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
388e5dd7070Spatrick         Value *Result = ZI->getOperand(0);
389e5dd7070Spatrick         // If there aren't any more uses, zap the instruction to save space.
390e5dd7070Spatrick         // Note that there can be more uses, for example if this
391e5dd7070Spatrick         // is the result of an assignment.
392e5dd7070Spatrick         if (ZI->use_empty())
393e5dd7070Spatrick           ZI->eraseFromParent();
394e5dd7070Spatrick         return Result;
395e5dd7070Spatrick       }
396e5dd7070Spatrick     }
397e5dd7070Spatrick 
398e5dd7070Spatrick     return Builder.CreateIsNotNull(V, "tobool");
399e5dd7070Spatrick   }
400e5dd7070Spatrick 
401e5dd7070Spatrick   //===--------------------------------------------------------------------===//
402e5dd7070Spatrick   //                            Visitor Methods
403e5dd7070Spatrick   //===--------------------------------------------------------------------===//
404e5dd7070Spatrick 
Visit(Expr * E)405e5dd7070Spatrick   Value *Visit(Expr *E) {
406e5dd7070Spatrick     ApplyDebugLocation DL(CGF, E);
407e5dd7070Spatrick     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
408e5dd7070Spatrick   }
409e5dd7070Spatrick 
VisitStmt(Stmt * S)410e5dd7070Spatrick   Value *VisitStmt(Stmt *S) {
411ec727ea7Spatrick     S->dump(llvm::errs(), CGF.getContext());
412e5dd7070Spatrick     llvm_unreachable("Stmt can't have complex result type!");
413e5dd7070Spatrick   }
414e5dd7070Spatrick   Value *VisitExpr(Expr *S);
415e5dd7070Spatrick 
VisitConstantExpr(ConstantExpr * E)416e5dd7070Spatrick   Value *VisitConstantExpr(ConstantExpr *E) {
417*12c85518Srobert     // A constant expression of type 'void' generates no code and produces no
418*12c85518Srobert     // value.
419*12c85518Srobert     if (E->getType()->isVoidType())
420*12c85518Srobert       return nullptr;
421*12c85518Srobert 
422ec727ea7Spatrick     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
423ec727ea7Spatrick       if (E->isGLValue())
424ec727ea7Spatrick         return CGF.Builder.CreateLoad(Address(
425*12c85518Srobert             Result, CGF.ConvertTypeForMem(E->getType()),
426*12c85518Srobert             CGF.getContext().getTypeAlignInChars(E->getType())));
427ec727ea7Spatrick       return Result;
428ec727ea7Spatrick     }
429e5dd7070Spatrick     return Visit(E->getSubExpr());
430e5dd7070Spatrick   }
VisitParenExpr(ParenExpr * PE)431e5dd7070Spatrick   Value *VisitParenExpr(ParenExpr *PE) {
432e5dd7070Spatrick     return Visit(PE->getSubExpr());
433e5dd7070Spatrick   }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)434e5dd7070Spatrick   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
435e5dd7070Spatrick     return Visit(E->getReplacement());
436e5dd7070Spatrick   }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)437e5dd7070Spatrick   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
438e5dd7070Spatrick     return Visit(GE->getResultExpr());
439e5dd7070Spatrick   }
VisitCoawaitExpr(CoawaitExpr * S)440e5dd7070Spatrick   Value *VisitCoawaitExpr(CoawaitExpr *S) {
441e5dd7070Spatrick     return CGF.EmitCoawaitExpr(*S).getScalarVal();
442e5dd7070Spatrick   }
VisitCoyieldExpr(CoyieldExpr * S)443e5dd7070Spatrick   Value *VisitCoyieldExpr(CoyieldExpr *S) {
444e5dd7070Spatrick     return CGF.EmitCoyieldExpr(*S).getScalarVal();
445e5dd7070Spatrick   }
VisitUnaryCoawait(const UnaryOperator * E)446e5dd7070Spatrick   Value *VisitUnaryCoawait(const UnaryOperator *E) {
447e5dd7070Spatrick     return Visit(E->getSubExpr());
448e5dd7070Spatrick   }
449e5dd7070Spatrick 
450e5dd7070Spatrick   // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)451e5dd7070Spatrick   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
452e5dd7070Spatrick     return Builder.getInt(E->getValue());
453e5dd7070Spatrick   }
VisitFixedPointLiteral(const FixedPointLiteral * E)454e5dd7070Spatrick   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
455e5dd7070Spatrick     return Builder.getInt(E->getValue());
456e5dd7070Spatrick   }
VisitFloatingLiteral(const FloatingLiteral * E)457e5dd7070Spatrick   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
458e5dd7070Spatrick     return llvm::ConstantFP::get(VMContext, E->getValue());
459e5dd7070Spatrick   }
VisitCharacterLiteral(const CharacterLiteral * E)460e5dd7070Spatrick   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
461e5dd7070Spatrick     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
462e5dd7070Spatrick   }
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)463e5dd7070Spatrick   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
464e5dd7070Spatrick     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
465e5dd7070Spatrick   }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)466e5dd7070Spatrick   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
467e5dd7070Spatrick     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
468e5dd7070Spatrick   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)469e5dd7070Spatrick   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
470*12c85518Srobert     if (E->getType()->isVoidType())
471*12c85518Srobert       return nullptr;
472*12c85518Srobert 
473e5dd7070Spatrick     return EmitNullValue(E->getType());
474e5dd7070Spatrick   }
VisitGNUNullExpr(const GNUNullExpr * E)475e5dd7070Spatrick   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
476e5dd7070Spatrick     return EmitNullValue(E->getType());
477e5dd7070Spatrick   }
478e5dd7070Spatrick   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
479e5dd7070Spatrick   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)480e5dd7070Spatrick   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
481e5dd7070Spatrick     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
482e5dd7070Spatrick     return Builder.CreateBitCast(V, ConvertType(E->getType()));
483e5dd7070Spatrick   }
484e5dd7070Spatrick 
VisitSizeOfPackExpr(SizeOfPackExpr * E)485e5dd7070Spatrick   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
486e5dd7070Spatrick     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
487e5dd7070Spatrick   }
488e5dd7070Spatrick 
VisitPseudoObjectExpr(PseudoObjectExpr * E)489e5dd7070Spatrick   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
490e5dd7070Spatrick     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
491e5dd7070Spatrick   }
492e5dd7070Spatrick 
493a9ac8606Spatrick   Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
494a9ac8606Spatrick 
VisitOpaqueValueExpr(OpaqueValueExpr * E)495e5dd7070Spatrick   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
496e5dd7070Spatrick     if (E->isGLValue())
497e5dd7070Spatrick       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
498e5dd7070Spatrick                               E->getExprLoc());
499e5dd7070Spatrick 
500e5dd7070Spatrick     // Otherwise, assume the mapping is the scalar directly.
501e5dd7070Spatrick     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
502e5dd7070Spatrick   }
503e5dd7070Spatrick 
504e5dd7070Spatrick   // l-values.
VisitDeclRefExpr(DeclRefExpr * E)505e5dd7070Spatrick   Value *VisitDeclRefExpr(DeclRefExpr *E) {
506e5dd7070Spatrick     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
507e5dd7070Spatrick       return CGF.emitScalarConstant(Constant, E);
508e5dd7070Spatrick     return EmitLoadOfLValue(E);
509e5dd7070Spatrick   }
510e5dd7070Spatrick 
VisitObjCSelectorExpr(ObjCSelectorExpr * E)511e5dd7070Spatrick   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
512e5dd7070Spatrick     return CGF.EmitObjCSelectorExpr(E);
513e5dd7070Spatrick   }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)514e5dd7070Spatrick   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
515e5dd7070Spatrick     return CGF.EmitObjCProtocolExpr(E);
516e5dd7070Spatrick   }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)517e5dd7070Spatrick   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
518e5dd7070Spatrick     return EmitLoadOfLValue(E);
519e5dd7070Spatrick   }
VisitObjCMessageExpr(ObjCMessageExpr * E)520e5dd7070Spatrick   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
521e5dd7070Spatrick     if (E->getMethodDecl() &&
522e5dd7070Spatrick         E->getMethodDecl()->getReturnType()->isReferenceType())
523e5dd7070Spatrick       return EmitLoadOfLValue(E);
524e5dd7070Spatrick     return CGF.EmitObjCMessageExpr(E).getScalarVal();
525e5dd7070Spatrick   }
526e5dd7070Spatrick 
VisitObjCIsaExpr(ObjCIsaExpr * E)527e5dd7070Spatrick   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
528e5dd7070Spatrick     LValue LV = CGF.EmitObjCIsaExpr(E);
529e5dd7070Spatrick     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
530e5dd7070Spatrick     return V;
531e5dd7070Spatrick   }
532e5dd7070Spatrick 
VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr * E)533e5dd7070Spatrick   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
534e5dd7070Spatrick     VersionTuple Version = E->getVersion();
535e5dd7070Spatrick 
536e5dd7070Spatrick     // If we're checking for a platform older than our minimum deployment
537e5dd7070Spatrick     // target, we can fold the check away.
538e5dd7070Spatrick     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
539e5dd7070Spatrick       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
540e5dd7070Spatrick 
541a9ac8606Spatrick     return CGF.EmitBuiltinAvailable(Version);
542e5dd7070Spatrick   }
543e5dd7070Spatrick 
544e5dd7070Spatrick   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
545ec727ea7Spatrick   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
546e5dd7070Spatrick   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
547e5dd7070Spatrick   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
548e5dd7070Spatrick   Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)549e5dd7070Spatrick   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)550e5dd7070Spatrick   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
551ec727ea7Spatrick     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
552ec727ea7Spatrick     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
553ec727ea7Spatrick     // literals aren't l-values in C++. We do so simply because that's the
554ec727ea7Spatrick     // cleanest way to handle compound literals in C++.
555ec727ea7Spatrick     // See the discussion here: https://reviews.llvm.org/D64464
556e5dd7070Spatrick     return EmitLoadOfLValue(E);
557e5dd7070Spatrick   }
558e5dd7070Spatrick 
559e5dd7070Spatrick   Value *VisitInitListExpr(InitListExpr *E);
560e5dd7070Spatrick 
VisitArrayInitIndexExpr(ArrayInitIndexExpr * E)561e5dd7070Spatrick   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
562e5dd7070Spatrick     assert(CGF.getArrayInitIndex() &&
563e5dd7070Spatrick            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
564e5dd7070Spatrick     return CGF.getArrayInitIndex();
565e5dd7070Spatrick   }
566e5dd7070Spatrick 
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)567e5dd7070Spatrick   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
568e5dd7070Spatrick     return EmitNullValue(E->getType());
569e5dd7070Spatrick   }
VisitExplicitCastExpr(ExplicitCastExpr * E)570e5dd7070Spatrick   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
571e5dd7070Spatrick     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
572e5dd7070Spatrick     return VisitCastExpr(E);
573e5dd7070Spatrick   }
574e5dd7070Spatrick   Value *VisitCastExpr(CastExpr *E);
575e5dd7070Spatrick 
VisitCallExpr(const CallExpr * E)576e5dd7070Spatrick   Value *VisitCallExpr(const CallExpr *E) {
577e5dd7070Spatrick     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
578e5dd7070Spatrick       return EmitLoadOfLValue(E);
579e5dd7070Spatrick 
580e5dd7070Spatrick     Value *V = CGF.EmitCallExpr(E).getScalarVal();
581e5dd7070Spatrick 
582e5dd7070Spatrick     EmitLValueAlignmentAssumption(E, V);
583e5dd7070Spatrick     return V;
584e5dd7070Spatrick   }
585e5dd7070Spatrick 
586e5dd7070Spatrick   Value *VisitStmtExpr(const StmtExpr *E);
587e5dd7070Spatrick 
588e5dd7070Spatrick   // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)589e5dd7070Spatrick   Value *VisitUnaryPostDec(const UnaryOperator *E) {
590e5dd7070Spatrick     LValue LV = EmitLValue(E->getSubExpr());
591e5dd7070Spatrick     return EmitScalarPrePostIncDec(E, LV, false, false);
592e5dd7070Spatrick   }
VisitUnaryPostInc(const UnaryOperator * E)593e5dd7070Spatrick   Value *VisitUnaryPostInc(const UnaryOperator *E) {
594e5dd7070Spatrick     LValue LV = EmitLValue(E->getSubExpr());
595e5dd7070Spatrick     return EmitScalarPrePostIncDec(E, LV, true, false);
596e5dd7070Spatrick   }
VisitUnaryPreDec(const UnaryOperator * E)597e5dd7070Spatrick   Value *VisitUnaryPreDec(const UnaryOperator *E) {
598e5dd7070Spatrick     LValue LV = EmitLValue(E->getSubExpr());
599e5dd7070Spatrick     return EmitScalarPrePostIncDec(E, LV, false, true);
600e5dd7070Spatrick   }
VisitUnaryPreInc(const UnaryOperator * E)601e5dd7070Spatrick   Value *VisitUnaryPreInc(const UnaryOperator *E) {
602e5dd7070Spatrick     LValue LV = EmitLValue(E->getSubExpr());
603e5dd7070Spatrick     return EmitScalarPrePostIncDec(E, LV, true, true);
604e5dd7070Spatrick   }
605e5dd7070Spatrick 
606e5dd7070Spatrick   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
607e5dd7070Spatrick                                                   llvm::Value *InVal,
608e5dd7070Spatrick                                                   bool IsInc);
609e5dd7070Spatrick 
610e5dd7070Spatrick   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
611e5dd7070Spatrick                                        bool isInc, bool isPre);
612e5dd7070Spatrick 
613e5dd7070Spatrick 
VisitUnaryAddrOf(const UnaryOperator * E)614e5dd7070Spatrick   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
615e5dd7070Spatrick     if (isa<MemberPointerType>(E->getType())) // never sugared
616e5dd7070Spatrick       return CGF.CGM.getMemberPointerConstant(E);
617e5dd7070Spatrick 
618e5dd7070Spatrick     return EmitLValue(E->getSubExpr()).getPointer(CGF);
619e5dd7070Spatrick   }
VisitUnaryDeref(const UnaryOperator * E)620e5dd7070Spatrick   Value *VisitUnaryDeref(const UnaryOperator *E) {
621e5dd7070Spatrick     if (E->getType()->isVoidType())
622e5dd7070Spatrick       return Visit(E->getSubExpr()); // the actual value should be unused
623e5dd7070Spatrick     return EmitLoadOfLValue(E);
624e5dd7070Spatrick   }
625*12c85518Srobert 
626*12c85518Srobert   Value *VisitUnaryPlus(const UnaryOperator *E,
627*12c85518Srobert                         QualType PromotionType = QualType());
628*12c85518Srobert   Value *VisitPlus(const UnaryOperator *E, QualType PromotionType);
629*12c85518Srobert   Value *VisitUnaryMinus(const UnaryOperator *E,
630*12c85518Srobert                          QualType PromotionType = QualType());
631*12c85518Srobert   Value *VisitMinus(const UnaryOperator *E, QualType PromotionType);
632*12c85518Srobert 
633e5dd7070Spatrick   Value *VisitUnaryNot      (const UnaryOperator *E);
634e5dd7070Spatrick   Value *VisitUnaryLNot     (const UnaryOperator *E);
635*12c85518Srobert   Value *VisitUnaryReal(const UnaryOperator *E,
636*12c85518Srobert                         QualType PromotionType = QualType());
637*12c85518Srobert   Value *VisitReal(const UnaryOperator *E, QualType PromotionType);
638*12c85518Srobert   Value *VisitUnaryImag(const UnaryOperator *E,
639*12c85518Srobert                         QualType PromotionType = QualType());
640*12c85518Srobert   Value *VisitImag(const UnaryOperator *E, QualType PromotionType);
VisitUnaryExtension(const UnaryOperator * E)641e5dd7070Spatrick   Value *VisitUnaryExtension(const UnaryOperator *E) {
642e5dd7070Spatrick     return Visit(E->getSubExpr());
643e5dd7070Spatrick   }
644e5dd7070Spatrick 
645e5dd7070Spatrick   // C++
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)646e5dd7070Spatrick   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
647e5dd7070Spatrick     return EmitLoadOfLValue(E);
648e5dd7070Spatrick   }
VisitSourceLocExpr(SourceLocExpr * SLE)649e5dd7070Spatrick   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
650e5dd7070Spatrick     auto &Ctx = CGF.getContext();
651e5dd7070Spatrick     APValue Evaluated =
652e5dd7070Spatrick         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
653e5dd7070Spatrick     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
654e5dd7070Spatrick                                              SLE->getType());
655e5dd7070Spatrick   }
656e5dd7070Spatrick 
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)657e5dd7070Spatrick   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
658e5dd7070Spatrick     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
659e5dd7070Spatrick     return Visit(DAE->getExpr());
660e5dd7070Spatrick   }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)661e5dd7070Spatrick   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
662e5dd7070Spatrick     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
663e5dd7070Spatrick     return Visit(DIE->getExpr());
664e5dd7070Spatrick   }
VisitCXXThisExpr(CXXThisExpr * TE)665e5dd7070Spatrick   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
666e5dd7070Spatrick     return CGF.LoadCXXThis();
667e5dd7070Spatrick   }
668e5dd7070Spatrick 
669e5dd7070Spatrick   Value *VisitExprWithCleanups(ExprWithCleanups *E);
VisitCXXNewExpr(const CXXNewExpr * E)670e5dd7070Spatrick   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
671e5dd7070Spatrick     return CGF.EmitCXXNewExpr(E);
672e5dd7070Spatrick   }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)673e5dd7070Spatrick   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
674e5dd7070Spatrick     CGF.EmitCXXDeleteExpr(E);
675e5dd7070Spatrick     return nullptr;
676e5dd7070Spatrick   }
677e5dd7070Spatrick 
VisitTypeTraitExpr(const TypeTraitExpr * E)678e5dd7070Spatrick   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
679e5dd7070Spatrick     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
680e5dd7070Spatrick   }
681e5dd7070Spatrick 
VisitConceptSpecializationExpr(const ConceptSpecializationExpr * E)682e5dd7070Spatrick   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
683e5dd7070Spatrick     return Builder.getInt1(E->isSatisfied());
684e5dd7070Spatrick   }
685e5dd7070Spatrick 
VisitRequiresExpr(const RequiresExpr * E)686e5dd7070Spatrick   Value *VisitRequiresExpr(const RequiresExpr *E) {
687e5dd7070Spatrick     return Builder.getInt1(E->isSatisfied());
688e5dd7070Spatrick   }
689e5dd7070Spatrick 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)690e5dd7070Spatrick   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
691e5dd7070Spatrick     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
692e5dd7070Spatrick   }
693e5dd7070Spatrick 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)694e5dd7070Spatrick   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
695e5dd7070Spatrick     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
696e5dd7070Spatrick   }
697e5dd7070Spatrick 
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)698e5dd7070Spatrick   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
699e5dd7070Spatrick     // C++ [expr.pseudo]p1:
700e5dd7070Spatrick     //   The result shall only be used as the operand for the function call
701e5dd7070Spatrick     //   operator (), and the result of such a call has type void. The only
702e5dd7070Spatrick     //   effect is the evaluation of the postfix-expression before the dot or
703e5dd7070Spatrick     //   arrow.
704e5dd7070Spatrick     CGF.EmitScalarExpr(E->getBase());
705e5dd7070Spatrick     return nullptr;
706e5dd7070Spatrick   }
707e5dd7070Spatrick 
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)708e5dd7070Spatrick   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
709e5dd7070Spatrick     return EmitNullValue(E->getType());
710e5dd7070Spatrick   }
711e5dd7070Spatrick 
VisitCXXThrowExpr(const CXXThrowExpr * E)712e5dd7070Spatrick   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
713e5dd7070Spatrick     CGF.EmitCXXThrowExpr(E);
714e5dd7070Spatrick     return nullptr;
715e5dd7070Spatrick   }
716e5dd7070Spatrick 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)717e5dd7070Spatrick   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
718e5dd7070Spatrick     return Builder.getInt1(E->getValue());
719e5dd7070Spatrick   }
720e5dd7070Spatrick 
721e5dd7070Spatrick   // Binary Operators.
EmitMul(const BinOpInfo & Ops)722e5dd7070Spatrick   Value *EmitMul(const BinOpInfo &Ops) {
723e5dd7070Spatrick     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
724e5dd7070Spatrick       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
725e5dd7070Spatrick       case LangOptions::SOB_Defined:
726e5dd7070Spatrick         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
727e5dd7070Spatrick       case LangOptions::SOB_Undefined:
728e5dd7070Spatrick         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
729e5dd7070Spatrick           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
730*12c85518Srobert         [[fallthrough]];
731e5dd7070Spatrick       case LangOptions::SOB_Trapping:
732e5dd7070Spatrick         if (CanElideOverflowCheck(CGF.getContext(), Ops))
733e5dd7070Spatrick           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
734e5dd7070Spatrick         return EmitOverflowCheckedBinOp(Ops);
735e5dd7070Spatrick       }
736e5dd7070Spatrick     }
737e5dd7070Spatrick 
738ec727ea7Spatrick     if (Ops.Ty->isConstantMatrixType()) {
739*12c85518Srobert       llvm::MatrixBuilder MB(Builder);
740ec727ea7Spatrick       // We need to check the types of the operands of the operator to get the
741ec727ea7Spatrick       // correct matrix dimensions.
742ec727ea7Spatrick       auto *BO = cast<BinaryOperator>(Ops.E);
743ec727ea7Spatrick       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
744ec727ea7Spatrick           BO->getLHS()->getType().getCanonicalType());
745ec727ea7Spatrick       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
746ec727ea7Spatrick           BO->getRHS()->getType().getCanonicalType());
747a9ac8606Spatrick       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
748ec727ea7Spatrick       if (LHSMatTy && RHSMatTy)
749ec727ea7Spatrick         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
750ec727ea7Spatrick                                        LHSMatTy->getNumColumns(),
751ec727ea7Spatrick                                        RHSMatTy->getNumColumns());
752ec727ea7Spatrick       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
753ec727ea7Spatrick     }
754ec727ea7Spatrick 
755e5dd7070Spatrick     if (Ops.Ty->isUnsignedIntegerType() &&
756e5dd7070Spatrick         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
757e5dd7070Spatrick         !CanElideOverflowCheck(CGF.getContext(), Ops))
758e5dd7070Spatrick       return EmitOverflowCheckedBinOp(Ops);
759e5dd7070Spatrick 
760e5dd7070Spatrick     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
761ec727ea7Spatrick       //  Preserve the old values
762ec727ea7Spatrick       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
763ec727ea7Spatrick       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
764e5dd7070Spatrick     }
765ec727ea7Spatrick     if (Ops.isFixedPointOp())
766ec727ea7Spatrick       return EmitFixedPointBinOp(Ops);
767e5dd7070Spatrick     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
768e5dd7070Spatrick   }
769e5dd7070Spatrick   /// Create a binary op that checks for overflow.
770e5dd7070Spatrick   /// Currently only supports +, - and *.
771e5dd7070Spatrick   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
772e5dd7070Spatrick 
773e5dd7070Spatrick   // Check for undefined division and modulus behaviors.
774e5dd7070Spatrick   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
775e5dd7070Spatrick                                                   llvm::Value *Zero,bool isDiv);
776e5dd7070Spatrick   // Common helper for getting how wide LHS of shift is.
777e5dd7070Spatrick   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
778ec727ea7Spatrick 
779ec727ea7Spatrick   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
780ec727ea7Spatrick   // non powers of two.
781ec727ea7Spatrick   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
782ec727ea7Spatrick 
783e5dd7070Spatrick   Value *EmitDiv(const BinOpInfo &Ops);
784e5dd7070Spatrick   Value *EmitRem(const BinOpInfo &Ops);
785e5dd7070Spatrick   Value *EmitAdd(const BinOpInfo &Ops);
786e5dd7070Spatrick   Value *EmitSub(const BinOpInfo &Ops);
787e5dd7070Spatrick   Value *EmitShl(const BinOpInfo &Ops);
788e5dd7070Spatrick   Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)789e5dd7070Spatrick   Value *EmitAnd(const BinOpInfo &Ops) {
790e5dd7070Spatrick     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
791e5dd7070Spatrick   }
EmitXor(const BinOpInfo & Ops)792e5dd7070Spatrick   Value *EmitXor(const BinOpInfo &Ops) {
793e5dd7070Spatrick     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
794e5dd7070Spatrick   }
EmitOr(const BinOpInfo & Ops)795e5dd7070Spatrick   Value *EmitOr (const BinOpInfo &Ops) {
796e5dd7070Spatrick     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
797e5dd7070Spatrick   }
798e5dd7070Spatrick 
799e5dd7070Spatrick   // Helper functions for fixed point binary operations.
800e5dd7070Spatrick   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
801e5dd7070Spatrick 
802*12c85518Srobert   BinOpInfo EmitBinOps(const BinaryOperator *E,
803*12c85518Srobert                        QualType PromotionTy = QualType());
804*12c85518Srobert 
805*12c85518Srobert   Value *EmitPromotedValue(Value *result, QualType PromotionType);
806*12c85518Srobert   Value *EmitUnPromotedValue(Value *result, QualType ExprType);
807*12c85518Srobert   Value *EmitPromoted(const Expr *E, QualType PromotionType);
808*12c85518Srobert 
809e5dd7070Spatrick   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
810e5dd7070Spatrick                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
811e5dd7070Spatrick                                   Value *&Result);
812e5dd7070Spatrick 
813e5dd7070Spatrick   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
814e5dd7070Spatrick                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
815e5dd7070Spatrick 
getPromotionType(QualType Ty)816*12c85518Srobert   QualType getPromotionType(QualType Ty) {
817*12c85518Srobert     if (auto *CT = Ty->getAs<ComplexType>()) {
818*12c85518Srobert       QualType ElementType = CT->getElementType();
819*12c85518Srobert       if (ElementType.UseExcessPrecision(CGF.getContext()))
820*12c85518Srobert         return CGF.getContext().getComplexType(CGF.getContext().FloatTy);
821*12c85518Srobert     }
822*12c85518Srobert     if (Ty.UseExcessPrecision(CGF.getContext()))
823*12c85518Srobert       return CGF.getContext().FloatTy;
824*12c85518Srobert     return QualType();
825*12c85518Srobert   }
826*12c85518Srobert 
827e5dd7070Spatrick   // Binary operators and binary compound assignment operators.
828e5dd7070Spatrick #define HANDLEBINOP(OP)                                                        \
829e5dd7070Spatrick   Value *VisitBin##OP(const BinaryOperator *E) {                               \
830*12c85518Srobert     QualType promotionTy = getPromotionType(E->getType());                     \
831*12c85518Srobert     auto result = Emit##OP(EmitBinOps(E, promotionTy));                        \
832*12c85518Srobert     if (result && !promotionTy.isNull())                                       \
833*12c85518Srobert       result = EmitUnPromotedValue(result, E->getType());                      \
834*12c85518Srobert     return result;                                                             \
835e5dd7070Spatrick   }                                                                            \
836e5dd7070Spatrick   Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) {               \
837e5dd7070Spatrick     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP);                \
838e5dd7070Spatrick   }
839e5dd7070Spatrick   HANDLEBINOP(Mul)
840e5dd7070Spatrick   HANDLEBINOP(Div)
841e5dd7070Spatrick   HANDLEBINOP(Rem)
842e5dd7070Spatrick   HANDLEBINOP(Add)
843e5dd7070Spatrick   HANDLEBINOP(Sub)
844e5dd7070Spatrick   HANDLEBINOP(Shl)
845e5dd7070Spatrick   HANDLEBINOP(Shr)
846e5dd7070Spatrick   HANDLEBINOP(And)
847e5dd7070Spatrick   HANDLEBINOP(Xor)
848e5dd7070Spatrick   HANDLEBINOP(Or)
849e5dd7070Spatrick #undef HANDLEBINOP
850e5dd7070Spatrick 
851e5dd7070Spatrick   // Comparisons.
852e5dd7070Spatrick   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
853e5dd7070Spatrick                      llvm::CmpInst::Predicate SICmpOpc,
854e5dd7070Spatrick                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
855e5dd7070Spatrick #define VISITCOMP(CODE, UI, SI, FP, SIG) \
856e5dd7070Spatrick     Value *VisitBin##CODE(const BinaryOperator *E) { \
857e5dd7070Spatrick       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
858e5dd7070Spatrick                          llvm::FCmpInst::FP, SIG); }
859e5dd7070Spatrick   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
860e5dd7070Spatrick   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
861e5dd7070Spatrick   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
862e5dd7070Spatrick   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
863e5dd7070Spatrick   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
864e5dd7070Spatrick   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
865e5dd7070Spatrick #undef VISITCOMP
866e5dd7070Spatrick 
867e5dd7070Spatrick   Value *VisitBinAssign     (const BinaryOperator *E);
868e5dd7070Spatrick 
869e5dd7070Spatrick   Value *VisitBinLAnd       (const BinaryOperator *E);
870e5dd7070Spatrick   Value *VisitBinLOr        (const BinaryOperator *E);
871e5dd7070Spatrick   Value *VisitBinComma      (const BinaryOperator *E);
872e5dd7070Spatrick 
VisitBinPtrMemD(const Expr * E)873e5dd7070Spatrick   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)874e5dd7070Spatrick   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
875e5dd7070Spatrick 
VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator * E)876e5dd7070Spatrick   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
877e5dd7070Spatrick     return Visit(E->getSemanticForm());
878e5dd7070Spatrick   }
879e5dd7070Spatrick 
880e5dd7070Spatrick   // Other Operators.
881e5dd7070Spatrick   Value *VisitBlockExpr(const BlockExpr *BE);
882e5dd7070Spatrick   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
883e5dd7070Spatrick   Value *VisitChooseExpr(ChooseExpr *CE);
884e5dd7070Spatrick   Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)885e5dd7070Spatrick   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
886e5dd7070Spatrick     return CGF.EmitObjCStringLiteral(E);
887e5dd7070Spatrick   }
VisitObjCBoxedExpr(ObjCBoxedExpr * E)888e5dd7070Spatrick   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
889e5dd7070Spatrick     return CGF.EmitObjCBoxedExpr(E);
890e5dd7070Spatrick   }
VisitObjCArrayLiteral(ObjCArrayLiteral * E)891e5dd7070Spatrick   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
892e5dd7070Spatrick     return CGF.EmitObjCArrayLiteral(E);
893e5dd7070Spatrick   }
VisitObjCDictionaryLiteral(ObjCDictionaryLiteral * E)894e5dd7070Spatrick   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
895e5dd7070Spatrick     return CGF.EmitObjCDictionaryLiteral(E);
896e5dd7070Spatrick   }
897e5dd7070Spatrick   Value *VisitAsTypeExpr(AsTypeExpr *CE);
898e5dd7070Spatrick   Value *VisitAtomicExpr(AtomicExpr *AE);
899e5dd7070Spatrick };
900e5dd7070Spatrick }  // end anonymous namespace.
901e5dd7070Spatrick 
902e5dd7070Spatrick //===----------------------------------------------------------------------===//
903e5dd7070Spatrick //                                Utilities
904e5dd7070Spatrick //===----------------------------------------------------------------------===//
905e5dd7070Spatrick 
906e5dd7070Spatrick /// EmitConversionToBool - Convert the specified expression value to a
907e5dd7070Spatrick /// boolean (i1) truth value.  This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)908e5dd7070Spatrick Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
909e5dd7070Spatrick   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
910e5dd7070Spatrick 
911e5dd7070Spatrick   if (SrcType->isRealFloatingType())
912e5dd7070Spatrick     return EmitFloatToBoolConversion(Src);
913e5dd7070Spatrick 
914e5dd7070Spatrick   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
915e5dd7070Spatrick     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
916e5dd7070Spatrick 
917e5dd7070Spatrick   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
918e5dd7070Spatrick          "Unknown scalar type to convert");
919e5dd7070Spatrick 
920e5dd7070Spatrick   if (isa<llvm::IntegerType>(Src->getType()))
921e5dd7070Spatrick     return EmitIntToBoolConversion(Src);
922e5dd7070Spatrick 
923e5dd7070Spatrick   assert(isa<llvm::PointerType>(Src->getType()));
924e5dd7070Spatrick   return EmitPointerToBoolConversion(Src, SrcType);
925e5dd7070Spatrick }
926e5dd7070Spatrick 
EmitFloatConversionCheck(Value * OrigSrc,QualType OrigSrcType,Value * Src,QualType SrcType,QualType DstType,llvm::Type * DstTy,SourceLocation Loc)927e5dd7070Spatrick void ScalarExprEmitter::EmitFloatConversionCheck(
928e5dd7070Spatrick     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
929e5dd7070Spatrick     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
930e5dd7070Spatrick   assert(SrcType->isFloatingType() && "not a conversion from floating point");
931e5dd7070Spatrick   if (!isa<llvm::IntegerType>(DstTy))
932e5dd7070Spatrick     return;
933e5dd7070Spatrick 
934e5dd7070Spatrick   CodeGenFunction::SanitizerScope SanScope(&CGF);
935e5dd7070Spatrick   using llvm::APFloat;
936e5dd7070Spatrick   using llvm::APSInt;
937e5dd7070Spatrick 
938e5dd7070Spatrick   llvm::Value *Check = nullptr;
939e5dd7070Spatrick   const llvm::fltSemantics &SrcSema =
940e5dd7070Spatrick     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
941e5dd7070Spatrick 
942e5dd7070Spatrick   // Floating-point to integer. This has undefined behavior if the source is
943e5dd7070Spatrick   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
944e5dd7070Spatrick   // to an integer).
945e5dd7070Spatrick   unsigned Width = CGF.getContext().getIntWidth(DstType);
946e5dd7070Spatrick   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
947e5dd7070Spatrick 
948e5dd7070Spatrick   APSInt Min = APSInt::getMinValue(Width, Unsigned);
949e5dd7070Spatrick   APFloat MinSrc(SrcSema, APFloat::uninitialized);
950e5dd7070Spatrick   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
951e5dd7070Spatrick       APFloat::opOverflow)
952e5dd7070Spatrick     // Don't need an overflow check for lower bound. Just check for
953e5dd7070Spatrick     // -Inf/NaN.
954e5dd7070Spatrick     MinSrc = APFloat::getInf(SrcSema, true);
955e5dd7070Spatrick   else
956e5dd7070Spatrick     // Find the largest value which is too small to represent (before
957e5dd7070Spatrick     // truncation toward zero).
958e5dd7070Spatrick     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
959e5dd7070Spatrick 
960e5dd7070Spatrick   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
961e5dd7070Spatrick   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
962e5dd7070Spatrick   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
963e5dd7070Spatrick       APFloat::opOverflow)
964e5dd7070Spatrick     // Don't need an overflow check for upper bound. Just check for
965e5dd7070Spatrick     // +Inf/NaN.
966e5dd7070Spatrick     MaxSrc = APFloat::getInf(SrcSema, false);
967e5dd7070Spatrick   else
968e5dd7070Spatrick     // Find the smallest value which is too large to represent (before
969e5dd7070Spatrick     // truncation toward zero).
970e5dd7070Spatrick     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
971e5dd7070Spatrick 
972e5dd7070Spatrick   // If we're converting from __half, convert the range to float to match
973e5dd7070Spatrick   // the type of src.
974e5dd7070Spatrick   if (OrigSrcType->isHalfType()) {
975e5dd7070Spatrick     const llvm::fltSemantics &Sema =
976e5dd7070Spatrick       CGF.getContext().getFloatTypeSemantics(SrcType);
977e5dd7070Spatrick     bool IsInexact;
978e5dd7070Spatrick     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
979e5dd7070Spatrick     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
980e5dd7070Spatrick   }
981e5dd7070Spatrick 
982e5dd7070Spatrick   llvm::Value *GE =
983e5dd7070Spatrick     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
984e5dd7070Spatrick   llvm::Value *LE =
985e5dd7070Spatrick     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
986e5dd7070Spatrick   Check = Builder.CreateAnd(GE, LE);
987e5dd7070Spatrick 
988e5dd7070Spatrick   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
989e5dd7070Spatrick                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
990e5dd7070Spatrick                                   CGF.EmitCheckTypeDescriptor(DstType)};
991e5dd7070Spatrick   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
992e5dd7070Spatrick                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
993e5dd7070Spatrick }
994e5dd7070Spatrick 
995e5dd7070Spatrick // Should be called within CodeGenFunction::SanitizerScope RAII scope.
996e5dd7070Spatrick // Returns 'i1 false' when the truncation Src -> Dst was lossy.
997e5dd7070Spatrick static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
998e5dd7070Spatrick                  std::pair<llvm::Value *, SanitizerMask>>
EmitIntegerTruncationCheckHelper(Value * Src,QualType SrcType,Value * Dst,QualType DstType,CGBuilderTy & Builder)999e5dd7070Spatrick EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1000e5dd7070Spatrick                                  QualType DstType, CGBuilderTy &Builder) {
1001e5dd7070Spatrick   llvm::Type *SrcTy = Src->getType();
1002e5dd7070Spatrick   llvm::Type *DstTy = Dst->getType();
1003e5dd7070Spatrick   (void)DstTy; // Only used in assert()
1004e5dd7070Spatrick 
1005e5dd7070Spatrick   // This should be truncation of integral types.
1006e5dd7070Spatrick   assert(Src != Dst);
1007e5dd7070Spatrick   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1008e5dd7070Spatrick   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1009e5dd7070Spatrick          "non-integer llvm type");
1010e5dd7070Spatrick 
1011e5dd7070Spatrick   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1012e5dd7070Spatrick   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1013e5dd7070Spatrick 
1014e5dd7070Spatrick   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1015e5dd7070Spatrick   // Else, it is a signed truncation.
1016e5dd7070Spatrick   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1017e5dd7070Spatrick   SanitizerMask Mask;
1018e5dd7070Spatrick   if (!SrcSigned && !DstSigned) {
1019e5dd7070Spatrick     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1020e5dd7070Spatrick     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1021e5dd7070Spatrick   } else {
1022e5dd7070Spatrick     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1023e5dd7070Spatrick     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1024e5dd7070Spatrick   }
1025e5dd7070Spatrick 
1026e5dd7070Spatrick   llvm::Value *Check = nullptr;
1027e5dd7070Spatrick   // 1. Extend the truncated value back to the same width as the Src.
1028e5dd7070Spatrick   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1029e5dd7070Spatrick   // 2. Equality-compare with the original source value
1030e5dd7070Spatrick   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1031e5dd7070Spatrick   // If the comparison result is 'i1 false', then the truncation was lossy.
1032e5dd7070Spatrick   return std::make_pair(Kind, std::make_pair(Check, Mask));
1033e5dd7070Spatrick }
1034e5dd7070Spatrick 
PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(QualType SrcType,QualType DstType)1035e5dd7070Spatrick static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1036e5dd7070Spatrick     QualType SrcType, QualType DstType) {
1037e5dd7070Spatrick   return SrcType->isIntegerType() && DstType->isIntegerType();
1038e5dd7070Spatrick }
1039e5dd7070Spatrick 
EmitIntegerTruncationCheck(Value * Src,QualType SrcType,Value * Dst,QualType DstType,SourceLocation Loc)1040e5dd7070Spatrick void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1041e5dd7070Spatrick                                                    Value *Dst, QualType DstType,
1042e5dd7070Spatrick                                                    SourceLocation Loc) {
1043e5dd7070Spatrick   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1044e5dd7070Spatrick     return;
1045e5dd7070Spatrick 
1046e5dd7070Spatrick   // We only care about int->int conversions here.
1047e5dd7070Spatrick   // We ignore conversions to/from pointer and/or bool.
1048e5dd7070Spatrick   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1049e5dd7070Spatrick                                                                        DstType))
1050e5dd7070Spatrick     return;
1051e5dd7070Spatrick 
1052e5dd7070Spatrick   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1053e5dd7070Spatrick   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1054e5dd7070Spatrick   // This must be truncation. Else we do not care.
1055e5dd7070Spatrick   if (SrcBits <= DstBits)
1056e5dd7070Spatrick     return;
1057e5dd7070Spatrick 
1058e5dd7070Spatrick   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1059e5dd7070Spatrick 
1060e5dd7070Spatrick   // If the integer sign change sanitizer is enabled,
1061e5dd7070Spatrick   // and we are truncating from larger unsigned type to smaller signed type,
1062e5dd7070Spatrick   // let that next sanitizer deal with it.
1063e5dd7070Spatrick   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1064e5dd7070Spatrick   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1065e5dd7070Spatrick   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1066e5dd7070Spatrick       (!SrcSigned && DstSigned))
1067e5dd7070Spatrick     return;
1068e5dd7070Spatrick 
1069e5dd7070Spatrick   CodeGenFunction::SanitizerScope SanScope(&CGF);
1070e5dd7070Spatrick 
1071e5dd7070Spatrick   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1072e5dd7070Spatrick             std::pair<llvm::Value *, SanitizerMask>>
1073e5dd7070Spatrick       Check =
1074e5dd7070Spatrick           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1075e5dd7070Spatrick   // If the comparison result is 'i1 false', then the truncation was lossy.
1076e5dd7070Spatrick 
1077e5dd7070Spatrick   // Do we care about this type of truncation?
1078e5dd7070Spatrick   if (!CGF.SanOpts.has(Check.second.second))
1079e5dd7070Spatrick     return;
1080e5dd7070Spatrick 
1081e5dd7070Spatrick   llvm::Constant *StaticArgs[] = {
1082e5dd7070Spatrick       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1083e5dd7070Spatrick       CGF.EmitCheckTypeDescriptor(DstType),
1084e5dd7070Spatrick       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1085e5dd7070Spatrick   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1086e5dd7070Spatrick                 {Src, Dst});
1087e5dd7070Spatrick }
1088e5dd7070Spatrick 
1089e5dd7070Spatrick // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1090e5dd7070Spatrick // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1091e5dd7070Spatrick static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1092e5dd7070Spatrick                  std::pair<llvm::Value *, SanitizerMask>>
EmitIntegerSignChangeCheckHelper(Value * Src,QualType SrcType,Value * Dst,QualType DstType,CGBuilderTy & Builder)1093e5dd7070Spatrick EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1094e5dd7070Spatrick                                  QualType DstType, CGBuilderTy &Builder) {
1095e5dd7070Spatrick   llvm::Type *SrcTy = Src->getType();
1096e5dd7070Spatrick   llvm::Type *DstTy = Dst->getType();
1097e5dd7070Spatrick 
1098e5dd7070Spatrick   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1099e5dd7070Spatrick          "non-integer llvm type");
1100e5dd7070Spatrick 
1101e5dd7070Spatrick   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1102e5dd7070Spatrick   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1103e5dd7070Spatrick   (void)SrcSigned; // Only used in assert()
1104e5dd7070Spatrick   (void)DstSigned; // Only used in assert()
1105e5dd7070Spatrick   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1106e5dd7070Spatrick   unsigned DstBits = DstTy->getScalarSizeInBits();
1107e5dd7070Spatrick   (void)SrcBits; // Only used in assert()
1108e5dd7070Spatrick   (void)DstBits; // Only used in assert()
1109e5dd7070Spatrick 
1110e5dd7070Spatrick   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1111e5dd7070Spatrick          "either the widths should be different, or the signednesses.");
1112e5dd7070Spatrick 
1113e5dd7070Spatrick   // NOTE: zero value is considered to be non-negative.
1114e5dd7070Spatrick   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1115e5dd7070Spatrick                                        const char *Name) -> Value * {
1116e5dd7070Spatrick     // Is this value a signed type?
1117e5dd7070Spatrick     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1118e5dd7070Spatrick     llvm::Type *VTy = V->getType();
1119e5dd7070Spatrick     if (!VSigned) {
1120e5dd7070Spatrick       // If the value is unsigned, then it is never negative.
1121e5dd7070Spatrick       // FIXME: can we encounter non-scalar VTy here?
1122e5dd7070Spatrick       return llvm::ConstantInt::getFalse(VTy->getContext());
1123e5dd7070Spatrick     }
1124e5dd7070Spatrick     // Get the zero of the same type with which we will be comparing.
1125e5dd7070Spatrick     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1126e5dd7070Spatrick     // %V.isnegative = icmp slt %V, 0
1127e5dd7070Spatrick     // I.e is %V *strictly* less than zero, does it have negative value?
1128e5dd7070Spatrick     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1129e5dd7070Spatrick                               llvm::Twine(Name) + "." + V->getName() +
1130e5dd7070Spatrick                                   ".negativitycheck");
1131e5dd7070Spatrick   };
1132e5dd7070Spatrick 
1133e5dd7070Spatrick   // 1. Was the old Value negative?
1134e5dd7070Spatrick   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1135e5dd7070Spatrick   // 2. Is the new Value negative?
1136e5dd7070Spatrick   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1137e5dd7070Spatrick   // 3. Now, was the 'negativity status' preserved during the conversion?
1138e5dd7070Spatrick   //    NOTE: conversion from negative to zero is considered to change the sign.
1139e5dd7070Spatrick   //    (We want to get 'false' when the conversion changed the sign)
1140e5dd7070Spatrick   //    So we should just equality-compare the negativity statuses.
1141e5dd7070Spatrick   llvm::Value *Check = nullptr;
1142e5dd7070Spatrick   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1143e5dd7070Spatrick   // If the comparison result is 'false', then the conversion changed the sign.
1144e5dd7070Spatrick   return std::make_pair(
1145e5dd7070Spatrick       ScalarExprEmitter::ICCK_IntegerSignChange,
1146e5dd7070Spatrick       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1147e5dd7070Spatrick }
1148e5dd7070Spatrick 
EmitIntegerSignChangeCheck(Value * Src,QualType SrcType,Value * Dst,QualType DstType,SourceLocation Loc)1149e5dd7070Spatrick void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1150e5dd7070Spatrick                                                    Value *Dst, QualType DstType,
1151e5dd7070Spatrick                                                    SourceLocation Loc) {
1152e5dd7070Spatrick   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1153e5dd7070Spatrick     return;
1154e5dd7070Spatrick 
1155e5dd7070Spatrick   llvm::Type *SrcTy = Src->getType();
1156e5dd7070Spatrick   llvm::Type *DstTy = Dst->getType();
1157e5dd7070Spatrick 
1158e5dd7070Spatrick   // We only care about int->int conversions here.
1159e5dd7070Spatrick   // We ignore conversions to/from pointer and/or bool.
1160e5dd7070Spatrick   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1161e5dd7070Spatrick                                                                        DstType))
1162e5dd7070Spatrick     return;
1163e5dd7070Spatrick 
1164e5dd7070Spatrick   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1165e5dd7070Spatrick   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1166e5dd7070Spatrick   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1167e5dd7070Spatrick   unsigned DstBits = DstTy->getScalarSizeInBits();
1168e5dd7070Spatrick 
1169e5dd7070Spatrick   // Now, we do not need to emit the check in *all* of the cases.
1170e5dd7070Spatrick   // We can avoid emitting it in some obvious cases where it would have been
1171e5dd7070Spatrick   // dropped by the opt passes (instcombine) always anyways.
1172e5dd7070Spatrick   // If it's a cast between effectively the same type, no check.
1173e5dd7070Spatrick   // NOTE: this is *not* equivalent to checking the canonical types.
1174e5dd7070Spatrick   if (SrcSigned == DstSigned && SrcBits == DstBits)
1175e5dd7070Spatrick     return;
1176e5dd7070Spatrick   // At least one of the values needs to have signed type.
1177e5dd7070Spatrick   // If both are unsigned, then obviously, neither of them can be negative.
1178e5dd7070Spatrick   if (!SrcSigned && !DstSigned)
1179e5dd7070Spatrick     return;
1180e5dd7070Spatrick   // If the conversion is to *larger* *signed* type, then no check is needed.
1181e5dd7070Spatrick   // Because either sign-extension happens (so the sign will remain),
1182e5dd7070Spatrick   // or zero-extension will happen (the sign bit will be zero.)
1183e5dd7070Spatrick   if ((DstBits > SrcBits) && DstSigned)
1184e5dd7070Spatrick     return;
1185e5dd7070Spatrick   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1186e5dd7070Spatrick       (SrcBits > DstBits) && SrcSigned) {
1187e5dd7070Spatrick     // If the signed integer truncation sanitizer is enabled,
1188e5dd7070Spatrick     // and this is a truncation from signed type, then no check is needed.
1189e5dd7070Spatrick     // Because here sign change check is interchangeable with truncation check.
1190e5dd7070Spatrick     return;
1191e5dd7070Spatrick   }
1192e5dd7070Spatrick   // That's it. We can't rule out any more cases with the data we have.
1193e5dd7070Spatrick 
1194e5dd7070Spatrick   CodeGenFunction::SanitizerScope SanScope(&CGF);
1195e5dd7070Spatrick 
1196e5dd7070Spatrick   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1197e5dd7070Spatrick             std::pair<llvm::Value *, SanitizerMask>>
1198e5dd7070Spatrick       Check;
1199e5dd7070Spatrick 
1200e5dd7070Spatrick   // Each of these checks needs to return 'false' when an issue was detected.
1201e5dd7070Spatrick   ImplicitConversionCheckKind CheckKind;
1202e5dd7070Spatrick   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1203e5dd7070Spatrick   // So we can 'and' all the checks together, and still get 'false',
1204e5dd7070Spatrick   // if at least one of the checks detected an issue.
1205e5dd7070Spatrick 
1206e5dd7070Spatrick   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1207e5dd7070Spatrick   CheckKind = Check.first;
1208e5dd7070Spatrick   Checks.emplace_back(Check.second);
1209e5dd7070Spatrick 
1210e5dd7070Spatrick   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1211e5dd7070Spatrick       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1212e5dd7070Spatrick     // If the signed integer truncation sanitizer was enabled,
1213e5dd7070Spatrick     // and we are truncating from larger unsigned type to smaller signed type,
1214e5dd7070Spatrick     // let's handle the case we skipped in that check.
1215e5dd7070Spatrick     Check =
1216e5dd7070Spatrick         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1217e5dd7070Spatrick     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1218e5dd7070Spatrick     Checks.emplace_back(Check.second);
1219e5dd7070Spatrick     // If the comparison result is 'i1 false', then the truncation was lossy.
1220e5dd7070Spatrick   }
1221e5dd7070Spatrick 
1222e5dd7070Spatrick   llvm::Constant *StaticArgs[] = {
1223e5dd7070Spatrick       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1224e5dd7070Spatrick       CGF.EmitCheckTypeDescriptor(DstType),
1225e5dd7070Spatrick       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1226e5dd7070Spatrick   // EmitCheck() will 'and' all the checks together.
1227e5dd7070Spatrick   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1228e5dd7070Spatrick                 {Src, Dst});
1229e5dd7070Spatrick }
1230e5dd7070Spatrick 
EmitScalarCast(Value * Src,QualType SrcType,QualType DstType,llvm::Type * SrcTy,llvm::Type * DstTy,ScalarConversionOpts Opts)1231a9ac8606Spatrick Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1232a9ac8606Spatrick                                          QualType DstType, llvm::Type *SrcTy,
1233a9ac8606Spatrick                                          llvm::Type *DstTy,
1234a9ac8606Spatrick                                          ScalarConversionOpts Opts) {
1235a9ac8606Spatrick   // The Element types determine the type of cast to perform.
1236a9ac8606Spatrick   llvm::Type *SrcElementTy;
1237a9ac8606Spatrick   llvm::Type *DstElementTy;
1238a9ac8606Spatrick   QualType SrcElementType;
1239a9ac8606Spatrick   QualType DstElementType;
1240a9ac8606Spatrick   if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1241a9ac8606Spatrick     SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1242a9ac8606Spatrick     DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1243a9ac8606Spatrick     SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1244a9ac8606Spatrick     DstElementType = DstType->castAs<MatrixType>()->getElementType();
1245a9ac8606Spatrick   } else {
1246a9ac8606Spatrick     assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1247a9ac8606Spatrick            "cannot cast between matrix and non-matrix types");
1248a9ac8606Spatrick     SrcElementTy = SrcTy;
1249a9ac8606Spatrick     DstElementTy = DstTy;
1250a9ac8606Spatrick     SrcElementType = SrcType;
1251a9ac8606Spatrick     DstElementType = DstType;
1252a9ac8606Spatrick   }
1253a9ac8606Spatrick 
1254a9ac8606Spatrick   if (isa<llvm::IntegerType>(SrcElementTy)) {
1255a9ac8606Spatrick     bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1256a9ac8606Spatrick     if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1257a9ac8606Spatrick       InputSigned = true;
1258a9ac8606Spatrick     }
1259a9ac8606Spatrick 
1260a9ac8606Spatrick     if (isa<llvm::IntegerType>(DstElementTy))
1261a9ac8606Spatrick       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1262a9ac8606Spatrick     if (InputSigned)
1263a9ac8606Spatrick       return Builder.CreateSIToFP(Src, DstTy, "conv");
1264a9ac8606Spatrick     return Builder.CreateUIToFP(Src, DstTy, "conv");
1265a9ac8606Spatrick   }
1266a9ac8606Spatrick 
1267a9ac8606Spatrick   if (isa<llvm::IntegerType>(DstElementTy)) {
1268a9ac8606Spatrick     assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1269*12c85518Srobert     bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1270*12c85518Srobert 
1271*12c85518Srobert     // If we can't recognize overflow as undefined behavior, assume that
1272*12c85518Srobert     // overflow saturates. This protects against normal optimizations if we are
1273*12c85518Srobert     // compiling with non-standard FP semantics.
1274*12c85518Srobert     if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1275*12c85518Srobert       llvm::Intrinsic::ID IID =
1276*12c85518Srobert           IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1277*12c85518Srobert       return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1278*12c85518Srobert     }
1279*12c85518Srobert 
1280*12c85518Srobert     if (IsSigned)
1281a9ac8606Spatrick       return Builder.CreateFPToSI(Src, DstTy, "conv");
1282a9ac8606Spatrick     return Builder.CreateFPToUI(Src, DstTy, "conv");
1283a9ac8606Spatrick   }
1284a9ac8606Spatrick 
1285a9ac8606Spatrick   if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1286a9ac8606Spatrick     return Builder.CreateFPTrunc(Src, DstTy, "conv");
1287a9ac8606Spatrick   return Builder.CreateFPExt(Src, DstTy, "conv");
1288a9ac8606Spatrick }
1289a9ac8606Spatrick 
1290e5dd7070Spatrick /// Emit a conversion from the specified type to the specified destination type,
1291e5dd7070Spatrick /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType,SourceLocation Loc,ScalarConversionOpts Opts)1292e5dd7070Spatrick Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1293e5dd7070Spatrick                                                QualType DstType,
1294e5dd7070Spatrick                                                SourceLocation Loc,
1295e5dd7070Spatrick                                                ScalarConversionOpts Opts) {
1296e5dd7070Spatrick   // All conversions involving fixed point types should be handled by the
1297e5dd7070Spatrick   // EmitFixedPoint family functions. This is done to prevent bloating up this
1298e5dd7070Spatrick   // function more, and although fixed point numbers are represented by
1299e5dd7070Spatrick   // integers, we do not want to follow any logic that assumes they should be
1300e5dd7070Spatrick   // treated as integers.
1301e5dd7070Spatrick   // TODO(leonardchan): When necessary, add another if statement checking for
1302e5dd7070Spatrick   // conversions to fixed point types from other types.
1303e5dd7070Spatrick   if (SrcType->isFixedPointType()) {
1304e5dd7070Spatrick     if (DstType->isBooleanType())
1305e5dd7070Spatrick       // It is important that we check this before checking if the dest type is
1306e5dd7070Spatrick       // an integer because booleans are technically integer types.
1307e5dd7070Spatrick       // We do not need to check the padding bit on unsigned types if unsigned
1308e5dd7070Spatrick       // padding is enabled because overflow into this bit is undefined
1309e5dd7070Spatrick       // behavior.
1310e5dd7070Spatrick       return Builder.CreateIsNotNull(Src, "tobool");
1311a9ac8606Spatrick     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1312a9ac8606Spatrick         DstType->isRealFloatingType())
1313e5dd7070Spatrick       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1314e5dd7070Spatrick 
1315e5dd7070Spatrick     llvm_unreachable(
1316e5dd7070Spatrick         "Unhandled scalar conversion from a fixed point type to another type.");
1317e5dd7070Spatrick   } else if (DstType->isFixedPointType()) {
1318a9ac8606Spatrick     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1319e5dd7070Spatrick       // This also includes converting booleans and enums to fixed point types.
1320e5dd7070Spatrick       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1321e5dd7070Spatrick 
1322e5dd7070Spatrick     llvm_unreachable(
1323e5dd7070Spatrick         "Unhandled scalar conversion to a fixed point type from another type.");
1324e5dd7070Spatrick   }
1325e5dd7070Spatrick 
1326e5dd7070Spatrick   QualType NoncanonicalSrcType = SrcType;
1327e5dd7070Spatrick   QualType NoncanonicalDstType = DstType;
1328e5dd7070Spatrick 
1329e5dd7070Spatrick   SrcType = CGF.getContext().getCanonicalType(SrcType);
1330e5dd7070Spatrick   DstType = CGF.getContext().getCanonicalType(DstType);
1331e5dd7070Spatrick   if (SrcType == DstType) return Src;
1332e5dd7070Spatrick 
1333e5dd7070Spatrick   if (DstType->isVoidType()) return nullptr;
1334e5dd7070Spatrick 
1335e5dd7070Spatrick   llvm::Value *OrigSrc = Src;
1336e5dd7070Spatrick   QualType OrigSrcType = SrcType;
1337e5dd7070Spatrick   llvm::Type *SrcTy = Src->getType();
1338e5dd7070Spatrick 
1339e5dd7070Spatrick   // Handle conversions to bool first, they are special: comparisons against 0.
1340e5dd7070Spatrick   if (DstType->isBooleanType())
1341e5dd7070Spatrick     return EmitConversionToBool(Src, SrcType);
1342e5dd7070Spatrick 
1343e5dd7070Spatrick   llvm::Type *DstTy = ConvertType(DstType);
1344e5dd7070Spatrick 
1345e5dd7070Spatrick   // Cast from half through float if half isn't a native type.
1346e5dd7070Spatrick   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1347e5dd7070Spatrick     // Cast to FP using the intrinsic if the half type itself isn't supported.
1348e5dd7070Spatrick     if (DstTy->isFloatingPointTy()) {
1349e5dd7070Spatrick       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1350e5dd7070Spatrick         return Builder.CreateCall(
1351e5dd7070Spatrick             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1352e5dd7070Spatrick             Src);
1353e5dd7070Spatrick     } else {
1354e5dd7070Spatrick       // Cast to other types through float, using either the intrinsic or FPExt,
1355e5dd7070Spatrick       // depending on whether the half type itself is supported
1356e5dd7070Spatrick       // (as opposed to operations on half, available with NativeHalfType).
1357e5dd7070Spatrick       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1358e5dd7070Spatrick         Src = Builder.CreateCall(
1359e5dd7070Spatrick             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1360e5dd7070Spatrick                                  CGF.CGM.FloatTy),
1361e5dd7070Spatrick             Src);
1362e5dd7070Spatrick       } else {
1363e5dd7070Spatrick         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1364e5dd7070Spatrick       }
1365e5dd7070Spatrick       SrcType = CGF.getContext().FloatTy;
1366e5dd7070Spatrick       SrcTy = CGF.FloatTy;
1367e5dd7070Spatrick     }
1368e5dd7070Spatrick   }
1369e5dd7070Spatrick 
1370e5dd7070Spatrick   // Ignore conversions like int -> uint.
1371e5dd7070Spatrick   if (SrcTy == DstTy) {
1372e5dd7070Spatrick     if (Opts.EmitImplicitIntegerSignChangeChecks)
1373e5dd7070Spatrick       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1374e5dd7070Spatrick                                  NoncanonicalDstType, Loc);
1375e5dd7070Spatrick 
1376e5dd7070Spatrick     return Src;
1377e5dd7070Spatrick   }
1378e5dd7070Spatrick 
1379e5dd7070Spatrick   // Handle pointer conversions next: pointers can only be converted to/from
1380e5dd7070Spatrick   // other pointers and integers. Check for pointer types in terms of LLVM, as
1381e5dd7070Spatrick   // some native types (like Obj-C id) may map to a pointer type.
1382e5dd7070Spatrick   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1383e5dd7070Spatrick     // The source value may be an integer, or a pointer.
1384e5dd7070Spatrick     if (isa<llvm::PointerType>(SrcTy))
1385e5dd7070Spatrick       return Builder.CreateBitCast(Src, DstTy, "conv");
1386e5dd7070Spatrick 
1387e5dd7070Spatrick     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1388e5dd7070Spatrick     // First, convert to the correct width so that we control the kind of
1389e5dd7070Spatrick     // extension.
1390e5dd7070Spatrick     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1391e5dd7070Spatrick     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1392e5dd7070Spatrick     llvm::Value* IntResult =
1393e5dd7070Spatrick         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1394e5dd7070Spatrick     // Then, cast to pointer.
1395e5dd7070Spatrick     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1396e5dd7070Spatrick   }
1397e5dd7070Spatrick 
1398e5dd7070Spatrick   if (isa<llvm::PointerType>(SrcTy)) {
1399e5dd7070Spatrick     // Must be an ptr to int cast.
1400e5dd7070Spatrick     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1401e5dd7070Spatrick     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1402e5dd7070Spatrick   }
1403e5dd7070Spatrick 
1404e5dd7070Spatrick   // A scalar can be splatted to an extended vector of the same element type
1405e5dd7070Spatrick   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1406e5dd7070Spatrick     // Sema should add casts to make sure that the source expression's type is
1407e5dd7070Spatrick     // the same as the vector's element type (sans qualifiers)
1408e5dd7070Spatrick     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1409e5dd7070Spatrick                SrcType.getTypePtr() &&
1410e5dd7070Spatrick            "Splatted expr doesn't match with vector element type?");
1411e5dd7070Spatrick 
1412e5dd7070Spatrick     // Splat the element across to all elements
1413a9ac8606Spatrick     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1414e5dd7070Spatrick     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1415e5dd7070Spatrick   }
1416e5dd7070Spatrick 
1417a9ac8606Spatrick   if (SrcType->isMatrixType() && DstType->isMatrixType())
1418a9ac8606Spatrick     return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1419a9ac8606Spatrick 
1420e5dd7070Spatrick   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1421e5dd7070Spatrick     // Allow bitcast from vector to integer/fp of the same size.
1422*12c85518Srobert     llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
1423*12c85518Srobert     llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
1424e5dd7070Spatrick     if (SrcSize == DstSize)
1425e5dd7070Spatrick       return Builder.CreateBitCast(Src, DstTy, "conv");
1426e5dd7070Spatrick 
1427e5dd7070Spatrick     // Conversions between vectors of different sizes are not allowed except
1428e5dd7070Spatrick     // when vectors of half are involved. Operations on storage-only half
1429e5dd7070Spatrick     // vectors require promoting half vector operands to float vectors and
1430e5dd7070Spatrick     // truncating the result, which is either an int or float vector, to a
1431e5dd7070Spatrick     // short or half vector.
1432e5dd7070Spatrick 
1433e5dd7070Spatrick     // Source and destination are both expected to be vectors.
1434ec727ea7Spatrick     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1435ec727ea7Spatrick     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1436e5dd7070Spatrick     (void)DstElementTy;
1437e5dd7070Spatrick 
1438e5dd7070Spatrick     assert(((SrcElementTy->isIntegerTy() &&
1439e5dd7070Spatrick              DstElementTy->isIntegerTy()) ||
1440e5dd7070Spatrick             (SrcElementTy->isFloatingPointTy() &&
1441e5dd7070Spatrick              DstElementTy->isFloatingPointTy())) &&
1442e5dd7070Spatrick            "unexpected conversion between a floating-point vector and an "
1443e5dd7070Spatrick            "integer vector");
1444e5dd7070Spatrick 
1445e5dd7070Spatrick     // Truncate an i32 vector to an i16 vector.
1446e5dd7070Spatrick     if (SrcElementTy->isIntegerTy())
1447e5dd7070Spatrick       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1448e5dd7070Spatrick 
1449e5dd7070Spatrick     // Truncate a float vector to a half vector.
1450e5dd7070Spatrick     if (SrcSize > DstSize)
1451e5dd7070Spatrick       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1452e5dd7070Spatrick 
1453e5dd7070Spatrick     // Promote a half vector to a float vector.
1454e5dd7070Spatrick     return Builder.CreateFPExt(Src, DstTy, "conv");
1455e5dd7070Spatrick   }
1456e5dd7070Spatrick 
1457e5dd7070Spatrick   // Finally, we have the arithmetic types: real int/float.
1458e5dd7070Spatrick   Value *Res = nullptr;
1459e5dd7070Spatrick   llvm::Type *ResTy = DstTy;
1460e5dd7070Spatrick 
1461e5dd7070Spatrick   // An overflowing conversion has undefined behavior if either the source type
1462e5dd7070Spatrick   // or the destination type is a floating-point type. However, we consider the
1463e5dd7070Spatrick   // range of representable values for all floating-point types to be
1464e5dd7070Spatrick   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1465e5dd7070Spatrick   // floating-point type.
1466e5dd7070Spatrick   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1467e5dd7070Spatrick       OrigSrcType->isFloatingType())
1468e5dd7070Spatrick     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1469e5dd7070Spatrick                              Loc);
1470e5dd7070Spatrick 
1471e5dd7070Spatrick   // Cast to half through float if half isn't a native type.
1472e5dd7070Spatrick   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1473e5dd7070Spatrick     // Make sure we cast in a single step if from another FP type.
1474e5dd7070Spatrick     if (SrcTy->isFloatingPointTy()) {
1475e5dd7070Spatrick       // Use the intrinsic if the half type itself isn't supported
1476e5dd7070Spatrick       // (as opposed to operations on half, available with NativeHalfType).
1477e5dd7070Spatrick       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1478e5dd7070Spatrick         return Builder.CreateCall(
1479e5dd7070Spatrick             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1480e5dd7070Spatrick       // If the half type is supported, just use an fptrunc.
1481e5dd7070Spatrick       return Builder.CreateFPTrunc(Src, DstTy);
1482e5dd7070Spatrick     }
1483e5dd7070Spatrick     DstTy = CGF.FloatTy;
1484e5dd7070Spatrick   }
1485e5dd7070Spatrick 
1486a9ac8606Spatrick   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1487e5dd7070Spatrick 
1488e5dd7070Spatrick   if (DstTy != ResTy) {
1489e5dd7070Spatrick     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1490e5dd7070Spatrick       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1491e5dd7070Spatrick       Res = Builder.CreateCall(
1492e5dd7070Spatrick         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1493e5dd7070Spatrick         Res);
1494e5dd7070Spatrick     } else {
1495e5dd7070Spatrick       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1496e5dd7070Spatrick     }
1497e5dd7070Spatrick   }
1498e5dd7070Spatrick 
1499e5dd7070Spatrick   if (Opts.EmitImplicitIntegerTruncationChecks)
1500e5dd7070Spatrick     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1501e5dd7070Spatrick                                NoncanonicalDstType, Loc);
1502e5dd7070Spatrick 
1503e5dd7070Spatrick   if (Opts.EmitImplicitIntegerSignChangeChecks)
1504e5dd7070Spatrick     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1505e5dd7070Spatrick                                NoncanonicalDstType, Loc);
1506e5dd7070Spatrick 
1507e5dd7070Spatrick   return Res;
1508e5dd7070Spatrick }
1509e5dd7070Spatrick 
EmitFixedPointConversion(Value * Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)1510e5dd7070Spatrick Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1511e5dd7070Spatrick                                                    QualType DstTy,
1512e5dd7070Spatrick                                                    SourceLocation Loc) {
1513a9ac8606Spatrick   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1514a9ac8606Spatrick   llvm::Value *Result;
1515a9ac8606Spatrick   if (SrcTy->isRealFloatingType())
1516a9ac8606Spatrick     Result = FPBuilder.CreateFloatingToFixed(Src,
1517a9ac8606Spatrick         CGF.getContext().getFixedPointSemantics(DstTy));
1518a9ac8606Spatrick   else if (DstTy->isRealFloatingType())
1519a9ac8606Spatrick     Result = FPBuilder.CreateFixedToFloating(Src,
1520a9ac8606Spatrick         CGF.getContext().getFixedPointSemantics(SrcTy),
1521a9ac8606Spatrick         ConvertType(DstTy));
1522a9ac8606Spatrick   else {
1523a9ac8606Spatrick     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1524a9ac8606Spatrick     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1525e5dd7070Spatrick 
1526a9ac8606Spatrick     if (DstTy->isIntegerType())
1527a9ac8606Spatrick       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1528a9ac8606Spatrick                                               DstFPSema.getWidth(),
1529a9ac8606Spatrick                                               DstFPSema.isSigned());
1530a9ac8606Spatrick     else if (SrcTy->isIntegerType())
1531a9ac8606Spatrick       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1532a9ac8606Spatrick                                                DstFPSema);
1533a9ac8606Spatrick     else
1534a9ac8606Spatrick       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1535e5dd7070Spatrick   }
1536e5dd7070Spatrick   return Result;
1537e5dd7070Spatrick }
1538e5dd7070Spatrick 
1539e5dd7070Spatrick /// Emit a conversion from the specified complex type to the specified
1540e5dd7070Spatrick /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)1541e5dd7070Spatrick Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1542e5dd7070Spatrick     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1543e5dd7070Spatrick     SourceLocation Loc) {
1544e5dd7070Spatrick   // Get the source element type.
1545e5dd7070Spatrick   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1546e5dd7070Spatrick 
1547e5dd7070Spatrick   // Handle conversions to bool first, they are special: comparisons against 0.
1548e5dd7070Spatrick   if (DstTy->isBooleanType()) {
1549e5dd7070Spatrick     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1550e5dd7070Spatrick     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1551e5dd7070Spatrick     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1552e5dd7070Spatrick     return Builder.CreateOr(Src.first, Src.second, "tobool");
1553e5dd7070Spatrick   }
1554e5dd7070Spatrick 
1555e5dd7070Spatrick   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1556e5dd7070Spatrick   // the imaginary part of the complex value is discarded and the value of the
1557e5dd7070Spatrick   // real part is converted according to the conversion rules for the
1558e5dd7070Spatrick   // corresponding real type.
1559e5dd7070Spatrick   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1560e5dd7070Spatrick }
1561e5dd7070Spatrick 
EmitNullValue(QualType Ty)1562e5dd7070Spatrick Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1563e5dd7070Spatrick   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1564e5dd7070Spatrick }
1565e5dd7070Spatrick 
1566e5dd7070Spatrick /// Emit a sanitization check for the given "binary" operation (which
1567e5dd7070Spatrick /// might actually be a unary increment which has been lowered to a binary
1568e5dd7070Spatrick /// operation). The check passes if all values in \p Checks (which are \c i1),
1569e5dd7070Spatrick /// are \c true.
EmitBinOpCheck(ArrayRef<std::pair<Value *,SanitizerMask>> Checks,const BinOpInfo & Info)1570e5dd7070Spatrick void ScalarExprEmitter::EmitBinOpCheck(
1571e5dd7070Spatrick     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1572e5dd7070Spatrick   assert(CGF.IsSanitizerScope);
1573e5dd7070Spatrick   SanitizerHandler Check;
1574e5dd7070Spatrick   SmallVector<llvm::Constant *, 4> StaticData;
1575e5dd7070Spatrick   SmallVector<llvm::Value *, 2> DynamicData;
1576e5dd7070Spatrick 
1577e5dd7070Spatrick   BinaryOperatorKind Opcode = Info.Opcode;
1578e5dd7070Spatrick   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1579e5dd7070Spatrick     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1580e5dd7070Spatrick 
1581e5dd7070Spatrick   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1582e5dd7070Spatrick   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1583e5dd7070Spatrick   if (UO && UO->getOpcode() == UO_Minus) {
1584e5dd7070Spatrick     Check = SanitizerHandler::NegateOverflow;
1585e5dd7070Spatrick     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1586e5dd7070Spatrick     DynamicData.push_back(Info.RHS);
1587e5dd7070Spatrick   } else {
1588e5dd7070Spatrick     if (BinaryOperator::isShiftOp(Opcode)) {
1589e5dd7070Spatrick       // Shift LHS negative or too large, or RHS out of bounds.
1590e5dd7070Spatrick       Check = SanitizerHandler::ShiftOutOfBounds;
1591e5dd7070Spatrick       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1592e5dd7070Spatrick       StaticData.push_back(
1593e5dd7070Spatrick         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1594e5dd7070Spatrick       StaticData.push_back(
1595e5dd7070Spatrick         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1596e5dd7070Spatrick     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1597e5dd7070Spatrick       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1598e5dd7070Spatrick       Check = SanitizerHandler::DivremOverflow;
1599e5dd7070Spatrick       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1600e5dd7070Spatrick     } else {
1601e5dd7070Spatrick       // Arithmetic overflow (+, -, *).
1602e5dd7070Spatrick       switch (Opcode) {
1603e5dd7070Spatrick       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1604e5dd7070Spatrick       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1605e5dd7070Spatrick       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1606e5dd7070Spatrick       default: llvm_unreachable("unexpected opcode for bin op check");
1607e5dd7070Spatrick       }
1608e5dd7070Spatrick       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1609e5dd7070Spatrick     }
1610e5dd7070Spatrick     DynamicData.push_back(Info.LHS);
1611e5dd7070Spatrick     DynamicData.push_back(Info.RHS);
1612e5dd7070Spatrick   }
1613e5dd7070Spatrick 
1614e5dd7070Spatrick   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1615e5dd7070Spatrick }
1616e5dd7070Spatrick 
1617e5dd7070Spatrick //===----------------------------------------------------------------------===//
1618e5dd7070Spatrick //                            Visitor Methods
1619e5dd7070Spatrick //===----------------------------------------------------------------------===//
1620e5dd7070Spatrick 
VisitExpr(Expr * E)1621e5dd7070Spatrick Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1622e5dd7070Spatrick   CGF.ErrorUnsupported(E, "scalar expression");
1623e5dd7070Spatrick   if (E->getType()->isVoidType())
1624e5dd7070Spatrick     return nullptr;
1625e5dd7070Spatrick   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1626e5dd7070Spatrick }
1627e5dd7070Spatrick 
1628a9ac8606Spatrick Value *
VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr * E)1629a9ac8606Spatrick ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1630a9ac8606Spatrick   ASTContext &Context = CGF.getContext();
1631*12c85518Srobert   unsigned AddrSpace =
1632*12c85518Srobert       Context.getTargetAddressSpace(CGF.CGM.GetGlobalConstantAddressSpace());
1633a9ac8606Spatrick   llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1634*12c85518Srobert       E->ComputeName(Context), "__usn_str", AddrSpace);
1635a9ac8606Spatrick 
1636*12c85518Srobert   llvm::Type *ExprTy = ConvertType(E->getType());
1637*12c85518Srobert   return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy,
1638*12c85518Srobert                                                      "usn_addr_cast");
1639a9ac8606Spatrick }
1640a9ac8606Spatrick 
VisitShuffleVectorExpr(ShuffleVectorExpr * E)1641e5dd7070Spatrick Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1642e5dd7070Spatrick   // Vector Mask Case
1643e5dd7070Spatrick   if (E->getNumSubExprs() == 2) {
1644e5dd7070Spatrick     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1645e5dd7070Spatrick     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1646e5dd7070Spatrick     Value *Mask;
1647e5dd7070Spatrick 
1648a9ac8606Spatrick     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1649e5dd7070Spatrick     unsigned LHSElts = LTy->getNumElements();
1650e5dd7070Spatrick 
1651e5dd7070Spatrick     Mask = RHS;
1652e5dd7070Spatrick 
1653a9ac8606Spatrick     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1654e5dd7070Spatrick 
1655e5dd7070Spatrick     // Mask off the high bits of each shuffle index.
1656e5dd7070Spatrick     Value *MaskBits =
1657e5dd7070Spatrick         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1658e5dd7070Spatrick     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1659e5dd7070Spatrick 
1660e5dd7070Spatrick     // newv = undef
1661e5dd7070Spatrick     // mask = mask & maskbits
1662e5dd7070Spatrick     // for each elt
1663e5dd7070Spatrick     //   n = extract mask i
1664e5dd7070Spatrick     //   x = extract val n
1665e5dd7070Spatrick     //   newv = insert newv, x, i
1666ec727ea7Spatrick     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1667e5dd7070Spatrick                                            MTy->getNumElements());
1668*12c85518Srobert     Value* NewV = llvm::PoisonValue::get(RTy);
1669e5dd7070Spatrick     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1670e5dd7070Spatrick       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1671e5dd7070Spatrick       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1672e5dd7070Spatrick 
1673e5dd7070Spatrick       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1674e5dd7070Spatrick       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1675e5dd7070Spatrick     }
1676e5dd7070Spatrick     return NewV;
1677e5dd7070Spatrick   }
1678e5dd7070Spatrick 
1679e5dd7070Spatrick   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1680e5dd7070Spatrick   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1681e5dd7070Spatrick 
1682ec727ea7Spatrick   SmallVector<int, 32> Indices;
1683e5dd7070Spatrick   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1684e5dd7070Spatrick     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1685e5dd7070Spatrick     // Check for -1 and output it as undef in the IR.
1686*12c85518Srobert     if (Idx.isSigned() && Idx.isAllOnes())
1687ec727ea7Spatrick       Indices.push_back(-1);
1688e5dd7070Spatrick     else
1689ec727ea7Spatrick       Indices.push_back(Idx.getZExtValue());
1690e5dd7070Spatrick   }
1691e5dd7070Spatrick 
1692ec727ea7Spatrick   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1693e5dd7070Spatrick }
1694e5dd7070Spatrick 
VisitConvertVectorExpr(ConvertVectorExpr * E)1695e5dd7070Spatrick Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1696e5dd7070Spatrick   QualType SrcType = E->getSrcExpr()->getType(),
1697e5dd7070Spatrick            DstType = E->getType();
1698e5dd7070Spatrick 
1699e5dd7070Spatrick   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1700e5dd7070Spatrick 
1701e5dd7070Spatrick   SrcType = CGF.getContext().getCanonicalType(SrcType);
1702e5dd7070Spatrick   DstType = CGF.getContext().getCanonicalType(DstType);
1703e5dd7070Spatrick   if (SrcType == DstType) return Src;
1704e5dd7070Spatrick 
1705e5dd7070Spatrick   assert(SrcType->isVectorType() &&
1706e5dd7070Spatrick          "ConvertVector source type must be a vector");
1707e5dd7070Spatrick   assert(DstType->isVectorType() &&
1708e5dd7070Spatrick          "ConvertVector destination type must be a vector");
1709e5dd7070Spatrick 
1710e5dd7070Spatrick   llvm::Type *SrcTy = Src->getType();
1711e5dd7070Spatrick   llvm::Type *DstTy = ConvertType(DstType);
1712e5dd7070Spatrick 
1713e5dd7070Spatrick   // Ignore conversions like int -> uint.
1714e5dd7070Spatrick   if (SrcTy == DstTy)
1715e5dd7070Spatrick     return Src;
1716e5dd7070Spatrick 
1717e5dd7070Spatrick   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1718e5dd7070Spatrick            DstEltType = DstType->castAs<VectorType>()->getElementType();
1719e5dd7070Spatrick 
1720e5dd7070Spatrick   assert(SrcTy->isVectorTy() &&
1721e5dd7070Spatrick          "ConvertVector source IR type must be a vector");
1722e5dd7070Spatrick   assert(DstTy->isVectorTy() &&
1723e5dd7070Spatrick          "ConvertVector destination IR type must be a vector");
1724e5dd7070Spatrick 
1725ec727ea7Spatrick   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1726ec727ea7Spatrick              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1727e5dd7070Spatrick 
1728e5dd7070Spatrick   if (DstEltType->isBooleanType()) {
1729e5dd7070Spatrick     assert((SrcEltTy->isFloatingPointTy() ||
1730e5dd7070Spatrick             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1731e5dd7070Spatrick 
1732e5dd7070Spatrick     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1733e5dd7070Spatrick     if (SrcEltTy->isFloatingPointTy()) {
1734e5dd7070Spatrick       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1735e5dd7070Spatrick     } else {
1736e5dd7070Spatrick       return Builder.CreateICmpNE(Src, Zero, "tobool");
1737e5dd7070Spatrick     }
1738e5dd7070Spatrick   }
1739e5dd7070Spatrick 
1740e5dd7070Spatrick   // We have the arithmetic types: real int/float.
1741e5dd7070Spatrick   Value *Res = nullptr;
1742e5dd7070Spatrick 
1743e5dd7070Spatrick   if (isa<llvm::IntegerType>(SrcEltTy)) {
1744e5dd7070Spatrick     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1745e5dd7070Spatrick     if (isa<llvm::IntegerType>(DstEltTy))
1746e5dd7070Spatrick       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1747e5dd7070Spatrick     else if (InputSigned)
1748e5dd7070Spatrick       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1749e5dd7070Spatrick     else
1750e5dd7070Spatrick       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1751e5dd7070Spatrick   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1752e5dd7070Spatrick     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1753e5dd7070Spatrick     if (DstEltType->isSignedIntegerOrEnumerationType())
1754e5dd7070Spatrick       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1755e5dd7070Spatrick     else
1756e5dd7070Spatrick       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1757e5dd7070Spatrick   } else {
1758e5dd7070Spatrick     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1759e5dd7070Spatrick            "Unknown real conversion");
1760e5dd7070Spatrick     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1761e5dd7070Spatrick       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1762e5dd7070Spatrick     else
1763e5dd7070Spatrick       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1764e5dd7070Spatrick   }
1765e5dd7070Spatrick 
1766e5dd7070Spatrick   return Res;
1767e5dd7070Spatrick }
1768e5dd7070Spatrick 
VisitMemberExpr(MemberExpr * E)1769e5dd7070Spatrick Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1770e5dd7070Spatrick   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1771e5dd7070Spatrick     CGF.EmitIgnoredExpr(E->getBase());
1772e5dd7070Spatrick     return CGF.emitScalarConstant(Constant, E);
1773e5dd7070Spatrick   } else {
1774e5dd7070Spatrick     Expr::EvalResult Result;
1775e5dd7070Spatrick     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1776e5dd7070Spatrick       llvm::APSInt Value = Result.Val.getInt();
1777e5dd7070Spatrick       CGF.EmitIgnoredExpr(E->getBase());
1778e5dd7070Spatrick       return Builder.getInt(Value);
1779e5dd7070Spatrick     }
1780e5dd7070Spatrick   }
1781e5dd7070Spatrick 
1782e5dd7070Spatrick   return EmitLoadOfLValue(E);
1783e5dd7070Spatrick }
1784e5dd7070Spatrick 
VisitArraySubscriptExpr(ArraySubscriptExpr * E)1785e5dd7070Spatrick Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1786e5dd7070Spatrick   TestAndClearIgnoreResultAssign();
1787e5dd7070Spatrick 
1788e5dd7070Spatrick   // Emit subscript expressions in rvalue context's.  For most cases, this just
1789e5dd7070Spatrick   // loads the lvalue formed by the subscript expr.  However, we have to be
1790e5dd7070Spatrick   // careful, because the base of a vector subscript is occasionally an rvalue,
1791e5dd7070Spatrick   // so we can't get it as an lvalue.
1792*12c85518Srobert   if (!E->getBase()->getType()->isVectorType() &&
1793*12c85518Srobert       !E->getBase()->getType()->isVLSTBuiltinType())
1794e5dd7070Spatrick     return EmitLoadOfLValue(E);
1795e5dd7070Spatrick 
1796e5dd7070Spatrick   // Handle the vector case.  The base must be a vector, the index must be an
1797e5dd7070Spatrick   // integer value.
1798e5dd7070Spatrick   Value *Base = Visit(E->getBase());
1799e5dd7070Spatrick   Value *Idx  = Visit(E->getIdx());
1800e5dd7070Spatrick   QualType IdxTy = E->getIdx()->getType();
1801e5dd7070Spatrick 
1802e5dd7070Spatrick   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1803e5dd7070Spatrick     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1804e5dd7070Spatrick 
1805e5dd7070Spatrick   return Builder.CreateExtractElement(Base, Idx, "vecext");
1806e5dd7070Spatrick }
1807e5dd7070Spatrick 
VisitMatrixSubscriptExpr(MatrixSubscriptExpr * E)1808ec727ea7Spatrick Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1809ec727ea7Spatrick   TestAndClearIgnoreResultAssign();
1810ec727ea7Spatrick 
1811ec727ea7Spatrick   // Handle the vector case.  The base must be a vector, the index must be an
1812ec727ea7Spatrick   // integer value.
1813ec727ea7Spatrick   Value *RowIdx = Visit(E->getRowIdx());
1814ec727ea7Spatrick   Value *ColumnIdx = Visit(E->getColumnIdx());
1815*12c85518Srobert 
1816*12c85518Srobert   const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
1817*12c85518Srobert   unsigned NumRows = MatrixTy->getNumRows();
1818*12c85518Srobert   llvm::MatrixBuilder MB(Builder);
1819*12c85518Srobert   Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
1820*12c85518Srobert   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
1821*12c85518Srobert     MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
1822*12c85518Srobert 
1823ec727ea7Spatrick   Value *Matrix = Visit(E->getBase());
1824ec727ea7Spatrick 
1825ec727ea7Spatrick   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1826*12c85518Srobert   return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
1827e5dd7070Spatrick }
1828e5dd7070Spatrick 
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off)1829ec727ea7Spatrick static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1830ec727ea7Spatrick                       unsigned Off) {
1831ec727ea7Spatrick   int MV = SVI->getMaskValue(Idx);
1832ec727ea7Spatrick   if (MV == -1)
1833ec727ea7Spatrick     return -1;
1834ec727ea7Spatrick   return Off + MV;
1835e5dd7070Spatrick }
1836ec727ea7Spatrick 
getAsInt32(llvm::ConstantInt * C,llvm::Type * I32Ty)1837ec727ea7Spatrick static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1838ec727ea7Spatrick   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1839ec727ea7Spatrick          "Index operand too large for shufflevector mask!");
1840ec727ea7Spatrick   return C->getZExtValue();
1841e5dd7070Spatrick }
1842e5dd7070Spatrick 
VisitInitListExpr(InitListExpr * E)1843e5dd7070Spatrick Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1844e5dd7070Spatrick   bool Ignore = TestAndClearIgnoreResultAssign();
1845e5dd7070Spatrick   (void)Ignore;
1846e5dd7070Spatrick   assert (Ignore == false && "init list ignored");
1847e5dd7070Spatrick   unsigned NumInitElements = E->getNumInits();
1848e5dd7070Spatrick 
1849e5dd7070Spatrick   if (E->hadArrayRangeDesignator())
1850e5dd7070Spatrick     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1851e5dd7070Spatrick 
1852e5dd7070Spatrick   llvm::VectorType *VType =
1853e5dd7070Spatrick     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1854e5dd7070Spatrick 
1855e5dd7070Spatrick   if (!VType) {
1856e5dd7070Spatrick     if (NumInitElements == 0) {
1857e5dd7070Spatrick       // C++11 value-initialization for the scalar.
1858e5dd7070Spatrick       return EmitNullValue(E->getType());
1859e5dd7070Spatrick     }
1860e5dd7070Spatrick     // We have a scalar in braces. Just use the first element.
1861e5dd7070Spatrick     return Visit(E->getInit(0));
1862e5dd7070Spatrick   }
1863e5dd7070Spatrick 
1864a9ac8606Spatrick   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1865e5dd7070Spatrick 
1866e5dd7070Spatrick   // Loop over initializers collecting the Value for each, and remembering
1867e5dd7070Spatrick   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1868e5dd7070Spatrick   // us to fold the shuffle for the swizzle into the shuffle for the vector
1869e5dd7070Spatrick   // initializer, since LLVM optimizers generally do not want to touch
1870e5dd7070Spatrick   // shuffles.
1871e5dd7070Spatrick   unsigned CurIdx = 0;
1872e5dd7070Spatrick   bool VIsUndefShuffle = false;
1873e5dd7070Spatrick   llvm::Value *V = llvm::UndefValue::get(VType);
1874e5dd7070Spatrick   for (unsigned i = 0; i != NumInitElements; ++i) {
1875e5dd7070Spatrick     Expr *IE = E->getInit(i);
1876e5dd7070Spatrick     Value *Init = Visit(IE);
1877ec727ea7Spatrick     SmallVector<int, 16> Args;
1878e5dd7070Spatrick 
1879e5dd7070Spatrick     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1880e5dd7070Spatrick 
1881e5dd7070Spatrick     // Handle scalar elements.  If the scalar initializer is actually one
1882e5dd7070Spatrick     // element of a different vector of the same width, use shuffle instead of
1883e5dd7070Spatrick     // extract+insert.
1884e5dd7070Spatrick     if (!VVT) {
1885e5dd7070Spatrick       if (isa<ExtVectorElementExpr>(IE)) {
1886e5dd7070Spatrick         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1887e5dd7070Spatrick 
1888a9ac8606Spatrick         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1889a9ac8606Spatrick                 ->getNumElements() == ResElts) {
1890e5dd7070Spatrick           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1891e5dd7070Spatrick           Value *LHS = nullptr, *RHS = nullptr;
1892e5dd7070Spatrick           if (CurIdx == 0) {
1893e5dd7070Spatrick             // insert into undef -> shuffle (src, undef)
1894e5dd7070Spatrick             // shufflemask must use an i32
1895e5dd7070Spatrick             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1896ec727ea7Spatrick             Args.resize(ResElts, -1);
1897e5dd7070Spatrick 
1898e5dd7070Spatrick             LHS = EI->getVectorOperand();
1899e5dd7070Spatrick             RHS = V;
1900e5dd7070Spatrick             VIsUndefShuffle = true;
1901e5dd7070Spatrick           } else if (VIsUndefShuffle) {
1902e5dd7070Spatrick             // insert into undefshuffle && size match -> shuffle (v, src)
1903e5dd7070Spatrick             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1904e5dd7070Spatrick             for (unsigned j = 0; j != CurIdx; ++j)
1905ec727ea7Spatrick               Args.push_back(getMaskElt(SVV, j, 0));
1906ec727ea7Spatrick             Args.push_back(ResElts + C->getZExtValue());
1907ec727ea7Spatrick             Args.resize(ResElts, -1);
1908e5dd7070Spatrick 
1909e5dd7070Spatrick             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1910e5dd7070Spatrick             RHS = EI->getVectorOperand();
1911e5dd7070Spatrick             VIsUndefShuffle = false;
1912e5dd7070Spatrick           }
1913e5dd7070Spatrick           if (!Args.empty()) {
1914ec727ea7Spatrick             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1915e5dd7070Spatrick             ++CurIdx;
1916e5dd7070Spatrick             continue;
1917e5dd7070Spatrick           }
1918e5dd7070Spatrick         }
1919e5dd7070Spatrick       }
1920e5dd7070Spatrick       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1921e5dd7070Spatrick                                       "vecinit");
1922e5dd7070Spatrick       VIsUndefShuffle = false;
1923e5dd7070Spatrick       ++CurIdx;
1924e5dd7070Spatrick       continue;
1925e5dd7070Spatrick     }
1926e5dd7070Spatrick 
1927a9ac8606Spatrick     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1928e5dd7070Spatrick 
1929e5dd7070Spatrick     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1930e5dd7070Spatrick     // input is the same width as the vector being constructed, generate an
1931e5dd7070Spatrick     // optimized shuffle of the swizzle input into the result.
1932e5dd7070Spatrick     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1933e5dd7070Spatrick     if (isa<ExtVectorElementExpr>(IE)) {
1934e5dd7070Spatrick       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1935e5dd7070Spatrick       Value *SVOp = SVI->getOperand(0);
1936a9ac8606Spatrick       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1937e5dd7070Spatrick 
1938e5dd7070Spatrick       if (OpTy->getNumElements() == ResElts) {
1939e5dd7070Spatrick         for (unsigned j = 0; j != CurIdx; ++j) {
1940e5dd7070Spatrick           // If the current vector initializer is a shuffle with undef, merge
1941e5dd7070Spatrick           // this shuffle directly into it.
1942e5dd7070Spatrick           if (VIsUndefShuffle) {
1943ec727ea7Spatrick             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1944e5dd7070Spatrick           } else {
1945ec727ea7Spatrick             Args.push_back(j);
1946e5dd7070Spatrick           }
1947e5dd7070Spatrick         }
1948e5dd7070Spatrick         for (unsigned j = 0, je = InitElts; j != je; ++j)
1949ec727ea7Spatrick           Args.push_back(getMaskElt(SVI, j, Offset));
1950ec727ea7Spatrick         Args.resize(ResElts, -1);
1951e5dd7070Spatrick 
1952e5dd7070Spatrick         if (VIsUndefShuffle)
1953e5dd7070Spatrick           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1954e5dd7070Spatrick 
1955e5dd7070Spatrick         Init = SVOp;
1956e5dd7070Spatrick       }
1957e5dd7070Spatrick     }
1958e5dd7070Spatrick 
1959e5dd7070Spatrick     // Extend init to result vector length, and then shuffle its contribution
1960e5dd7070Spatrick     // to the vector initializer into V.
1961e5dd7070Spatrick     if (Args.empty()) {
1962e5dd7070Spatrick       for (unsigned j = 0; j != InitElts; ++j)
1963ec727ea7Spatrick         Args.push_back(j);
1964ec727ea7Spatrick       Args.resize(ResElts, -1);
1965a9ac8606Spatrick       Init = Builder.CreateShuffleVector(Init, Args, "vext");
1966e5dd7070Spatrick 
1967e5dd7070Spatrick       Args.clear();
1968e5dd7070Spatrick       for (unsigned j = 0; j != CurIdx; ++j)
1969ec727ea7Spatrick         Args.push_back(j);
1970e5dd7070Spatrick       for (unsigned j = 0; j != InitElts; ++j)
1971ec727ea7Spatrick         Args.push_back(j + Offset);
1972ec727ea7Spatrick       Args.resize(ResElts, -1);
1973e5dd7070Spatrick     }
1974e5dd7070Spatrick 
1975e5dd7070Spatrick     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1976e5dd7070Spatrick     // merging subsequent shuffles into this one.
1977e5dd7070Spatrick     if (CurIdx == 0)
1978e5dd7070Spatrick       std::swap(V, Init);
1979ec727ea7Spatrick     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1980e5dd7070Spatrick     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1981e5dd7070Spatrick     CurIdx += InitElts;
1982e5dd7070Spatrick   }
1983e5dd7070Spatrick 
1984e5dd7070Spatrick   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1985e5dd7070Spatrick   // Emit remaining default initializers.
1986e5dd7070Spatrick   llvm::Type *EltTy = VType->getElementType();
1987e5dd7070Spatrick 
1988e5dd7070Spatrick   // Emit remaining default initializers
1989e5dd7070Spatrick   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1990e5dd7070Spatrick     Value *Idx = Builder.getInt32(CurIdx);
1991e5dd7070Spatrick     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1992e5dd7070Spatrick     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1993e5dd7070Spatrick   }
1994e5dd7070Spatrick   return V;
1995e5dd7070Spatrick }
1996e5dd7070Spatrick 
ShouldNullCheckClassCastValue(const CastExpr * CE)1997e5dd7070Spatrick bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1998e5dd7070Spatrick   const Expr *E = CE->getSubExpr();
1999e5dd7070Spatrick 
2000e5dd7070Spatrick   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
2001e5dd7070Spatrick     return false;
2002e5dd7070Spatrick 
2003e5dd7070Spatrick   if (isa<CXXThisExpr>(E->IgnoreParens())) {
2004e5dd7070Spatrick     // We always assume that 'this' is never null.
2005e5dd7070Spatrick     return false;
2006e5dd7070Spatrick   }
2007e5dd7070Spatrick 
2008e5dd7070Spatrick   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2009e5dd7070Spatrick     // And that glvalue casts are never null.
2010a9ac8606Spatrick     if (ICE->isGLValue())
2011e5dd7070Spatrick       return false;
2012e5dd7070Spatrick   }
2013e5dd7070Spatrick 
2014e5dd7070Spatrick   return true;
2015e5dd7070Spatrick }
2016e5dd7070Spatrick 
2017e5dd7070Spatrick // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
2018e5dd7070Spatrick // have to handle a more broad range of conversions than explicit casts, as they
2019e5dd7070Spatrick // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)2020e5dd7070Spatrick Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2021e5dd7070Spatrick   Expr *E = CE->getSubExpr();
2022e5dd7070Spatrick   QualType DestTy = CE->getType();
2023e5dd7070Spatrick   CastKind Kind = CE->getCastKind();
2024*12c85518Srobert   CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE);
2025e5dd7070Spatrick 
2026e5dd7070Spatrick   // These cases are generally not written to ignore the result of
2027e5dd7070Spatrick   // evaluating their sub-expressions, so we clear this now.
2028e5dd7070Spatrick   bool Ignored = TestAndClearIgnoreResultAssign();
2029e5dd7070Spatrick 
2030e5dd7070Spatrick   // Since almost all cast kinds apply to scalars, this switch doesn't have
2031e5dd7070Spatrick   // a default case, so the compiler will warn on a missing case.  The cases
2032e5dd7070Spatrick   // are in the same order as in the CastKind enum.
2033e5dd7070Spatrick   switch (Kind) {
2034e5dd7070Spatrick   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2035e5dd7070Spatrick   case CK_BuiltinFnToFnPtr:
2036e5dd7070Spatrick     llvm_unreachable("builtin functions are handled elsewhere");
2037e5dd7070Spatrick 
2038e5dd7070Spatrick   case CK_LValueBitCast:
2039e5dd7070Spatrick   case CK_ObjCObjectLValueCast: {
2040e5dd7070Spatrick     Address Addr = EmitLValue(E).getAddress(CGF);
2041e5dd7070Spatrick     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2042e5dd7070Spatrick     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2043e5dd7070Spatrick     return EmitLoadOfLValue(LV, CE->getExprLoc());
2044e5dd7070Spatrick   }
2045e5dd7070Spatrick 
2046e5dd7070Spatrick   case CK_LValueToRValueBitCast: {
2047e5dd7070Spatrick     LValue SourceLVal = CGF.EmitLValue(E);
2048e5dd7070Spatrick     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2049e5dd7070Spatrick                                                 CGF.ConvertTypeForMem(DestTy));
2050e5dd7070Spatrick     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2051e5dd7070Spatrick     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2052e5dd7070Spatrick     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2053e5dd7070Spatrick   }
2054e5dd7070Spatrick 
2055e5dd7070Spatrick   case CK_CPointerToObjCPointerCast:
2056e5dd7070Spatrick   case CK_BlockPointerToObjCPointerCast:
2057e5dd7070Spatrick   case CK_AnyPointerToBlockPointerCast:
2058e5dd7070Spatrick   case CK_BitCast: {
2059e5dd7070Spatrick     Value *Src = Visit(const_cast<Expr*>(E));
2060e5dd7070Spatrick     llvm::Type *SrcTy = Src->getType();
2061e5dd7070Spatrick     llvm::Type *DstTy = ConvertType(DestTy);
2062e5dd7070Spatrick     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2063e5dd7070Spatrick         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2064e5dd7070Spatrick       llvm_unreachable("wrong cast for pointers in different address spaces"
2065e5dd7070Spatrick                        "(must be an address space cast)!");
2066e5dd7070Spatrick     }
2067e5dd7070Spatrick 
2068e5dd7070Spatrick     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2069*12c85518Srobert       if (auto *PT = DestTy->getAs<PointerType>()) {
2070*12c85518Srobert         CGF.EmitVTablePtrCheckForCast(
2071*12c85518Srobert             PT->getPointeeType(),
2072*12c85518Srobert             Address(Src,
2073*12c85518Srobert                     CGF.ConvertTypeForMem(
2074*12c85518Srobert                         E->getType()->castAs<PointerType>()->getPointeeType()),
2075*12c85518Srobert                     CGF.getPointerAlign()),
2076*12c85518Srobert             /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
2077e5dd7070Spatrick             CE->getBeginLoc());
2078e5dd7070Spatrick       }
2079*12c85518Srobert     }
2080e5dd7070Spatrick 
2081e5dd7070Spatrick     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2082e5dd7070Spatrick       const QualType SrcType = E->getType();
2083e5dd7070Spatrick 
2084e5dd7070Spatrick       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2085e5dd7070Spatrick         // Casting to pointer that could carry dynamic information (provided by
2086e5dd7070Spatrick         // invariant.group) requires launder.
2087e5dd7070Spatrick         Src = Builder.CreateLaunderInvariantGroup(Src);
2088e5dd7070Spatrick       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2089e5dd7070Spatrick         // Casting to pointer that does not carry dynamic information (provided
2090e5dd7070Spatrick         // by invariant.group) requires stripping it.  Note that we don't do it
2091e5dd7070Spatrick         // if the source could not be dynamic type and destination could be
2092e5dd7070Spatrick         // dynamic because dynamic information is already laundered.  It is
2093e5dd7070Spatrick         // because launder(strip(src)) == launder(src), so there is no need to
2094e5dd7070Spatrick         // add extra strip before launder.
2095e5dd7070Spatrick         Src = Builder.CreateStripInvariantGroup(Src);
2096e5dd7070Spatrick       }
2097e5dd7070Spatrick     }
2098e5dd7070Spatrick 
2099ec727ea7Spatrick     // Update heapallocsite metadata when there is an explicit pointer cast.
2100ec727ea7Spatrick     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2101ec727ea7Spatrick       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2102ec727ea7Spatrick         QualType PointeeType = DestTy->getPointeeType();
2103ec727ea7Spatrick         if (!PointeeType.isNull())
2104ec727ea7Spatrick           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2105ec727ea7Spatrick                                                        CE->getExprLoc());
2106ec727ea7Spatrick       }
2107ec727ea7Spatrick     }
2108e5dd7070Spatrick 
2109a9ac8606Spatrick     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2110*12c85518Srobert     // same element type, use the llvm.vector.insert intrinsic to perform the
2111*12c85518Srobert     // bitcast.
2112a9ac8606Spatrick     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2113a9ac8606Spatrick       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2114*12c85518Srobert         // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
2115*12c85518Srobert         // vector, use a vector insert and bitcast the result.
2116*12c85518Srobert         bool NeedsBitCast = false;
2117*12c85518Srobert         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2118*12c85518Srobert         llvm::Type *OrigType = DstTy;
2119*12c85518Srobert         if (ScalableDst == PredType &&
2120*12c85518Srobert             FixedSrc->getElementType() == Builder.getInt8Ty()) {
2121*12c85518Srobert           DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2122*12c85518Srobert           ScalableDst = cast<llvm::ScalableVectorType>(DstTy);
2123*12c85518Srobert           NeedsBitCast = true;
2124*12c85518Srobert         }
2125a9ac8606Spatrick         if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2126a9ac8606Spatrick           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2127a9ac8606Spatrick           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2128*12c85518Srobert           llvm::Value *Result = Builder.CreateInsertVector(
2129*12c85518Srobert               DstTy, UndefVec, Src, Zero, "castScalableSve");
2130*12c85518Srobert           if (NeedsBitCast)
2131*12c85518Srobert             Result = Builder.CreateBitCast(Result, OrigType);
2132*12c85518Srobert           return Result;
2133a9ac8606Spatrick         }
2134a9ac8606Spatrick       }
2135a9ac8606Spatrick     }
2136a9ac8606Spatrick 
2137a9ac8606Spatrick     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2138*12c85518Srobert     // same element type, use the llvm.vector.extract intrinsic to perform the
2139*12c85518Srobert     // bitcast.
2140a9ac8606Spatrick     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2141a9ac8606Spatrick       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2142*12c85518Srobert         // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2143*12c85518Srobert         // vector, bitcast the source and use a vector extract.
2144*12c85518Srobert         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2145*12c85518Srobert         if (ScalableSrc == PredType &&
2146*12c85518Srobert             FixedDst->getElementType() == Builder.getInt8Ty()) {
2147*12c85518Srobert           SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2148*12c85518Srobert           ScalableSrc = cast<llvm::ScalableVectorType>(SrcTy);
2149*12c85518Srobert           Src = Builder.CreateBitCast(Src, SrcTy);
2150*12c85518Srobert         }
2151a9ac8606Spatrick         if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2152a9ac8606Spatrick           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2153a9ac8606Spatrick           return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2154a9ac8606Spatrick         }
2155a9ac8606Spatrick       }
2156a9ac8606Spatrick     }
2157a9ac8606Spatrick 
2158a9ac8606Spatrick     // Perform VLAT <-> VLST bitcast through memory.
2159a9ac8606Spatrick     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2160a9ac8606Spatrick     //       require the element types of the vectors to be the same, we
2161*12c85518Srobert     //       need to keep this around for bitcasts between VLAT <-> VLST where
2162*12c85518Srobert     //       the element types of the vectors are not the same, until we figure
2163*12c85518Srobert     //       out a better way of doing these casts.
2164a9ac8606Spatrick     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2165a9ac8606Spatrick          isa<llvm::ScalableVectorType>(DstTy)) ||
2166a9ac8606Spatrick         (isa<llvm::ScalableVectorType>(SrcTy) &&
2167a9ac8606Spatrick          isa<llvm::FixedVectorType>(DstTy))) {
2168a9ac8606Spatrick       Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2169a9ac8606Spatrick       LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2170a9ac8606Spatrick       CGF.EmitStoreOfScalar(Src, LV);
2171a9ac8606Spatrick       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2172a9ac8606Spatrick                                           "castFixedSve");
2173a9ac8606Spatrick       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2174a9ac8606Spatrick       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2175a9ac8606Spatrick       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2176a9ac8606Spatrick     }
2177e5dd7070Spatrick     return Builder.CreateBitCast(Src, DstTy);
2178e5dd7070Spatrick   }
2179e5dd7070Spatrick   case CK_AddressSpaceConversion: {
2180e5dd7070Spatrick     Expr::EvalResult Result;
2181e5dd7070Spatrick     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2182e5dd7070Spatrick         Result.Val.isNullPointer()) {
2183e5dd7070Spatrick       // If E has side effect, it is emitted even if its final result is a
2184e5dd7070Spatrick       // null pointer. In that case, a DCE pass should be able to
2185e5dd7070Spatrick       // eliminate the useless instructions emitted during translating E.
2186e5dd7070Spatrick       if (Result.HasSideEffects)
2187e5dd7070Spatrick         Visit(E);
2188e5dd7070Spatrick       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2189e5dd7070Spatrick           ConvertType(DestTy)), DestTy);
2190e5dd7070Spatrick     }
2191e5dd7070Spatrick     // Since target may map different address spaces in AST to the same address
2192e5dd7070Spatrick     // space, an address space conversion may end up as a bitcast.
2193e5dd7070Spatrick     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2194e5dd7070Spatrick         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2195e5dd7070Spatrick         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2196e5dd7070Spatrick   }
2197e5dd7070Spatrick   case CK_AtomicToNonAtomic:
2198e5dd7070Spatrick   case CK_NonAtomicToAtomic:
2199e5dd7070Spatrick   case CK_UserDefinedConversion:
2200e5dd7070Spatrick     return Visit(const_cast<Expr*>(E));
2201e5dd7070Spatrick 
2202*12c85518Srobert   case CK_NoOp: {
2203*12c85518Srobert     llvm::Value *V = Visit(const_cast<Expr *>(E));
2204*12c85518Srobert     if (V) {
2205*12c85518Srobert       // CK_NoOp can model a pointer qualification conversion, which can remove
2206*12c85518Srobert       // an array bound and change the IR type.
2207*12c85518Srobert       // FIXME: Once pointee types are removed from IR, remove this.
2208*12c85518Srobert       llvm::Type *T = ConvertType(DestTy);
2209*12c85518Srobert       if (T != V->getType())
2210*12c85518Srobert         V = Builder.CreateBitCast(V, T);
2211*12c85518Srobert     }
2212*12c85518Srobert     return V;
2213*12c85518Srobert   }
2214*12c85518Srobert 
2215e5dd7070Spatrick   case CK_BaseToDerived: {
2216e5dd7070Spatrick     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2217e5dd7070Spatrick     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2218e5dd7070Spatrick 
2219e5dd7070Spatrick     Address Base = CGF.EmitPointerWithAlignment(E);
2220e5dd7070Spatrick     Address Derived =
2221e5dd7070Spatrick       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2222e5dd7070Spatrick                                    CE->path_begin(), CE->path_end(),
2223e5dd7070Spatrick                                    CGF.ShouldNullCheckClassCastValue(CE));
2224e5dd7070Spatrick 
2225e5dd7070Spatrick     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2226e5dd7070Spatrick     // performed and the object is not of the derived type.
2227e5dd7070Spatrick     if (CGF.sanitizePerformTypeCheck())
2228e5dd7070Spatrick       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2229e5dd7070Spatrick                         Derived.getPointer(), DestTy->getPointeeType());
2230e5dd7070Spatrick 
2231e5dd7070Spatrick     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2232*12c85518Srobert       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
2233*12c85518Srobert                                     /*MayBeNull=*/true,
2234*12c85518Srobert                                     CodeGenFunction::CFITCK_DerivedCast,
2235e5dd7070Spatrick                                     CE->getBeginLoc());
2236e5dd7070Spatrick 
2237e5dd7070Spatrick     return Derived.getPointer();
2238e5dd7070Spatrick   }
2239e5dd7070Spatrick   case CK_UncheckedDerivedToBase:
2240e5dd7070Spatrick   case CK_DerivedToBase: {
2241e5dd7070Spatrick     // The EmitPointerWithAlignment path does this fine; just discard
2242e5dd7070Spatrick     // the alignment.
2243e5dd7070Spatrick     return CGF.EmitPointerWithAlignment(CE).getPointer();
2244e5dd7070Spatrick   }
2245e5dd7070Spatrick 
2246e5dd7070Spatrick   case CK_Dynamic: {
2247e5dd7070Spatrick     Address V = CGF.EmitPointerWithAlignment(E);
2248e5dd7070Spatrick     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2249e5dd7070Spatrick     return CGF.EmitDynamicCast(V, DCE);
2250e5dd7070Spatrick   }
2251e5dd7070Spatrick 
2252e5dd7070Spatrick   case CK_ArrayToPointerDecay:
2253e5dd7070Spatrick     return CGF.EmitArrayToPointerDecay(E).getPointer();
2254e5dd7070Spatrick   case CK_FunctionToPointerDecay:
2255e5dd7070Spatrick     return EmitLValue(E).getPointer(CGF);
2256e5dd7070Spatrick 
2257e5dd7070Spatrick   case CK_NullToPointer:
2258e5dd7070Spatrick     if (MustVisitNullValue(E))
2259e5dd7070Spatrick       CGF.EmitIgnoredExpr(E);
2260e5dd7070Spatrick 
2261e5dd7070Spatrick     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2262e5dd7070Spatrick                               DestTy);
2263e5dd7070Spatrick 
2264e5dd7070Spatrick   case CK_NullToMemberPointer: {
2265e5dd7070Spatrick     if (MustVisitNullValue(E))
2266e5dd7070Spatrick       CGF.EmitIgnoredExpr(E);
2267e5dd7070Spatrick 
2268e5dd7070Spatrick     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2269e5dd7070Spatrick     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2270e5dd7070Spatrick   }
2271e5dd7070Spatrick 
2272e5dd7070Spatrick   case CK_ReinterpretMemberPointer:
2273e5dd7070Spatrick   case CK_BaseToDerivedMemberPointer:
2274e5dd7070Spatrick   case CK_DerivedToBaseMemberPointer: {
2275e5dd7070Spatrick     Value *Src = Visit(E);
2276e5dd7070Spatrick 
2277e5dd7070Spatrick     // Note that the AST doesn't distinguish between checked and
2278e5dd7070Spatrick     // unchecked member pointer conversions, so we always have to
2279e5dd7070Spatrick     // implement checked conversions here.  This is inefficient when
2280e5dd7070Spatrick     // actual control flow may be required in order to perform the
2281e5dd7070Spatrick     // check, which it is for data member pointers (but not member
2282e5dd7070Spatrick     // function pointers on Itanium and ARM).
2283e5dd7070Spatrick     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2284e5dd7070Spatrick   }
2285e5dd7070Spatrick 
2286e5dd7070Spatrick   case CK_ARCProduceObject:
2287e5dd7070Spatrick     return CGF.EmitARCRetainScalarExpr(E);
2288e5dd7070Spatrick   case CK_ARCConsumeObject:
2289e5dd7070Spatrick     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2290e5dd7070Spatrick   case CK_ARCReclaimReturnedObject:
2291e5dd7070Spatrick     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2292e5dd7070Spatrick   case CK_ARCExtendBlockObject:
2293e5dd7070Spatrick     return CGF.EmitARCExtendBlockObject(E);
2294e5dd7070Spatrick 
2295e5dd7070Spatrick   case CK_CopyAndAutoreleaseBlockObject:
2296e5dd7070Spatrick     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2297e5dd7070Spatrick 
2298e5dd7070Spatrick   case CK_FloatingRealToComplex:
2299e5dd7070Spatrick   case CK_FloatingComplexCast:
2300e5dd7070Spatrick   case CK_IntegralRealToComplex:
2301e5dd7070Spatrick   case CK_IntegralComplexCast:
2302e5dd7070Spatrick   case CK_IntegralComplexToFloatingComplex:
2303e5dd7070Spatrick   case CK_FloatingComplexToIntegralComplex:
2304e5dd7070Spatrick   case CK_ConstructorConversion:
2305e5dd7070Spatrick   case CK_ToUnion:
2306e5dd7070Spatrick     llvm_unreachable("scalar cast to non-scalar value");
2307e5dd7070Spatrick 
2308e5dd7070Spatrick   case CK_LValueToRValue:
2309e5dd7070Spatrick     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2310e5dd7070Spatrick     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2311e5dd7070Spatrick     return Visit(const_cast<Expr*>(E));
2312e5dd7070Spatrick 
2313e5dd7070Spatrick   case CK_IntegralToPointer: {
2314e5dd7070Spatrick     Value *Src = Visit(const_cast<Expr*>(E));
2315e5dd7070Spatrick 
2316e5dd7070Spatrick     // First, convert to the correct width so that we control the kind of
2317e5dd7070Spatrick     // extension.
2318e5dd7070Spatrick     auto DestLLVMTy = ConvertType(DestTy);
2319e5dd7070Spatrick     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2320e5dd7070Spatrick     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2321e5dd7070Spatrick     llvm::Value* IntResult =
2322e5dd7070Spatrick       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2323e5dd7070Spatrick 
2324e5dd7070Spatrick     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2325e5dd7070Spatrick 
2326e5dd7070Spatrick     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2327e5dd7070Spatrick       // Going from integer to pointer that could be dynamic requires reloading
2328e5dd7070Spatrick       // dynamic information from invariant.group.
2329e5dd7070Spatrick       if (DestTy.mayBeDynamicClass())
2330e5dd7070Spatrick         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2331e5dd7070Spatrick     }
2332e5dd7070Spatrick     return IntToPtr;
2333e5dd7070Spatrick   }
2334e5dd7070Spatrick   case CK_PointerToIntegral: {
2335e5dd7070Spatrick     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2336e5dd7070Spatrick     auto *PtrExpr = Visit(E);
2337e5dd7070Spatrick 
2338e5dd7070Spatrick     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2339e5dd7070Spatrick       const QualType SrcType = E->getType();
2340e5dd7070Spatrick 
2341e5dd7070Spatrick       // Casting to integer requires stripping dynamic information as it does
2342e5dd7070Spatrick       // not carries it.
2343e5dd7070Spatrick       if (SrcType.mayBeDynamicClass())
2344e5dd7070Spatrick         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2345e5dd7070Spatrick     }
2346e5dd7070Spatrick 
2347e5dd7070Spatrick     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2348e5dd7070Spatrick   }
2349e5dd7070Spatrick   case CK_ToVoid: {
2350e5dd7070Spatrick     CGF.EmitIgnoredExpr(E);
2351e5dd7070Spatrick     return nullptr;
2352e5dd7070Spatrick   }
2353a9ac8606Spatrick   case CK_MatrixCast: {
2354a9ac8606Spatrick     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2355a9ac8606Spatrick                                 CE->getExprLoc());
2356a9ac8606Spatrick   }
2357e5dd7070Spatrick   case CK_VectorSplat: {
2358e5dd7070Spatrick     llvm::Type *DstTy = ConvertType(DestTy);
2359e5dd7070Spatrick     Value *Elt = Visit(const_cast<Expr *>(E));
2360e5dd7070Spatrick     // Splat the element across to all elements
2361*12c85518Srobert     llvm::ElementCount NumElements =
2362*12c85518Srobert         cast<llvm::VectorType>(DstTy)->getElementCount();
2363e5dd7070Spatrick     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2364e5dd7070Spatrick   }
2365e5dd7070Spatrick 
2366e5dd7070Spatrick   case CK_FixedPointCast:
2367e5dd7070Spatrick     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2368e5dd7070Spatrick                                 CE->getExprLoc());
2369e5dd7070Spatrick 
2370e5dd7070Spatrick   case CK_FixedPointToBoolean:
2371e5dd7070Spatrick     assert(E->getType()->isFixedPointType() &&
2372e5dd7070Spatrick            "Expected src type to be fixed point type");
2373e5dd7070Spatrick     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2374e5dd7070Spatrick     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2375e5dd7070Spatrick                                 CE->getExprLoc());
2376e5dd7070Spatrick 
2377e5dd7070Spatrick   case CK_FixedPointToIntegral:
2378e5dd7070Spatrick     assert(E->getType()->isFixedPointType() &&
2379e5dd7070Spatrick            "Expected src type to be fixed point type");
2380e5dd7070Spatrick     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2381e5dd7070Spatrick     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2382e5dd7070Spatrick                                 CE->getExprLoc());
2383e5dd7070Spatrick 
2384e5dd7070Spatrick   case CK_IntegralToFixedPoint:
2385e5dd7070Spatrick     assert(E->getType()->isIntegerType() &&
2386e5dd7070Spatrick            "Expected src type to be an integer");
2387e5dd7070Spatrick     assert(DestTy->isFixedPointType() &&
2388e5dd7070Spatrick            "Expected dest type to be fixed point type");
2389e5dd7070Spatrick     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2390e5dd7070Spatrick                                 CE->getExprLoc());
2391e5dd7070Spatrick 
2392e5dd7070Spatrick   case CK_IntegralCast: {
2393e5dd7070Spatrick     ScalarConversionOpts Opts;
2394e5dd7070Spatrick     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2395e5dd7070Spatrick       if (!ICE->isPartOfExplicitCast())
2396e5dd7070Spatrick         Opts = ScalarConversionOpts(CGF.SanOpts);
2397e5dd7070Spatrick     }
2398e5dd7070Spatrick     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2399e5dd7070Spatrick                                 CE->getExprLoc(), Opts);
2400e5dd7070Spatrick   }
2401e5dd7070Spatrick   case CK_IntegralToFloating:
2402e5dd7070Spatrick   case CK_FloatingToIntegral:
2403e5dd7070Spatrick   case CK_FloatingCast:
2404a9ac8606Spatrick   case CK_FixedPointToFloating:
2405a9ac8606Spatrick   case CK_FloatingToFixedPoint: {
2406a9ac8606Spatrick     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2407e5dd7070Spatrick     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2408e5dd7070Spatrick                                 CE->getExprLoc());
2409a9ac8606Spatrick   }
2410e5dd7070Spatrick   case CK_BooleanToSignedIntegral: {
2411e5dd7070Spatrick     ScalarConversionOpts Opts;
2412e5dd7070Spatrick     Opts.TreatBooleanAsSigned = true;
2413e5dd7070Spatrick     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2414e5dd7070Spatrick                                 CE->getExprLoc(), Opts);
2415e5dd7070Spatrick   }
2416e5dd7070Spatrick   case CK_IntegralToBoolean:
2417e5dd7070Spatrick     return EmitIntToBoolConversion(Visit(E));
2418e5dd7070Spatrick   case CK_PointerToBoolean:
2419e5dd7070Spatrick     return EmitPointerToBoolConversion(Visit(E), E->getType());
2420a9ac8606Spatrick   case CK_FloatingToBoolean: {
2421a9ac8606Spatrick     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2422e5dd7070Spatrick     return EmitFloatToBoolConversion(Visit(E));
2423a9ac8606Spatrick   }
2424e5dd7070Spatrick   case CK_MemberPointerToBoolean: {
2425e5dd7070Spatrick     llvm::Value *MemPtr = Visit(E);
2426e5dd7070Spatrick     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2427e5dd7070Spatrick     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2428e5dd7070Spatrick   }
2429e5dd7070Spatrick 
2430e5dd7070Spatrick   case CK_FloatingComplexToReal:
2431e5dd7070Spatrick   case CK_IntegralComplexToReal:
2432e5dd7070Spatrick     return CGF.EmitComplexExpr(E, false, true).first;
2433e5dd7070Spatrick 
2434e5dd7070Spatrick   case CK_FloatingComplexToBoolean:
2435e5dd7070Spatrick   case CK_IntegralComplexToBoolean: {
2436e5dd7070Spatrick     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2437e5dd7070Spatrick 
2438e5dd7070Spatrick     // TODO: kill this function off, inline appropriate case here
2439e5dd7070Spatrick     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2440e5dd7070Spatrick                                          CE->getExprLoc());
2441e5dd7070Spatrick   }
2442e5dd7070Spatrick 
2443e5dd7070Spatrick   case CK_ZeroToOCLOpaqueType: {
2444e5dd7070Spatrick     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2445e5dd7070Spatrick             DestTy->isOCLIntelSubgroupAVCType()) &&
2446e5dd7070Spatrick            "CK_ZeroToOCLEvent cast on non-event type");
2447e5dd7070Spatrick     return llvm::Constant::getNullValue(ConvertType(DestTy));
2448e5dd7070Spatrick   }
2449e5dd7070Spatrick 
2450e5dd7070Spatrick   case CK_IntToOCLSampler:
2451e5dd7070Spatrick     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2452e5dd7070Spatrick 
2453e5dd7070Spatrick   } // end of switch
2454e5dd7070Spatrick 
2455e5dd7070Spatrick   llvm_unreachable("unknown scalar cast");
2456e5dd7070Spatrick }
2457e5dd7070Spatrick 
VisitStmtExpr(const StmtExpr * E)2458e5dd7070Spatrick Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2459e5dd7070Spatrick   CodeGenFunction::StmtExprEvaluation eval(CGF);
2460e5dd7070Spatrick   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2461e5dd7070Spatrick                                            !E->getType()->isVoidType());
2462e5dd7070Spatrick   if (!RetAlloca.isValid())
2463e5dd7070Spatrick     return nullptr;
2464e5dd7070Spatrick   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2465e5dd7070Spatrick                               E->getExprLoc());
2466e5dd7070Spatrick }
2467e5dd7070Spatrick 
VisitExprWithCleanups(ExprWithCleanups * E)2468e5dd7070Spatrick Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2469e5dd7070Spatrick   CodeGenFunction::RunCleanupsScope Scope(CGF);
2470e5dd7070Spatrick   Value *V = Visit(E->getSubExpr());
2471e5dd7070Spatrick   // Defend against dominance problems caused by jumps out of expression
2472e5dd7070Spatrick   // evaluation through the shared cleanup block.
2473e5dd7070Spatrick   Scope.ForceCleanup({&V});
2474e5dd7070Spatrick   return V;
2475e5dd7070Spatrick }
2476e5dd7070Spatrick 
2477e5dd7070Spatrick //===----------------------------------------------------------------------===//
2478e5dd7070Spatrick //                             Unary Operators
2479e5dd7070Spatrick //===----------------------------------------------------------------------===//
2480e5dd7070Spatrick 
createBinOpInfoFromIncDec(const UnaryOperator * E,llvm::Value * InVal,bool IsInc,FPOptions FPFeatures)2481e5dd7070Spatrick static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2482ec727ea7Spatrick                                            llvm::Value *InVal, bool IsInc,
2483ec727ea7Spatrick                                            FPOptions FPFeatures) {
2484e5dd7070Spatrick   BinOpInfo BinOp;
2485e5dd7070Spatrick   BinOp.LHS = InVal;
2486e5dd7070Spatrick   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2487e5dd7070Spatrick   BinOp.Ty = E->getType();
2488e5dd7070Spatrick   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2489ec727ea7Spatrick   BinOp.FPFeatures = FPFeatures;
2490e5dd7070Spatrick   BinOp.E = E;
2491e5dd7070Spatrick   return BinOp;
2492e5dd7070Spatrick }
2493e5dd7070Spatrick 
EmitIncDecConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,bool IsInc)2494e5dd7070Spatrick llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2495e5dd7070Spatrick     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2496e5dd7070Spatrick   llvm::Value *Amount =
2497e5dd7070Spatrick       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2498e5dd7070Spatrick   StringRef Name = IsInc ? "inc" : "dec";
2499e5dd7070Spatrick   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2500e5dd7070Spatrick   case LangOptions::SOB_Defined:
2501e5dd7070Spatrick     return Builder.CreateAdd(InVal, Amount, Name);
2502e5dd7070Spatrick   case LangOptions::SOB_Undefined:
2503e5dd7070Spatrick     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2504e5dd7070Spatrick       return Builder.CreateNSWAdd(InVal, Amount, Name);
2505*12c85518Srobert     [[fallthrough]];
2506e5dd7070Spatrick   case LangOptions::SOB_Trapping:
2507e5dd7070Spatrick     if (!E->canOverflow())
2508e5dd7070Spatrick       return Builder.CreateNSWAdd(InVal, Amount, Name);
2509ec727ea7Spatrick     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2510ec727ea7Spatrick         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2511e5dd7070Spatrick   }
2512e5dd7070Spatrick   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2513e5dd7070Spatrick }
2514e5dd7070Spatrick 
2515e5dd7070Spatrick namespace {
2516e5dd7070Spatrick /// Handles check and update for lastprivate conditional variables.
2517e5dd7070Spatrick class OMPLastprivateConditionalUpdateRAII {
2518e5dd7070Spatrick private:
2519e5dd7070Spatrick   CodeGenFunction &CGF;
2520e5dd7070Spatrick   const UnaryOperator *E;
2521e5dd7070Spatrick 
2522e5dd7070Spatrick public:
OMPLastprivateConditionalUpdateRAII(CodeGenFunction & CGF,const UnaryOperator * E)2523e5dd7070Spatrick   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2524e5dd7070Spatrick                                       const UnaryOperator *E)
2525e5dd7070Spatrick       : CGF(CGF), E(E) {}
~OMPLastprivateConditionalUpdateRAII()2526e5dd7070Spatrick   ~OMPLastprivateConditionalUpdateRAII() {
2527e5dd7070Spatrick     if (CGF.getLangOpts().OpenMP)
2528e5dd7070Spatrick       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2529e5dd7070Spatrick           CGF, E->getSubExpr());
2530e5dd7070Spatrick   }
2531e5dd7070Spatrick };
2532e5dd7070Spatrick } // namespace
2533e5dd7070Spatrick 
2534e5dd7070Spatrick llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)2535e5dd7070Spatrick ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2536e5dd7070Spatrick                                            bool isInc, bool isPre) {
2537e5dd7070Spatrick   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2538e5dd7070Spatrick   QualType type = E->getSubExpr()->getType();
2539e5dd7070Spatrick   llvm::PHINode *atomicPHI = nullptr;
2540e5dd7070Spatrick   llvm::Value *value;
2541e5dd7070Spatrick   llvm::Value *input;
2542e5dd7070Spatrick 
2543e5dd7070Spatrick   int amount = (isInc ? 1 : -1);
2544e5dd7070Spatrick   bool isSubtraction = !isInc;
2545e5dd7070Spatrick 
2546e5dd7070Spatrick   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2547e5dd7070Spatrick     type = atomicTy->getValueType();
2548e5dd7070Spatrick     if (isInc && type->isBooleanType()) {
2549e5dd7070Spatrick       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2550e5dd7070Spatrick       if (isPre) {
2551e5dd7070Spatrick         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2552e5dd7070Spatrick             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2553e5dd7070Spatrick         return Builder.getTrue();
2554e5dd7070Spatrick       }
2555e5dd7070Spatrick       // For atomic bool increment, we just store true and return it for
2556e5dd7070Spatrick       // preincrement, do an atomic swap with true for postincrement
2557e5dd7070Spatrick       return Builder.CreateAtomicRMW(
2558e5dd7070Spatrick           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2559e5dd7070Spatrick           llvm::AtomicOrdering::SequentiallyConsistent);
2560e5dd7070Spatrick     }
2561e5dd7070Spatrick     // Special case for atomic increment / decrement on integers, emit
2562e5dd7070Spatrick     // atomicrmw instructions.  We skip this if we want to be doing overflow
2563e5dd7070Spatrick     // checking, and fall into the slow path with the atomic cmpxchg loop.
2564e5dd7070Spatrick     if (!type->isBooleanType() && type->isIntegerType() &&
2565e5dd7070Spatrick         !(type->isUnsignedIntegerType() &&
2566e5dd7070Spatrick           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2567e5dd7070Spatrick         CGF.getLangOpts().getSignedOverflowBehavior() !=
2568e5dd7070Spatrick             LangOptions::SOB_Trapping) {
2569e5dd7070Spatrick       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2570e5dd7070Spatrick         llvm::AtomicRMWInst::Sub;
2571e5dd7070Spatrick       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2572e5dd7070Spatrick         llvm::Instruction::Sub;
2573e5dd7070Spatrick       llvm::Value *amt = CGF.EmitToMemory(
2574e5dd7070Spatrick           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2575e5dd7070Spatrick       llvm::Value *old =
2576e5dd7070Spatrick           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2577e5dd7070Spatrick                                   llvm::AtomicOrdering::SequentiallyConsistent);
2578e5dd7070Spatrick       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2579e5dd7070Spatrick     }
2580e5dd7070Spatrick     value = EmitLoadOfLValue(LV, E->getExprLoc());
2581e5dd7070Spatrick     input = value;
2582e5dd7070Spatrick     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2583e5dd7070Spatrick     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2584e5dd7070Spatrick     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2585e5dd7070Spatrick     value = CGF.EmitToMemory(value, type);
2586e5dd7070Spatrick     Builder.CreateBr(opBB);
2587e5dd7070Spatrick     Builder.SetInsertPoint(opBB);
2588e5dd7070Spatrick     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2589e5dd7070Spatrick     atomicPHI->addIncoming(value, startBB);
2590e5dd7070Spatrick     value = atomicPHI;
2591e5dd7070Spatrick   } else {
2592e5dd7070Spatrick     value = EmitLoadOfLValue(LV, E->getExprLoc());
2593e5dd7070Spatrick     input = value;
2594e5dd7070Spatrick   }
2595e5dd7070Spatrick 
2596e5dd7070Spatrick   // Special case of integer increment that we have to check first: bool++.
2597e5dd7070Spatrick   // Due to promotion rules, we get:
2598e5dd7070Spatrick   //   bool++ -> bool = bool + 1
2599e5dd7070Spatrick   //          -> bool = (int)bool + 1
2600e5dd7070Spatrick   //          -> bool = ((int)bool + 1 != 0)
2601e5dd7070Spatrick   // An interesting aspect of this is that increment is always true.
2602e5dd7070Spatrick   // Decrement does not have this property.
2603e5dd7070Spatrick   if (isInc && type->isBooleanType()) {
2604e5dd7070Spatrick     value = Builder.getTrue();
2605e5dd7070Spatrick 
2606e5dd7070Spatrick   // Most common case by far: integer increment.
2607e5dd7070Spatrick   } else if (type->isIntegerType()) {
2608e5dd7070Spatrick     QualType promotedType;
2609e5dd7070Spatrick     bool canPerformLossyDemotionCheck = false;
2610*12c85518Srobert     if (CGF.getContext().isPromotableIntegerType(type)) {
2611e5dd7070Spatrick       promotedType = CGF.getContext().getPromotedIntegerType(type);
2612e5dd7070Spatrick       assert(promotedType != type && "Shouldn't promote to the same type.");
2613e5dd7070Spatrick       canPerformLossyDemotionCheck = true;
2614e5dd7070Spatrick       canPerformLossyDemotionCheck &=
2615e5dd7070Spatrick           CGF.getContext().getCanonicalType(type) !=
2616e5dd7070Spatrick           CGF.getContext().getCanonicalType(promotedType);
2617e5dd7070Spatrick       canPerformLossyDemotionCheck &=
2618e5dd7070Spatrick           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2619e5dd7070Spatrick               type, promotedType);
2620e5dd7070Spatrick       assert((!canPerformLossyDemotionCheck ||
2621e5dd7070Spatrick               type->isSignedIntegerOrEnumerationType() ||
2622e5dd7070Spatrick               promotedType->isSignedIntegerOrEnumerationType() ||
2623e5dd7070Spatrick               ConvertType(type)->getScalarSizeInBits() ==
2624e5dd7070Spatrick                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2625e5dd7070Spatrick              "The following check expects that if we do promotion to different "
2626e5dd7070Spatrick              "underlying canonical type, at least one of the types (either "
2627e5dd7070Spatrick              "base or promoted) will be signed, or the bitwidths will match.");
2628e5dd7070Spatrick     }
2629e5dd7070Spatrick     if (CGF.SanOpts.hasOneOf(
2630e5dd7070Spatrick             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2631e5dd7070Spatrick         canPerformLossyDemotionCheck) {
2632e5dd7070Spatrick       // While `x += 1` (for `x` with width less than int) is modeled as
2633e5dd7070Spatrick       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2634e5dd7070Spatrick       // ease; inc/dec with width less than int can't overflow because of
2635e5dd7070Spatrick       // promotion rules, so we omit promotion+demotion, which means that we can
2636e5dd7070Spatrick       // not catch lossy "demotion". Because we still want to catch these cases
2637e5dd7070Spatrick       // when the sanitizer is enabled, we perform the promotion, then perform
2638e5dd7070Spatrick       // the increment/decrement in the wider type, and finally
2639e5dd7070Spatrick       // perform the demotion. This will catch lossy demotions.
2640e5dd7070Spatrick 
2641e5dd7070Spatrick       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2642e5dd7070Spatrick       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2643e5dd7070Spatrick       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2644e5dd7070Spatrick       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2645e5dd7070Spatrick       // emitted.
2646e5dd7070Spatrick       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2647e5dd7070Spatrick                                    ScalarConversionOpts(CGF.SanOpts));
2648e5dd7070Spatrick 
2649e5dd7070Spatrick       // Note that signed integer inc/dec with width less than int can't
2650e5dd7070Spatrick       // overflow because of promotion rules; we're just eliding a few steps
2651e5dd7070Spatrick       // here.
2652e5dd7070Spatrick     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2653e5dd7070Spatrick       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2654e5dd7070Spatrick     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2655e5dd7070Spatrick                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2656ec727ea7Spatrick       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2657ec727ea7Spatrick           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2658e5dd7070Spatrick     } else {
2659e5dd7070Spatrick       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2660e5dd7070Spatrick       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2661e5dd7070Spatrick     }
2662e5dd7070Spatrick 
2663e5dd7070Spatrick   // Next most common: pointer increment.
2664e5dd7070Spatrick   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2665e5dd7070Spatrick     QualType type = ptr->getPointeeType();
2666e5dd7070Spatrick 
2667e5dd7070Spatrick     // VLA types don't have constant size.
2668e5dd7070Spatrick     if (const VariableArrayType *vla
2669e5dd7070Spatrick           = CGF.getContext().getAsVariableArrayType(type)) {
2670e5dd7070Spatrick       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2671e5dd7070Spatrick       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2672*12c85518Srobert       llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
2673e5dd7070Spatrick       if (CGF.getLangOpts().isSignedOverflowDefined())
2674*12c85518Srobert         value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
2675e5dd7070Spatrick       else
2676e5dd7070Spatrick         value = CGF.EmitCheckedInBoundsGEP(
2677*12c85518Srobert             elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
2678e5dd7070Spatrick             E->getExprLoc(), "vla.inc");
2679e5dd7070Spatrick 
2680e5dd7070Spatrick     // Arithmetic on function pointers (!) is just +-1.
2681e5dd7070Spatrick     } else if (type->isFunctionType()) {
2682e5dd7070Spatrick       llvm::Value *amt = Builder.getInt32(amount);
2683e5dd7070Spatrick 
2684e5dd7070Spatrick       value = CGF.EmitCastToVoidPtr(value);
2685e5dd7070Spatrick       if (CGF.getLangOpts().isSignedOverflowDefined())
2686a9ac8606Spatrick         value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2687e5dd7070Spatrick       else
2688*12c85518Srobert         value = CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
2689*12c85518Srobert                                            /*SignedIndices=*/false,
2690e5dd7070Spatrick                                            isSubtraction, E->getExprLoc(),
2691e5dd7070Spatrick                                            "incdec.funcptr");
2692e5dd7070Spatrick       value = Builder.CreateBitCast(value, input->getType());
2693e5dd7070Spatrick 
2694e5dd7070Spatrick     // For everything else, we can just do a simple increment.
2695e5dd7070Spatrick     } else {
2696e5dd7070Spatrick       llvm::Value *amt = Builder.getInt32(amount);
2697*12c85518Srobert       llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2698e5dd7070Spatrick       if (CGF.getLangOpts().isSignedOverflowDefined())
2699*12c85518Srobert         value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
2700e5dd7070Spatrick       else
2701*12c85518Srobert         value = CGF.EmitCheckedInBoundsGEP(
2702*12c85518Srobert             elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
2703*12c85518Srobert             E->getExprLoc(), "incdec.ptr");
2704e5dd7070Spatrick     }
2705e5dd7070Spatrick 
2706e5dd7070Spatrick   // Vector increment/decrement.
2707e5dd7070Spatrick   } else if (type->isVectorType()) {
2708e5dd7070Spatrick     if (type->hasIntegerRepresentation()) {
2709e5dd7070Spatrick       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2710e5dd7070Spatrick 
2711e5dd7070Spatrick       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2712e5dd7070Spatrick     } else {
2713e5dd7070Spatrick       value = Builder.CreateFAdd(
2714e5dd7070Spatrick                   value,
2715e5dd7070Spatrick                   llvm::ConstantFP::get(value->getType(), amount),
2716e5dd7070Spatrick                   isInc ? "inc" : "dec");
2717e5dd7070Spatrick     }
2718e5dd7070Spatrick 
2719e5dd7070Spatrick   // Floating point.
2720e5dd7070Spatrick   } else if (type->isRealFloatingType()) {
2721e5dd7070Spatrick     // Add the inc/dec to the real part.
2722e5dd7070Spatrick     llvm::Value *amt;
2723a9ac8606Spatrick     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2724e5dd7070Spatrick 
2725e5dd7070Spatrick     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2726e5dd7070Spatrick       // Another special case: half FP increment should be done via float
2727e5dd7070Spatrick       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2728e5dd7070Spatrick         value = Builder.CreateCall(
2729e5dd7070Spatrick             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2730e5dd7070Spatrick                                  CGF.CGM.FloatTy),
2731e5dd7070Spatrick             input, "incdec.conv");
2732e5dd7070Spatrick       } else {
2733e5dd7070Spatrick         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2734e5dd7070Spatrick       }
2735e5dd7070Spatrick     }
2736e5dd7070Spatrick 
2737e5dd7070Spatrick     if (value->getType()->isFloatTy())
2738e5dd7070Spatrick       amt = llvm::ConstantFP::get(VMContext,
2739e5dd7070Spatrick                                   llvm::APFloat(static_cast<float>(amount)));
2740e5dd7070Spatrick     else if (value->getType()->isDoubleTy())
2741e5dd7070Spatrick       amt = llvm::ConstantFP::get(VMContext,
2742e5dd7070Spatrick                                   llvm::APFloat(static_cast<double>(amount)));
2743e5dd7070Spatrick     else {
2744*12c85518Srobert       // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
2745*12c85518Srobert       // from float.
2746e5dd7070Spatrick       llvm::APFloat F(static_cast<float>(amount));
2747e5dd7070Spatrick       bool ignored;
2748e5dd7070Spatrick       const llvm::fltSemantics *FS;
2749e5dd7070Spatrick       // Don't use getFloatTypeSemantics because Half isn't
2750e5dd7070Spatrick       // necessarily represented using the "half" LLVM type.
2751e5dd7070Spatrick       if (value->getType()->isFP128Ty())
2752e5dd7070Spatrick         FS = &CGF.getTarget().getFloat128Format();
2753e5dd7070Spatrick       else if (value->getType()->isHalfTy())
2754e5dd7070Spatrick         FS = &CGF.getTarget().getHalfFormat();
2755*12c85518Srobert       else if (value->getType()->isPPC_FP128Ty())
2756*12c85518Srobert         FS = &CGF.getTarget().getIbm128Format();
2757e5dd7070Spatrick       else
2758e5dd7070Spatrick         FS = &CGF.getTarget().getLongDoubleFormat();
2759e5dd7070Spatrick       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2760e5dd7070Spatrick       amt = llvm::ConstantFP::get(VMContext, F);
2761e5dd7070Spatrick     }
2762e5dd7070Spatrick     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2763e5dd7070Spatrick 
2764e5dd7070Spatrick     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2765e5dd7070Spatrick       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2766e5dd7070Spatrick         value = Builder.CreateCall(
2767e5dd7070Spatrick             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2768e5dd7070Spatrick                                  CGF.CGM.FloatTy),
2769e5dd7070Spatrick             value, "incdec.conv");
2770e5dd7070Spatrick       } else {
2771e5dd7070Spatrick         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2772e5dd7070Spatrick       }
2773e5dd7070Spatrick     }
2774e5dd7070Spatrick 
2775ec727ea7Spatrick   // Fixed-point types.
2776ec727ea7Spatrick   } else if (type->isFixedPointType()) {
2777ec727ea7Spatrick     // Fixed-point types are tricky. In some cases, it isn't possible to
2778ec727ea7Spatrick     // represent a 1 or a -1 in the type at all. Piggyback off of
2779ec727ea7Spatrick     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2780ec727ea7Spatrick     BinOpInfo Info;
2781ec727ea7Spatrick     Info.E = E;
2782ec727ea7Spatrick     Info.Ty = E->getType();
2783ec727ea7Spatrick     Info.Opcode = isInc ? BO_Add : BO_Sub;
2784ec727ea7Spatrick     Info.LHS = value;
2785ec727ea7Spatrick     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2786ec727ea7Spatrick     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2787ec727ea7Spatrick     // since -1 is guaranteed to be representable.
2788ec727ea7Spatrick     if (type->isSignedFixedPointType()) {
2789ec727ea7Spatrick       Info.Opcode = isInc ? BO_Sub : BO_Add;
2790ec727ea7Spatrick       Info.RHS = Builder.CreateNeg(Info.RHS);
2791ec727ea7Spatrick     }
2792ec727ea7Spatrick     // Now, convert from our invented integer literal to the type of the unary
2793ec727ea7Spatrick     // op. This will upscale and saturate if necessary. This value can become
2794ec727ea7Spatrick     // undef in some cases.
2795a9ac8606Spatrick     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2796a9ac8606Spatrick     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2797a9ac8606Spatrick     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2798ec727ea7Spatrick     value = EmitFixedPointBinOp(Info);
2799ec727ea7Spatrick 
2800e5dd7070Spatrick   // Objective-C pointer types.
2801e5dd7070Spatrick   } else {
2802e5dd7070Spatrick     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2803e5dd7070Spatrick     value = CGF.EmitCastToVoidPtr(value);
2804e5dd7070Spatrick 
2805e5dd7070Spatrick     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2806e5dd7070Spatrick     if (!isInc) size = -size;
2807e5dd7070Spatrick     llvm::Value *sizeValue =
2808e5dd7070Spatrick       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2809e5dd7070Spatrick 
2810e5dd7070Spatrick     if (CGF.getLangOpts().isSignedOverflowDefined())
2811a9ac8606Spatrick       value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
2812e5dd7070Spatrick     else
2813*12c85518Srobert       value = CGF.EmitCheckedInBoundsGEP(
2814*12c85518Srobert           CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
2815e5dd7070Spatrick           E->getExprLoc(), "incdec.objptr");
2816e5dd7070Spatrick     value = Builder.CreateBitCast(value, input->getType());
2817e5dd7070Spatrick   }
2818e5dd7070Spatrick 
2819e5dd7070Spatrick   if (atomicPHI) {
2820e5dd7070Spatrick     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2821e5dd7070Spatrick     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2822e5dd7070Spatrick     auto Pair = CGF.EmitAtomicCompareExchange(
2823e5dd7070Spatrick         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2824e5dd7070Spatrick     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2825e5dd7070Spatrick     llvm::Value *success = Pair.second;
2826e5dd7070Spatrick     atomicPHI->addIncoming(old, curBlock);
2827e5dd7070Spatrick     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2828e5dd7070Spatrick     Builder.SetInsertPoint(contBB);
2829e5dd7070Spatrick     return isPre ? value : input;
2830e5dd7070Spatrick   }
2831e5dd7070Spatrick 
2832e5dd7070Spatrick   // Store the updated result through the lvalue.
2833e5dd7070Spatrick   if (LV.isBitField())
2834e5dd7070Spatrick     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2835e5dd7070Spatrick   else
2836e5dd7070Spatrick     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2837e5dd7070Spatrick 
2838e5dd7070Spatrick   // If this is a postinc, return the value read from memory, otherwise use the
2839e5dd7070Spatrick   // updated value.
2840e5dd7070Spatrick   return isPre ? value : input;
2841e5dd7070Spatrick }
2842e5dd7070Spatrick 
2843e5dd7070Spatrick 
VisitUnaryPlus(const UnaryOperator * E,QualType PromotionType)2844*12c85518Srobert Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
2845*12c85518Srobert                                          QualType PromotionType) {
2846*12c85518Srobert   QualType promotionTy = PromotionType.isNull()
2847*12c85518Srobert                              ? getPromotionType(E->getSubExpr()->getType())
2848*12c85518Srobert                              : PromotionType;
2849*12c85518Srobert   Value *result = VisitPlus(E, promotionTy);
2850*12c85518Srobert   if (result && !promotionTy.isNull())
2851*12c85518Srobert     result = EmitUnPromotedValue(result, E->getType());
2852*12c85518Srobert   return result;
2853*12c85518Srobert }
2854e5dd7070Spatrick 
VisitPlus(const UnaryOperator * E,QualType PromotionType)2855*12c85518Srobert Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E,
2856*12c85518Srobert                                     QualType PromotionType) {
2857*12c85518Srobert   // This differs from gcc, though, most likely due to a bug in gcc.
2858e5dd7070Spatrick   TestAndClearIgnoreResultAssign();
2859*12c85518Srobert   if (!PromotionType.isNull())
2860*12c85518Srobert     return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
2861*12c85518Srobert   return Visit(E->getSubExpr());
2862*12c85518Srobert }
2863*12c85518Srobert 
VisitUnaryMinus(const UnaryOperator * E,QualType PromotionType)2864*12c85518Srobert Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
2865*12c85518Srobert                                           QualType PromotionType) {
2866*12c85518Srobert   QualType promotionTy = PromotionType.isNull()
2867*12c85518Srobert                              ? getPromotionType(E->getSubExpr()->getType())
2868*12c85518Srobert                              : PromotionType;
2869*12c85518Srobert   Value *result = VisitMinus(E, promotionTy);
2870*12c85518Srobert   if (result && !promotionTy.isNull())
2871*12c85518Srobert     result = EmitUnPromotedValue(result, E->getType());
2872*12c85518Srobert   return result;
2873*12c85518Srobert }
2874*12c85518Srobert 
VisitMinus(const UnaryOperator * E,QualType PromotionType)2875*12c85518Srobert Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E,
2876*12c85518Srobert                                      QualType PromotionType) {
2877*12c85518Srobert   TestAndClearIgnoreResultAssign();
2878*12c85518Srobert   Value *Op;
2879*12c85518Srobert   if (!PromotionType.isNull())
2880*12c85518Srobert     Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
2881*12c85518Srobert   else
2882*12c85518Srobert     Op = Visit(E->getSubExpr());
2883e5dd7070Spatrick 
2884e5dd7070Spatrick   // Generate a unary FNeg for FP ops.
2885e5dd7070Spatrick   if (Op->getType()->isFPOrFPVectorTy())
2886e5dd7070Spatrick     return Builder.CreateFNeg(Op, "fneg");
2887e5dd7070Spatrick 
2888e5dd7070Spatrick   // Emit unary minus with EmitSub so we handle overflow cases etc.
2889e5dd7070Spatrick   BinOpInfo BinOp;
2890e5dd7070Spatrick   BinOp.RHS = Op;
2891e5dd7070Spatrick   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2892e5dd7070Spatrick   BinOp.Ty = E->getType();
2893e5dd7070Spatrick   BinOp.Opcode = BO_Sub;
2894ec727ea7Spatrick   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2895e5dd7070Spatrick   BinOp.E = E;
2896e5dd7070Spatrick   return EmitSub(BinOp);
2897e5dd7070Spatrick }
2898e5dd7070Spatrick 
VisitUnaryNot(const UnaryOperator * E)2899e5dd7070Spatrick Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2900e5dd7070Spatrick   TestAndClearIgnoreResultAssign();
2901e5dd7070Spatrick   Value *Op = Visit(E->getSubExpr());
2902*12c85518Srobert   return Builder.CreateNot(Op, "not");
2903e5dd7070Spatrick }
2904e5dd7070Spatrick 
VisitUnaryLNot(const UnaryOperator * E)2905e5dd7070Spatrick Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2906e5dd7070Spatrick   // Perform vector logical not on comparison with zero vector.
2907ec727ea7Spatrick   if (E->getType()->isVectorType() &&
2908ec727ea7Spatrick       E->getType()->castAs<VectorType>()->getVectorKind() ==
2909ec727ea7Spatrick           VectorType::GenericVector) {
2910e5dd7070Spatrick     Value *Oper = Visit(E->getSubExpr());
2911e5dd7070Spatrick     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2912e5dd7070Spatrick     Value *Result;
2913ec727ea7Spatrick     if (Oper->getType()->isFPOrFPVectorTy()) {
2914ec727ea7Spatrick       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2915ec727ea7Spatrick           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2916e5dd7070Spatrick       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2917ec727ea7Spatrick     } else
2918e5dd7070Spatrick       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2919e5dd7070Spatrick     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2920e5dd7070Spatrick   }
2921e5dd7070Spatrick 
2922e5dd7070Spatrick   // Compare operand to zero.
2923e5dd7070Spatrick   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2924e5dd7070Spatrick 
2925e5dd7070Spatrick   // Invert value.
2926e5dd7070Spatrick   // TODO: Could dynamically modify easy computations here.  For example, if
2927e5dd7070Spatrick   // the operand is an icmp ne, turn into icmp eq.
2928e5dd7070Spatrick   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2929e5dd7070Spatrick 
2930e5dd7070Spatrick   // ZExt result to the expr type.
2931e5dd7070Spatrick   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2932e5dd7070Spatrick }
2933e5dd7070Spatrick 
VisitOffsetOfExpr(OffsetOfExpr * E)2934e5dd7070Spatrick Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2935e5dd7070Spatrick   // Try folding the offsetof to a constant.
2936e5dd7070Spatrick   Expr::EvalResult EVResult;
2937e5dd7070Spatrick   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2938e5dd7070Spatrick     llvm::APSInt Value = EVResult.Val.getInt();
2939e5dd7070Spatrick     return Builder.getInt(Value);
2940e5dd7070Spatrick   }
2941e5dd7070Spatrick 
2942e5dd7070Spatrick   // Loop over the components of the offsetof to compute the value.
2943e5dd7070Spatrick   unsigned n = E->getNumComponents();
2944e5dd7070Spatrick   llvm::Type* ResultType = ConvertType(E->getType());
2945e5dd7070Spatrick   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2946e5dd7070Spatrick   QualType CurrentType = E->getTypeSourceInfo()->getType();
2947e5dd7070Spatrick   for (unsigned i = 0; i != n; ++i) {
2948e5dd7070Spatrick     OffsetOfNode ON = E->getComponent(i);
2949e5dd7070Spatrick     llvm::Value *Offset = nullptr;
2950e5dd7070Spatrick     switch (ON.getKind()) {
2951e5dd7070Spatrick     case OffsetOfNode::Array: {
2952e5dd7070Spatrick       // Compute the index
2953e5dd7070Spatrick       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2954e5dd7070Spatrick       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2955e5dd7070Spatrick       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2956e5dd7070Spatrick       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2957e5dd7070Spatrick 
2958e5dd7070Spatrick       // Save the element type
2959e5dd7070Spatrick       CurrentType =
2960e5dd7070Spatrick           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2961e5dd7070Spatrick 
2962e5dd7070Spatrick       // Compute the element size
2963e5dd7070Spatrick       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2964e5dd7070Spatrick           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2965e5dd7070Spatrick 
2966e5dd7070Spatrick       // Multiply out to compute the result
2967e5dd7070Spatrick       Offset = Builder.CreateMul(Idx, ElemSize);
2968e5dd7070Spatrick       break;
2969e5dd7070Spatrick     }
2970e5dd7070Spatrick 
2971e5dd7070Spatrick     case OffsetOfNode::Field: {
2972e5dd7070Spatrick       FieldDecl *MemberDecl = ON.getField();
2973e5dd7070Spatrick       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2974e5dd7070Spatrick       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2975e5dd7070Spatrick 
2976e5dd7070Spatrick       // Compute the index of the field in its parent.
2977e5dd7070Spatrick       unsigned i = 0;
2978e5dd7070Spatrick       // FIXME: It would be nice if we didn't have to loop here!
2979e5dd7070Spatrick       for (RecordDecl::field_iterator Field = RD->field_begin(),
2980e5dd7070Spatrick                                       FieldEnd = RD->field_end();
2981e5dd7070Spatrick            Field != FieldEnd; ++Field, ++i) {
2982e5dd7070Spatrick         if (*Field == MemberDecl)
2983e5dd7070Spatrick           break;
2984e5dd7070Spatrick       }
2985e5dd7070Spatrick       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2986e5dd7070Spatrick 
2987e5dd7070Spatrick       // Compute the offset to the field
2988e5dd7070Spatrick       int64_t OffsetInt = RL.getFieldOffset(i) /
2989e5dd7070Spatrick                           CGF.getContext().getCharWidth();
2990e5dd7070Spatrick       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2991e5dd7070Spatrick 
2992e5dd7070Spatrick       // Save the element type.
2993e5dd7070Spatrick       CurrentType = MemberDecl->getType();
2994e5dd7070Spatrick       break;
2995e5dd7070Spatrick     }
2996e5dd7070Spatrick 
2997e5dd7070Spatrick     case OffsetOfNode::Identifier:
2998e5dd7070Spatrick       llvm_unreachable("dependent __builtin_offsetof");
2999e5dd7070Spatrick 
3000e5dd7070Spatrick     case OffsetOfNode::Base: {
3001e5dd7070Spatrick       if (ON.getBase()->isVirtual()) {
3002e5dd7070Spatrick         CGF.ErrorUnsupported(E, "virtual base in offsetof");
3003e5dd7070Spatrick         continue;
3004e5dd7070Spatrick       }
3005e5dd7070Spatrick 
3006e5dd7070Spatrick       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3007e5dd7070Spatrick       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3008e5dd7070Spatrick 
3009e5dd7070Spatrick       // Save the element type.
3010e5dd7070Spatrick       CurrentType = ON.getBase()->getType();
3011e5dd7070Spatrick 
3012e5dd7070Spatrick       // Compute the offset to the base.
3013*12c85518Srobert       auto *BaseRT = CurrentType->castAs<RecordType>();
3014*12c85518Srobert       auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
3015e5dd7070Spatrick       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
3016e5dd7070Spatrick       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
3017e5dd7070Spatrick       break;
3018e5dd7070Spatrick     }
3019e5dd7070Spatrick     }
3020e5dd7070Spatrick     Result = Builder.CreateAdd(Result, Offset);
3021e5dd7070Spatrick   }
3022e5dd7070Spatrick   return Result;
3023e5dd7070Spatrick }
3024e5dd7070Spatrick 
3025e5dd7070Spatrick /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
3026e5dd7070Spatrick /// argument of the sizeof expression as an integer.
3027e5dd7070Spatrick Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)3028e5dd7070Spatrick ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
3029e5dd7070Spatrick                               const UnaryExprOrTypeTraitExpr *E) {
3030e5dd7070Spatrick   QualType TypeToSize = E->getTypeOfArgument();
3031e5dd7070Spatrick   if (E->getKind() == UETT_SizeOf) {
3032e5dd7070Spatrick     if (const VariableArrayType *VAT =
3033e5dd7070Spatrick           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
3034e5dd7070Spatrick       if (E->isArgumentType()) {
3035e5dd7070Spatrick         // sizeof(type) - make sure to emit the VLA size.
3036e5dd7070Spatrick         CGF.EmitVariablyModifiedType(TypeToSize);
3037e5dd7070Spatrick       } else {
3038e5dd7070Spatrick         // C99 6.5.3.4p2: If the argument is an expression of type
3039e5dd7070Spatrick         // VLA, it is evaluated.
3040e5dd7070Spatrick         CGF.EmitIgnoredExpr(E->getArgumentExpr());
3041e5dd7070Spatrick       }
3042e5dd7070Spatrick 
3043e5dd7070Spatrick       auto VlaSize = CGF.getVLASize(VAT);
3044e5dd7070Spatrick       llvm::Value *size = VlaSize.NumElts;
3045e5dd7070Spatrick 
3046e5dd7070Spatrick       // Scale the number of non-VLA elements by the non-VLA element size.
3047e5dd7070Spatrick       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
3048e5dd7070Spatrick       if (!eltSize.isOne())
3049e5dd7070Spatrick         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
3050e5dd7070Spatrick 
3051e5dd7070Spatrick       return size;
3052e5dd7070Spatrick     }
3053e5dd7070Spatrick   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
3054e5dd7070Spatrick     auto Alignment =
3055e5dd7070Spatrick         CGF.getContext()
3056e5dd7070Spatrick             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
3057e5dd7070Spatrick                 E->getTypeOfArgument()->getPointeeType()))
3058e5dd7070Spatrick             .getQuantity();
3059e5dd7070Spatrick     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
3060e5dd7070Spatrick   }
3061e5dd7070Spatrick 
3062e5dd7070Spatrick   // If this isn't sizeof(vla), the result must be constant; use the constant
3063e5dd7070Spatrick   // folding logic so we don't have to duplicate it here.
3064e5dd7070Spatrick   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3065e5dd7070Spatrick }
3066e5dd7070Spatrick 
VisitUnaryReal(const UnaryOperator * E,QualType PromotionType)3067*12c85518Srobert Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E,
3068*12c85518Srobert                                          QualType PromotionType) {
3069*12c85518Srobert   QualType promotionTy = PromotionType.isNull()
3070*12c85518Srobert                              ? getPromotionType(E->getSubExpr()->getType())
3071*12c85518Srobert                              : PromotionType;
3072*12c85518Srobert   Value *result = VisitReal(E, promotionTy);
3073*12c85518Srobert   if (result && !promotionTy.isNull())
3074*12c85518Srobert     result = EmitUnPromotedValue(result, E->getType());
3075*12c85518Srobert   return result;
3076*12c85518Srobert }
3077*12c85518Srobert 
VisitReal(const UnaryOperator * E,QualType PromotionType)3078*12c85518Srobert Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E,
3079*12c85518Srobert                                     QualType PromotionType) {
3080e5dd7070Spatrick   Expr *Op = E->getSubExpr();
3081e5dd7070Spatrick   if (Op->getType()->isAnyComplexType()) {
3082e5dd7070Spatrick     // If it's an l-value, load through the appropriate subobject l-value.
3083e5dd7070Spatrick     // Note that we have to ask E because Op might be an l-value that
3084e5dd7070Spatrick     // this won't work for, e.g. an Obj-C property.
3085*12c85518Srobert     if (E->isGLValue())  {
3086*12c85518Srobert       if (!PromotionType.isNull()) {
3087*12c85518Srobert         CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3088*12c85518Srobert             Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true);
3089*12c85518Srobert         if (result.first)
3090*12c85518Srobert           result.first = CGF.EmitPromotedValue(result, PromotionType).first;
3091*12c85518Srobert         return result.first;
3092*12c85518Srobert       } else {
3093*12c85518Srobert         return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3094*12c85518Srobert             .getScalarVal();
3095*12c85518Srobert       }
3096*12c85518Srobert     }
3097e5dd7070Spatrick     // Otherwise, calculate and project.
3098e5dd7070Spatrick     return CGF.EmitComplexExpr(Op, false, true).first;
3099e5dd7070Spatrick   }
3100e5dd7070Spatrick 
3101*12c85518Srobert   if (!PromotionType.isNull())
3102*12c85518Srobert     return CGF.EmitPromotedScalarExpr(Op, PromotionType);
3103e5dd7070Spatrick   return Visit(Op);
3104e5dd7070Spatrick }
3105e5dd7070Spatrick 
VisitUnaryImag(const UnaryOperator * E,QualType PromotionType)3106*12c85518Srobert Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E,
3107*12c85518Srobert                                          QualType PromotionType) {
3108*12c85518Srobert   QualType promotionTy = PromotionType.isNull()
3109*12c85518Srobert                              ? getPromotionType(E->getSubExpr()->getType())
3110*12c85518Srobert                              : PromotionType;
3111*12c85518Srobert   Value *result = VisitImag(E, promotionTy);
3112*12c85518Srobert   if (result && !promotionTy.isNull())
3113*12c85518Srobert     result = EmitUnPromotedValue(result, E->getType());
3114*12c85518Srobert   return result;
3115*12c85518Srobert }
3116*12c85518Srobert 
VisitImag(const UnaryOperator * E,QualType PromotionType)3117*12c85518Srobert Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E,
3118*12c85518Srobert                                     QualType PromotionType) {
3119e5dd7070Spatrick   Expr *Op = E->getSubExpr();
3120e5dd7070Spatrick   if (Op->getType()->isAnyComplexType()) {
3121e5dd7070Spatrick     // If it's an l-value, load through the appropriate subobject l-value.
3122e5dd7070Spatrick     // Note that we have to ask E because Op might be an l-value that
3123e5dd7070Spatrick     // this won't work for, e.g. an Obj-C property.
3124*12c85518Srobert     if (Op->isGLValue()) {
3125*12c85518Srobert       if (!PromotionType.isNull()) {
3126*12c85518Srobert         CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3127*12c85518Srobert             Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign);
3128*12c85518Srobert         if (result.second)
3129*12c85518Srobert           result.second = CGF.EmitPromotedValue(result, PromotionType).second;
3130*12c85518Srobert         return result.second;
3131*12c85518Srobert       } else {
3132*12c85518Srobert         return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3133*12c85518Srobert             .getScalarVal();
3134*12c85518Srobert       }
3135*12c85518Srobert     }
3136e5dd7070Spatrick     // Otherwise, calculate and project.
3137e5dd7070Spatrick     return CGF.EmitComplexExpr(Op, true, false).second;
3138e5dd7070Spatrick   }
3139e5dd7070Spatrick 
3140e5dd7070Spatrick   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
3141e5dd7070Spatrick   // effects are evaluated, but not the actual value.
3142e5dd7070Spatrick   if (Op->isGLValue())
3143e5dd7070Spatrick     CGF.EmitLValue(Op);
3144*12c85518Srobert   else if (!PromotionType.isNull())
3145*12c85518Srobert     CGF.EmitPromotedScalarExpr(Op, PromotionType);
3146e5dd7070Spatrick   else
3147e5dd7070Spatrick     CGF.EmitScalarExpr(Op, true);
3148*12c85518Srobert   if (!PromotionType.isNull())
3149*12c85518Srobert     return llvm::Constant::getNullValue(ConvertType(PromotionType));
3150e5dd7070Spatrick   return llvm::Constant::getNullValue(ConvertType(E->getType()));
3151e5dd7070Spatrick }
3152e5dd7070Spatrick 
3153e5dd7070Spatrick //===----------------------------------------------------------------------===//
3154e5dd7070Spatrick //                           Binary Operators
3155e5dd7070Spatrick //===----------------------------------------------------------------------===//
3156e5dd7070Spatrick 
EmitPromotedValue(Value * result,QualType PromotionType)3157*12c85518Srobert Value *ScalarExprEmitter::EmitPromotedValue(Value *result,
3158*12c85518Srobert                                             QualType PromotionType) {
3159*12c85518Srobert   return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext");
3160*12c85518Srobert }
3161*12c85518Srobert 
EmitUnPromotedValue(Value * result,QualType ExprType)3162*12c85518Srobert Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result,
3163*12c85518Srobert                                               QualType ExprType) {
3164*12c85518Srobert   return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion");
3165*12c85518Srobert }
3166*12c85518Srobert 
EmitPromoted(const Expr * E,QualType PromotionType)3167*12c85518Srobert Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) {
3168*12c85518Srobert   E = E->IgnoreParens();
3169*12c85518Srobert   if (auto BO = dyn_cast<BinaryOperator>(E)) {
3170*12c85518Srobert     switch (BO->getOpcode()) {
3171*12c85518Srobert #define HANDLE_BINOP(OP)                                                       \
3172*12c85518Srobert   case BO_##OP:                                                                \
3173*12c85518Srobert     return Emit##OP(EmitBinOps(BO, PromotionType));
3174*12c85518Srobert       HANDLE_BINOP(Add)
3175*12c85518Srobert       HANDLE_BINOP(Sub)
3176*12c85518Srobert       HANDLE_BINOP(Mul)
3177*12c85518Srobert       HANDLE_BINOP(Div)
3178*12c85518Srobert #undef HANDLE_BINOP
3179*12c85518Srobert     default:
3180*12c85518Srobert       break;
3181*12c85518Srobert     }
3182*12c85518Srobert   } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
3183*12c85518Srobert     switch (UO->getOpcode()) {
3184*12c85518Srobert     case UO_Imag:
3185*12c85518Srobert       return VisitImag(UO, PromotionType);
3186*12c85518Srobert     case UO_Real:
3187*12c85518Srobert       return VisitReal(UO, PromotionType);
3188*12c85518Srobert     case UO_Minus:
3189*12c85518Srobert       return VisitMinus(UO, PromotionType);
3190*12c85518Srobert     case UO_Plus:
3191*12c85518Srobert       return VisitPlus(UO, PromotionType);
3192*12c85518Srobert     default:
3193*12c85518Srobert       break;
3194*12c85518Srobert     }
3195*12c85518Srobert   }
3196*12c85518Srobert   auto result = Visit(const_cast<Expr *>(E));
3197*12c85518Srobert   if (result) {
3198*12c85518Srobert     if (!PromotionType.isNull())
3199*12c85518Srobert       return EmitPromotedValue(result, PromotionType);
3200*12c85518Srobert     else
3201*12c85518Srobert       return EmitUnPromotedValue(result, E->getType());
3202*12c85518Srobert   }
3203*12c85518Srobert   return result;
3204*12c85518Srobert }
3205*12c85518Srobert 
EmitBinOps(const BinaryOperator * E,QualType PromotionType)3206*12c85518Srobert BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E,
3207*12c85518Srobert                                         QualType PromotionType) {
3208e5dd7070Spatrick   TestAndClearIgnoreResultAssign();
3209e5dd7070Spatrick   BinOpInfo Result;
3210*12c85518Srobert   Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType);
3211*12c85518Srobert   Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType);
3212*12c85518Srobert   if (!PromotionType.isNull())
3213*12c85518Srobert     Result.Ty = PromotionType;
3214*12c85518Srobert   else
3215e5dd7070Spatrick     Result.Ty  = E->getType();
3216e5dd7070Spatrick   Result.Opcode = E->getOpcode();
3217ec727ea7Spatrick   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3218e5dd7070Spatrick   Result.E = E;
3219e5dd7070Spatrick   return Result;
3220e5dd7070Spatrick }
3221e5dd7070Spatrick 
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)3222e5dd7070Spatrick LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3223e5dd7070Spatrick                                               const CompoundAssignOperator *E,
3224e5dd7070Spatrick                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3225e5dd7070Spatrick                                                    Value *&Result) {
3226e5dd7070Spatrick   QualType LHSTy = E->getLHS()->getType();
3227e5dd7070Spatrick   BinOpInfo OpInfo;
3228e5dd7070Spatrick 
3229e5dd7070Spatrick   if (E->getComputationResultType()->isAnyComplexType())
3230e5dd7070Spatrick     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3231e5dd7070Spatrick 
3232e5dd7070Spatrick   // Emit the RHS first.  __block variables need to have the rhs evaluated
3233e5dd7070Spatrick   // first, plus this should improve codegen a little.
3234*12c85518Srobert 
3235*12c85518Srobert   QualType PromotionTypeCR;
3236*12c85518Srobert   PromotionTypeCR = getPromotionType(E->getComputationResultType());
3237*12c85518Srobert   if (PromotionTypeCR.isNull())
3238*12c85518Srobert       PromotionTypeCR = E->getComputationResultType();
3239*12c85518Srobert   QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
3240*12c85518Srobert   QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
3241*12c85518Srobert   if (!PromotionTypeRHS.isNull())
3242*12c85518Srobert     OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS);
3243*12c85518Srobert   else
3244e5dd7070Spatrick     OpInfo.RHS = Visit(E->getRHS());
3245*12c85518Srobert   OpInfo.Ty = PromotionTypeCR;
3246e5dd7070Spatrick   OpInfo.Opcode = E->getOpcode();
3247ec727ea7Spatrick   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3248e5dd7070Spatrick   OpInfo.E = E;
3249e5dd7070Spatrick   // Load/convert the LHS.
3250e5dd7070Spatrick   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3251e5dd7070Spatrick 
3252e5dd7070Spatrick   llvm::PHINode *atomicPHI = nullptr;
3253e5dd7070Spatrick   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3254e5dd7070Spatrick     QualType type = atomicTy->getValueType();
3255e5dd7070Spatrick     if (!type->isBooleanType() && type->isIntegerType() &&
3256e5dd7070Spatrick         !(type->isUnsignedIntegerType() &&
3257e5dd7070Spatrick           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3258e5dd7070Spatrick         CGF.getLangOpts().getSignedOverflowBehavior() !=
3259e5dd7070Spatrick             LangOptions::SOB_Trapping) {
3260e5dd7070Spatrick       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3261e5dd7070Spatrick       llvm::Instruction::BinaryOps Op;
3262e5dd7070Spatrick       switch (OpInfo.Opcode) {
3263e5dd7070Spatrick         // We don't have atomicrmw operands for *, %, /, <<, >>
3264e5dd7070Spatrick         case BO_MulAssign: case BO_DivAssign:
3265e5dd7070Spatrick         case BO_RemAssign:
3266e5dd7070Spatrick         case BO_ShlAssign:
3267e5dd7070Spatrick         case BO_ShrAssign:
3268e5dd7070Spatrick           break;
3269e5dd7070Spatrick         case BO_AddAssign:
3270e5dd7070Spatrick           AtomicOp = llvm::AtomicRMWInst::Add;
3271e5dd7070Spatrick           Op = llvm::Instruction::Add;
3272e5dd7070Spatrick           break;
3273e5dd7070Spatrick         case BO_SubAssign:
3274e5dd7070Spatrick           AtomicOp = llvm::AtomicRMWInst::Sub;
3275e5dd7070Spatrick           Op = llvm::Instruction::Sub;
3276e5dd7070Spatrick           break;
3277e5dd7070Spatrick         case BO_AndAssign:
3278e5dd7070Spatrick           AtomicOp = llvm::AtomicRMWInst::And;
3279e5dd7070Spatrick           Op = llvm::Instruction::And;
3280e5dd7070Spatrick           break;
3281e5dd7070Spatrick         case BO_XorAssign:
3282e5dd7070Spatrick           AtomicOp = llvm::AtomicRMWInst::Xor;
3283e5dd7070Spatrick           Op = llvm::Instruction::Xor;
3284e5dd7070Spatrick           break;
3285e5dd7070Spatrick         case BO_OrAssign:
3286e5dd7070Spatrick           AtomicOp = llvm::AtomicRMWInst::Or;
3287e5dd7070Spatrick           Op = llvm::Instruction::Or;
3288e5dd7070Spatrick           break;
3289e5dd7070Spatrick         default:
3290e5dd7070Spatrick           llvm_unreachable("Invalid compound assignment type");
3291e5dd7070Spatrick       }
3292e5dd7070Spatrick       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3293e5dd7070Spatrick         llvm::Value *Amt = CGF.EmitToMemory(
3294e5dd7070Spatrick             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3295e5dd7070Spatrick                                  E->getExprLoc()),
3296e5dd7070Spatrick             LHSTy);
3297e5dd7070Spatrick         Value *OldVal = Builder.CreateAtomicRMW(
3298e5dd7070Spatrick             AtomicOp, LHSLV.getPointer(CGF), Amt,
3299e5dd7070Spatrick             llvm::AtomicOrdering::SequentiallyConsistent);
3300e5dd7070Spatrick 
3301e5dd7070Spatrick         // Since operation is atomic, the result type is guaranteed to be the
3302e5dd7070Spatrick         // same as the input in LLVM terms.
3303e5dd7070Spatrick         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3304e5dd7070Spatrick         return LHSLV;
3305e5dd7070Spatrick       }
3306e5dd7070Spatrick     }
3307e5dd7070Spatrick     // FIXME: For floating point types, we should be saving and restoring the
3308e5dd7070Spatrick     // floating point environment in the loop.
3309e5dd7070Spatrick     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3310e5dd7070Spatrick     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3311e5dd7070Spatrick     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3312e5dd7070Spatrick     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3313e5dd7070Spatrick     Builder.CreateBr(opBB);
3314e5dd7070Spatrick     Builder.SetInsertPoint(opBB);
3315e5dd7070Spatrick     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3316e5dd7070Spatrick     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3317e5dd7070Spatrick     OpInfo.LHS = atomicPHI;
3318e5dd7070Spatrick   }
3319e5dd7070Spatrick   else
3320e5dd7070Spatrick     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3321e5dd7070Spatrick 
3322a9ac8606Spatrick   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3323e5dd7070Spatrick   SourceLocation Loc = E->getExprLoc();
3324*12c85518Srobert   if (!PromotionTypeLHS.isNull())
3325*12c85518Srobert     OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS,
3326*12c85518Srobert                                       E->getExprLoc());
3327*12c85518Srobert   else
3328*12c85518Srobert     OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
3329*12c85518Srobert                                       E->getComputationLHSType(), Loc);
3330e5dd7070Spatrick 
3331e5dd7070Spatrick   // Expand the binary operator.
3332e5dd7070Spatrick   Result = (this->*Func)(OpInfo);
3333e5dd7070Spatrick 
3334e5dd7070Spatrick   // Convert the result back to the LHS type,
3335e5dd7070Spatrick   // potentially with Implicit Conversion sanitizer check.
3336*12c85518Srobert   Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc,
3337*12c85518Srobert                                 ScalarConversionOpts(CGF.SanOpts));
3338e5dd7070Spatrick 
3339e5dd7070Spatrick   if (atomicPHI) {
3340e5dd7070Spatrick     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3341e5dd7070Spatrick     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3342e5dd7070Spatrick     auto Pair = CGF.EmitAtomicCompareExchange(
3343e5dd7070Spatrick         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3344e5dd7070Spatrick     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3345e5dd7070Spatrick     llvm::Value *success = Pair.second;
3346e5dd7070Spatrick     atomicPHI->addIncoming(old, curBlock);
3347e5dd7070Spatrick     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3348e5dd7070Spatrick     Builder.SetInsertPoint(contBB);
3349e5dd7070Spatrick     return LHSLV;
3350e5dd7070Spatrick   }
3351e5dd7070Spatrick 
3352e5dd7070Spatrick   // Store the result value into the LHS lvalue. Bit-fields are handled
3353e5dd7070Spatrick   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3354e5dd7070Spatrick   // 'An assignment expression has the value of the left operand after the
3355e5dd7070Spatrick   // assignment...'.
3356e5dd7070Spatrick   if (LHSLV.isBitField())
3357e5dd7070Spatrick     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3358e5dd7070Spatrick   else
3359e5dd7070Spatrick     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3360e5dd7070Spatrick 
3361e5dd7070Spatrick   if (CGF.getLangOpts().OpenMP)
3362e5dd7070Spatrick     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3363e5dd7070Spatrick                                                                   E->getLHS());
3364e5dd7070Spatrick   return LHSLV;
3365e5dd7070Spatrick }
3366e5dd7070Spatrick 
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))3367e5dd7070Spatrick Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3368e5dd7070Spatrick                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3369e5dd7070Spatrick   bool Ignore = TestAndClearIgnoreResultAssign();
3370e5dd7070Spatrick   Value *RHS = nullptr;
3371e5dd7070Spatrick   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3372e5dd7070Spatrick 
3373e5dd7070Spatrick   // If the result is clearly ignored, return now.
3374e5dd7070Spatrick   if (Ignore)
3375e5dd7070Spatrick     return nullptr;
3376e5dd7070Spatrick 
3377e5dd7070Spatrick   // The result of an assignment in C is the assigned r-value.
3378e5dd7070Spatrick   if (!CGF.getLangOpts().CPlusPlus)
3379e5dd7070Spatrick     return RHS;
3380e5dd7070Spatrick 
3381e5dd7070Spatrick   // If the lvalue is non-volatile, return the computed value of the assignment.
3382e5dd7070Spatrick   if (!LHS.isVolatileQualified())
3383e5dd7070Spatrick     return RHS;
3384e5dd7070Spatrick 
3385e5dd7070Spatrick   // Otherwise, reload the value.
3386e5dd7070Spatrick   return EmitLoadOfLValue(LHS, E->getExprLoc());
3387e5dd7070Spatrick }
3388e5dd7070Spatrick 
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)3389e5dd7070Spatrick void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3390e5dd7070Spatrick     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3391e5dd7070Spatrick   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3392e5dd7070Spatrick 
3393e5dd7070Spatrick   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3394e5dd7070Spatrick     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3395e5dd7070Spatrick                                     SanitizerKind::IntegerDivideByZero));
3396e5dd7070Spatrick   }
3397e5dd7070Spatrick 
3398e5dd7070Spatrick   const auto *BO = cast<BinaryOperator>(Ops.E);
3399e5dd7070Spatrick   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3400e5dd7070Spatrick       Ops.Ty->hasSignedIntegerRepresentation() &&
3401e5dd7070Spatrick       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3402e5dd7070Spatrick       Ops.mayHaveIntegerOverflow()) {
3403e5dd7070Spatrick     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3404e5dd7070Spatrick 
3405e5dd7070Spatrick     llvm::Value *IntMin =
3406e5dd7070Spatrick       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3407a9ac8606Spatrick     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3408e5dd7070Spatrick 
3409e5dd7070Spatrick     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3410e5dd7070Spatrick     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3411e5dd7070Spatrick     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3412e5dd7070Spatrick     Checks.push_back(
3413e5dd7070Spatrick         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3414e5dd7070Spatrick   }
3415e5dd7070Spatrick 
3416e5dd7070Spatrick   if (Checks.size() > 0)
3417e5dd7070Spatrick     EmitBinOpCheck(Checks, Ops);
3418e5dd7070Spatrick }
3419e5dd7070Spatrick 
EmitDiv(const BinOpInfo & Ops)3420e5dd7070Spatrick Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3421e5dd7070Spatrick   {
3422e5dd7070Spatrick     CodeGenFunction::SanitizerScope SanScope(&CGF);
3423e5dd7070Spatrick     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3424e5dd7070Spatrick          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3425e5dd7070Spatrick         Ops.Ty->isIntegerType() &&
3426e5dd7070Spatrick         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3427e5dd7070Spatrick       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3428e5dd7070Spatrick       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3429e5dd7070Spatrick     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3430e5dd7070Spatrick                Ops.Ty->isRealFloatingType() &&
3431e5dd7070Spatrick                Ops.mayHaveFloatDivisionByZero()) {
3432e5dd7070Spatrick       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3433e5dd7070Spatrick       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3434e5dd7070Spatrick       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3435e5dd7070Spatrick                      Ops);
3436e5dd7070Spatrick     }
3437e5dd7070Spatrick   }
3438e5dd7070Spatrick 
3439a9ac8606Spatrick   if (Ops.Ty->isConstantMatrixType()) {
3440*12c85518Srobert     llvm::MatrixBuilder MB(Builder);
3441a9ac8606Spatrick     // We need to check the types of the operands of the operator to get the
3442a9ac8606Spatrick     // correct matrix dimensions.
3443a9ac8606Spatrick     auto *BO = cast<BinaryOperator>(Ops.E);
3444a9ac8606Spatrick     (void)BO;
3445a9ac8606Spatrick     assert(
3446a9ac8606Spatrick         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3447a9ac8606Spatrick         "first operand must be a matrix");
3448a9ac8606Spatrick     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3449a9ac8606Spatrick            "second operand must be an arithmetic type");
3450a9ac8606Spatrick     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3451a9ac8606Spatrick     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3452a9ac8606Spatrick                               Ops.Ty->hasUnsignedIntegerRepresentation());
3453a9ac8606Spatrick   }
3454a9ac8606Spatrick 
3455e5dd7070Spatrick   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3456ec727ea7Spatrick     llvm::Value *Val;
3457ec727ea7Spatrick     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3458ec727ea7Spatrick     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3459a9ac8606Spatrick     if ((CGF.getLangOpts().OpenCL &&
3460a9ac8606Spatrick          !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
3461a9ac8606Spatrick         (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
3462a9ac8606Spatrick          !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
3463e5dd7070Spatrick       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3464e5dd7070Spatrick       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3465e5dd7070Spatrick       // build option allows an application to specify that single precision
3466e5dd7070Spatrick       // floating-point divide (x/y and 1/x) and sqrt used in the program
3467e5dd7070Spatrick       // source are correctly rounded.
3468e5dd7070Spatrick       llvm::Type *ValTy = Val->getType();
3469e5dd7070Spatrick       if (ValTy->isFloatTy() ||
3470e5dd7070Spatrick           (isa<llvm::VectorType>(ValTy) &&
3471e5dd7070Spatrick            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3472e5dd7070Spatrick         CGF.SetFPAccuracy(Val, 2.5);
3473e5dd7070Spatrick     }
3474e5dd7070Spatrick     return Val;
3475e5dd7070Spatrick   }
3476ec727ea7Spatrick   else if (Ops.isFixedPointOp())
3477ec727ea7Spatrick     return EmitFixedPointBinOp(Ops);
3478e5dd7070Spatrick   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3479e5dd7070Spatrick     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3480e5dd7070Spatrick   else
3481e5dd7070Spatrick     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3482e5dd7070Spatrick }
3483e5dd7070Spatrick 
EmitRem(const BinOpInfo & Ops)3484e5dd7070Spatrick Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3485e5dd7070Spatrick   // Rem in C can't be a floating point type: C99 6.5.5p2.
3486e5dd7070Spatrick   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3487e5dd7070Spatrick        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3488e5dd7070Spatrick       Ops.Ty->isIntegerType() &&
3489e5dd7070Spatrick       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3490e5dd7070Spatrick     CodeGenFunction::SanitizerScope SanScope(&CGF);
3491e5dd7070Spatrick     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3492e5dd7070Spatrick     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3493e5dd7070Spatrick   }
3494e5dd7070Spatrick 
3495e5dd7070Spatrick   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3496e5dd7070Spatrick     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3497e5dd7070Spatrick   else
3498e5dd7070Spatrick     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3499e5dd7070Spatrick }
3500e5dd7070Spatrick 
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)3501e5dd7070Spatrick Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3502e5dd7070Spatrick   unsigned IID;
3503e5dd7070Spatrick   unsigned OpID = 0;
3504a9ac8606Spatrick   SanitizerHandler OverflowKind;
3505e5dd7070Spatrick 
3506e5dd7070Spatrick   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3507e5dd7070Spatrick   switch (Ops.Opcode) {
3508e5dd7070Spatrick   case BO_Add:
3509e5dd7070Spatrick   case BO_AddAssign:
3510e5dd7070Spatrick     OpID = 1;
3511e5dd7070Spatrick     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3512e5dd7070Spatrick                      llvm::Intrinsic::uadd_with_overflow;
3513a9ac8606Spatrick     OverflowKind = SanitizerHandler::AddOverflow;
3514e5dd7070Spatrick     break;
3515e5dd7070Spatrick   case BO_Sub:
3516e5dd7070Spatrick   case BO_SubAssign:
3517e5dd7070Spatrick     OpID = 2;
3518e5dd7070Spatrick     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3519e5dd7070Spatrick                      llvm::Intrinsic::usub_with_overflow;
3520a9ac8606Spatrick     OverflowKind = SanitizerHandler::SubOverflow;
3521e5dd7070Spatrick     break;
3522e5dd7070Spatrick   case BO_Mul:
3523e5dd7070Spatrick   case BO_MulAssign:
3524e5dd7070Spatrick     OpID = 3;
3525e5dd7070Spatrick     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3526e5dd7070Spatrick                      llvm::Intrinsic::umul_with_overflow;
3527a9ac8606Spatrick     OverflowKind = SanitizerHandler::MulOverflow;
3528e5dd7070Spatrick     break;
3529e5dd7070Spatrick   default:
3530e5dd7070Spatrick     llvm_unreachable("Unsupported operation for overflow detection");
3531e5dd7070Spatrick   }
3532e5dd7070Spatrick   OpID <<= 1;
3533e5dd7070Spatrick   if (isSigned)
3534e5dd7070Spatrick     OpID |= 1;
3535e5dd7070Spatrick 
3536e5dd7070Spatrick   CodeGenFunction::SanitizerScope SanScope(&CGF);
3537e5dd7070Spatrick   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3538e5dd7070Spatrick 
3539e5dd7070Spatrick   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3540e5dd7070Spatrick 
3541e5dd7070Spatrick   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3542e5dd7070Spatrick   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3543e5dd7070Spatrick   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3544e5dd7070Spatrick 
3545e5dd7070Spatrick   // Handle overflow with llvm.trap if no custom handler has been specified.
3546e5dd7070Spatrick   const std::string *handlerName =
3547e5dd7070Spatrick     &CGF.getLangOpts().OverflowHandler;
3548e5dd7070Spatrick   if (handlerName->empty()) {
3549e5dd7070Spatrick     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3550e5dd7070Spatrick     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3551e5dd7070Spatrick     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3552e5dd7070Spatrick       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3553e5dd7070Spatrick       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3554e5dd7070Spatrick                               : SanitizerKind::UnsignedIntegerOverflow;
3555e5dd7070Spatrick       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3556e5dd7070Spatrick     } else
3557a9ac8606Spatrick       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3558e5dd7070Spatrick     return result;
3559e5dd7070Spatrick   }
3560e5dd7070Spatrick 
3561e5dd7070Spatrick   // Branch in case of overflow.
3562e5dd7070Spatrick   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3563e5dd7070Spatrick   llvm::BasicBlock *continueBB =
3564e5dd7070Spatrick       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3565e5dd7070Spatrick   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3566e5dd7070Spatrick 
3567e5dd7070Spatrick   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3568e5dd7070Spatrick 
3569e5dd7070Spatrick   // If an overflow handler is set, then we want to call it and then use its
3570e5dd7070Spatrick   // result, if it returns.
3571e5dd7070Spatrick   Builder.SetInsertPoint(overflowBB);
3572e5dd7070Spatrick 
3573e5dd7070Spatrick   // Get the overflow handler.
3574e5dd7070Spatrick   llvm::Type *Int8Ty = CGF.Int8Ty;
3575e5dd7070Spatrick   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3576e5dd7070Spatrick   llvm::FunctionType *handlerTy =
3577e5dd7070Spatrick       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3578e5dd7070Spatrick   llvm::FunctionCallee handler =
3579e5dd7070Spatrick       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3580e5dd7070Spatrick 
3581e5dd7070Spatrick   // Sign extend the args to 64-bit, so that we can use the same handler for
3582e5dd7070Spatrick   // all types of overflow.
3583e5dd7070Spatrick   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3584e5dd7070Spatrick   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3585e5dd7070Spatrick 
3586e5dd7070Spatrick   // Call the handler with the two arguments, the operation, and the size of
3587e5dd7070Spatrick   // the result.
3588e5dd7070Spatrick   llvm::Value *handlerArgs[] = {
3589e5dd7070Spatrick     lhs,
3590e5dd7070Spatrick     rhs,
3591e5dd7070Spatrick     Builder.getInt8(OpID),
3592e5dd7070Spatrick     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3593e5dd7070Spatrick   };
3594e5dd7070Spatrick   llvm::Value *handlerResult =
3595e5dd7070Spatrick     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3596e5dd7070Spatrick 
3597e5dd7070Spatrick   // Truncate the result back to the desired size.
3598e5dd7070Spatrick   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3599e5dd7070Spatrick   Builder.CreateBr(continueBB);
3600e5dd7070Spatrick 
3601e5dd7070Spatrick   Builder.SetInsertPoint(continueBB);
3602e5dd7070Spatrick   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3603e5dd7070Spatrick   phi->addIncoming(result, initialBB);
3604e5dd7070Spatrick   phi->addIncoming(handlerResult, overflowBB);
3605e5dd7070Spatrick 
3606e5dd7070Spatrick   return phi;
3607e5dd7070Spatrick }
3608e5dd7070Spatrick 
3609e5dd7070Spatrick /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)3610e5dd7070Spatrick static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3611e5dd7070Spatrick                                     const BinOpInfo &op,
3612e5dd7070Spatrick                                     bool isSubtraction) {
3613e5dd7070Spatrick   // Must have binary (not unary) expr here.  Unary pointer
3614e5dd7070Spatrick   // increment/decrement doesn't use this path.
3615e5dd7070Spatrick   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3616e5dd7070Spatrick 
3617e5dd7070Spatrick   Value *pointer = op.LHS;
3618e5dd7070Spatrick   Expr *pointerOperand = expr->getLHS();
3619e5dd7070Spatrick   Value *index = op.RHS;
3620e5dd7070Spatrick   Expr *indexOperand = expr->getRHS();
3621e5dd7070Spatrick 
3622e5dd7070Spatrick   // In a subtraction, the LHS is always the pointer.
3623e5dd7070Spatrick   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3624e5dd7070Spatrick     std::swap(pointer, index);
3625e5dd7070Spatrick     std::swap(pointerOperand, indexOperand);
3626e5dd7070Spatrick   }
3627e5dd7070Spatrick 
3628e5dd7070Spatrick   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3629e5dd7070Spatrick 
3630e5dd7070Spatrick   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3631e5dd7070Spatrick   auto &DL = CGF.CGM.getDataLayout();
3632e5dd7070Spatrick   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3633e5dd7070Spatrick 
3634e5dd7070Spatrick   // Some versions of glibc and gcc use idioms (particularly in their malloc
3635e5dd7070Spatrick   // routines) that add a pointer-sized integer (known to be a pointer value)
3636e5dd7070Spatrick   // to a null pointer in order to cast the value back to an integer or as
3637e5dd7070Spatrick   // part of a pointer alignment algorithm.  This is undefined behavior, but
3638e5dd7070Spatrick   // we'd like to be able to compile programs that use it.
3639e5dd7070Spatrick   //
3640e5dd7070Spatrick   // Normally, we'd generate a GEP with a null-pointer base here in response
3641e5dd7070Spatrick   // to that code, but it's also UB to dereference a pointer created that
3642e5dd7070Spatrick   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3643e5dd7070Spatrick   // generate a direct cast of the integer value to a pointer.
3644e5dd7070Spatrick   //
3645e5dd7070Spatrick   // The idiom (p = nullptr + N) is not met if any of the following are true:
3646e5dd7070Spatrick   //
3647e5dd7070Spatrick   //   The operation is subtraction.
3648e5dd7070Spatrick   //   The index is not pointer-sized.
3649e5dd7070Spatrick   //   The pointer type is not byte-sized.
3650e5dd7070Spatrick   //
3651e5dd7070Spatrick   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3652e5dd7070Spatrick                                                        op.Opcode,
3653e5dd7070Spatrick                                                        expr->getLHS(),
3654e5dd7070Spatrick                                                        expr->getRHS()))
3655e5dd7070Spatrick     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3656e5dd7070Spatrick 
3657e5dd7070Spatrick   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3658e5dd7070Spatrick     // Zero-extend or sign-extend the pointer value according to
3659e5dd7070Spatrick     // whether the index is signed or not.
3660e5dd7070Spatrick     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3661e5dd7070Spatrick                                       "idx.ext");
3662e5dd7070Spatrick   }
3663e5dd7070Spatrick 
3664e5dd7070Spatrick   // If this is subtraction, negate the index.
3665e5dd7070Spatrick   if (isSubtraction)
3666e5dd7070Spatrick     index = CGF.Builder.CreateNeg(index, "idx.neg");
3667e5dd7070Spatrick 
3668e5dd7070Spatrick   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3669e5dd7070Spatrick     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3670e5dd7070Spatrick                         /*Accessed*/ false);
3671e5dd7070Spatrick 
3672e5dd7070Spatrick   const PointerType *pointerType
3673e5dd7070Spatrick     = pointerOperand->getType()->getAs<PointerType>();
3674e5dd7070Spatrick   if (!pointerType) {
3675e5dd7070Spatrick     QualType objectType = pointerOperand->getType()
3676e5dd7070Spatrick                                         ->castAs<ObjCObjectPointerType>()
3677e5dd7070Spatrick                                         ->getPointeeType();
3678e5dd7070Spatrick     llvm::Value *objectSize
3679e5dd7070Spatrick       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3680e5dd7070Spatrick 
3681e5dd7070Spatrick     index = CGF.Builder.CreateMul(index, objectSize);
3682e5dd7070Spatrick 
3683e5dd7070Spatrick     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3684a9ac8606Spatrick     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3685e5dd7070Spatrick     return CGF.Builder.CreateBitCast(result, pointer->getType());
3686e5dd7070Spatrick   }
3687e5dd7070Spatrick 
3688e5dd7070Spatrick   QualType elementType = pointerType->getPointeeType();
3689e5dd7070Spatrick   if (const VariableArrayType *vla
3690e5dd7070Spatrick         = CGF.getContext().getAsVariableArrayType(elementType)) {
3691e5dd7070Spatrick     // The element count here is the total number of non-VLA elements.
3692e5dd7070Spatrick     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3693e5dd7070Spatrick 
3694e5dd7070Spatrick     // Effectively, the multiply by the VLA size is part of the GEP.
3695e5dd7070Spatrick     // GEP indexes are signed, and scaling an index isn't permitted to
3696e5dd7070Spatrick     // signed-overflow, so we use the same semantics for our explicit
3697e5dd7070Spatrick     // multiply.  We suppress this if overflow is not undefined behavior.
3698*12c85518Srobert     llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
3699e5dd7070Spatrick     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3700e5dd7070Spatrick       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3701*12c85518Srobert       pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3702e5dd7070Spatrick     } else {
3703e5dd7070Spatrick       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3704*12c85518Srobert       pointer = CGF.EmitCheckedInBoundsGEP(
3705*12c85518Srobert           elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3706*12c85518Srobert           "add.ptr");
3707e5dd7070Spatrick     }
3708e5dd7070Spatrick     return pointer;
3709e5dd7070Spatrick   }
3710e5dd7070Spatrick 
3711e5dd7070Spatrick   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3712e5dd7070Spatrick   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3713e5dd7070Spatrick   // future proof.
3714e5dd7070Spatrick   if (elementType->isVoidType() || elementType->isFunctionType()) {
3715e5dd7070Spatrick     Value *result = CGF.EmitCastToVoidPtr(pointer);
3716a9ac8606Spatrick     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3717e5dd7070Spatrick     return CGF.Builder.CreateBitCast(result, pointer->getType());
3718e5dd7070Spatrick   }
3719e5dd7070Spatrick 
3720*12c85518Srobert   llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType);
3721e5dd7070Spatrick   if (CGF.getLangOpts().isSignedOverflowDefined())
3722*12c85518Srobert     return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3723e5dd7070Spatrick 
3724*12c85518Srobert   return CGF.EmitCheckedInBoundsGEP(
3725*12c85518Srobert       elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3726*12c85518Srobert       "add.ptr");
3727e5dd7070Spatrick }
3728e5dd7070Spatrick 
3729e5dd7070Spatrick // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3730e5dd7070Spatrick // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3731e5dd7070Spatrick // the add operand respectively. This allows fmuladd to represent a*b-c, or
3732e5dd7070Spatrick // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3733e5dd7070Spatrick // efficient operations.
buildFMulAdd(llvm::Instruction * MulOp,Value * Addend,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool negMul,bool negAdd)3734ec727ea7Spatrick static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3735e5dd7070Spatrick                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3736e5dd7070Spatrick                            bool negMul, bool negAdd) {
3737e5dd7070Spatrick   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3738e5dd7070Spatrick 
3739e5dd7070Spatrick   Value *MulOp0 = MulOp->getOperand(0);
3740e5dd7070Spatrick   Value *MulOp1 = MulOp->getOperand(1);
3741e5dd7070Spatrick   if (negMul)
3742e5dd7070Spatrick     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3743e5dd7070Spatrick   if (negAdd)
3744e5dd7070Spatrick     Addend = Builder.CreateFNeg(Addend, "neg");
3745e5dd7070Spatrick 
3746ec727ea7Spatrick   Value *FMulAdd = nullptr;
3747ec727ea7Spatrick   if (Builder.getIsFPConstrained()) {
3748ec727ea7Spatrick     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3749ec727ea7Spatrick            "Only constrained operation should be created when Builder is in FP "
3750ec727ea7Spatrick            "constrained mode");
3751ec727ea7Spatrick     FMulAdd = Builder.CreateConstrainedFPCall(
3752ec727ea7Spatrick         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3753ec727ea7Spatrick                              Addend->getType()),
3754ec727ea7Spatrick         {MulOp0, MulOp1, Addend});
3755ec727ea7Spatrick   } else {
3756ec727ea7Spatrick     FMulAdd = Builder.CreateCall(
3757e5dd7070Spatrick         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3758e5dd7070Spatrick         {MulOp0, MulOp1, Addend});
3759ec727ea7Spatrick   }
3760e5dd7070Spatrick   MulOp->eraseFromParent();
3761e5dd7070Spatrick 
3762e5dd7070Spatrick   return FMulAdd;
3763e5dd7070Spatrick }
3764e5dd7070Spatrick 
3765e5dd7070Spatrick // Check whether it would be legal to emit an fmuladd intrinsic call to
3766e5dd7070Spatrick // represent op and if so, build the fmuladd.
3767e5dd7070Spatrick //
3768e5dd7070Spatrick // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3769e5dd7070Spatrick // Does NOT check the type of the operation - it's assumed that this function
3770e5dd7070Spatrick // will be called from contexts where it's known that the type is contractable.
tryEmitFMulAdd(const BinOpInfo & op,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool isSub=false)3771e5dd7070Spatrick static Value* tryEmitFMulAdd(const BinOpInfo &op,
3772e5dd7070Spatrick                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3773e5dd7070Spatrick                          bool isSub=false) {
3774e5dd7070Spatrick 
3775e5dd7070Spatrick   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3776e5dd7070Spatrick           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3777e5dd7070Spatrick          "Only fadd/fsub can be the root of an fmuladd.");
3778e5dd7070Spatrick 
3779e5dd7070Spatrick   // Check whether this op is marked as fusable.
3780e5dd7070Spatrick   if (!op.FPFeatures.allowFPContractWithinStatement())
3781e5dd7070Spatrick     return nullptr;
3782e5dd7070Spatrick 
3783e5dd7070Spatrick   // We have a potentially fusable op. Look for a mul on one of the operands.
3784e5dd7070Spatrick   // Also, make sure that the mul result isn't used directly. In that case,
3785e5dd7070Spatrick   // there's no point creating a muladd operation.
3786e5dd7070Spatrick   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3787e5dd7070Spatrick     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3788e5dd7070Spatrick         LHSBinOp->use_empty())
3789e5dd7070Spatrick       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3790e5dd7070Spatrick   }
3791e5dd7070Spatrick   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3792e5dd7070Spatrick     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3793e5dd7070Spatrick         RHSBinOp->use_empty())
3794e5dd7070Spatrick       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3795e5dd7070Spatrick   }
3796e5dd7070Spatrick 
3797ec727ea7Spatrick   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3798ec727ea7Spatrick     if (LHSBinOp->getIntrinsicID() ==
3799ec727ea7Spatrick             llvm::Intrinsic::experimental_constrained_fmul &&
3800ec727ea7Spatrick         LHSBinOp->use_empty())
3801ec727ea7Spatrick       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3802ec727ea7Spatrick   }
3803ec727ea7Spatrick   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3804ec727ea7Spatrick     if (RHSBinOp->getIntrinsicID() ==
3805ec727ea7Spatrick             llvm::Intrinsic::experimental_constrained_fmul &&
3806ec727ea7Spatrick         RHSBinOp->use_empty())
3807ec727ea7Spatrick       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3808ec727ea7Spatrick   }
3809ec727ea7Spatrick 
3810e5dd7070Spatrick   return nullptr;
3811e5dd7070Spatrick }
3812e5dd7070Spatrick 
EmitAdd(const BinOpInfo & op)3813e5dd7070Spatrick Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3814e5dd7070Spatrick   if (op.LHS->getType()->isPointerTy() ||
3815e5dd7070Spatrick       op.RHS->getType()->isPointerTy())
3816e5dd7070Spatrick     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3817e5dd7070Spatrick 
3818e5dd7070Spatrick   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3819e5dd7070Spatrick     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3820e5dd7070Spatrick     case LangOptions::SOB_Defined:
3821e5dd7070Spatrick       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3822e5dd7070Spatrick     case LangOptions::SOB_Undefined:
3823e5dd7070Spatrick       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3824e5dd7070Spatrick         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3825*12c85518Srobert       [[fallthrough]];
3826e5dd7070Spatrick     case LangOptions::SOB_Trapping:
3827e5dd7070Spatrick       if (CanElideOverflowCheck(CGF.getContext(), op))
3828e5dd7070Spatrick         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3829e5dd7070Spatrick       return EmitOverflowCheckedBinOp(op);
3830e5dd7070Spatrick     }
3831e5dd7070Spatrick   }
3832e5dd7070Spatrick 
3833ec727ea7Spatrick   if (op.Ty->isConstantMatrixType()) {
3834*12c85518Srobert     llvm::MatrixBuilder MB(Builder);
3835a9ac8606Spatrick     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3836ec727ea7Spatrick     return MB.CreateAdd(op.LHS, op.RHS);
3837ec727ea7Spatrick   }
3838ec727ea7Spatrick 
3839e5dd7070Spatrick   if (op.Ty->isUnsignedIntegerType() &&
3840e5dd7070Spatrick       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3841e5dd7070Spatrick       !CanElideOverflowCheck(CGF.getContext(), op))
3842e5dd7070Spatrick     return EmitOverflowCheckedBinOp(op);
3843e5dd7070Spatrick 
3844e5dd7070Spatrick   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3845ec727ea7Spatrick     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3846e5dd7070Spatrick     // Try to form an fmuladd.
3847e5dd7070Spatrick     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3848e5dd7070Spatrick       return FMulAdd;
3849e5dd7070Spatrick 
3850ec727ea7Spatrick     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3851e5dd7070Spatrick   }
3852e5dd7070Spatrick 
3853ec727ea7Spatrick   if (op.isFixedPointOp())
3854e5dd7070Spatrick     return EmitFixedPointBinOp(op);
3855e5dd7070Spatrick 
3856e5dd7070Spatrick   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3857e5dd7070Spatrick }
3858e5dd7070Spatrick 
3859e5dd7070Spatrick /// The resulting value must be calculated with exact precision, so the operands
3860e5dd7070Spatrick /// may not be the same type.
EmitFixedPointBinOp(const BinOpInfo & op)3861e5dd7070Spatrick Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3862e5dd7070Spatrick   using llvm::APSInt;
3863e5dd7070Spatrick   using llvm::ConstantInt;
3864e5dd7070Spatrick 
3865ec727ea7Spatrick   // This is either a binary operation where at least one of the operands is
3866ec727ea7Spatrick   // a fixed-point type, or a unary operation where the operand is a fixed-point
3867ec727ea7Spatrick   // type. The result type of a binary operation is determined by
3868ec727ea7Spatrick   // Sema::handleFixedPointConversions().
3869e5dd7070Spatrick   QualType ResultTy = op.Ty;
3870ec727ea7Spatrick   QualType LHSTy, RHSTy;
3871ec727ea7Spatrick   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3872ec727ea7Spatrick     RHSTy = BinOp->getRHS()->getType();
3873ec727ea7Spatrick     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3874ec727ea7Spatrick       // For compound assignment, the effective type of the LHS at this point
3875ec727ea7Spatrick       // is the computation LHS type, not the actual LHS type, and the final
3876ec727ea7Spatrick       // result type is not the type of the expression but rather the
3877ec727ea7Spatrick       // computation result type.
3878ec727ea7Spatrick       LHSTy = CAO->getComputationLHSType();
3879ec727ea7Spatrick       ResultTy = CAO->getComputationResultType();
3880ec727ea7Spatrick     } else
3881ec727ea7Spatrick       LHSTy = BinOp->getLHS()->getType();
3882ec727ea7Spatrick   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3883ec727ea7Spatrick     LHSTy = UnOp->getSubExpr()->getType();
3884ec727ea7Spatrick     RHSTy = UnOp->getSubExpr()->getType();
3885ec727ea7Spatrick   }
3886e5dd7070Spatrick   ASTContext &Ctx = CGF.getContext();
3887e5dd7070Spatrick   Value *LHS = op.LHS;
3888e5dd7070Spatrick   Value *RHS = op.RHS;
3889e5dd7070Spatrick 
3890e5dd7070Spatrick   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3891e5dd7070Spatrick   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3892e5dd7070Spatrick   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3893e5dd7070Spatrick   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3894e5dd7070Spatrick 
3895ec727ea7Spatrick   // Perform the actual operation.
3896e5dd7070Spatrick   Value *Result;
3897a9ac8606Spatrick   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3898ec727ea7Spatrick   switch (op.Opcode) {
3899ec727ea7Spatrick   case BO_AddAssign:
3900a9ac8606Spatrick   case BO_Add:
3901a9ac8606Spatrick     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3902e5dd7070Spatrick     break;
3903ec727ea7Spatrick   case BO_SubAssign:
3904a9ac8606Spatrick   case BO_Sub:
3905a9ac8606Spatrick     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3906e5dd7070Spatrick     break;
3907ec727ea7Spatrick   case BO_MulAssign:
3908a9ac8606Spatrick   case BO_Mul:
3909a9ac8606Spatrick     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3910ec727ea7Spatrick     break;
3911ec727ea7Spatrick   case BO_DivAssign:
3912a9ac8606Spatrick   case BO_Div:
3913a9ac8606Spatrick     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3914ec727ea7Spatrick     break;
3915a9ac8606Spatrick   case BO_ShlAssign:
3916a9ac8606Spatrick   case BO_Shl:
3917a9ac8606Spatrick     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3918a9ac8606Spatrick     break;
3919a9ac8606Spatrick   case BO_ShrAssign:
3920a9ac8606Spatrick   case BO_Shr:
3921a9ac8606Spatrick     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3922a9ac8606Spatrick     break;
3923e5dd7070Spatrick   case BO_LT:
3924a9ac8606Spatrick     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3925e5dd7070Spatrick   case BO_GT:
3926a9ac8606Spatrick     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3927e5dd7070Spatrick   case BO_LE:
3928a9ac8606Spatrick     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3929e5dd7070Spatrick   case BO_GE:
3930a9ac8606Spatrick     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3931e5dd7070Spatrick   case BO_EQ:
3932e5dd7070Spatrick     // For equality operations, we assume any padding bits on unsigned types are
3933e5dd7070Spatrick     // zero'd out. They could be overwritten through non-saturating operations
3934e5dd7070Spatrick     // that cause overflow, but this leads to undefined behavior.
3935a9ac8606Spatrick     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3936e5dd7070Spatrick   case BO_NE:
3937a9ac8606Spatrick     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3938e5dd7070Spatrick   case BO_Cmp:
3939e5dd7070Spatrick   case BO_LAnd:
3940e5dd7070Spatrick   case BO_LOr:
3941e5dd7070Spatrick     llvm_unreachable("Found unimplemented fixed point binary operation");
3942e5dd7070Spatrick   case BO_PtrMemD:
3943e5dd7070Spatrick   case BO_PtrMemI:
3944e5dd7070Spatrick   case BO_Rem:
3945e5dd7070Spatrick   case BO_Xor:
3946e5dd7070Spatrick   case BO_And:
3947e5dd7070Spatrick   case BO_Or:
3948e5dd7070Spatrick   case BO_Assign:
3949e5dd7070Spatrick   case BO_RemAssign:
3950e5dd7070Spatrick   case BO_AndAssign:
3951e5dd7070Spatrick   case BO_XorAssign:
3952e5dd7070Spatrick   case BO_OrAssign:
3953e5dd7070Spatrick   case BO_Comma:
3954e5dd7070Spatrick     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3955e5dd7070Spatrick   }
3956e5dd7070Spatrick 
3957a9ac8606Spatrick   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3958a9ac8606Spatrick                  BinaryOperator::isShiftAssignOp(op.Opcode);
3959e5dd7070Spatrick   // Convert to the result type.
3960a9ac8606Spatrick   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3961a9ac8606Spatrick                                                       : CommonFixedSema,
3962a9ac8606Spatrick                                       ResultFixedSema);
3963e5dd7070Spatrick }
3964e5dd7070Spatrick 
EmitSub(const BinOpInfo & op)3965e5dd7070Spatrick Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3966e5dd7070Spatrick   // The LHS is always a pointer if either side is.
3967e5dd7070Spatrick   if (!op.LHS->getType()->isPointerTy()) {
3968e5dd7070Spatrick     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3969e5dd7070Spatrick       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3970e5dd7070Spatrick       case LangOptions::SOB_Defined:
3971e5dd7070Spatrick         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3972e5dd7070Spatrick       case LangOptions::SOB_Undefined:
3973e5dd7070Spatrick         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3974e5dd7070Spatrick           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3975*12c85518Srobert         [[fallthrough]];
3976e5dd7070Spatrick       case LangOptions::SOB_Trapping:
3977e5dd7070Spatrick         if (CanElideOverflowCheck(CGF.getContext(), op))
3978e5dd7070Spatrick           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3979e5dd7070Spatrick         return EmitOverflowCheckedBinOp(op);
3980e5dd7070Spatrick       }
3981e5dd7070Spatrick     }
3982e5dd7070Spatrick 
3983ec727ea7Spatrick     if (op.Ty->isConstantMatrixType()) {
3984*12c85518Srobert       llvm::MatrixBuilder MB(Builder);
3985a9ac8606Spatrick       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3986ec727ea7Spatrick       return MB.CreateSub(op.LHS, op.RHS);
3987ec727ea7Spatrick     }
3988ec727ea7Spatrick 
3989e5dd7070Spatrick     if (op.Ty->isUnsignedIntegerType() &&
3990e5dd7070Spatrick         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3991e5dd7070Spatrick         !CanElideOverflowCheck(CGF.getContext(), op))
3992e5dd7070Spatrick       return EmitOverflowCheckedBinOp(op);
3993e5dd7070Spatrick 
3994e5dd7070Spatrick     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3995ec727ea7Spatrick       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3996e5dd7070Spatrick       // Try to form an fmuladd.
3997e5dd7070Spatrick       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3998e5dd7070Spatrick         return FMulAdd;
3999ec727ea7Spatrick       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
4000e5dd7070Spatrick     }
4001e5dd7070Spatrick 
4002ec727ea7Spatrick     if (op.isFixedPointOp())
4003e5dd7070Spatrick       return EmitFixedPointBinOp(op);
4004e5dd7070Spatrick 
4005e5dd7070Spatrick     return Builder.CreateSub(op.LHS, op.RHS, "sub");
4006e5dd7070Spatrick   }
4007e5dd7070Spatrick 
4008e5dd7070Spatrick   // If the RHS is not a pointer, then we have normal pointer
4009e5dd7070Spatrick   // arithmetic.
4010e5dd7070Spatrick   if (!op.RHS->getType()->isPointerTy())
4011e5dd7070Spatrick     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
4012e5dd7070Spatrick 
4013e5dd7070Spatrick   // Otherwise, this is a pointer subtraction.
4014e5dd7070Spatrick 
4015e5dd7070Spatrick   // Do the raw subtraction part.
4016e5dd7070Spatrick   llvm::Value *LHS
4017e5dd7070Spatrick     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
4018e5dd7070Spatrick   llvm::Value *RHS
4019e5dd7070Spatrick     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
4020e5dd7070Spatrick   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
4021e5dd7070Spatrick 
4022e5dd7070Spatrick   // Okay, figure out the element size.
4023e5dd7070Spatrick   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
4024e5dd7070Spatrick   QualType elementType = expr->getLHS()->getType()->getPointeeType();
4025e5dd7070Spatrick 
4026e5dd7070Spatrick   llvm::Value *divisor = nullptr;
4027e5dd7070Spatrick 
4028e5dd7070Spatrick   // For a variable-length array, this is going to be non-constant.
4029e5dd7070Spatrick   if (const VariableArrayType *vla
4030e5dd7070Spatrick         = CGF.getContext().getAsVariableArrayType(elementType)) {
4031e5dd7070Spatrick     auto VlaSize = CGF.getVLASize(vla);
4032e5dd7070Spatrick     elementType = VlaSize.Type;
4033e5dd7070Spatrick     divisor = VlaSize.NumElts;
4034e5dd7070Spatrick 
4035e5dd7070Spatrick     // Scale the number of non-VLA elements by the non-VLA element size.
4036e5dd7070Spatrick     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
4037e5dd7070Spatrick     if (!eltSize.isOne())
4038e5dd7070Spatrick       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
4039e5dd7070Spatrick 
4040e5dd7070Spatrick   // For everything elese, we can just compute it, safe in the
4041e5dd7070Spatrick   // assumption that Sema won't let anything through that we can't
4042e5dd7070Spatrick   // safely compute the size of.
4043e5dd7070Spatrick   } else {
4044e5dd7070Spatrick     CharUnits elementSize;
4045e5dd7070Spatrick     // Handle GCC extension for pointer arithmetic on void* and
4046e5dd7070Spatrick     // function pointer types.
4047e5dd7070Spatrick     if (elementType->isVoidType() || elementType->isFunctionType())
4048e5dd7070Spatrick       elementSize = CharUnits::One();
4049e5dd7070Spatrick     else
4050e5dd7070Spatrick       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
4051e5dd7070Spatrick 
4052e5dd7070Spatrick     // Don't even emit the divide for element size of 1.
4053e5dd7070Spatrick     if (elementSize.isOne())
4054e5dd7070Spatrick       return diffInChars;
4055e5dd7070Spatrick 
4056e5dd7070Spatrick     divisor = CGF.CGM.getSize(elementSize);
4057e5dd7070Spatrick   }
4058e5dd7070Spatrick 
4059e5dd7070Spatrick   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
4060e5dd7070Spatrick   // pointer difference in C is only defined in the case where both operands
4061e5dd7070Spatrick   // are pointing to elements of an array.
4062e5dd7070Spatrick   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
4063e5dd7070Spatrick }
4064e5dd7070Spatrick 
GetWidthMinusOneValue(Value * LHS,Value * RHS)4065e5dd7070Spatrick Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
4066e5dd7070Spatrick   llvm::IntegerType *Ty;
4067e5dd7070Spatrick   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4068e5dd7070Spatrick     Ty = cast<llvm::IntegerType>(VT->getElementType());
4069e5dd7070Spatrick   else
4070e5dd7070Spatrick     Ty = cast<llvm::IntegerType>(LHS->getType());
4071e5dd7070Spatrick   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
4072e5dd7070Spatrick }
4073e5dd7070Spatrick 
ConstrainShiftValue(Value * LHS,Value * RHS,const Twine & Name)4074ec727ea7Spatrick Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
4075ec727ea7Spatrick                                               const Twine &Name) {
4076ec727ea7Spatrick   llvm::IntegerType *Ty;
4077ec727ea7Spatrick   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4078ec727ea7Spatrick     Ty = cast<llvm::IntegerType>(VT->getElementType());
4079ec727ea7Spatrick   else
4080ec727ea7Spatrick     Ty = cast<llvm::IntegerType>(LHS->getType());
4081ec727ea7Spatrick 
4082ec727ea7Spatrick   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
4083ec727ea7Spatrick         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
4084ec727ea7Spatrick 
4085ec727ea7Spatrick   return Builder.CreateURem(
4086ec727ea7Spatrick       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
4087ec727ea7Spatrick }
4088ec727ea7Spatrick 
EmitShl(const BinOpInfo & Ops)4089e5dd7070Spatrick Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
4090a9ac8606Spatrick   // TODO: This misses out on the sanitizer check below.
4091a9ac8606Spatrick   if (Ops.isFixedPointOp())
4092a9ac8606Spatrick     return EmitFixedPointBinOp(Ops);
4093a9ac8606Spatrick 
4094e5dd7070Spatrick   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4095e5dd7070Spatrick   // RHS to the same size as the LHS.
4096e5dd7070Spatrick   Value *RHS = Ops.RHS;
4097e5dd7070Spatrick   if (Ops.LHS->getType() != RHS->getType())
4098e5dd7070Spatrick     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4099e5dd7070Spatrick 
4100a9ac8606Spatrick   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
4101e5dd7070Spatrick                             Ops.Ty->hasSignedIntegerRepresentation() &&
4102e5dd7070Spatrick                             !CGF.getLangOpts().isSignedOverflowDefined() &&
4103ec727ea7Spatrick                             !CGF.getLangOpts().CPlusPlus20;
4104a9ac8606Spatrick   bool SanitizeUnsignedBase =
4105a9ac8606Spatrick       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
4106a9ac8606Spatrick       Ops.Ty->hasUnsignedIntegerRepresentation();
4107a9ac8606Spatrick   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
4108e5dd7070Spatrick   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
4109e5dd7070Spatrick   // OpenCL 6.3j: shift values are effectively % word size of LHS.
4110e5dd7070Spatrick   if (CGF.getLangOpts().OpenCL)
4111ec727ea7Spatrick     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
4112e5dd7070Spatrick   else if ((SanitizeBase || SanitizeExponent) &&
4113e5dd7070Spatrick            isa<llvm::IntegerType>(Ops.LHS->getType())) {
4114e5dd7070Spatrick     CodeGenFunction::SanitizerScope SanScope(&CGF);
4115e5dd7070Spatrick     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
4116e5dd7070Spatrick     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
4117e5dd7070Spatrick     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
4118e5dd7070Spatrick 
4119e5dd7070Spatrick     if (SanitizeExponent) {
4120e5dd7070Spatrick       Checks.push_back(
4121e5dd7070Spatrick           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
4122e5dd7070Spatrick     }
4123e5dd7070Spatrick 
4124e5dd7070Spatrick     if (SanitizeBase) {
4125e5dd7070Spatrick       // Check whether we are shifting any non-zero bits off the top of the
4126e5dd7070Spatrick       // integer. We only emit this check if exponent is valid - otherwise
4127e5dd7070Spatrick       // instructions below will have undefined behavior themselves.
4128e5dd7070Spatrick       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
4129e5dd7070Spatrick       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4130e5dd7070Spatrick       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
4131e5dd7070Spatrick       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
4132e5dd7070Spatrick       llvm::Value *PromotedWidthMinusOne =
4133e5dd7070Spatrick           (RHS == Ops.RHS) ? WidthMinusOne
4134e5dd7070Spatrick                            : GetWidthMinusOneValue(Ops.LHS, RHS);
4135e5dd7070Spatrick       CGF.EmitBlock(CheckShiftBase);
4136e5dd7070Spatrick       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
4137e5dd7070Spatrick           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
4138e5dd7070Spatrick                                      /*NUW*/ true, /*NSW*/ true),
4139e5dd7070Spatrick           "shl.check");
4140a9ac8606Spatrick       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
4141e5dd7070Spatrick         // In C99, we are not permitted to shift a 1 bit into the sign bit.
4142e5dd7070Spatrick         // Under C++11's rules, shifting a 1 bit into the sign bit is
4143e5dd7070Spatrick         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
4144e5dd7070Spatrick         // define signed left shifts, so we use the C99 and C++11 rules there).
4145a9ac8606Spatrick         // Unsigned shifts can always shift into the top bit.
4146e5dd7070Spatrick         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
4147e5dd7070Spatrick         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
4148e5dd7070Spatrick       }
4149e5dd7070Spatrick       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
4150e5dd7070Spatrick       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
4151e5dd7070Spatrick       CGF.EmitBlock(Cont);
4152e5dd7070Spatrick       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
4153e5dd7070Spatrick       BaseCheck->addIncoming(Builder.getTrue(), Orig);
4154e5dd7070Spatrick       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
4155a9ac8606Spatrick       Checks.push_back(std::make_pair(
4156a9ac8606Spatrick           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
4157a9ac8606Spatrick                                         : SanitizerKind::UnsignedShiftBase));
4158e5dd7070Spatrick     }
4159e5dd7070Spatrick 
4160e5dd7070Spatrick     assert(!Checks.empty());
4161e5dd7070Spatrick     EmitBinOpCheck(Checks, Ops);
4162e5dd7070Spatrick   }
4163e5dd7070Spatrick 
4164e5dd7070Spatrick   return Builder.CreateShl(Ops.LHS, RHS, "shl");
4165e5dd7070Spatrick }
4166e5dd7070Spatrick 
EmitShr(const BinOpInfo & Ops)4167e5dd7070Spatrick Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
4168a9ac8606Spatrick   // TODO: This misses out on the sanitizer check below.
4169a9ac8606Spatrick   if (Ops.isFixedPointOp())
4170a9ac8606Spatrick     return EmitFixedPointBinOp(Ops);
4171a9ac8606Spatrick 
4172e5dd7070Spatrick   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4173e5dd7070Spatrick   // RHS to the same size as the LHS.
4174e5dd7070Spatrick   Value *RHS = Ops.RHS;
4175e5dd7070Spatrick   if (Ops.LHS->getType() != RHS->getType())
4176e5dd7070Spatrick     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4177e5dd7070Spatrick 
4178e5dd7070Spatrick   // OpenCL 6.3j: shift values are effectively % word size of LHS.
4179e5dd7070Spatrick   if (CGF.getLangOpts().OpenCL)
4180ec727ea7Spatrick     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4181e5dd7070Spatrick   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4182e5dd7070Spatrick            isa<llvm::IntegerType>(Ops.LHS->getType())) {
4183e5dd7070Spatrick     CodeGenFunction::SanitizerScope SanScope(&CGF);
4184e5dd7070Spatrick     llvm::Value *Valid =
4185e5dd7070Spatrick         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
4186e5dd7070Spatrick     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4187e5dd7070Spatrick   }
4188e5dd7070Spatrick 
4189e5dd7070Spatrick   if (Ops.Ty->hasUnsignedIntegerRepresentation())
4190e5dd7070Spatrick     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4191e5dd7070Spatrick   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4192e5dd7070Spatrick }
4193e5dd7070Spatrick 
4194e5dd7070Spatrick enum IntrinsicType { VCMPEQ, VCMPGT };
4195e5dd7070Spatrick // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)4196e5dd7070Spatrick static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4197e5dd7070Spatrick                                         BuiltinType::Kind ElemKind) {
4198e5dd7070Spatrick   switch (ElemKind) {
4199e5dd7070Spatrick   default: llvm_unreachable("unexpected element type");
4200e5dd7070Spatrick   case BuiltinType::Char_U:
4201e5dd7070Spatrick   case BuiltinType::UChar:
4202e5dd7070Spatrick     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4203e5dd7070Spatrick                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4204e5dd7070Spatrick   case BuiltinType::Char_S:
4205e5dd7070Spatrick   case BuiltinType::SChar:
4206e5dd7070Spatrick     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4207e5dd7070Spatrick                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4208e5dd7070Spatrick   case BuiltinType::UShort:
4209e5dd7070Spatrick     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4210e5dd7070Spatrick                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4211e5dd7070Spatrick   case BuiltinType::Short:
4212e5dd7070Spatrick     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4213e5dd7070Spatrick                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4214e5dd7070Spatrick   case BuiltinType::UInt:
4215e5dd7070Spatrick     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4216e5dd7070Spatrick                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4217e5dd7070Spatrick   case BuiltinType::Int:
4218e5dd7070Spatrick     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4219e5dd7070Spatrick                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4220e5dd7070Spatrick   case BuiltinType::ULong:
4221e5dd7070Spatrick   case BuiltinType::ULongLong:
4222e5dd7070Spatrick     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4223e5dd7070Spatrick                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4224e5dd7070Spatrick   case BuiltinType::Long:
4225e5dd7070Spatrick   case BuiltinType::LongLong:
4226e5dd7070Spatrick     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4227e5dd7070Spatrick                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4228e5dd7070Spatrick   case BuiltinType::Float:
4229e5dd7070Spatrick     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4230e5dd7070Spatrick                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4231e5dd7070Spatrick   case BuiltinType::Double:
4232e5dd7070Spatrick     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4233e5dd7070Spatrick                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4234a9ac8606Spatrick   case BuiltinType::UInt128:
4235a9ac8606Spatrick     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4236a9ac8606Spatrick                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4237a9ac8606Spatrick   case BuiltinType::Int128:
4238a9ac8606Spatrick     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4239a9ac8606Spatrick                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4240e5dd7070Spatrick   }
4241e5dd7070Spatrick }
4242e5dd7070Spatrick 
EmitCompare(const BinaryOperator * E,llvm::CmpInst::Predicate UICmpOpc,llvm::CmpInst::Predicate SICmpOpc,llvm::CmpInst::Predicate FCmpOpc,bool IsSignaling)4243e5dd7070Spatrick Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4244e5dd7070Spatrick                                       llvm::CmpInst::Predicate UICmpOpc,
4245e5dd7070Spatrick                                       llvm::CmpInst::Predicate SICmpOpc,
4246e5dd7070Spatrick                                       llvm::CmpInst::Predicate FCmpOpc,
4247e5dd7070Spatrick                                       bool IsSignaling) {
4248e5dd7070Spatrick   TestAndClearIgnoreResultAssign();
4249e5dd7070Spatrick   Value *Result;
4250e5dd7070Spatrick   QualType LHSTy = E->getLHS()->getType();
4251e5dd7070Spatrick   QualType RHSTy = E->getRHS()->getType();
4252e5dd7070Spatrick   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4253e5dd7070Spatrick     assert(E->getOpcode() == BO_EQ ||
4254e5dd7070Spatrick            E->getOpcode() == BO_NE);
4255e5dd7070Spatrick     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4256e5dd7070Spatrick     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4257e5dd7070Spatrick     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4258e5dd7070Spatrick                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4259e5dd7070Spatrick   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4260e5dd7070Spatrick     BinOpInfo BOInfo = EmitBinOps(E);
4261e5dd7070Spatrick     Value *LHS = BOInfo.LHS;
4262e5dd7070Spatrick     Value *RHS = BOInfo.RHS;
4263e5dd7070Spatrick 
4264e5dd7070Spatrick     // If AltiVec, the comparison results in a numeric type, so we use
4265e5dd7070Spatrick     // intrinsics comparing vectors and giving 0 or 1 as a result
4266e5dd7070Spatrick     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4267e5dd7070Spatrick       // constants for mapping CR6 register bits to predicate result
4268e5dd7070Spatrick       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4269e5dd7070Spatrick 
4270e5dd7070Spatrick       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4271e5dd7070Spatrick 
4272e5dd7070Spatrick       // in several cases vector arguments order will be reversed
4273e5dd7070Spatrick       Value *FirstVecArg = LHS,
4274e5dd7070Spatrick             *SecondVecArg = RHS;
4275e5dd7070Spatrick 
4276e5dd7070Spatrick       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4277e5dd7070Spatrick       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4278e5dd7070Spatrick 
4279e5dd7070Spatrick       switch(E->getOpcode()) {
4280e5dd7070Spatrick       default: llvm_unreachable("is not a comparison operation");
4281e5dd7070Spatrick       case BO_EQ:
4282e5dd7070Spatrick         CR6 = CR6_LT;
4283e5dd7070Spatrick         ID = GetIntrinsic(VCMPEQ, ElementKind);
4284e5dd7070Spatrick         break;
4285e5dd7070Spatrick       case BO_NE:
4286e5dd7070Spatrick         CR6 = CR6_EQ;
4287e5dd7070Spatrick         ID = GetIntrinsic(VCMPEQ, ElementKind);
4288e5dd7070Spatrick         break;
4289e5dd7070Spatrick       case BO_LT:
4290e5dd7070Spatrick         CR6 = CR6_LT;
4291e5dd7070Spatrick         ID = GetIntrinsic(VCMPGT, ElementKind);
4292e5dd7070Spatrick         std::swap(FirstVecArg, SecondVecArg);
4293e5dd7070Spatrick         break;
4294e5dd7070Spatrick       case BO_GT:
4295e5dd7070Spatrick         CR6 = CR6_LT;
4296e5dd7070Spatrick         ID = GetIntrinsic(VCMPGT, ElementKind);
4297e5dd7070Spatrick         break;
4298e5dd7070Spatrick       case BO_LE:
4299e5dd7070Spatrick         if (ElementKind == BuiltinType::Float) {
4300e5dd7070Spatrick           CR6 = CR6_LT;
4301e5dd7070Spatrick           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4302e5dd7070Spatrick           std::swap(FirstVecArg, SecondVecArg);
4303e5dd7070Spatrick         }
4304e5dd7070Spatrick         else {
4305e5dd7070Spatrick           CR6 = CR6_EQ;
4306e5dd7070Spatrick           ID = GetIntrinsic(VCMPGT, ElementKind);
4307e5dd7070Spatrick         }
4308e5dd7070Spatrick         break;
4309e5dd7070Spatrick       case BO_GE:
4310e5dd7070Spatrick         if (ElementKind == BuiltinType::Float) {
4311e5dd7070Spatrick           CR6 = CR6_LT;
4312e5dd7070Spatrick           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4313e5dd7070Spatrick         }
4314e5dd7070Spatrick         else {
4315e5dd7070Spatrick           CR6 = CR6_EQ;
4316e5dd7070Spatrick           ID = GetIntrinsic(VCMPGT, ElementKind);
4317e5dd7070Spatrick           std::swap(FirstVecArg, SecondVecArg);
4318e5dd7070Spatrick         }
4319e5dd7070Spatrick         break;
4320e5dd7070Spatrick       }
4321e5dd7070Spatrick 
4322e5dd7070Spatrick       Value *CR6Param = Builder.getInt32(CR6);
4323e5dd7070Spatrick       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4324e5dd7070Spatrick       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4325e5dd7070Spatrick 
4326e5dd7070Spatrick       // The result type of intrinsic may not be same as E->getType().
4327e5dd7070Spatrick       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4328e5dd7070Spatrick       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4329e5dd7070Spatrick       // do nothing, if ResultTy is not i1 at the same time, it will cause
4330e5dd7070Spatrick       // crash later.
4331e5dd7070Spatrick       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4332e5dd7070Spatrick       if (ResultTy->getBitWidth() > 1 &&
4333e5dd7070Spatrick           E->getType() == CGF.getContext().BoolTy)
4334e5dd7070Spatrick         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4335e5dd7070Spatrick       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4336e5dd7070Spatrick                                   E->getExprLoc());
4337e5dd7070Spatrick     }
4338e5dd7070Spatrick 
4339ec727ea7Spatrick     if (BOInfo.isFixedPointOp()) {
4340e5dd7070Spatrick       Result = EmitFixedPointBinOp(BOInfo);
4341e5dd7070Spatrick     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4342ec727ea7Spatrick       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4343e5dd7070Spatrick       if (!IsSignaling)
4344e5dd7070Spatrick         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4345e5dd7070Spatrick       else
4346e5dd7070Spatrick         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4347e5dd7070Spatrick     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4348e5dd7070Spatrick       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4349e5dd7070Spatrick     } else {
4350e5dd7070Spatrick       // Unsigned integers and pointers.
4351e5dd7070Spatrick 
4352e5dd7070Spatrick       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4353e5dd7070Spatrick           !isa<llvm::ConstantPointerNull>(LHS) &&
4354e5dd7070Spatrick           !isa<llvm::ConstantPointerNull>(RHS)) {
4355e5dd7070Spatrick 
4356e5dd7070Spatrick         // Dynamic information is required to be stripped for comparisons,
4357e5dd7070Spatrick         // because it could leak the dynamic information.  Based on comparisons
4358e5dd7070Spatrick         // of pointers to dynamic objects, the optimizer can replace one pointer
4359e5dd7070Spatrick         // with another, which might be incorrect in presence of invariant
4360e5dd7070Spatrick         // groups. Comparison with null is safe because null does not carry any
4361e5dd7070Spatrick         // dynamic information.
4362e5dd7070Spatrick         if (LHSTy.mayBeDynamicClass())
4363e5dd7070Spatrick           LHS = Builder.CreateStripInvariantGroup(LHS);
4364e5dd7070Spatrick         if (RHSTy.mayBeDynamicClass())
4365e5dd7070Spatrick           RHS = Builder.CreateStripInvariantGroup(RHS);
4366e5dd7070Spatrick       }
4367e5dd7070Spatrick 
4368e5dd7070Spatrick       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4369e5dd7070Spatrick     }
4370e5dd7070Spatrick 
4371e5dd7070Spatrick     // If this is a vector comparison, sign extend the result to the appropriate
4372e5dd7070Spatrick     // vector integer type and return it (don't convert to bool).
4373e5dd7070Spatrick     if (LHSTy->isVectorType())
4374e5dd7070Spatrick       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4375e5dd7070Spatrick 
4376e5dd7070Spatrick   } else {
4377e5dd7070Spatrick     // Complex Comparison: can only be an equality comparison.
4378e5dd7070Spatrick     CodeGenFunction::ComplexPairTy LHS, RHS;
4379e5dd7070Spatrick     QualType CETy;
4380e5dd7070Spatrick     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4381e5dd7070Spatrick       LHS = CGF.EmitComplexExpr(E->getLHS());
4382e5dd7070Spatrick       CETy = CTy->getElementType();
4383e5dd7070Spatrick     } else {
4384e5dd7070Spatrick       LHS.first = Visit(E->getLHS());
4385e5dd7070Spatrick       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4386e5dd7070Spatrick       CETy = LHSTy;
4387e5dd7070Spatrick     }
4388e5dd7070Spatrick     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4389e5dd7070Spatrick       RHS = CGF.EmitComplexExpr(E->getRHS());
4390e5dd7070Spatrick       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4391e5dd7070Spatrick                                                      CTy->getElementType()) &&
4392e5dd7070Spatrick              "The element types must always match.");
4393e5dd7070Spatrick       (void)CTy;
4394e5dd7070Spatrick     } else {
4395e5dd7070Spatrick       RHS.first = Visit(E->getRHS());
4396e5dd7070Spatrick       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4397e5dd7070Spatrick       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4398e5dd7070Spatrick              "The element types must always match.");
4399e5dd7070Spatrick     }
4400e5dd7070Spatrick 
4401e5dd7070Spatrick     Value *ResultR, *ResultI;
4402e5dd7070Spatrick     if (CETy->isRealFloatingType()) {
4403e5dd7070Spatrick       // As complex comparisons can only be equality comparisons, they
4404e5dd7070Spatrick       // are never signaling comparisons.
4405e5dd7070Spatrick       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4406e5dd7070Spatrick       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4407e5dd7070Spatrick     } else {
4408e5dd7070Spatrick       // Complex comparisons can only be equality comparisons.  As such, signed
4409e5dd7070Spatrick       // and unsigned opcodes are the same.
4410e5dd7070Spatrick       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4411e5dd7070Spatrick       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4412e5dd7070Spatrick     }
4413e5dd7070Spatrick 
4414e5dd7070Spatrick     if (E->getOpcode() == BO_EQ) {
4415e5dd7070Spatrick       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4416e5dd7070Spatrick     } else {
4417e5dd7070Spatrick       assert(E->getOpcode() == BO_NE &&
4418e5dd7070Spatrick              "Complex comparison other than == or != ?");
4419e5dd7070Spatrick       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4420e5dd7070Spatrick     }
4421e5dd7070Spatrick   }
4422e5dd7070Spatrick 
4423e5dd7070Spatrick   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4424e5dd7070Spatrick                               E->getExprLoc());
4425e5dd7070Spatrick }
4426e5dd7070Spatrick 
VisitBinAssign(const BinaryOperator * E)4427e5dd7070Spatrick Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4428e5dd7070Spatrick   bool Ignore = TestAndClearIgnoreResultAssign();
4429e5dd7070Spatrick 
4430e5dd7070Spatrick   Value *RHS;
4431e5dd7070Spatrick   LValue LHS;
4432e5dd7070Spatrick 
4433e5dd7070Spatrick   switch (E->getLHS()->getType().getObjCLifetime()) {
4434e5dd7070Spatrick   case Qualifiers::OCL_Strong:
4435e5dd7070Spatrick     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4436e5dd7070Spatrick     break;
4437e5dd7070Spatrick 
4438e5dd7070Spatrick   case Qualifiers::OCL_Autoreleasing:
4439e5dd7070Spatrick     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4440e5dd7070Spatrick     break;
4441e5dd7070Spatrick 
4442e5dd7070Spatrick   case Qualifiers::OCL_ExplicitNone:
4443e5dd7070Spatrick     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4444e5dd7070Spatrick     break;
4445e5dd7070Spatrick 
4446e5dd7070Spatrick   case Qualifiers::OCL_Weak:
4447e5dd7070Spatrick     RHS = Visit(E->getRHS());
4448e5dd7070Spatrick     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4449e5dd7070Spatrick     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4450e5dd7070Spatrick     break;
4451e5dd7070Spatrick 
4452e5dd7070Spatrick   case Qualifiers::OCL_None:
4453e5dd7070Spatrick     // __block variables need to have the rhs evaluated first, plus
4454e5dd7070Spatrick     // this should improve codegen just a little.
4455e5dd7070Spatrick     RHS = Visit(E->getRHS());
4456e5dd7070Spatrick     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4457e5dd7070Spatrick 
4458e5dd7070Spatrick     // Store the value into the LHS.  Bit-fields are handled specially
4459e5dd7070Spatrick     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4460e5dd7070Spatrick     // 'An assignment expression has the value of the left operand after
4461e5dd7070Spatrick     // the assignment...'.
4462e5dd7070Spatrick     if (LHS.isBitField()) {
4463e5dd7070Spatrick       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4464e5dd7070Spatrick     } else {
4465e5dd7070Spatrick       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4466e5dd7070Spatrick       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4467e5dd7070Spatrick     }
4468e5dd7070Spatrick   }
4469e5dd7070Spatrick 
4470e5dd7070Spatrick   // If the result is clearly ignored, return now.
4471e5dd7070Spatrick   if (Ignore)
4472e5dd7070Spatrick     return nullptr;
4473e5dd7070Spatrick 
4474e5dd7070Spatrick   // The result of an assignment in C is the assigned r-value.
4475e5dd7070Spatrick   if (!CGF.getLangOpts().CPlusPlus)
4476e5dd7070Spatrick     return RHS;
4477e5dd7070Spatrick 
4478e5dd7070Spatrick   // If the lvalue is non-volatile, return the computed value of the assignment.
4479e5dd7070Spatrick   if (!LHS.isVolatileQualified())
4480e5dd7070Spatrick     return RHS;
4481e5dd7070Spatrick 
4482e5dd7070Spatrick   // Otherwise, reload the value.
4483e5dd7070Spatrick   return EmitLoadOfLValue(LHS, E->getExprLoc());
4484e5dd7070Spatrick }
4485e5dd7070Spatrick 
VisitBinLAnd(const BinaryOperator * E)4486e5dd7070Spatrick Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4487e5dd7070Spatrick   // Perform vector logical and on comparisons with zero vectors.
4488e5dd7070Spatrick   if (E->getType()->isVectorType()) {
4489e5dd7070Spatrick     CGF.incrementProfileCounter(E);
4490e5dd7070Spatrick 
4491e5dd7070Spatrick     Value *LHS = Visit(E->getLHS());
4492e5dd7070Spatrick     Value *RHS = Visit(E->getRHS());
4493e5dd7070Spatrick     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4494e5dd7070Spatrick     if (LHS->getType()->isFPOrFPVectorTy()) {
4495ec727ea7Spatrick       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4496ec727ea7Spatrick           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4497e5dd7070Spatrick       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4498e5dd7070Spatrick       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4499e5dd7070Spatrick     } else {
4500e5dd7070Spatrick       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4501e5dd7070Spatrick       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4502e5dd7070Spatrick     }
4503e5dd7070Spatrick     Value *And = Builder.CreateAnd(LHS, RHS);
4504e5dd7070Spatrick     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4505e5dd7070Spatrick   }
4506e5dd7070Spatrick 
4507a9ac8606Spatrick   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4508e5dd7070Spatrick   llvm::Type *ResTy = ConvertType(E->getType());
4509e5dd7070Spatrick 
4510e5dd7070Spatrick   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4511e5dd7070Spatrick   // If we have 1 && X, just emit X without inserting the control flow.
4512e5dd7070Spatrick   bool LHSCondVal;
4513e5dd7070Spatrick   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4514e5dd7070Spatrick     if (LHSCondVal) { // If we have 1 && X, just emit X.
4515e5dd7070Spatrick       CGF.incrementProfileCounter(E);
4516e5dd7070Spatrick 
4517e5dd7070Spatrick       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4518a9ac8606Spatrick 
4519a9ac8606Spatrick       // If we're generating for profiling or coverage, generate a branch to a
4520a9ac8606Spatrick       // block that increments the RHS counter needed to track branch condition
4521a9ac8606Spatrick       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4522a9ac8606Spatrick       // "FalseBlock" after the increment is done.
4523a9ac8606Spatrick       if (InstrumentRegions &&
4524a9ac8606Spatrick           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4525a9ac8606Spatrick         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4526a9ac8606Spatrick         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4527a9ac8606Spatrick         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4528a9ac8606Spatrick         CGF.EmitBlock(RHSBlockCnt);
4529a9ac8606Spatrick         CGF.incrementProfileCounter(E->getRHS());
4530a9ac8606Spatrick         CGF.EmitBranch(FBlock);
4531a9ac8606Spatrick         CGF.EmitBlock(FBlock);
4532a9ac8606Spatrick       }
4533a9ac8606Spatrick 
4534e5dd7070Spatrick       // ZExt result to int or bool.
4535e5dd7070Spatrick       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4536e5dd7070Spatrick     }
4537e5dd7070Spatrick 
4538e5dd7070Spatrick     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4539e5dd7070Spatrick     if (!CGF.ContainsLabel(E->getRHS()))
4540e5dd7070Spatrick       return llvm::Constant::getNullValue(ResTy);
4541e5dd7070Spatrick   }
4542e5dd7070Spatrick 
4543e5dd7070Spatrick   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4544e5dd7070Spatrick   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4545e5dd7070Spatrick 
4546e5dd7070Spatrick   CodeGenFunction::ConditionalEvaluation eval(CGF);
4547e5dd7070Spatrick 
4548e5dd7070Spatrick   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4549e5dd7070Spatrick   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4550e5dd7070Spatrick                            CGF.getProfileCount(E->getRHS()));
4551e5dd7070Spatrick 
4552e5dd7070Spatrick   // Any edges into the ContBlock are now from an (indeterminate number of)
4553e5dd7070Spatrick   // edges from this first condition.  All of these values will be false.  Start
4554e5dd7070Spatrick   // setting up the PHI node in the Cont Block for this.
4555e5dd7070Spatrick   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4556e5dd7070Spatrick                                             "", ContBlock);
4557e5dd7070Spatrick   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4558e5dd7070Spatrick        PI != PE; ++PI)
4559e5dd7070Spatrick     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4560e5dd7070Spatrick 
4561e5dd7070Spatrick   eval.begin(CGF);
4562e5dd7070Spatrick   CGF.EmitBlock(RHSBlock);
4563e5dd7070Spatrick   CGF.incrementProfileCounter(E);
4564e5dd7070Spatrick   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4565e5dd7070Spatrick   eval.end(CGF);
4566e5dd7070Spatrick 
4567e5dd7070Spatrick   // Reaquire the RHS block, as there may be subblocks inserted.
4568e5dd7070Spatrick   RHSBlock = Builder.GetInsertBlock();
4569e5dd7070Spatrick 
4570a9ac8606Spatrick   // If we're generating for profiling or coverage, generate a branch on the
4571a9ac8606Spatrick   // RHS to a block that increments the RHS true counter needed to track branch
4572a9ac8606Spatrick   // condition coverage.
4573a9ac8606Spatrick   if (InstrumentRegions &&
4574a9ac8606Spatrick       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4575a9ac8606Spatrick     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4576a9ac8606Spatrick     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4577a9ac8606Spatrick     CGF.EmitBlock(RHSBlockCnt);
4578a9ac8606Spatrick     CGF.incrementProfileCounter(E->getRHS());
4579a9ac8606Spatrick     CGF.EmitBranch(ContBlock);
4580a9ac8606Spatrick     PN->addIncoming(RHSCond, RHSBlockCnt);
4581a9ac8606Spatrick   }
4582a9ac8606Spatrick 
4583e5dd7070Spatrick   // Emit an unconditional branch from this block to ContBlock.
4584e5dd7070Spatrick   {
4585e5dd7070Spatrick     // There is no need to emit line number for unconditional branch.
4586e5dd7070Spatrick     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4587e5dd7070Spatrick     CGF.EmitBlock(ContBlock);
4588e5dd7070Spatrick   }
4589e5dd7070Spatrick   // Insert an entry into the phi node for the edge with the value of RHSCond.
4590e5dd7070Spatrick   PN->addIncoming(RHSCond, RHSBlock);
4591e5dd7070Spatrick 
4592e5dd7070Spatrick   // Artificial location to preserve the scope information
4593e5dd7070Spatrick   {
4594e5dd7070Spatrick     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4595e5dd7070Spatrick     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4596e5dd7070Spatrick   }
4597e5dd7070Spatrick 
4598e5dd7070Spatrick   // ZExt result to int.
4599e5dd7070Spatrick   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4600e5dd7070Spatrick }
4601e5dd7070Spatrick 
VisitBinLOr(const BinaryOperator * E)4602e5dd7070Spatrick Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4603e5dd7070Spatrick   // Perform vector logical or on comparisons with zero vectors.
4604e5dd7070Spatrick   if (E->getType()->isVectorType()) {
4605e5dd7070Spatrick     CGF.incrementProfileCounter(E);
4606e5dd7070Spatrick 
4607e5dd7070Spatrick     Value *LHS = Visit(E->getLHS());
4608e5dd7070Spatrick     Value *RHS = Visit(E->getRHS());
4609e5dd7070Spatrick     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4610e5dd7070Spatrick     if (LHS->getType()->isFPOrFPVectorTy()) {
4611ec727ea7Spatrick       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4612ec727ea7Spatrick           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4613e5dd7070Spatrick       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4614e5dd7070Spatrick       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4615e5dd7070Spatrick     } else {
4616e5dd7070Spatrick       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4617e5dd7070Spatrick       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4618e5dd7070Spatrick     }
4619e5dd7070Spatrick     Value *Or = Builder.CreateOr(LHS, RHS);
4620e5dd7070Spatrick     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4621e5dd7070Spatrick   }
4622e5dd7070Spatrick 
4623a9ac8606Spatrick   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4624e5dd7070Spatrick   llvm::Type *ResTy = ConvertType(E->getType());
4625e5dd7070Spatrick 
4626e5dd7070Spatrick   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4627e5dd7070Spatrick   // If we have 0 || X, just emit X without inserting the control flow.
4628e5dd7070Spatrick   bool LHSCondVal;
4629e5dd7070Spatrick   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4630e5dd7070Spatrick     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4631e5dd7070Spatrick       CGF.incrementProfileCounter(E);
4632e5dd7070Spatrick 
4633e5dd7070Spatrick       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4634a9ac8606Spatrick 
4635a9ac8606Spatrick       // If we're generating for profiling or coverage, generate a branch to a
4636a9ac8606Spatrick       // block that increments the RHS counter need to track branch condition
4637a9ac8606Spatrick       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4638a9ac8606Spatrick       // "FalseBlock" after the increment is done.
4639a9ac8606Spatrick       if (InstrumentRegions &&
4640a9ac8606Spatrick           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4641a9ac8606Spatrick         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4642a9ac8606Spatrick         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4643a9ac8606Spatrick         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4644a9ac8606Spatrick         CGF.EmitBlock(RHSBlockCnt);
4645a9ac8606Spatrick         CGF.incrementProfileCounter(E->getRHS());
4646a9ac8606Spatrick         CGF.EmitBranch(FBlock);
4647a9ac8606Spatrick         CGF.EmitBlock(FBlock);
4648a9ac8606Spatrick       }
4649a9ac8606Spatrick 
4650e5dd7070Spatrick       // ZExt result to int or bool.
4651e5dd7070Spatrick       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4652e5dd7070Spatrick     }
4653e5dd7070Spatrick 
4654e5dd7070Spatrick     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4655e5dd7070Spatrick     if (!CGF.ContainsLabel(E->getRHS()))
4656e5dd7070Spatrick       return llvm::ConstantInt::get(ResTy, 1);
4657e5dd7070Spatrick   }
4658e5dd7070Spatrick 
4659e5dd7070Spatrick   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4660e5dd7070Spatrick   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4661e5dd7070Spatrick 
4662e5dd7070Spatrick   CodeGenFunction::ConditionalEvaluation eval(CGF);
4663e5dd7070Spatrick 
4664e5dd7070Spatrick   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4665e5dd7070Spatrick   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4666e5dd7070Spatrick                            CGF.getCurrentProfileCount() -
4667e5dd7070Spatrick                                CGF.getProfileCount(E->getRHS()));
4668e5dd7070Spatrick 
4669e5dd7070Spatrick   // Any edges into the ContBlock are now from an (indeterminate number of)
4670e5dd7070Spatrick   // edges from this first condition.  All of these values will be true.  Start
4671e5dd7070Spatrick   // setting up the PHI node in the Cont Block for this.
4672e5dd7070Spatrick   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4673e5dd7070Spatrick                                             "", ContBlock);
4674e5dd7070Spatrick   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4675e5dd7070Spatrick        PI != PE; ++PI)
4676e5dd7070Spatrick     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4677e5dd7070Spatrick 
4678e5dd7070Spatrick   eval.begin(CGF);
4679e5dd7070Spatrick 
4680e5dd7070Spatrick   // Emit the RHS condition as a bool value.
4681e5dd7070Spatrick   CGF.EmitBlock(RHSBlock);
4682e5dd7070Spatrick   CGF.incrementProfileCounter(E);
4683e5dd7070Spatrick   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4684e5dd7070Spatrick 
4685e5dd7070Spatrick   eval.end(CGF);
4686e5dd7070Spatrick 
4687e5dd7070Spatrick   // Reaquire the RHS block, as there may be subblocks inserted.
4688e5dd7070Spatrick   RHSBlock = Builder.GetInsertBlock();
4689e5dd7070Spatrick 
4690a9ac8606Spatrick   // If we're generating for profiling or coverage, generate a branch on the
4691a9ac8606Spatrick   // RHS to a block that increments the RHS true counter needed to track branch
4692a9ac8606Spatrick   // condition coverage.
4693a9ac8606Spatrick   if (InstrumentRegions &&
4694a9ac8606Spatrick       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4695a9ac8606Spatrick     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4696a9ac8606Spatrick     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4697a9ac8606Spatrick     CGF.EmitBlock(RHSBlockCnt);
4698a9ac8606Spatrick     CGF.incrementProfileCounter(E->getRHS());
4699a9ac8606Spatrick     CGF.EmitBranch(ContBlock);
4700a9ac8606Spatrick     PN->addIncoming(RHSCond, RHSBlockCnt);
4701a9ac8606Spatrick   }
4702a9ac8606Spatrick 
4703e5dd7070Spatrick   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4704e5dd7070Spatrick   // into the phi node for the edge with the value of RHSCond.
4705e5dd7070Spatrick   CGF.EmitBlock(ContBlock);
4706e5dd7070Spatrick   PN->addIncoming(RHSCond, RHSBlock);
4707e5dd7070Spatrick 
4708e5dd7070Spatrick   // ZExt result to int.
4709e5dd7070Spatrick   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4710e5dd7070Spatrick }
4711e5dd7070Spatrick 
VisitBinComma(const BinaryOperator * E)4712e5dd7070Spatrick Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4713e5dd7070Spatrick   CGF.EmitIgnoredExpr(E->getLHS());
4714e5dd7070Spatrick   CGF.EnsureInsertPoint();
4715e5dd7070Spatrick   return Visit(E->getRHS());
4716e5dd7070Spatrick }
4717e5dd7070Spatrick 
4718e5dd7070Spatrick //===----------------------------------------------------------------------===//
4719e5dd7070Spatrick //                             Other Operators
4720e5dd7070Spatrick //===----------------------------------------------------------------------===//
4721e5dd7070Spatrick 
4722e5dd7070Spatrick /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4723e5dd7070Spatrick /// expression is cheap enough and side-effect-free enough to evaluate
4724e5dd7070Spatrick /// unconditionally instead of conditionally.  This is used to convert control
4725e5dd7070Spatrick /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)4726e5dd7070Spatrick static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4727e5dd7070Spatrick                                                    CodeGenFunction &CGF) {
4728e5dd7070Spatrick   // Anything that is an integer or floating point constant is fine.
4729e5dd7070Spatrick   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4730e5dd7070Spatrick 
4731e5dd7070Spatrick   // Even non-volatile automatic variables can't be evaluated unconditionally.
4732e5dd7070Spatrick   // Referencing a thread_local may cause non-trivial initialization work to
4733e5dd7070Spatrick   // occur. If we're inside a lambda and one of the variables is from the scope
4734e5dd7070Spatrick   // outside the lambda, that function may have returned already. Reading its
4735e5dd7070Spatrick   // locals is a bad idea. Also, these reads may introduce races there didn't
4736e5dd7070Spatrick   // exist in the source-level program.
4737e5dd7070Spatrick }
4738e5dd7070Spatrick 
4739e5dd7070Spatrick 
4740e5dd7070Spatrick Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)4741e5dd7070Spatrick VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4742e5dd7070Spatrick   TestAndClearIgnoreResultAssign();
4743e5dd7070Spatrick 
4744e5dd7070Spatrick   // Bind the common expression if necessary.
4745e5dd7070Spatrick   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4746e5dd7070Spatrick 
4747e5dd7070Spatrick   Expr *condExpr = E->getCond();
4748e5dd7070Spatrick   Expr *lhsExpr = E->getTrueExpr();
4749e5dd7070Spatrick   Expr *rhsExpr = E->getFalseExpr();
4750e5dd7070Spatrick 
4751e5dd7070Spatrick   // If the condition constant folds and can be elided, try to avoid emitting
4752e5dd7070Spatrick   // the condition and the dead arm.
4753e5dd7070Spatrick   bool CondExprBool;
4754e5dd7070Spatrick   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4755e5dd7070Spatrick     Expr *live = lhsExpr, *dead = rhsExpr;
4756e5dd7070Spatrick     if (!CondExprBool) std::swap(live, dead);
4757e5dd7070Spatrick 
4758e5dd7070Spatrick     // If the dead side doesn't have labels we need, just emit the Live part.
4759e5dd7070Spatrick     if (!CGF.ContainsLabel(dead)) {
4760e5dd7070Spatrick       if (CondExprBool)
4761e5dd7070Spatrick         CGF.incrementProfileCounter(E);
4762e5dd7070Spatrick       Value *Result = Visit(live);
4763e5dd7070Spatrick 
4764e5dd7070Spatrick       // If the live part is a throw expression, it acts like it has a void
4765e5dd7070Spatrick       // type, so evaluating it returns a null Value*.  However, a conditional
4766e5dd7070Spatrick       // with non-void type must return a non-null Value*.
4767e5dd7070Spatrick       if (!Result && !E->getType()->isVoidType())
4768e5dd7070Spatrick         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4769e5dd7070Spatrick 
4770e5dd7070Spatrick       return Result;
4771e5dd7070Spatrick     }
4772e5dd7070Spatrick   }
4773e5dd7070Spatrick 
4774e5dd7070Spatrick   // OpenCL: If the condition is a vector, we can treat this condition like
4775e5dd7070Spatrick   // the select function.
4776ec727ea7Spatrick   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4777ec727ea7Spatrick       condExpr->getType()->isExtVectorType()) {
4778e5dd7070Spatrick     CGF.incrementProfileCounter(E);
4779e5dd7070Spatrick 
4780e5dd7070Spatrick     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4781e5dd7070Spatrick     llvm::Value *LHS = Visit(lhsExpr);
4782e5dd7070Spatrick     llvm::Value *RHS = Visit(rhsExpr);
4783e5dd7070Spatrick 
4784e5dd7070Spatrick     llvm::Type *condType = ConvertType(condExpr->getType());
4785a9ac8606Spatrick     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4786e5dd7070Spatrick 
4787e5dd7070Spatrick     unsigned numElem = vecTy->getNumElements();
4788e5dd7070Spatrick     llvm::Type *elemType = vecTy->getElementType();
4789e5dd7070Spatrick 
4790e5dd7070Spatrick     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4791e5dd7070Spatrick     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4792ec727ea7Spatrick     llvm::Value *tmp = Builder.CreateSExt(
4793ec727ea7Spatrick         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4794e5dd7070Spatrick     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4795e5dd7070Spatrick 
4796e5dd7070Spatrick     // Cast float to int to perform ANDs if necessary.
4797e5dd7070Spatrick     llvm::Value *RHSTmp = RHS;
4798e5dd7070Spatrick     llvm::Value *LHSTmp = LHS;
4799e5dd7070Spatrick     bool wasCast = false;
4800e5dd7070Spatrick     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4801e5dd7070Spatrick     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4802e5dd7070Spatrick       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4803e5dd7070Spatrick       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4804e5dd7070Spatrick       wasCast = true;
4805e5dd7070Spatrick     }
4806e5dd7070Spatrick 
4807e5dd7070Spatrick     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4808e5dd7070Spatrick     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4809e5dd7070Spatrick     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4810e5dd7070Spatrick     if (wasCast)
4811e5dd7070Spatrick       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4812e5dd7070Spatrick 
4813e5dd7070Spatrick     return tmp5;
4814e5dd7070Spatrick   }
4815e5dd7070Spatrick 
4816*12c85518Srobert   if (condExpr->getType()->isVectorType() ||
4817*12c85518Srobert       condExpr->getType()->isVLSTBuiltinType()) {
4818e5dd7070Spatrick     CGF.incrementProfileCounter(E);
4819e5dd7070Spatrick 
4820e5dd7070Spatrick     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4821e5dd7070Spatrick     llvm::Value *LHS = Visit(lhsExpr);
4822e5dd7070Spatrick     llvm::Value *RHS = Visit(rhsExpr);
4823e5dd7070Spatrick 
4824e5dd7070Spatrick     llvm::Type *CondType = ConvertType(condExpr->getType());
4825e5dd7070Spatrick     auto *VecTy = cast<llvm::VectorType>(CondType);
4826e5dd7070Spatrick     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4827e5dd7070Spatrick 
4828e5dd7070Spatrick     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4829e5dd7070Spatrick     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4830e5dd7070Spatrick   }
4831e5dd7070Spatrick 
4832e5dd7070Spatrick   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4833e5dd7070Spatrick   // select instead of as control flow.  We can only do this if it is cheap and
4834e5dd7070Spatrick   // safe to evaluate the LHS and RHS unconditionally.
4835e5dd7070Spatrick   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4836e5dd7070Spatrick       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4837e5dd7070Spatrick     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4838e5dd7070Spatrick     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4839e5dd7070Spatrick 
4840e5dd7070Spatrick     CGF.incrementProfileCounter(E, StepV);
4841e5dd7070Spatrick 
4842e5dd7070Spatrick     llvm::Value *LHS = Visit(lhsExpr);
4843e5dd7070Spatrick     llvm::Value *RHS = Visit(rhsExpr);
4844e5dd7070Spatrick     if (!LHS) {
4845e5dd7070Spatrick       // If the conditional has void type, make sure we return a null Value*.
4846e5dd7070Spatrick       assert(!RHS && "LHS and RHS types must match");
4847e5dd7070Spatrick       return nullptr;
4848e5dd7070Spatrick     }
4849e5dd7070Spatrick     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4850e5dd7070Spatrick   }
4851e5dd7070Spatrick 
4852e5dd7070Spatrick   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4853e5dd7070Spatrick   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4854e5dd7070Spatrick   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4855e5dd7070Spatrick 
4856e5dd7070Spatrick   CodeGenFunction::ConditionalEvaluation eval(CGF);
4857e5dd7070Spatrick   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4858e5dd7070Spatrick                            CGF.getProfileCount(lhsExpr));
4859e5dd7070Spatrick 
4860e5dd7070Spatrick   CGF.EmitBlock(LHSBlock);
4861e5dd7070Spatrick   CGF.incrementProfileCounter(E);
4862e5dd7070Spatrick   eval.begin(CGF);
4863e5dd7070Spatrick   Value *LHS = Visit(lhsExpr);
4864e5dd7070Spatrick   eval.end(CGF);
4865e5dd7070Spatrick 
4866e5dd7070Spatrick   LHSBlock = Builder.GetInsertBlock();
4867e5dd7070Spatrick   Builder.CreateBr(ContBlock);
4868e5dd7070Spatrick 
4869e5dd7070Spatrick   CGF.EmitBlock(RHSBlock);
4870e5dd7070Spatrick   eval.begin(CGF);
4871e5dd7070Spatrick   Value *RHS = Visit(rhsExpr);
4872e5dd7070Spatrick   eval.end(CGF);
4873e5dd7070Spatrick 
4874e5dd7070Spatrick   RHSBlock = Builder.GetInsertBlock();
4875e5dd7070Spatrick   CGF.EmitBlock(ContBlock);
4876e5dd7070Spatrick 
4877e5dd7070Spatrick   // If the LHS or RHS is a throw expression, it will be legitimately null.
4878e5dd7070Spatrick   if (!LHS)
4879e5dd7070Spatrick     return RHS;
4880e5dd7070Spatrick   if (!RHS)
4881e5dd7070Spatrick     return LHS;
4882e5dd7070Spatrick 
4883e5dd7070Spatrick   // Create a PHI node for the real part.
4884e5dd7070Spatrick   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4885e5dd7070Spatrick   PN->addIncoming(LHS, LHSBlock);
4886e5dd7070Spatrick   PN->addIncoming(RHS, RHSBlock);
4887e5dd7070Spatrick   return PN;
4888e5dd7070Spatrick }
4889e5dd7070Spatrick 
VisitChooseExpr(ChooseExpr * E)4890e5dd7070Spatrick Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4891e5dd7070Spatrick   return Visit(E->getChosenSubExpr());
4892e5dd7070Spatrick }
4893e5dd7070Spatrick 
VisitVAArgExpr(VAArgExpr * VE)4894e5dd7070Spatrick Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4895e5dd7070Spatrick   QualType Ty = VE->getType();
4896e5dd7070Spatrick 
4897e5dd7070Spatrick   if (Ty->isVariablyModifiedType())
4898e5dd7070Spatrick     CGF.EmitVariablyModifiedType(Ty);
4899e5dd7070Spatrick 
4900e5dd7070Spatrick   Address ArgValue = Address::invalid();
4901e5dd7070Spatrick   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4902e5dd7070Spatrick 
4903e5dd7070Spatrick   llvm::Type *ArgTy = ConvertType(VE->getType());
4904e5dd7070Spatrick 
4905e5dd7070Spatrick   // If EmitVAArg fails, emit an error.
4906e5dd7070Spatrick   if (!ArgPtr.isValid()) {
4907e5dd7070Spatrick     CGF.ErrorUnsupported(VE, "va_arg expression");
4908e5dd7070Spatrick     return llvm::UndefValue::get(ArgTy);
4909e5dd7070Spatrick   }
4910e5dd7070Spatrick 
4911e5dd7070Spatrick   // FIXME Volatility.
4912e5dd7070Spatrick   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4913e5dd7070Spatrick 
4914e5dd7070Spatrick   // If EmitVAArg promoted the type, we must truncate it.
4915e5dd7070Spatrick   if (ArgTy != Val->getType()) {
4916e5dd7070Spatrick     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4917e5dd7070Spatrick       Val = Builder.CreateIntToPtr(Val, ArgTy);
4918e5dd7070Spatrick     else
4919e5dd7070Spatrick       Val = Builder.CreateTrunc(Val, ArgTy);
4920e5dd7070Spatrick   }
4921e5dd7070Spatrick 
4922e5dd7070Spatrick   return Val;
4923e5dd7070Spatrick }
4924e5dd7070Spatrick 
VisitBlockExpr(const BlockExpr * block)4925e5dd7070Spatrick Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4926e5dd7070Spatrick   return CGF.EmitBlockLiteral(block);
4927e5dd7070Spatrick }
4928e5dd7070Spatrick 
4929e5dd7070Spatrick // Convert a vec3 to vec4, or vice versa.
ConvertVec3AndVec4(CGBuilderTy & Builder,CodeGenFunction & CGF,Value * Src,unsigned NumElementsDst)4930e5dd7070Spatrick static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4931e5dd7070Spatrick                                  Value *Src, unsigned NumElementsDst) {
4932ec727ea7Spatrick   static constexpr int Mask[] = {0, 1, 2, -1};
4933*12c85518Srobert   return Builder.CreateShuffleVector(Src, llvm::ArrayRef(Mask, NumElementsDst));
4934e5dd7070Spatrick }
4935e5dd7070Spatrick 
4936e5dd7070Spatrick // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4937e5dd7070Spatrick // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4938e5dd7070Spatrick // but could be scalar or vectors of different lengths, and either can be
4939e5dd7070Spatrick // pointer.
4940e5dd7070Spatrick // There are 4 cases:
4941e5dd7070Spatrick // 1. non-pointer -> non-pointer  : needs 1 bitcast
4942e5dd7070Spatrick // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4943e5dd7070Spatrick // 3. pointer -> non-pointer
4944e5dd7070Spatrick //   a) pointer -> intptr_t       : needs 1 ptrtoint
4945e5dd7070Spatrick //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4946e5dd7070Spatrick // 4. non-pointer -> pointer
4947e5dd7070Spatrick //   a) intptr_t -> pointer       : needs 1 inttoptr
4948e5dd7070Spatrick //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4949e5dd7070Spatrick // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4950e5dd7070Spatrick // allow casting directly between pointer types and non-integer non-pointer
4951e5dd7070Spatrick // types.
createCastsForTypeOfSameSize(CGBuilderTy & Builder,const llvm::DataLayout & DL,Value * Src,llvm::Type * DstTy,StringRef Name="")4952e5dd7070Spatrick static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4953e5dd7070Spatrick                                            const llvm::DataLayout &DL,
4954e5dd7070Spatrick                                            Value *Src, llvm::Type *DstTy,
4955e5dd7070Spatrick                                            StringRef Name = "") {
4956e5dd7070Spatrick   auto SrcTy = Src->getType();
4957e5dd7070Spatrick 
4958e5dd7070Spatrick   // Case 1.
4959e5dd7070Spatrick   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4960e5dd7070Spatrick     return Builder.CreateBitCast(Src, DstTy, Name);
4961e5dd7070Spatrick 
4962e5dd7070Spatrick   // Case 2.
4963e5dd7070Spatrick   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4964e5dd7070Spatrick     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4965e5dd7070Spatrick 
4966e5dd7070Spatrick   // Case 3.
4967e5dd7070Spatrick   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4968e5dd7070Spatrick     // Case 3b.
4969e5dd7070Spatrick     if (!DstTy->isIntegerTy())
4970e5dd7070Spatrick       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4971e5dd7070Spatrick     // Cases 3a and 3b.
4972e5dd7070Spatrick     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4973e5dd7070Spatrick   }
4974e5dd7070Spatrick 
4975e5dd7070Spatrick   // Case 4b.
4976e5dd7070Spatrick   if (!SrcTy->isIntegerTy())
4977e5dd7070Spatrick     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4978e5dd7070Spatrick   // Cases 4a and 4b.
4979e5dd7070Spatrick   return Builder.CreateIntToPtr(Src, DstTy, Name);
4980e5dd7070Spatrick }
4981e5dd7070Spatrick 
VisitAsTypeExpr(AsTypeExpr * E)4982e5dd7070Spatrick Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4983e5dd7070Spatrick   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4984e5dd7070Spatrick   llvm::Type *DstTy = ConvertType(E->getType());
4985e5dd7070Spatrick 
4986e5dd7070Spatrick   llvm::Type *SrcTy = Src->getType();
4987a9ac8606Spatrick   unsigned NumElementsSrc =
4988a9ac8606Spatrick       isa<llvm::VectorType>(SrcTy)
4989a9ac8606Spatrick           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4990a9ac8606Spatrick           : 0;
4991a9ac8606Spatrick   unsigned NumElementsDst =
4992a9ac8606Spatrick       isa<llvm::VectorType>(DstTy)
4993a9ac8606Spatrick           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4994a9ac8606Spatrick           : 0;
4995e5dd7070Spatrick 
4996*12c85518Srobert   // Use bit vector expansion for ext_vector_type boolean vectors.
4997*12c85518Srobert   if (E->getType()->isExtVectorBoolType())
4998*12c85518Srobert     return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype");
4999*12c85518Srobert 
5000e5dd7070Spatrick   // Going from vec3 to non-vec3 is a special case and requires a shuffle
5001e5dd7070Spatrick   // vector to get a vec4, then a bitcast if the target type is different.
5002e5dd7070Spatrick   if (NumElementsSrc == 3 && NumElementsDst != 3) {
5003e5dd7070Spatrick     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
5004e5dd7070Spatrick     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5005e5dd7070Spatrick                                        DstTy);
5006e5dd7070Spatrick 
5007e5dd7070Spatrick     Src->setName("astype");
5008e5dd7070Spatrick     return Src;
5009e5dd7070Spatrick   }
5010e5dd7070Spatrick 
5011e5dd7070Spatrick   // Going from non-vec3 to vec3 is a special case and requires a bitcast
5012e5dd7070Spatrick   // to vec4 if the original type is not vec4, then a shuffle vector to
5013e5dd7070Spatrick   // get a vec3.
5014e5dd7070Spatrick   if (NumElementsSrc != 3 && NumElementsDst == 3) {
5015ec727ea7Spatrick     auto *Vec4Ty = llvm::FixedVectorType::get(
5016ec727ea7Spatrick         cast<llvm::VectorType>(DstTy)->getElementType(), 4);
5017e5dd7070Spatrick     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5018e5dd7070Spatrick                                        Vec4Ty);
5019e5dd7070Spatrick 
5020e5dd7070Spatrick     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
5021e5dd7070Spatrick     Src->setName("astype");
5022e5dd7070Spatrick     return Src;
5023e5dd7070Spatrick   }
5024e5dd7070Spatrick 
5025e5dd7070Spatrick   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
5026e5dd7070Spatrick                                       Src, DstTy, "astype");
5027e5dd7070Spatrick }
5028e5dd7070Spatrick 
VisitAtomicExpr(AtomicExpr * E)5029e5dd7070Spatrick Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
5030e5dd7070Spatrick   return CGF.EmitAtomicExpr(E).getScalarVal();
5031e5dd7070Spatrick }
5032e5dd7070Spatrick 
5033e5dd7070Spatrick //===----------------------------------------------------------------------===//
5034e5dd7070Spatrick //                         Entry Point into this File
5035e5dd7070Spatrick //===----------------------------------------------------------------------===//
5036e5dd7070Spatrick 
5037e5dd7070Spatrick /// Emit the computation of the specified expression of scalar type, ignoring
5038e5dd7070Spatrick /// the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)5039e5dd7070Spatrick Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
5040e5dd7070Spatrick   assert(E && hasScalarEvaluationKind(E->getType()) &&
5041e5dd7070Spatrick          "Invalid scalar expression to emit");
5042e5dd7070Spatrick 
5043e5dd7070Spatrick   return ScalarExprEmitter(*this, IgnoreResultAssign)
5044e5dd7070Spatrick       .Visit(const_cast<Expr *>(E));
5045e5dd7070Spatrick }
5046e5dd7070Spatrick 
5047e5dd7070Spatrick /// Emit a conversion from the specified type to the specified destination type,
5048e5dd7070Spatrick /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)5049e5dd7070Spatrick Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
5050e5dd7070Spatrick                                              QualType DstTy,
5051e5dd7070Spatrick                                              SourceLocation Loc) {
5052e5dd7070Spatrick   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
5053e5dd7070Spatrick          "Invalid scalar expression to emit");
5054e5dd7070Spatrick   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
5055e5dd7070Spatrick }
5056e5dd7070Spatrick 
5057e5dd7070Spatrick /// Emit a conversion from the specified complex type to the specified
5058e5dd7070Spatrick /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)5059e5dd7070Spatrick Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
5060e5dd7070Spatrick                                                       QualType SrcTy,
5061e5dd7070Spatrick                                                       QualType DstTy,
5062e5dd7070Spatrick                                                       SourceLocation Loc) {
5063e5dd7070Spatrick   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
5064e5dd7070Spatrick          "Invalid complex -> scalar conversion");
5065e5dd7070Spatrick   return ScalarExprEmitter(*this)
5066e5dd7070Spatrick       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
5067e5dd7070Spatrick }
5068e5dd7070Spatrick 
5069e5dd7070Spatrick 
5070*12c85518Srobert Value *
EmitPromotedScalarExpr(const Expr * E,QualType PromotionType)5071*12c85518Srobert CodeGenFunction::EmitPromotedScalarExpr(const Expr *E,
5072*12c85518Srobert                                         QualType PromotionType) {
5073*12c85518Srobert   if (!PromotionType.isNull())
5074*12c85518Srobert     return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType);
5075*12c85518Srobert   else
5076*12c85518Srobert     return ScalarExprEmitter(*this).Visit(const_cast<Expr *>(E));
5077*12c85518Srobert }
5078*12c85518Srobert 
5079*12c85518Srobert 
5080e5dd7070Spatrick llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)5081e5dd7070Spatrick EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
5082e5dd7070Spatrick                         bool isInc, bool isPre) {
5083e5dd7070Spatrick   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
5084e5dd7070Spatrick }
5085e5dd7070Spatrick 
EmitObjCIsaExpr(const ObjCIsaExpr * E)5086e5dd7070Spatrick LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
5087e5dd7070Spatrick   // object->isa or (*object).isa
5088e5dd7070Spatrick   // Generate code as for: *(Class*)object
5089e5dd7070Spatrick 
5090e5dd7070Spatrick   Expr *BaseExpr = E->getBase();
5091e5dd7070Spatrick   Address Addr = Address::invalid();
5092a9ac8606Spatrick   if (BaseExpr->isPRValue()) {
5093*12c85518Srobert     llvm::Type *BaseTy =
5094*12c85518Srobert         ConvertTypeForMem(BaseExpr->getType()->getPointeeType());
5095*12c85518Srobert     Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign());
5096e5dd7070Spatrick   } else {
5097e5dd7070Spatrick     Addr = EmitLValue(BaseExpr).getAddress(*this);
5098e5dd7070Spatrick   }
5099e5dd7070Spatrick 
5100e5dd7070Spatrick   // Cast the address to Class*.
5101e5dd7070Spatrick   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
5102e5dd7070Spatrick   return MakeAddrLValue(Addr, E->getType());
5103e5dd7070Spatrick }
5104e5dd7070Spatrick 
5105e5dd7070Spatrick 
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)5106e5dd7070Spatrick LValue CodeGenFunction::EmitCompoundAssignmentLValue(
5107e5dd7070Spatrick                                             const CompoundAssignOperator *E) {
5108e5dd7070Spatrick   ScalarExprEmitter Scalar(*this);
5109e5dd7070Spatrick   Value *Result = nullptr;
5110e5dd7070Spatrick   switch (E->getOpcode()) {
5111e5dd7070Spatrick #define COMPOUND_OP(Op)                                                       \
5112e5dd7070Spatrick     case BO_##Op##Assign:                                                     \
5113e5dd7070Spatrick       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
5114e5dd7070Spatrick                                              Result)
5115e5dd7070Spatrick   COMPOUND_OP(Mul);
5116e5dd7070Spatrick   COMPOUND_OP(Div);
5117e5dd7070Spatrick   COMPOUND_OP(Rem);
5118e5dd7070Spatrick   COMPOUND_OP(Add);
5119e5dd7070Spatrick   COMPOUND_OP(Sub);
5120e5dd7070Spatrick   COMPOUND_OP(Shl);
5121e5dd7070Spatrick   COMPOUND_OP(Shr);
5122e5dd7070Spatrick   COMPOUND_OP(And);
5123e5dd7070Spatrick   COMPOUND_OP(Xor);
5124e5dd7070Spatrick   COMPOUND_OP(Or);
5125e5dd7070Spatrick #undef COMPOUND_OP
5126e5dd7070Spatrick 
5127e5dd7070Spatrick   case BO_PtrMemD:
5128e5dd7070Spatrick   case BO_PtrMemI:
5129e5dd7070Spatrick   case BO_Mul:
5130e5dd7070Spatrick   case BO_Div:
5131e5dd7070Spatrick   case BO_Rem:
5132e5dd7070Spatrick   case BO_Add:
5133e5dd7070Spatrick   case BO_Sub:
5134e5dd7070Spatrick   case BO_Shl:
5135e5dd7070Spatrick   case BO_Shr:
5136e5dd7070Spatrick   case BO_LT:
5137e5dd7070Spatrick   case BO_GT:
5138e5dd7070Spatrick   case BO_LE:
5139e5dd7070Spatrick   case BO_GE:
5140e5dd7070Spatrick   case BO_EQ:
5141e5dd7070Spatrick   case BO_NE:
5142e5dd7070Spatrick   case BO_Cmp:
5143e5dd7070Spatrick   case BO_And:
5144e5dd7070Spatrick   case BO_Xor:
5145e5dd7070Spatrick   case BO_Or:
5146e5dd7070Spatrick   case BO_LAnd:
5147e5dd7070Spatrick   case BO_LOr:
5148e5dd7070Spatrick   case BO_Assign:
5149e5dd7070Spatrick   case BO_Comma:
5150e5dd7070Spatrick     llvm_unreachable("Not valid compound assignment operators");
5151e5dd7070Spatrick   }
5152e5dd7070Spatrick 
5153e5dd7070Spatrick   llvm_unreachable("Unhandled compound assignment operator");
5154e5dd7070Spatrick }
5155e5dd7070Spatrick 
5156e5dd7070Spatrick struct GEPOffsetAndOverflow {
5157e5dd7070Spatrick   // The total (signed) byte offset for the GEP.
5158e5dd7070Spatrick   llvm::Value *TotalOffset;
5159e5dd7070Spatrick   // The offset overflow flag - true if the total offset overflows.
5160e5dd7070Spatrick   llvm::Value *OffsetOverflows;
5161e5dd7070Spatrick };
5162e5dd7070Spatrick 
5163e5dd7070Spatrick /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
5164e5dd7070Spatrick /// and compute the total offset it applies from it's base pointer BasePtr.
5165e5dd7070Spatrick /// Returns offset in bytes and a boolean flag whether an overflow happened
5166e5dd7070Spatrick /// during evaluation.
EmitGEPOffsetInBytes(Value * BasePtr,Value * GEPVal,llvm::LLVMContext & VMContext,CodeGenModule & CGM,CGBuilderTy & Builder)5167e5dd7070Spatrick static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
5168e5dd7070Spatrick                                                  llvm::LLVMContext &VMContext,
5169e5dd7070Spatrick                                                  CodeGenModule &CGM,
5170ec727ea7Spatrick                                                  CGBuilderTy &Builder) {
5171e5dd7070Spatrick   const auto &DL = CGM.getDataLayout();
5172e5dd7070Spatrick 
5173e5dd7070Spatrick   // The total (signed) byte offset for the GEP.
5174e5dd7070Spatrick   llvm::Value *TotalOffset = nullptr;
5175e5dd7070Spatrick 
5176e5dd7070Spatrick   // Was the GEP already reduced to a constant?
5177e5dd7070Spatrick   if (isa<llvm::Constant>(GEPVal)) {
5178e5dd7070Spatrick     // Compute the offset by casting both pointers to integers and subtracting:
5179e5dd7070Spatrick     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
5180e5dd7070Spatrick     Value *BasePtr_int =
5181e5dd7070Spatrick         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
5182e5dd7070Spatrick     Value *GEPVal_int =
5183e5dd7070Spatrick         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
5184e5dd7070Spatrick     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
5185e5dd7070Spatrick     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
5186e5dd7070Spatrick   }
5187e5dd7070Spatrick 
5188e5dd7070Spatrick   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
5189e5dd7070Spatrick   assert(GEP->getPointerOperand() == BasePtr &&
5190*12c85518Srobert          "BasePtr must be the base of the GEP.");
5191e5dd7070Spatrick   assert(GEP->isInBounds() && "Expected inbounds GEP");
5192e5dd7070Spatrick 
5193e5dd7070Spatrick   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5194e5dd7070Spatrick 
5195e5dd7070Spatrick   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5196e5dd7070Spatrick   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5197e5dd7070Spatrick   auto *SAddIntrinsic =
5198e5dd7070Spatrick       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
5199e5dd7070Spatrick   auto *SMulIntrinsic =
5200e5dd7070Spatrick       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
5201e5dd7070Spatrick 
5202e5dd7070Spatrick   // The offset overflow flag - true if the total offset overflows.
5203e5dd7070Spatrick   llvm::Value *OffsetOverflows = Builder.getFalse();
5204e5dd7070Spatrick 
5205e5dd7070Spatrick   /// Return the result of the given binary operation.
5206e5dd7070Spatrick   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5207e5dd7070Spatrick                   llvm::Value *RHS) -> llvm::Value * {
5208e5dd7070Spatrick     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5209e5dd7070Spatrick 
5210e5dd7070Spatrick     // If the operands are constants, return a constant result.
5211e5dd7070Spatrick     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5212e5dd7070Spatrick       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5213e5dd7070Spatrick         llvm::APInt N;
5214e5dd7070Spatrick         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5215e5dd7070Spatrick                                                   /*Signed=*/true, N);
5216e5dd7070Spatrick         if (HasOverflow)
5217e5dd7070Spatrick           OffsetOverflows = Builder.getTrue();
5218e5dd7070Spatrick         return llvm::ConstantInt::get(VMContext, N);
5219e5dd7070Spatrick       }
5220e5dd7070Spatrick     }
5221e5dd7070Spatrick 
5222e5dd7070Spatrick     // Otherwise, compute the result with checked arithmetic.
5223e5dd7070Spatrick     auto *ResultAndOverflow = Builder.CreateCall(
5224e5dd7070Spatrick         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5225e5dd7070Spatrick     OffsetOverflows = Builder.CreateOr(
5226e5dd7070Spatrick         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5227e5dd7070Spatrick     return Builder.CreateExtractValue(ResultAndOverflow, 0);
5228e5dd7070Spatrick   };
5229e5dd7070Spatrick 
5230e5dd7070Spatrick   // Determine the total byte offset by looking at each GEP operand.
5231e5dd7070Spatrick   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5232e5dd7070Spatrick        GTI != GTE; ++GTI) {
5233e5dd7070Spatrick     llvm::Value *LocalOffset;
5234e5dd7070Spatrick     auto *Index = GTI.getOperand();
5235e5dd7070Spatrick     // Compute the local offset contributed by this indexing step:
5236e5dd7070Spatrick     if (auto *STy = GTI.getStructTypeOrNull()) {
5237e5dd7070Spatrick       // For struct indexing, the local offset is the byte position of the
5238e5dd7070Spatrick       // specified field.
5239e5dd7070Spatrick       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5240e5dd7070Spatrick       LocalOffset = llvm::ConstantInt::get(
5241e5dd7070Spatrick           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5242e5dd7070Spatrick     } else {
5243e5dd7070Spatrick       // Otherwise this is array-like indexing. The local offset is the index
5244e5dd7070Spatrick       // multiplied by the element size.
5245e5dd7070Spatrick       auto *ElementSize = llvm::ConstantInt::get(
5246e5dd7070Spatrick           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
5247e5dd7070Spatrick       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5248e5dd7070Spatrick       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5249e5dd7070Spatrick     }
5250e5dd7070Spatrick 
5251e5dd7070Spatrick     // If this is the first offset, set it as the total offset. Otherwise, add
5252e5dd7070Spatrick     // the local offset into the running total.
5253e5dd7070Spatrick     if (!TotalOffset || TotalOffset == Zero)
5254e5dd7070Spatrick       TotalOffset = LocalOffset;
5255e5dd7070Spatrick     else
5256e5dd7070Spatrick       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5257e5dd7070Spatrick   }
5258e5dd7070Spatrick 
5259e5dd7070Spatrick   return {TotalOffset, OffsetOverflows};
5260e5dd7070Spatrick }
5261e5dd7070Spatrick 
5262e5dd7070Spatrick Value *
EmitCheckedInBoundsGEP(llvm::Type * ElemTy,Value * Ptr,ArrayRef<Value * > IdxList,bool SignedIndices,bool IsSubtraction,SourceLocation Loc,const Twine & Name)5263*12c85518Srobert CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
5264*12c85518Srobert                                         ArrayRef<Value *> IdxList,
5265e5dd7070Spatrick                                         bool SignedIndices, bool IsSubtraction,
5266e5dd7070Spatrick                                         SourceLocation Loc, const Twine &Name) {
5267a9ac8606Spatrick   llvm::Type *PtrTy = Ptr->getType();
5268*12c85518Srobert   Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name);
5269e5dd7070Spatrick 
5270e5dd7070Spatrick   // If the pointer overflow sanitizer isn't enabled, do nothing.
5271e5dd7070Spatrick   if (!SanOpts.has(SanitizerKind::PointerOverflow))
5272e5dd7070Spatrick     return GEPVal;
5273e5dd7070Spatrick 
5274e5dd7070Spatrick   // Perform nullptr-and-offset check unless the nullptr is defined.
5275e5dd7070Spatrick   bool PerformNullCheck = !NullPointerIsDefined(
5276e5dd7070Spatrick       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5277e5dd7070Spatrick   // Check for overflows unless the GEP got constant-folded,
5278e5dd7070Spatrick   // and only in the default address space
5279e5dd7070Spatrick   bool PerformOverflowCheck =
5280e5dd7070Spatrick       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5281e5dd7070Spatrick 
5282e5dd7070Spatrick   if (!(PerformNullCheck || PerformOverflowCheck))
5283e5dd7070Spatrick     return GEPVal;
5284e5dd7070Spatrick 
5285e5dd7070Spatrick   const auto &DL = CGM.getDataLayout();
5286e5dd7070Spatrick 
5287e5dd7070Spatrick   SanitizerScope SanScope(this);
5288e5dd7070Spatrick   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5289e5dd7070Spatrick 
5290e5dd7070Spatrick   GEPOffsetAndOverflow EvaluatedGEP =
5291e5dd7070Spatrick       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5292e5dd7070Spatrick 
5293e5dd7070Spatrick   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5294e5dd7070Spatrick           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5295e5dd7070Spatrick          "If the offset got constant-folded, we don't expect that there was an "
5296e5dd7070Spatrick          "overflow.");
5297e5dd7070Spatrick 
5298e5dd7070Spatrick   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5299e5dd7070Spatrick 
5300e5dd7070Spatrick   // Common case: if the total offset is zero, and we are using C++ semantics,
5301e5dd7070Spatrick   // where nullptr+0 is defined, don't emit a check.
5302e5dd7070Spatrick   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5303e5dd7070Spatrick     return GEPVal;
5304e5dd7070Spatrick 
5305e5dd7070Spatrick   // Now that we've computed the total offset, add it to the base pointer (with
5306e5dd7070Spatrick   // wrapping semantics).
5307e5dd7070Spatrick   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5308e5dd7070Spatrick   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5309e5dd7070Spatrick 
5310e5dd7070Spatrick   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5311e5dd7070Spatrick 
5312e5dd7070Spatrick   if (PerformNullCheck) {
5313e5dd7070Spatrick     // In C++, if the base pointer evaluates to a null pointer value,
5314e5dd7070Spatrick     // the only valid  pointer this inbounds GEP can produce is also
5315e5dd7070Spatrick     // a null pointer, so the offset must also evaluate to zero.
5316e5dd7070Spatrick     // Likewise, if we have non-zero base pointer, we can not get null pointer
5317e5dd7070Spatrick     // as a result, so the offset can not be -intptr_t(BasePtr).
5318e5dd7070Spatrick     // In other words, both pointers are either null, or both are non-null,
5319e5dd7070Spatrick     // or the behaviour is undefined.
5320e5dd7070Spatrick     //
5321e5dd7070Spatrick     // C, however, is more strict in this regard, and gives more
5322e5dd7070Spatrick     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5323e5dd7070Spatrick     // So both the input to the 'gep inbounds' AND the output must not be null.
5324e5dd7070Spatrick     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5325e5dd7070Spatrick     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5326e5dd7070Spatrick     auto *Valid =
5327e5dd7070Spatrick         CGM.getLangOpts().CPlusPlus
5328e5dd7070Spatrick             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5329e5dd7070Spatrick             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5330e5dd7070Spatrick     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5331e5dd7070Spatrick   }
5332e5dd7070Spatrick 
5333e5dd7070Spatrick   if (PerformOverflowCheck) {
5334e5dd7070Spatrick     // The GEP is valid if:
5335e5dd7070Spatrick     // 1) The total offset doesn't overflow, and
5336e5dd7070Spatrick     // 2) The sign of the difference between the computed address and the base
5337e5dd7070Spatrick     // pointer matches the sign of the total offset.
5338e5dd7070Spatrick     llvm::Value *ValidGEP;
5339e5dd7070Spatrick     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5340e5dd7070Spatrick     if (SignedIndices) {
5341e5dd7070Spatrick       // GEP is computed as `unsigned base + signed offset`, therefore:
5342e5dd7070Spatrick       // * If offset was positive, then the computed pointer can not be
5343e5dd7070Spatrick       //   [unsigned] less than the base pointer, unless it overflowed.
5344e5dd7070Spatrick       // * If offset was negative, then the computed pointer can not be
5345e5dd7070Spatrick       //   [unsigned] greater than the bas pointere, unless it overflowed.
5346e5dd7070Spatrick       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5347e5dd7070Spatrick       auto *PosOrZeroOffset =
5348e5dd7070Spatrick           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5349e5dd7070Spatrick       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5350e5dd7070Spatrick       ValidGEP =
5351e5dd7070Spatrick           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5352e5dd7070Spatrick     } else if (!IsSubtraction) {
5353e5dd7070Spatrick       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5354e5dd7070Spatrick       // computed pointer can not be [unsigned] less than base pointer,
5355e5dd7070Spatrick       // unless there was an overflow.
5356e5dd7070Spatrick       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5357e5dd7070Spatrick       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5358e5dd7070Spatrick     } else {
5359e5dd7070Spatrick       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5360e5dd7070Spatrick       // computed pointer can not be [unsigned] greater than base pointer,
5361e5dd7070Spatrick       // unless there was an overflow.
5362e5dd7070Spatrick       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5363e5dd7070Spatrick       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5364e5dd7070Spatrick     }
5365e5dd7070Spatrick     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5366e5dd7070Spatrick     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5367e5dd7070Spatrick   }
5368e5dd7070Spatrick 
5369e5dd7070Spatrick   assert(!Checks.empty() && "Should have produced some checks.");
5370e5dd7070Spatrick 
5371e5dd7070Spatrick   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5372e5dd7070Spatrick   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5373e5dd7070Spatrick   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5374e5dd7070Spatrick   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5375e5dd7070Spatrick 
5376e5dd7070Spatrick   return GEPVal;
5377e5dd7070Spatrick }
5378