1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides Objective-C code generation targeting the Apple runtime. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCleanup.h" 15 #include "CGObjCRuntime.h" 16 #include "CGRecordLayout.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtObjC.h" 25 #include "clang/Basic/CodeGenOptions.h" 26 #include "clang/Basic/LangOptions.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/CodeGen/ConstantInitBuilder.h" 29 #include "llvm/ADT/CachedHashString.h" 30 #include "llvm/ADT/DenseSet.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallString.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/InlineAsm.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/Support/ScopedPrinter.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cstdio> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 namespace { 47 48 // FIXME: We should find a nicer way to make the labels for metadata, string 49 // concatenation is lame. 50 51 class ObjCCommonTypesHelper { 52 protected: 53 llvm::LLVMContext &VMContext; 54 55 private: 56 // The types of these functions don't really matter because we 57 // should always bitcast before calling them. 58 59 /// id objc_msgSend (id, SEL, ...) 60 /// 61 /// The default messenger, used for sends whose ABI is unchanged from 62 /// the all-integer/pointer case. 63 llvm::FunctionCallee getMessageSendFn() const { 64 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 65 // be called a lot. 66 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 67 return CGM.CreateRuntimeFunction( 68 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend", 69 llvm::AttributeList::get(CGM.getLLVMContext(), 70 llvm::AttributeList::FunctionIndex, 71 llvm::Attribute::NonLazyBind)); 72 } 73 74 /// void objc_msgSend_stret (id, SEL, ...) 75 /// 76 /// The messenger used when the return value is an aggregate returned 77 /// by indirect reference in the first argument, and therefore the 78 /// self and selector parameters are shifted over by one. 79 llvm::FunctionCallee getMessageSendStretFn() const { 80 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 81 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 82 params, true), 83 "objc_msgSend_stret"); 84 } 85 86 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 87 /// 88 /// The messenger used when the return value is returned on the x87 89 /// floating-point stack; without a special entrypoint, the nil case 90 /// would be unbalanced. 91 llvm::FunctionCallee getMessageSendFpretFn() const { 92 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 93 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 94 params, true), 95 "objc_msgSend_fpret"); 96 } 97 98 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 99 /// 100 /// The messenger used when the return value is returned in two values on the 101 /// x87 floating point stack; without a special entrypoint, the nil case 102 /// would be unbalanced. Only used on 64-bit X86. 103 llvm::FunctionCallee getMessageSendFp2retFn() const { 104 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 105 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 106 llvm::Type *resultType = 107 llvm::StructType::get(longDoubleType, longDoubleType); 108 109 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 110 params, true), 111 "objc_msgSend_fp2ret"); 112 } 113 114 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 115 /// 116 /// The messenger used for super calls, which have different dispatch 117 /// semantics. The class passed is the superclass of the current 118 /// class. 119 llvm::FunctionCallee getMessageSendSuperFn() const { 120 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 121 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 122 params, true), 123 "objc_msgSendSuper"); 124 } 125 126 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 127 /// 128 /// A slightly different messenger used for super calls. The class 129 /// passed is the current class. 130 llvm::FunctionCallee getMessageSendSuperFn2() const { 131 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 132 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 133 params, true), 134 "objc_msgSendSuper2"); 135 } 136 137 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 138 /// SEL op, ...) 139 /// 140 /// The messenger used for super calls which return an aggregate indirectly. 141 llvm::FunctionCallee getMessageSendSuperStretFn() const { 142 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 143 return CGM.CreateRuntimeFunction( 144 llvm::FunctionType::get(CGM.VoidTy, params, true), 145 "objc_msgSendSuper_stret"); 146 } 147 148 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 149 /// SEL op, ...) 150 /// 151 /// objc_msgSendSuper_stret with the super2 semantics. 152 llvm::FunctionCallee getMessageSendSuperStretFn2() const { 153 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 154 return CGM.CreateRuntimeFunction( 155 llvm::FunctionType::get(CGM.VoidTy, params, true), 156 "objc_msgSendSuper2_stret"); 157 } 158 159 llvm::FunctionCallee getMessageSendSuperFpretFn() const { 160 // There is no objc_msgSendSuper_fpret? How can that work? 161 return getMessageSendSuperFn(); 162 } 163 164 llvm::FunctionCallee getMessageSendSuperFpretFn2() const { 165 // There is no objc_msgSendSuper_fpret? How can that work? 166 return getMessageSendSuperFn2(); 167 } 168 169 protected: 170 CodeGen::CodeGenModule &CGM; 171 172 public: 173 llvm::IntegerType *ShortTy, *IntTy, *LongTy; 174 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy; 175 llvm::Type *IvarOffsetVarTy; 176 177 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 178 llvm::PointerType *ObjectPtrTy; 179 180 /// PtrObjectPtrTy - LLVM type for id * 181 llvm::PointerType *PtrObjectPtrTy; 182 183 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 184 llvm::PointerType *SelectorPtrTy; 185 186 private: 187 /// ProtocolPtrTy - LLVM type for external protocol handles 188 /// (typeof(Protocol)) 189 llvm::Type *ExternalProtocolPtrTy; 190 191 public: 192 llvm::Type *getExternalProtocolPtrTy() { 193 if (!ExternalProtocolPtrTy) { 194 // FIXME: It would be nice to unify this with the opaque type, so that the 195 // IR comes out a bit cleaner. 196 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 197 ASTContext &Ctx = CGM.getContext(); 198 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 199 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 200 } 201 202 return ExternalProtocolPtrTy; 203 } 204 205 // SuperCTy - clang type for struct objc_super. 206 QualType SuperCTy; 207 // SuperPtrCTy - clang type for struct objc_super *. 208 QualType SuperPtrCTy; 209 210 /// SuperTy - LLVM type for struct objc_super. 211 llvm::StructType *SuperTy; 212 /// SuperPtrTy - LLVM type for struct objc_super *. 213 llvm::PointerType *SuperPtrTy; 214 215 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 216 /// in GCC parlance). 217 llvm::StructType *PropertyTy; 218 219 /// PropertyListTy - LLVM type for struct objc_property_list 220 /// (_prop_list_t in GCC parlance). 221 llvm::StructType *PropertyListTy; 222 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 223 llvm::PointerType *PropertyListPtrTy; 224 225 // MethodTy - LLVM type for struct objc_method. 226 llvm::StructType *MethodTy; 227 228 /// CacheTy - LLVM type for struct objc_cache. 229 llvm::Type *CacheTy; 230 /// CachePtrTy - LLVM type for struct objc_cache *. 231 llvm::PointerType *CachePtrTy; 232 233 llvm::FunctionCallee getGetPropertyFn() { 234 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 235 ASTContext &Ctx = CGM.getContext(); 236 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 237 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 238 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 239 CanQualType Params[] = { 240 IdType, SelType, 241 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy}; 242 llvm::FunctionType *FTy = 243 Types.GetFunctionType( 244 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 245 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 246 } 247 248 llvm::FunctionCallee getSetPropertyFn() { 249 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 250 ASTContext &Ctx = CGM.getContext(); 251 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 252 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 253 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 254 CanQualType Params[] = { 255 IdType, 256 SelType, 257 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), 258 IdType, 259 Ctx.BoolTy, 260 Ctx.BoolTy}; 261 llvm::FunctionType *FTy = 262 Types.GetFunctionType( 263 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 264 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 265 } 266 267 llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) { 268 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 269 ASTContext &Ctx = CGM.getContext(); 270 // void objc_setProperty_atomic(id self, SEL _cmd, 271 // id newValue, ptrdiff_t offset); 272 // void objc_setProperty_nonatomic(id self, SEL _cmd, 273 // id newValue, ptrdiff_t offset); 274 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 275 // id newValue, ptrdiff_t offset); 276 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 277 // id newValue, ptrdiff_t offset); 278 279 SmallVector<CanQualType,4> Params; 280 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 281 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 282 Params.push_back(IdType); 283 Params.push_back(SelType); 284 Params.push_back(IdType); 285 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 286 llvm::FunctionType *FTy = 287 Types.GetFunctionType( 288 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 289 const char *name; 290 if (atomic && copy) 291 name = "objc_setProperty_atomic_copy"; 292 else if (atomic && !copy) 293 name = "objc_setProperty_atomic"; 294 else if (!atomic && copy) 295 name = "objc_setProperty_nonatomic_copy"; 296 else 297 name = "objc_setProperty_nonatomic"; 298 299 return CGM.CreateRuntimeFunction(FTy, name); 300 } 301 302 llvm::FunctionCallee getCopyStructFn() { 303 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 304 ASTContext &Ctx = CGM.getContext(); 305 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 306 SmallVector<CanQualType,5> Params; 307 Params.push_back(Ctx.VoidPtrTy); 308 Params.push_back(Ctx.VoidPtrTy); 309 Params.push_back(Ctx.getSizeType()); 310 Params.push_back(Ctx.BoolTy); 311 Params.push_back(Ctx.BoolTy); 312 llvm::FunctionType *FTy = 313 Types.GetFunctionType( 314 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 315 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 316 } 317 318 /// This routine declares and returns address of: 319 /// void objc_copyCppObjectAtomic( 320 /// void *dest, const void *src, 321 /// void (*copyHelper) (void *dest, const void *source)); 322 llvm::FunctionCallee getCppAtomicObjectFunction() { 323 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 324 ASTContext &Ctx = CGM.getContext(); 325 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 326 SmallVector<CanQualType,3> Params; 327 Params.push_back(Ctx.VoidPtrTy); 328 Params.push_back(Ctx.VoidPtrTy); 329 Params.push_back(Ctx.VoidPtrTy); 330 llvm::FunctionType *FTy = 331 Types.GetFunctionType( 332 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 333 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 334 } 335 336 llvm::FunctionCallee getEnumerationMutationFn() { 337 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 338 ASTContext &Ctx = CGM.getContext(); 339 // void objc_enumerationMutation (id) 340 SmallVector<CanQualType,1> Params; 341 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 342 llvm::FunctionType *FTy = 343 Types.GetFunctionType( 344 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 345 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 346 } 347 348 llvm::FunctionCallee getLookUpClassFn() { 349 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 350 ASTContext &Ctx = CGM.getContext(); 351 // Class objc_lookUpClass (const char *) 352 SmallVector<CanQualType,1> Params; 353 Params.push_back( 354 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 355 llvm::FunctionType *FTy = 356 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 357 Ctx.getCanonicalType(Ctx.getObjCClassType()), 358 Params)); 359 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 360 } 361 362 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 363 llvm::FunctionCallee getGcReadWeakFn() { 364 // id objc_read_weak (id *) 365 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 366 llvm::FunctionType *FTy = 367 llvm::FunctionType::get(ObjectPtrTy, args, false); 368 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 369 } 370 371 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 372 llvm::FunctionCallee getGcAssignWeakFn() { 373 // id objc_assign_weak (id, id *) 374 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 375 llvm::FunctionType *FTy = 376 llvm::FunctionType::get(ObjectPtrTy, args, false); 377 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 378 } 379 380 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 381 llvm::FunctionCallee getGcAssignGlobalFn() { 382 // id objc_assign_global(id, id *) 383 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 384 llvm::FunctionType *FTy = 385 llvm::FunctionType::get(ObjectPtrTy, args, false); 386 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 387 } 388 389 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 390 llvm::FunctionCallee getGcAssignThreadLocalFn() { 391 // id objc_assign_threadlocal(id src, id * dest) 392 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 393 llvm::FunctionType *FTy = 394 llvm::FunctionType::get(ObjectPtrTy, args, false); 395 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 396 } 397 398 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 399 llvm::FunctionCallee getGcAssignIvarFn() { 400 // id objc_assign_ivar(id, id *, ptrdiff_t) 401 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 402 CGM.PtrDiffTy }; 403 llvm::FunctionType *FTy = 404 llvm::FunctionType::get(ObjectPtrTy, args, false); 405 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 406 } 407 408 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 409 llvm::FunctionCallee GcMemmoveCollectableFn() { 410 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 411 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 412 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 413 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 414 } 415 416 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 417 llvm::FunctionCallee getGcAssignStrongCastFn() { 418 // id objc_assign_strongCast(id, id *) 419 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 420 llvm::FunctionType *FTy = 421 llvm::FunctionType::get(ObjectPtrTy, args, false); 422 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 423 } 424 425 /// ExceptionThrowFn - LLVM objc_exception_throw function. 426 llvm::FunctionCallee getExceptionThrowFn() { 427 // void objc_exception_throw(id) 428 llvm::Type *args[] = { ObjectPtrTy }; 429 llvm::FunctionType *FTy = 430 llvm::FunctionType::get(CGM.VoidTy, args, false); 431 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 432 } 433 434 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 435 llvm::FunctionCallee getExceptionRethrowFn() { 436 // void objc_exception_rethrow(void) 437 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 438 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 439 } 440 441 /// SyncEnterFn - LLVM object_sync_enter function. 442 llvm::FunctionCallee getSyncEnterFn() { 443 // int objc_sync_enter (id) 444 llvm::Type *args[] = { ObjectPtrTy }; 445 llvm::FunctionType *FTy = 446 llvm::FunctionType::get(CGM.IntTy, args, false); 447 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 448 } 449 450 /// SyncExitFn - LLVM object_sync_exit function. 451 llvm::FunctionCallee getSyncExitFn() { 452 // int objc_sync_exit (id) 453 llvm::Type *args[] = { ObjectPtrTy }; 454 llvm::FunctionType *FTy = 455 llvm::FunctionType::get(CGM.IntTy, args, false); 456 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 457 } 458 459 llvm::FunctionCallee getSendFn(bool IsSuper) const { 460 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 461 } 462 463 llvm::FunctionCallee getSendFn2(bool IsSuper) const { 464 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 465 } 466 467 llvm::FunctionCallee getSendStretFn(bool IsSuper) const { 468 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 469 } 470 471 llvm::FunctionCallee getSendStretFn2(bool IsSuper) const { 472 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 473 } 474 475 llvm::FunctionCallee getSendFpretFn(bool IsSuper) const { 476 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 477 } 478 479 llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const { 480 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 481 } 482 483 llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const { 484 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 485 } 486 487 llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const { 488 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 489 } 490 491 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 492 }; 493 494 /// ObjCTypesHelper - Helper class that encapsulates lazy 495 /// construction of varies types used during ObjC generation. 496 class ObjCTypesHelper : public ObjCCommonTypesHelper { 497 public: 498 /// SymtabTy - LLVM type for struct objc_symtab. 499 llvm::StructType *SymtabTy; 500 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 501 llvm::PointerType *SymtabPtrTy; 502 /// ModuleTy - LLVM type for struct objc_module. 503 llvm::StructType *ModuleTy; 504 505 /// ProtocolTy - LLVM type for struct objc_protocol. 506 llvm::StructType *ProtocolTy; 507 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 508 llvm::PointerType *ProtocolPtrTy; 509 /// ProtocolExtensionTy - LLVM type for struct 510 /// objc_protocol_extension. 511 llvm::StructType *ProtocolExtensionTy; 512 /// ProtocolExtensionTy - LLVM type for struct 513 /// objc_protocol_extension *. 514 llvm::PointerType *ProtocolExtensionPtrTy; 515 /// MethodDescriptionTy - LLVM type for struct 516 /// objc_method_description. 517 llvm::StructType *MethodDescriptionTy; 518 /// MethodDescriptionListTy - LLVM type for struct 519 /// objc_method_description_list. 520 llvm::StructType *MethodDescriptionListTy; 521 /// MethodDescriptionListPtrTy - LLVM type for struct 522 /// objc_method_description_list *. 523 llvm::PointerType *MethodDescriptionListPtrTy; 524 /// ProtocolListTy - LLVM type for struct objc_property_list. 525 llvm::StructType *ProtocolListTy; 526 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 527 llvm::PointerType *ProtocolListPtrTy; 528 /// CategoryTy - LLVM type for struct objc_category. 529 llvm::StructType *CategoryTy; 530 /// ClassTy - LLVM type for struct objc_class. 531 llvm::StructType *ClassTy; 532 /// ClassPtrTy - LLVM type for struct objc_class *. 533 llvm::PointerType *ClassPtrTy; 534 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 535 llvm::StructType *ClassExtensionTy; 536 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 537 llvm::PointerType *ClassExtensionPtrTy; 538 // IvarTy - LLVM type for struct objc_ivar. 539 llvm::StructType *IvarTy; 540 /// IvarListTy - LLVM type for struct objc_ivar_list. 541 llvm::StructType *IvarListTy; 542 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 543 llvm::PointerType *IvarListPtrTy; 544 /// MethodListTy - LLVM type for struct objc_method_list. 545 llvm::StructType *MethodListTy; 546 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 547 llvm::PointerType *MethodListPtrTy; 548 549 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 550 llvm::StructType *ExceptionDataTy; 551 552 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 553 llvm::FunctionCallee getExceptionTryEnterFn() { 554 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 555 return CGM.CreateRuntimeFunction( 556 llvm::FunctionType::get(CGM.VoidTy, params, false), 557 "objc_exception_try_enter"); 558 } 559 560 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 561 llvm::FunctionCallee getExceptionTryExitFn() { 562 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 563 return CGM.CreateRuntimeFunction( 564 llvm::FunctionType::get(CGM.VoidTy, params, false), 565 "objc_exception_try_exit"); 566 } 567 568 /// ExceptionExtractFn - LLVM objc_exception_extract function. 569 llvm::FunctionCallee getExceptionExtractFn() { 570 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 571 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 572 params, false), 573 "objc_exception_extract"); 574 } 575 576 /// ExceptionMatchFn - LLVM objc_exception_match function. 577 llvm::FunctionCallee getExceptionMatchFn() { 578 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 579 return CGM.CreateRuntimeFunction( 580 llvm::FunctionType::get(CGM.Int32Ty, params, false), 581 "objc_exception_match"); 582 } 583 584 /// SetJmpFn - LLVM _setjmp function. 585 llvm::FunctionCallee getSetJmpFn() { 586 // This is specifically the prototype for x86. 587 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 588 return CGM.CreateRuntimeFunction( 589 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp", 590 llvm::AttributeList::get(CGM.getLLVMContext(), 591 llvm::AttributeList::FunctionIndex, 592 llvm::Attribute::NonLazyBind)); 593 } 594 595 public: 596 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 597 }; 598 599 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 600 /// modern abi 601 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 602 public: 603 // MethodListnfABITy - LLVM for struct _method_list_t 604 llvm::StructType *MethodListnfABITy; 605 606 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 607 llvm::PointerType *MethodListnfABIPtrTy; 608 609 // ProtocolnfABITy = LLVM for struct _protocol_t 610 llvm::StructType *ProtocolnfABITy; 611 612 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 613 llvm::PointerType *ProtocolnfABIPtrTy; 614 615 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 616 llvm::StructType *ProtocolListnfABITy; 617 618 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 619 llvm::PointerType *ProtocolListnfABIPtrTy; 620 621 // ClassnfABITy - LLVM for struct _class_t 622 llvm::StructType *ClassnfABITy; 623 624 // ClassnfABIPtrTy - LLVM for struct _class_t* 625 llvm::PointerType *ClassnfABIPtrTy; 626 627 // IvarnfABITy - LLVM for struct _ivar_t 628 llvm::StructType *IvarnfABITy; 629 630 // IvarListnfABITy - LLVM for struct _ivar_list_t 631 llvm::StructType *IvarListnfABITy; 632 633 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 634 llvm::PointerType *IvarListnfABIPtrTy; 635 636 // ClassRonfABITy - LLVM for struct _class_ro_t 637 llvm::StructType *ClassRonfABITy; 638 639 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 640 llvm::PointerType *ImpnfABITy; 641 642 // CategorynfABITy - LLVM for struct _category_t 643 llvm::StructType *CategorynfABITy; 644 645 // New types for nonfragile abi messaging. 646 647 // MessageRefTy - LLVM for: 648 // struct _message_ref_t { 649 // IMP messenger; 650 // SEL name; 651 // }; 652 llvm::StructType *MessageRefTy; 653 // MessageRefCTy - clang type for struct _message_ref_t 654 QualType MessageRefCTy; 655 656 // MessageRefPtrTy - LLVM for struct _message_ref_t* 657 llvm::Type *MessageRefPtrTy; 658 // MessageRefCPtrTy - clang type for struct _message_ref_t* 659 QualType MessageRefCPtrTy; 660 661 // SuperMessageRefTy - LLVM for: 662 // struct _super_message_ref_t { 663 // SUPER_IMP messenger; 664 // SEL name; 665 // }; 666 llvm::StructType *SuperMessageRefTy; 667 668 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 669 llvm::PointerType *SuperMessageRefPtrTy; 670 671 llvm::FunctionCallee getMessageSendFixupFn() { 672 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 673 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 674 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 675 params, true), 676 "objc_msgSend_fixup"); 677 } 678 679 llvm::FunctionCallee getMessageSendFpretFixupFn() { 680 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 681 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 682 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 683 params, true), 684 "objc_msgSend_fpret_fixup"); 685 } 686 687 llvm::FunctionCallee getMessageSendStretFixupFn() { 688 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 689 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 690 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 691 params, true), 692 "objc_msgSend_stret_fixup"); 693 } 694 695 llvm::FunctionCallee getMessageSendSuper2FixupFn() { 696 // id objc_msgSendSuper2_fixup (struct objc_super *, 697 // struct _super_message_ref_t*, ...) 698 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 699 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 700 params, true), 701 "objc_msgSendSuper2_fixup"); 702 } 703 704 llvm::FunctionCallee getMessageSendSuper2StretFixupFn() { 705 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 706 // struct _super_message_ref_t*, ...) 707 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 708 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 709 params, true), 710 "objc_msgSendSuper2_stret_fixup"); 711 } 712 713 llvm::FunctionCallee getObjCEndCatchFn() { 714 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 715 "objc_end_catch"); 716 } 717 718 llvm::FunctionCallee getObjCBeginCatchFn() { 719 llvm::Type *params[] = { Int8PtrTy }; 720 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 721 params, false), 722 "objc_begin_catch"); 723 } 724 725 /// Class objc_loadClassref (void *) 726 /// 727 /// Loads from a classref. For Objective-C stub classes, this invokes the 728 /// initialization callback stored inside the stub. For all other classes 729 /// this simply dereferences the pointer. 730 llvm::FunctionCallee getLoadClassrefFn() const { 731 // Add the non-lazy-bind attribute, since objc_loadClassref is likely to 732 // be called a lot. 733 // 734 // Also it is safe to make it readnone, since we never load or store the 735 // classref except by calling this function. 736 llvm::Type *params[] = { Int8PtrPtrTy }; 737 llvm::FunctionCallee F = CGM.CreateRuntimeFunction( 738 llvm::FunctionType::get(ClassnfABIPtrTy, params, false), 739 "objc_loadClassref", 740 llvm::AttributeList::get(CGM.getLLVMContext(), 741 llvm::AttributeList::FunctionIndex, 742 {llvm::Attribute::NonLazyBind, 743 llvm::Attribute::ReadNone, 744 llvm::Attribute::NoUnwind})); 745 if (!CGM.getTriple().isOSBinFormatCOFF()) 746 cast<llvm::Function>(F.getCallee())->setLinkage( 747 llvm::Function::ExternalWeakLinkage); 748 749 return F; 750 } 751 752 llvm::StructType *EHTypeTy; 753 llvm::Type *EHTypePtrTy; 754 755 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 756 }; 757 758 enum class ObjCLabelType { 759 ClassName, 760 MethodVarName, 761 MethodVarType, 762 PropertyName, 763 }; 764 765 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 766 public: 767 class SKIP_SCAN { 768 public: 769 unsigned skip; 770 unsigned scan; 771 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 772 : skip(_skip), scan(_scan) {} 773 }; 774 775 /// opcode for captured block variables layout 'instructions'. 776 /// In the following descriptions, 'I' is the value of the immediate field. 777 /// (field following the opcode). 778 /// 779 enum BLOCK_LAYOUT_OPCODE { 780 /// An operator which affects how the following layout should be 781 /// interpreted. 782 /// I == 0: Halt interpretation and treat everything else as 783 /// a non-pointer. Note that this instruction is equal 784 /// to '\0'. 785 /// I != 0: Currently unused. 786 BLOCK_LAYOUT_OPERATOR = 0, 787 788 /// The next I+1 bytes do not contain a value of object pointer type. 789 /// Note that this can leave the stream unaligned, meaning that 790 /// subsequent word-size instructions do not begin at a multiple of 791 /// the pointer size. 792 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 793 794 /// The next I+1 words do not contain a value of object pointer type. 795 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 796 /// when the required skip quantity is a multiple of the pointer size. 797 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 798 799 /// The next I+1 words are __strong pointers to Objective-C 800 /// objects or blocks. 801 BLOCK_LAYOUT_STRONG = 3, 802 803 /// The next I+1 words are pointers to __block variables. 804 BLOCK_LAYOUT_BYREF = 4, 805 806 /// The next I+1 words are __weak pointers to Objective-C 807 /// objects or blocks. 808 BLOCK_LAYOUT_WEAK = 5, 809 810 /// The next I+1 words are __unsafe_unretained pointers to 811 /// Objective-C objects or blocks. 812 BLOCK_LAYOUT_UNRETAINED = 6 813 814 /// The next I+1 words are block or object pointers with some 815 /// as-yet-unspecified ownership semantics. If we add more 816 /// flavors of ownership semantics, values will be taken from 817 /// this range. 818 /// 819 /// This is included so that older tools can at least continue 820 /// processing the layout past such things. 821 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 822 823 /// All other opcodes are reserved. Halt interpretation and 824 /// treat everything else as opaque. 825 }; 826 827 class RUN_SKIP { 828 public: 829 enum BLOCK_LAYOUT_OPCODE opcode; 830 CharUnits block_var_bytepos; 831 CharUnits block_var_size; 832 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 833 CharUnits BytePos = CharUnits::Zero(), 834 CharUnits Size = CharUnits::Zero()) 835 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 836 837 // Allow sorting based on byte pos. 838 bool operator<(const RUN_SKIP &b) const { 839 return block_var_bytepos < b.block_var_bytepos; 840 } 841 }; 842 843 protected: 844 llvm::LLVMContext &VMContext; 845 // FIXME! May not be needing this after all. 846 unsigned ObjCABI; 847 848 // arc/mrr layout of captured block literal variables. 849 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 850 851 /// LazySymbols - Symbols to generate a lazy reference for. See 852 /// DefinedSymbols and FinishModule(). 853 llvm::SetVector<IdentifierInfo*> LazySymbols; 854 855 /// DefinedSymbols - External symbols which are defined by this 856 /// module. The symbols in this list and LazySymbols are used to add 857 /// special linker symbols which ensure that Objective-C modules are 858 /// linked properly. 859 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 860 861 /// ClassNames - uniqued class names. 862 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 863 864 /// MethodVarNames - uniqued method variable names. 865 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 866 867 /// DefinedCategoryNames - list of category names in form Class_Category. 868 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames; 869 870 /// MethodVarTypes - uniqued method type signatures. We have to use 871 /// a StringMap here because have no other unique reference. 872 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 873 874 /// MethodDefinitions - map of methods which have been defined in 875 /// this translation unit. 876 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 877 878 /// DirectMethodDefinitions - map of direct methods which have been defined in 879 /// this translation unit. 880 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> DirectMethodDefinitions; 881 882 /// PropertyNames - uniqued method variable names. 883 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 884 885 /// ClassReferences - uniqued class references. 886 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 887 888 /// SelectorReferences - uniqued selector references. 889 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 890 891 /// Protocols - Protocols for which an objc_protocol structure has 892 /// been emitted. Forward declarations are handled by creating an 893 /// empty structure whose initializer is filled in when/if defined. 894 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 895 896 /// DefinedProtocols - Protocols which have actually been 897 /// defined. We should not need this, see FIXME in GenerateProtocol. 898 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 899 900 /// DefinedClasses - List of defined classes. 901 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 902 903 /// ImplementedClasses - List of @implemented classes. 904 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 905 906 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 907 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 908 909 /// DefinedCategories - List of defined categories. 910 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 911 912 /// DefinedStubCategories - List of defined categories on class stubs. 913 SmallVector<llvm::GlobalValue*, 16> DefinedStubCategories; 914 915 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 916 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 917 918 /// Cached reference to the class for constant strings. This value has type 919 /// int * but is actually an Obj-C class pointer. 920 llvm::WeakTrackingVH ConstantStringClassRef; 921 922 /// The LLVM type corresponding to NSConstantString. 923 llvm::StructType *NSConstantStringType = nullptr; 924 925 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap; 926 927 /// GetNameForMethod - Return a name for the given method. 928 /// \param[out] NameOut - The return value. 929 void GetNameForMethod(const ObjCMethodDecl *OMD, 930 const ObjCContainerDecl *CD, 931 SmallVectorImpl<char> &NameOut, 932 bool ignoreCategoryNamespace = false); 933 934 /// GetMethodVarName - Return a unique constant for the given 935 /// selector's name. The return value has type char *. 936 llvm::Constant *GetMethodVarName(Selector Sel); 937 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 938 939 /// GetMethodVarType - Return a unique constant for the given 940 /// method's type encoding string. The return value has type char *. 941 942 // FIXME: This is a horrible name. 943 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 944 bool Extended = false); 945 llvm::Constant *GetMethodVarType(const FieldDecl *D); 946 947 /// GetPropertyName - Return a unique constant for the given 948 /// name. The return value has type char *. 949 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 950 951 // FIXME: This can be dropped once string functions are unified. 952 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 953 const Decl *Container); 954 955 /// GetClassName - Return a unique constant for the given selector's 956 /// runtime name (which may change via use of objc_runtime_name attribute on 957 /// class or protocol definition. The return value has type char *. 958 llvm::Constant *GetClassName(StringRef RuntimeName); 959 960 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 961 962 /// BuildIvarLayout - Builds ivar layout bitmap for the class 963 /// implementation for the __strong or __weak case. 964 /// 965 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 966 /// are any weak ivars defined directly in the class. Meaningless unless 967 /// building a weak layout. Does not guarantee that the layout will 968 /// actually have any entries, because the ivar might be under-aligned. 969 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 970 CharUnits beginOffset, 971 CharUnits endOffset, 972 bool forStrongLayout, 973 bool hasMRCWeakIvars); 974 975 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 976 CharUnits beginOffset, 977 CharUnits endOffset) { 978 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 979 } 980 981 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 982 CharUnits beginOffset, 983 CharUnits endOffset, 984 bool hasMRCWeakIvars) { 985 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 986 } 987 988 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 989 990 void UpdateRunSkipBlockVars(bool IsByref, 991 Qualifiers::ObjCLifetime LifeTime, 992 CharUnits FieldOffset, 993 CharUnits FieldSize); 994 995 void BuildRCBlockVarRecordLayout(const RecordType *RT, 996 CharUnits BytePos, bool &HasUnion, 997 bool ByrefLayout=false); 998 999 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 1000 const RecordDecl *RD, 1001 ArrayRef<const FieldDecl*> RecFields, 1002 CharUnits BytePos, bool &HasUnion, 1003 bool ByrefLayout); 1004 1005 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 1006 1007 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 1008 1009 /// GetIvarLayoutName - Returns a unique constant for the given 1010 /// ivar layout bitmap. 1011 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 1012 const ObjCCommonTypesHelper &ObjCTypes); 1013 1014 /// EmitPropertyList - Emit the given property list. The return 1015 /// value has type PropertyListPtrTy. 1016 llvm::Constant *EmitPropertyList(Twine Name, 1017 const Decl *Container, 1018 const ObjCContainerDecl *OCD, 1019 const ObjCCommonTypesHelper &ObjCTypes, 1020 bool IsClassProperty); 1021 1022 /// EmitProtocolMethodTypes - Generate the array of extended method type 1023 /// strings. The return value has type Int8PtrPtrTy. 1024 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 1025 ArrayRef<llvm::Constant*> MethodTypes, 1026 const ObjCCommonTypesHelper &ObjCTypes); 1027 1028 /// GetProtocolRef - Return a reference to the internal protocol 1029 /// description, creating an empty one if it has not been 1030 /// defined. The return value has type ProtocolPtrTy. 1031 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1032 1033 /// Return a reference to the given Class using runtime calls rather than 1034 /// by a symbol reference. 1035 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1036 const ObjCInterfaceDecl *ID, 1037 ObjCCommonTypesHelper &ObjCTypes); 1038 1039 std::string GetSectionName(StringRef Section, StringRef MachOAttributes); 1040 1041 public: 1042 /// CreateMetadataVar - Create a global variable with internal 1043 /// linkage for use by the Objective-C runtime. 1044 /// 1045 /// This is a convenience wrapper which not only creates the 1046 /// variable, but also sets the section and alignment and adds the 1047 /// global to the "llvm.used" list. 1048 /// 1049 /// \param Name - The variable name. 1050 /// \param Init - The variable initializer; this is also used to 1051 /// define the type of the variable. 1052 /// \param Section - The section the variable should go into, or empty. 1053 /// \param Align - The alignment for the variable, or 0. 1054 /// \param AddToUsed - Whether the variable should be added to 1055 /// "llvm.used". 1056 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1057 ConstantStructBuilder &Init, 1058 StringRef Section, CharUnits Align, 1059 bool AddToUsed); 1060 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1061 llvm::Constant *Init, 1062 StringRef Section, CharUnits Align, 1063 bool AddToUsed); 1064 1065 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name, 1066 ObjCLabelType LabelType, 1067 bool ForceNonFragileABI = false, 1068 bool NullTerminate = true); 1069 1070 protected: 1071 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1072 ReturnValueSlot Return, 1073 QualType ResultType, 1074 Selector Sel, 1075 llvm::Value *Arg0, 1076 QualType Arg0Ty, 1077 bool IsSuper, 1078 const CallArgList &CallArgs, 1079 const ObjCMethodDecl *OMD, 1080 const ObjCInterfaceDecl *ClassReceiver, 1081 const ObjCCommonTypesHelper &ObjCTypes); 1082 1083 /// EmitImageInfo - Emit the image info marker used to encode some module 1084 /// level information. 1085 void EmitImageInfo(); 1086 1087 public: 1088 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) : 1089 CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { } 1090 1091 bool isNonFragileABI() const { 1092 return ObjCABI == 2; 1093 } 1094 1095 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1096 ConstantAddress GenerateConstantNSString(const StringLiteral *SL); 1097 1098 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1099 const ObjCContainerDecl *CD=nullptr) override; 1100 1101 llvm::Function *GenerateDirectMethod(const ObjCMethodDecl *OMD, 1102 const ObjCContainerDecl *CD); 1103 1104 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, 1105 const ObjCMethodDecl *OMD, 1106 const ObjCContainerDecl *CD) override; 1107 1108 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1109 1110 /// GetOrEmitProtocol - Get the protocol object for the given 1111 /// declaration, emitting it if necessary. The return value has type 1112 /// ProtocolPtrTy. 1113 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0; 1114 1115 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1116 /// object for the given declaration, emitting it if needed. These 1117 /// forward references will be filled in with empty bodies if no 1118 /// definition is seen. The return value has type ProtocolPtrTy. 1119 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1120 1121 virtual llvm::Constant *getNSConstantStringClassRef() = 0; 1122 1123 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1124 const CGBlockInfo &blockInfo) override; 1125 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1126 const CGBlockInfo &blockInfo) override; 1127 std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM, 1128 const CGBlockInfo &blockInfo) override; 1129 1130 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1131 QualType T) override; 1132 1133 private: 1134 void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo); 1135 }; 1136 1137 namespace { 1138 1139 enum class MethodListType { 1140 CategoryInstanceMethods, 1141 CategoryClassMethods, 1142 InstanceMethods, 1143 ClassMethods, 1144 ProtocolInstanceMethods, 1145 ProtocolClassMethods, 1146 OptionalProtocolInstanceMethods, 1147 OptionalProtocolClassMethods, 1148 }; 1149 1150 /// A convenience class for splitting the methods of a protocol into 1151 /// the four interesting groups. 1152 class ProtocolMethodLists { 1153 public: 1154 enum Kind { 1155 RequiredInstanceMethods, 1156 RequiredClassMethods, 1157 OptionalInstanceMethods, 1158 OptionalClassMethods 1159 }; 1160 enum { 1161 NumProtocolMethodLists = 4 1162 }; 1163 1164 static MethodListType getMethodListKind(Kind kind) { 1165 switch (kind) { 1166 case RequiredInstanceMethods: 1167 return MethodListType::ProtocolInstanceMethods; 1168 case RequiredClassMethods: 1169 return MethodListType::ProtocolClassMethods; 1170 case OptionalInstanceMethods: 1171 return MethodListType::OptionalProtocolInstanceMethods; 1172 case OptionalClassMethods: 1173 return MethodListType::OptionalProtocolClassMethods; 1174 } 1175 llvm_unreachable("bad kind"); 1176 } 1177 1178 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists]; 1179 1180 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) { 1181 ProtocolMethodLists result; 1182 1183 for (auto MD : PD->methods()) { 1184 size_t index = (2 * size_t(MD->isOptional())) 1185 + (size_t(MD->isClassMethod())); 1186 result.Methods[index].push_back(MD); 1187 } 1188 1189 return result; 1190 } 1191 1192 template <class Self> 1193 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const { 1194 // In both ABIs, the method types list is parallel with the 1195 // concatenation of the methods arrays in the following order: 1196 // instance methods 1197 // class methods 1198 // optional instance methods 1199 // optional class methods 1200 SmallVector<llvm::Constant*, 8> result; 1201 1202 // Methods is already in the correct order for both ABIs. 1203 for (auto &list : Methods) { 1204 for (auto MD : list) { 1205 result.push_back(self->GetMethodVarType(MD, true)); 1206 } 1207 } 1208 1209 return result; 1210 } 1211 1212 template <class Self> 1213 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD, 1214 Kind kind) const { 1215 return self->emitMethodList(PD->getObjCRuntimeNameAsString(), 1216 getMethodListKind(kind), Methods[kind]); 1217 } 1218 }; 1219 1220 } // end anonymous namespace 1221 1222 class CGObjCMac : public CGObjCCommonMac { 1223 private: 1224 friend ProtocolMethodLists; 1225 1226 ObjCTypesHelper ObjCTypes; 1227 1228 /// EmitModuleInfo - Another marker encoding module level 1229 /// information. 1230 void EmitModuleInfo(); 1231 1232 /// EmitModuleSymols - Emit module symbols, the list of defined 1233 /// classes and categories. The result has type SymtabPtrTy. 1234 llvm::Constant *EmitModuleSymbols(); 1235 1236 /// FinishModule - Write out global data structures at the end of 1237 /// processing a translation unit. 1238 void FinishModule(); 1239 1240 /// EmitClassExtension - Generate the class extension structure used 1241 /// to store the weak ivar layout and properties. The return value 1242 /// has type ClassExtensionPtrTy. 1243 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1244 CharUnits instanceSize, 1245 bool hasMRCWeakIvars, 1246 bool isMetaclass); 1247 1248 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1249 /// for the given class. 1250 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1251 const ObjCInterfaceDecl *ID); 1252 1253 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1254 IdentifierInfo *II); 1255 1256 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1257 1258 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1259 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1260 1261 /// EmitIvarList - Emit the ivar list for the given 1262 /// implementation. If ForClass is true the list of class ivars 1263 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1264 /// interface ivars will be emitted. The return value has type 1265 /// IvarListPtrTy. 1266 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1267 bool ForClass); 1268 1269 /// EmitMetaClass - Emit a forward reference to the class structure 1270 /// for the metaclass of the given interface. The return value has 1271 /// type ClassPtrTy. 1272 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1273 1274 /// EmitMetaClass - Emit a class structure for the metaclass of the 1275 /// given implementation. The return value has type ClassPtrTy. 1276 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1277 llvm::Constant *Protocols, 1278 ArrayRef<const ObjCMethodDecl *> Methods); 1279 1280 void emitMethodConstant(ConstantArrayBuilder &builder, 1281 const ObjCMethodDecl *MD); 1282 1283 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 1284 const ObjCMethodDecl *MD); 1285 1286 /// EmitMethodList - Emit the method list for the given 1287 /// implementation. The return value has type MethodListPtrTy. 1288 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1289 ArrayRef<const ObjCMethodDecl *> Methods); 1290 1291 /// GetOrEmitProtocol - Get the protocol object for the given 1292 /// declaration, emitting it if necessary. The return value has type 1293 /// ProtocolPtrTy. 1294 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1295 1296 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1297 /// object for the given declaration, emitting it if needed. These 1298 /// forward references will be filled in with empty bodies if no 1299 /// definition is seen. The return value has type ProtocolPtrTy. 1300 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1301 1302 /// EmitProtocolExtension - Generate the protocol extension 1303 /// structure used to store optional instance and class methods, and 1304 /// protocol properties. The return value has type 1305 /// ProtocolExtensionPtrTy. 1306 llvm::Constant * 1307 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1308 const ProtocolMethodLists &methodLists); 1309 1310 /// EmitProtocolList - Generate the list of referenced 1311 /// protocols. The return value has type ProtocolListPtrTy. 1312 llvm::Constant *EmitProtocolList(Twine Name, 1313 ObjCProtocolDecl::protocol_iterator begin, 1314 ObjCProtocolDecl::protocol_iterator end); 1315 1316 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1317 /// for the given selector. 1318 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1319 Address EmitSelectorAddr(Selector Sel); 1320 1321 public: 1322 CGObjCMac(CodeGen::CodeGenModule &cgm); 1323 1324 llvm::Constant *getNSConstantStringClassRef() override; 1325 1326 llvm::Function *ModuleInitFunction() override; 1327 1328 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1329 ReturnValueSlot Return, 1330 QualType ResultType, 1331 Selector Sel, llvm::Value *Receiver, 1332 const CallArgList &CallArgs, 1333 const ObjCInterfaceDecl *Class, 1334 const ObjCMethodDecl *Method) override; 1335 1336 CodeGen::RValue 1337 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1338 ReturnValueSlot Return, QualType ResultType, 1339 Selector Sel, const ObjCInterfaceDecl *Class, 1340 bool isCategoryImpl, llvm::Value *Receiver, 1341 bool IsClassMessage, const CallArgList &CallArgs, 1342 const ObjCMethodDecl *Method) override; 1343 1344 llvm::Value *GetClass(CodeGenFunction &CGF, 1345 const ObjCInterfaceDecl *ID) override; 1346 1347 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1348 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1349 1350 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1351 /// untyped one. 1352 llvm::Value *GetSelector(CodeGenFunction &CGF, 1353 const ObjCMethodDecl *Method) override; 1354 1355 llvm::Constant *GetEHType(QualType T) override; 1356 1357 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1358 1359 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1360 1361 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1362 1363 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1364 const ObjCProtocolDecl *PD) override; 1365 1366 llvm::FunctionCallee GetPropertyGetFunction() override; 1367 llvm::FunctionCallee GetPropertySetFunction() override; 1368 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1369 bool copy) override; 1370 llvm::FunctionCallee GetGetStructFunction() override; 1371 llvm::FunctionCallee GetSetStructFunction() override; 1372 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override; 1373 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override; 1374 llvm::FunctionCallee EnumerationMutationFunction() override; 1375 1376 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1377 const ObjCAtTryStmt &S) override; 1378 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1379 const ObjCAtSynchronizedStmt &S) override; 1380 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1381 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1382 bool ClearInsertionPoint=true) override; 1383 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1384 Address AddrWeakObj) override; 1385 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1386 llvm::Value *src, Address dst) override; 1387 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1388 llvm::Value *src, Address dest, 1389 bool threadlocal = false) override; 1390 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1391 llvm::Value *src, Address dest, 1392 llvm::Value *ivarOffset) override; 1393 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1394 llvm::Value *src, Address dest) override; 1395 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1396 Address dest, Address src, 1397 llvm::Value *size) override; 1398 1399 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1400 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1401 unsigned CVRQualifiers) override; 1402 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1403 const ObjCInterfaceDecl *Interface, 1404 const ObjCIvarDecl *Ivar) override; 1405 }; 1406 1407 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1408 private: 1409 friend ProtocolMethodLists; 1410 ObjCNonFragileABITypesHelper ObjCTypes; 1411 llvm::GlobalVariable* ObjCEmptyCacheVar; 1412 llvm::Constant* ObjCEmptyVtableVar; 1413 1414 /// SuperClassReferences - uniqued super class references. 1415 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1416 1417 /// MetaClassReferences - uniqued meta class references. 1418 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1419 1420 /// EHTypeReferences - uniqued class ehtype references. 1421 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1422 1423 /// VTableDispatchMethods - List of methods for which we generate 1424 /// vtable-based message dispatch. 1425 llvm::DenseSet<Selector> VTableDispatchMethods; 1426 1427 /// DefinedMetaClasses - List of defined meta-classes. 1428 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1429 1430 /// isVTableDispatchedSelector - Returns true if SEL is a 1431 /// vtable-based selector. 1432 bool isVTableDispatchedSelector(Selector Sel); 1433 1434 /// FinishNonFragileABIModule - Write out global data structures at the end of 1435 /// processing a translation unit. 1436 void FinishNonFragileABIModule(); 1437 1438 /// AddModuleClassList - Add the given list of class pointers to the 1439 /// module with the provided symbol and section names. 1440 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1441 StringRef SymbolName, StringRef SectionName); 1442 1443 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1444 unsigned InstanceStart, 1445 unsigned InstanceSize, 1446 const ObjCImplementationDecl *ID); 1447 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI, 1448 bool isMetaclass, 1449 llvm::Constant *IsAGV, 1450 llvm::Constant *SuperClassGV, 1451 llvm::Constant *ClassRoGV, 1452 bool HiddenVisibility); 1453 1454 void emitMethodConstant(ConstantArrayBuilder &builder, 1455 const ObjCMethodDecl *MD, 1456 bool forProtocol); 1457 1458 /// Emit the method list for the given implementation. The return value 1459 /// has type MethodListnfABITy. 1460 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT, 1461 ArrayRef<const ObjCMethodDecl *> Methods); 1462 1463 /// EmitIvarList - Emit the ivar list for the given 1464 /// implementation. If ForClass is true the list of class ivars 1465 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1466 /// interface ivars will be emitted. The return value has type 1467 /// IvarListnfABIPtrTy. 1468 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1469 1470 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1471 const ObjCIvarDecl *Ivar, 1472 unsigned long int offset); 1473 1474 /// GetOrEmitProtocol - Get the protocol object for the given 1475 /// declaration, emitting it if necessary. The return value has type 1476 /// ProtocolPtrTy. 1477 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1478 1479 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1480 /// object for the given declaration, emitting it if needed. These 1481 /// forward references will be filled in with empty bodies if no 1482 /// definition is seen. The return value has type ProtocolPtrTy. 1483 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1484 1485 /// EmitProtocolList - Generate the list of referenced 1486 /// protocols. The return value has type ProtocolListPtrTy. 1487 llvm::Constant *EmitProtocolList(Twine Name, 1488 ObjCProtocolDecl::protocol_iterator begin, 1489 ObjCProtocolDecl::protocol_iterator end); 1490 1491 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1492 ReturnValueSlot Return, 1493 QualType ResultType, 1494 Selector Sel, 1495 llvm::Value *Receiver, 1496 QualType Arg0Ty, 1497 bool IsSuper, 1498 const CallArgList &CallArgs, 1499 const ObjCMethodDecl *Method); 1500 1501 /// GetClassGlobal - Return the global variable for the Objective-C 1502 /// class of the given name. 1503 llvm::Constant *GetClassGlobal(StringRef Name, 1504 ForDefinition_t IsForDefinition, 1505 bool Weak = false, bool DLLImport = false); 1506 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID, 1507 bool isMetaclass, 1508 ForDefinition_t isForDefinition); 1509 1510 llvm::Constant *GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID); 1511 1512 llvm::Value *EmitLoadOfClassRef(CodeGenFunction &CGF, 1513 const ObjCInterfaceDecl *ID, 1514 llvm::GlobalVariable *Entry); 1515 1516 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1517 /// for the given class reference. 1518 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1519 const ObjCInterfaceDecl *ID); 1520 1521 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1522 IdentifierInfo *II, 1523 const ObjCInterfaceDecl *ID); 1524 1525 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1526 1527 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1528 /// for the given super class reference. 1529 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1530 const ObjCInterfaceDecl *ID); 1531 1532 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1533 /// meta-data 1534 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1535 const ObjCInterfaceDecl *ID, bool Weak); 1536 1537 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1538 /// the given ivar. 1539 /// 1540 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1541 const ObjCInterfaceDecl *ID, 1542 const ObjCIvarDecl *Ivar); 1543 1544 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1545 /// for the given selector. 1546 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1547 Address EmitSelectorAddr(Selector Sel); 1548 1549 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1550 /// interface. The return value has type EHTypePtrTy. 1551 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1552 ForDefinition_t IsForDefinition); 1553 1554 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1555 1556 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1557 1558 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1559 uint32_t &InstanceStart, 1560 uint32_t &InstanceSize); 1561 1562 // Shamelessly stolen from Analysis/CFRefCount.cpp 1563 Selector GetNullarySelector(const char* name) const { 1564 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1565 return CGM.getContext().Selectors.getSelector(0, &II); 1566 } 1567 1568 Selector GetUnarySelector(const char* name) const { 1569 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1570 return CGM.getContext().Selectors.getSelector(1, &II); 1571 } 1572 1573 /// ImplementationIsNonLazy - Check whether the given category or 1574 /// class implementation is "non-lazy". 1575 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1576 1577 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1578 const ObjCIvarDecl *IV) { 1579 // Annotate the load as an invariant load iff inside an instance method 1580 // and ivar belongs to instance method's class and one of its super class. 1581 // This check is needed because the ivar offset is a lazily 1582 // initialised value that may depend on objc_msgSend to perform a fixup on 1583 // the first message dispatch. 1584 // 1585 // An additional opportunity to mark the load as invariant arises when the 1586 // base of the ivar access is a parameter to an Objective C method. 1587 // However, because the parameters are not available in the current 1588 // interface, we cannot perform this check. 1589 // 1590 // Note that for direct methods, because objc_msgSend is skipped, 1591 // and that the method may be inlined, this optimization actually 1592 // can't be performed. 1593 if (const ObjCMethodDecl *MD = 1594 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1595 if (MD->isInstanceMethod() && !MD->isDirectMethod()) 1596 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1597 return IV->getContainingInterface()->isSuperClassOf(ID); 1598 return false; 1599 } 1600 1601 bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) { 1602 // NSObject is a fixed size. If we can see the @implementation of a class 1603 // which inherits from NSObject then we know that all it's offsets also must 1604 // be fixed. FIXME: Can we do this if see a chain of super classes with 1605 // implementations leading to NSObject? 1606 return ID->getImplementation() && ID->getSuperClass() && 1607 ID->getSuperClass()->getName() == "NSObject"; 1608 } 1609 1610 public: 1611 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1612 1613 llvm::Constant *getNSConstantStringClassRef() override; 1614 1615 llvm::Function *ModuleInitFunction() override; 1616 1617 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1618 ReturnValueSlot Return, 1619 QualType ResultType, Selector Sel, 1620 llvm::Value *Receiver, 1621 const CallArgList &CallArgs, 1622 const ObjCInterfaceDecl *Class, 1623 const ObjCMethodDecl *Method) override; 1624 1625 CodeGen::RValue 1626 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1627 ReturnValueSlot Return, QualType ResultType, 1628 Selector Sel, const ObjCInterfaceDecl *Class, 1629 bool isCategoryImpl, llvm::Value *Receiver, 1630 bool IsClassMessage, const CallArgList &CallArgs, 1631 const ObjCMethodDecl *Method) override; 1632 1633 llvm::Value *GetClass(CodeGenFunction &CGF, 1634 const ObjCInterfaceDecl *ID) override; 1635 1636 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1637 { return EmitSelector(CGF, Sel); } 1638 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1639 { return EmitSelectorAddr(Sel); } 1640 1641 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1642 /// untyped one. 1643 llvm::Value *GetSelector(CodeGenFunction &CGF, 1644 const ObjCMethodDecl *Method) override 1645 { return EmitSelector(CGF, Method->getSelector()); } 1646 1647 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1648 1649 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1650 1651 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1652 1653 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1654 const ObjCProtocolDecl *PD) override; 1655 1656 llvm::Constant *GetEHType(QualType T) override; 1657 1658 llvm::FunctionCallee GetPropertyGetFunction() override { 1659 return ObjCTypes.getGetPropertyFn(); 1660 } 1661 llvm::FunctionCallee GetPropertySetFunction() override { 1662 return ObjCTypes.getSetPropertyFn(); 1663 } 1664 1665 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, 1666 bool copy) override { 1667 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1668 } 1669 1670 llvm::FunctionCallee GetSetStructFunction() override { 1671 return ObjCTypes.getCopyStructFn(); 1672 } 1673 1674 llvm::FunctionCallee GetGetStructFunction() override { 1675 return ObjCTypes.getCopyStructFn(); 1676 } 1677 1678 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override { 1679 return ObjCTypes.getCppAtomicObjectFunction(); 1680 } 1681 1682 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override { 1683 return ObjCTypes.getCppAtomicObjectFunction(); 1684 } 1685 1686 llvm::FunctionCallee EnumerationMutationFunction() override { 1687 return ObjCTypes.getEnumerationMutationFn(); 1688 } 1689 1690 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1691 const ObjCAtTryStmt &S) override; 1692 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1693 const ObjCAtSynchronizedStmt &S) override; 1694 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1695 bool ClearInsertionPoint=true) override; 1696 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1697 Address AddrWeakObj) override; 1698 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1699 llvm::Value *src, Address edst) override; 1700 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1701 llvm::Value *src, Address dest, 1702 bool threadlocal = false) override; 1703 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1704 llvm::Value *src, Address dest, 1705 llvm::Value *ivarOffset) override; 1706 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1707 llvm::Value *src, Address dest) override; 1708 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1709 Address dest, Address src, 1710 llvm::Value *size) override; 1711 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1712 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1713 unsigned CVRQualifiers) override; 1714 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1715 const ObjCInterfaceDecl *Interface, 1716 const ObjCIvarDecl *Ivar) override; 1717 }; 1718 1719 /// A helper class for performing the null-initialization of a return 1720 /// value. 1721 struct NullReturnState { 1722 llvm::BasicBlock *NullBB; 1723 NullReturnState() : NullBB(nullptr) {} 1724 1725 /// Perform a null-check of the given receiver. 1726 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1727 // Make blocks for the null-receiver and call edges. 1728 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1729 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1730 1731 // Check for a null receiver and, if there is one, jump to the 1732 // null-receiver block. There's no point in trying to avoid it: 1733 // we're always going to put *something* there, because otherwise 1734 // we shouldn't have done this null-check in the first place. 1735 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1736 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1737 1738 // Otherwise, start performing the call. 1739 CGF.EmitBlock(callBB); 1740 } 1741 1742 /// Complete the null-return operation. It is valid to call this 1743 /// regardless of whether 'init' has been called. 1744 RValue complete(CodeGenFunction &CGF, 1745 ReturnValueSlot returnSlot, 1746 RValue result, 1747 QualType resultType, 1748 const CallArgList &CallArgs, 1749 const ObjCMethodDecl *Method) { 1750 // If we never had to do a null-check, just use the raw result. 1751 if (!NullBB) return result; 1752 1753 // The continuation block. This will be left null if we don't have an 1754 // IP, which can happen if the method we're calling is marked noreturn. 1755 llvm::BasicBlock *contBB = nullptr; 1756 1757 // Finish the call path. 1758 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1759 if (callBB) { 1760 contBB = CGF.createBasicBlock("msgSend.cont"); 1761 CGF.Builder.CreateBr(contBB); 1762 } 1763 1764 // Okay, start emitting the null-receiver block. 1765 CGF.EmitBlock(NullBB); 1766 1767 // Release any consumed arguments we've got. 1768 if (Method) { 1769 CallArgList::const_iterator I = CallArgs.begin(); 1770 for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(), 1771 e = Method->param_end(); i != e; ++i, ++I) { 1772 const ParmVarDecl *ParamDecl = (*i); 1773 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1774 RValue RV = I->getRValue(CGF); 1775 assert(RV.isScalar() && 1776 "NullReturnState::complete - arg not on object"); 1777 CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime); 1778 } 1779 } 1780 } 1781 1782 // The phi code below assumes that we haven't needed any control flow yet. 1783 assert(CGF.Builder.GetInsertBlock() == NullBB); 1784 1785 // If we've got a void return, just jump to the continuation block. 1786 if (result.isScalar() && resultType->isVoidType()) { 1787 // No jumps required if the message-send was noreturn. 1788 if (contBB) CGF.EmitBlock(contBB); 1789 return result; 1790 } 1791 1792 // If we've got a scalar return, build a phi. 1793 if (result.isScalar()) { 1794 // Derive the null-initialization value. 1795 llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType); 1796 1797 // If no join is necessary, just flow out. 1798 if (!contBB) return RValue::get(null); 1799 1800 // Otherwise, build a phi. 1801 CGF.EmitBlock(contBB); 1802 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1803 phi->addIncoming(result.getScalarVal(), callBB); 1804 phi->addIncoming(null, NullBB); 1805 return RValue::get(phi); 1806 } 1807 1808 // If we've got an aggregate return, null the buffer out. 1809 // FIXME: maybe we should be doing things differently for all the 1810 // cases where the ABI has us returning (1) non-agg values in 1811 // memory or (2) agg values in registers. 1812 if (result.isAggregate()) { 1813 assert(result.isAggregate() && "null init of non-aggregate result?"); 1814 if (!returnSlot.isUnused()) 1815 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1816 if (contBB) CGF.EmitBlock(contBB); 1817 return result; 1818 } 1819 1820 // Complex types. 1821 CGF.EmitBlock(contBB); 1822 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1823 1824 // Find the scalar type and its zero value. 1825 llvm::Type *scalarTy = callResult.first->getType(); 1826 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1827 1828 // Build phis for both coordinates. 1829 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1830 real->addIncoming(callResult.first, callBB); 1831 real->addIncoming(scalarZero, NullBB); 1832 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1833 imag->addIncoming(callResult.second, callBB); 1834 imag->addIncoming(scalarZero, NullBB); 1835 return RValue::getComplex(real, imag); 1836 } 1837 }; 1838 1839 } // end anonymous namespace 1840 1841 /* *** Helper Functions *** */ 1842 1843 /// getConstantGEP() - Help routine to construct simple GEPs. 1844 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1845 llvm::GlobalVariable *C, unsigned idx0, 1846 unsigned idx1) { 1847 llvm::Value *Idxs[] = { 1848 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1849 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1850 }; 1851 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1852 } 1853 1854 /// hasObjCExceptionAttribute - Return true if this class or any super 1855 /// class has the __objc_exception__ attribute. 1856 static bool hasObjCExceptionAttribute(ASTContext &Context, 1857 const ObjCInterfaceDecl *OID) { 1858 if (OID->hasAttr<ObjCExceptionAttr>()) 1859 return true; 1860 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1861 return hasObjCExceptionAttribute(Context, Super); 1862 return false; 1863 } 1864 1865 static llvm::GlobalValue::LinkageTypes 1866 getLinkageTypeForObjCMetadata(CodeGenModule &CGM, StringRef Section) { 1867 if (CGM.getTriple().isOSBinFormatMachO() && 1868 (Section.empty() || Section.startswith("__DATA"))) 1869 return llvm::GlobalValue::InternalLinkage; 1870 return llvm::GlobalValue::PrivateLinkage; 1871 } 1872 1873 /// A helper function to create an internal or private global variable. 1874 static llvm::GlobalVariable * 1875 finishAndCreateGlobal(ConstantInitBuilder::StructBuilder &Builder, 1876 const llvm::Twine &Name, CodeGenModule &CGM) { 1877 std::string SectionName; 1878 if (CGM.getTriple().isOSBinFormatMachO()) 1879 SectionName = "__DATA, __objc_const"; 1880 auto *GV = Builder.finishAndCreateGlobal( 1881 Name, CGM.getPointerAlign(), /*constant*/ false, 1882 getLinkageTypeForObjCMetadata(CGM, SectionName)); 1883 GV->setSection(SectionName); 1884 return GV; 1885 } 1886 1887 /* *** CGObjCMac Public Interface *** */ 1888 1889 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1890 ObjCTypes(cgm) { 1891 ObjCABI = 1; 1892 EmitImageInfo(); 1893 } 1894 1895 /// GetClass - Return a reference to the class for the given interface 1896 /// decl. 1897 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1898 const ObjCInterfaceDecl *ID) { 1899 return EmitClassRef(CGF, ID); 1900 } 1901 1902 /// GetSelector - Return the pointer to the unique'd string for this selector. 1903 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1904 return EmitSelector(CGF, Sel); 1905 } 1906 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1907 return EmitSelectorAddr(Sel); 1908 } 1909 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1910 *Method) { 1911 return EmitSelector(CGF, Method->getSelector()); 1912 } 1913 1914 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1915 if (T->isObjCIdType() || 1916 T->isObjCQualifiedIdType()) { 1917 return CGM.GetAddrOfRTTIDescriptor( 1918 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1919 } 1920 if (T->isObjCClassType() || 1921 T->isObjCQualifiedClassType()) { 1922 return CGM.GetAddrOfRTTIDescriptor( 1923 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1924 } 1925 if (T->isObjCObjectPointerType()) 1926 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1927 1928 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1929 } 1930 1931 /// Generate a constant CFString object. 1932 /* 1933 struct __builtin_CFString { 1934 const int *isa; // point to __CFConstantStringClassReference 1935 int flags; 1936 const char *str; 1937 long length; 1938 }; 1939 */ 1940 1941 /// or Generate a constant NSString object. 1942 /* 1943 struct __builtin_NSString { 1944 const int *isa; // point to __NSConstantStringClassReference 1945 const char *str; 1946 unsigned int length; 1947 }; 1948 */ 1949 1950 ConstantAddress 1951 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) { 1952 return (!CGM.getLangOpts().NoConstantCFStrings 1953 ? CGM.GetAddrOfConstantCFString(SL) 1954 : GenerateConstantNSString(SL)); 1955 } 1956 1957 static llvm::StringMapEntry<llvm::GlobalVariable *> & 1958 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 1959 const StringLiteral *Literal, unsigned &StringLength) { 1960 StringRef String = Literal->getString(); 1961 StringLength = String.size(); 1962 return *Map.insert(std::make_pair(String, nullptr)).first; 1963 } 1964 1965 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() { 1966 if (llvm::Value *V = ConstantStringClassRef) 1967 return cast<llvm::Constant>(V); 1968 1969 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1970 std::string str = 1971 StringClass.empty() ? "_NSConstantStringClassReference" 1972 : "_" + StringClass + "ClassReference"; 1973 1974 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0); 1975 auto GV = CGM.CreateRuntimeVariable(PTy, str); 1976 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1977 ConstantStringClassRef = V; 1978 return V; 1979 } 1980 1981 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() { 1982 if (llvm::Value *V = ConstantStringClassRef) 1983 return cast<llvm::Constant>(V); 1984 1985 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass; 1986 std::string str = 1987 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1988 : "OBJC_CLASS_$_" + StringClass; 1989 llvm::Constant *GV = GetClassGlobal(str, NotForDefinition); 1990 1991 // Make sure the result is of the correct type. 1992 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo()); 1993 1994 ConstantStringClassRef = V; 1995 return V; 1996 } 1997 1998 ConstantAddress 1999 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) { 2000 unsigned StringLength = 0; 2001 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2002 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength); 2003 2004 if (auto *C = Entry.second) 2005 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2006 2007 // If we don't already have it, get _NSConstantStringClassReference. 2008 llvm::Constant *Class = getNSConstantStringClassRef(); 2009 2010 // If we don't already have it, construct the type for a constant NSString. 2011 if (!NSConstantStringType) { 2012 NSConstantStringType = 2013 llvm::StructType::create({ 2014 CGM.Int32Ty->getPointerTo(), 2015 CGM.Int8PtrTy, 2016 CGM.IntTy 2017 }, "struct.__builtin_NSString"); 2018 } 2019 2020 ConstantInitBuilder Builder(CGM); 2021 auto Fields = Builder.beginStruct(NSConstantStringType); 2022 2023 // Class pointer. 2024 Fields.add(Class); 2025 2026 // String pointer. 2027 llvm::Constant *C = 2028 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2029 2030 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 2031 bool isConstant = !CGM.getLangOpts().WritableStrings; 2032 2033 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant, 2034 Linkage, C, ".str"); 2035 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2036 // Don't enforce the target's minimum global alignment, since the only use 2037 // of the string is via this class initializer. 2038 GV->setAlignment(llvm::Align::None()); 2039 Fields.addBitCast(GV, CGM.Int8PtrTy); 2040 2041 // String length. 2042 Fields.addInt(CGM.IntTy, StringLength); 2043 2044 // The struct. 2045 CharUnits Alignment = CGM.getPointerAlign(); 2046 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 2047 /*constant*/ true, 2048 llvm::GlobalVariable::PrivateLinkage); 2049 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2050 const char *NSStringNonFragileABISection = 2051 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2052 // FIXME. Fix section. 2053 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile() 2054 ? NSStringNonFragileABISection 2055 : NSStringSection); 2056 Entry.second = GV; 2057 2058 return ConstantAddress(GV, Alignment); 2059 } 2060 2061 enum { 2062 kCFTaggedObjectID_Integer = (1 << 1) + 1 2063 }; 2064 2065 /// Generates a message send where the super is the receiver. This is 2066 /// a message send to self with special delivery semantics indicating 2067 /// which class's method should be called. 2068 CodeGen::RValue 2069 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 2070 ReturnValueSlot Return, 2071 QualType ResultType, 2072 Selector Sel, 2073 const ObjCInterfaceDecl *Class, 2074 bool isCategoryImpl, 2075 llvm::Value *Receiver, 2076 bool IsClassMessage, 2077 const CodeGen::CallArgList &CallArgs, 2078 const ObjCMethodDecl *Method) { 2079 // Create and init a super structure; this is a (receiver, class) 2080 // pair we will pass to objc_msgSendSuper. 2081 Address ObjCSuper = 2082 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 2083 "objc_super"); 2084 llvm::Value *ReceiverAsObject = 2085 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 2086 CGF.Builder.CreateStore(ReceiverAsObject, 2087 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 2088 2089 // If this is a class message the metaclass is passed as the target. 2090 llvm::Value *Target; 2091 if (IsClassMessage) { 2092 if (isCategoryImpl) { 2093 // Message sent to 'super' in a class method defined in a category 2094 // implementation requires an odd treatment. 2095 // If we are in a class method, we must retrieve the 2096 // _metaclass_ for the current class, pointed at by 2097 // the class's "isa" pointer. The following assumes that 2098 // isa" is the first ivar in a class (which it must be). 2099 Target = EmitClassRef(CGF, Class->getSuperClass()); 2100 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 2101 Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign()); 2102 } else { 2103 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 2104 llvm::Value *SuperPtr = 2105 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 2106 llvm::Value *Super = 2107 CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign()); 2108 Target = Super; 2109 } 2110 } else if (isCategoryImpl) 2111 Target = EmitClassRef(CGF, Class->getSuperClass()); 2112 else { 2113 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 2114 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 2115 Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign()); 2116 } 2117 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 2118 // ObjCTypes types. 2119 llvm::Type *ClassTy = 2120 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 2121 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 2122 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 2123 return EmitMessageSend(CGF, Return, ResultType, Sel, ObjCSuper.getPointer(), 2124 ObjCTypes.SuperPtrCTy, true, CallArgs, Method, Class, 2125 ObjCTypes); 2126 } 2127 2128 /// Generate code for a message send expression. 2129 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 2130 ReturnValueSlot Return, 2131 QualType ResultType, 2132 Selector Sel, 2133 llvm::Value *Receiver, 2134 const CallArgList &CallArgs, 2135 const ObjCInterfaceDecl *Class, 2136 const ObjCMethodDecl *Method) { 2137 return EmitMessageSend(CGF, Return, ResultType, Sel, Receiver, 2138 CGF.getContext().getObjCIdType(), false, CallArgs, 2139 Method, Class, ObjCTypes); 2140 } 2141 2142 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) { 2143 do { 2144 if (ID->isWeakImported()) 2145 return true; 2146 } while ((ID = ID->getSuperClass())); 2147 2148 return false; 2149 } 2150 2151 CodeGen::RValue 2152 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 2153 ReturnValueSlot Return, 2154 QualType ResultType, 2155 Selector Sel, 2156 llvm::Value *Arg0, 2157 QualType Arg0Ty, 2158 bool IsSuper, 2159 const CallArgList &CallArgs, 2160 const ObjCMethodDecl *Method, 2161 const ObjCInterfaceDecl *ClassReceiver, 2162 const ObjCCommonTypesHelper &ObjCTypes) { 2163 CodeGenTypes &Types = CGM.getTypes(); 2164 auto selTy = CGF.getContext().getObjCSelType(); 2165 llvm::Value *SelValue; 2166 2167 if (Method && Method->isDirectMethod()) { 2168 // Direct methods will synthesize the proper `_cmd` internally, 2169 // so just don't bother with setting the `_cmd` argument. 2170 assert(!IsSuper); 2171 SelValue = llvm::UndefValue::get(Types.ConvertType(selTy)); 2172 } else { 2173 SelValue = GetSelector(CGF, Sel); 2174 } 2175 2176 CallArgList ActualArgs; 2177 if (!IsSuper) 2178 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 2179 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 2180 ActualArgs.add(RValue::get(SelValue), selTy); 2181 ActualArgs.addFrom(CallArgs); 2182 2183 // If we're calling a method, use the formal signature. 2184 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 2185 2186 if (Method) 2187 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 2188 CGM.getContext().getCanonicalType(ResultType) && 2189 "Result type mismatch!"); 2190 2191 bool ReceiverCanBeNull = true; 2192 2193 // Super dispatch assumes that self is non-null; even the messenger 2194 // doesn't have a null check internally. 2195 if (IsSuper) { 2196 ReceiverCanBeNull = false; 2197 2198 // If this is a direct dispatch of a class method, check whether the class, 2199 // or anything in its hierarchy, was weak-linked. 2200 } else if (ClassReceiver && Method && Method->isClassMethod()) { 2201 ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver); 2202 2203 // If we're emitting a method, and self is const (meaning just ARC, for now), 2204 // and the receiver is a load of self, then self is a valid object. 2205 } else if (auto CurMethod = 2206 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) { 2207 auto Self = CurMethod->getSelfDecl(); 2208 if (Self->getType().isConstQualified()) { 2209 if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) { 2210 llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer(); 2211 if (SelfAddr == LI->getPointerOperand()) { 2212 ReceiverCanBeNull = false; 2213 } 2214 } 2215 } 2216 } 2217 2218 bool RequiresNullCheck = false; 2219 2220 llvm::FunctionCallee Fn = nullptr; 2221 if (Method && Method->isDirectMethod()) { 2222 Fn = GenerateDirectMethod(Method, Method->getClassInterface()); 2223 } else if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 2224 if (ReceiverCanBeNull) RequiresNullCheck = true; 2225 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 2226 : ObjCTypes.getSendStretFn(IsSuper); 2227 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 2228 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 2229 : ObjCTypes.getSendFpretFn(IsSuper); 2230 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 2231 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 2232 : ObjCTypes.getSendFp2retFn(IsSuper); 2233 } else { 2234 // arm64 uses objc_msgSend for stret methods and yet null receiver check 2235 // must be made for it. 2236 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 2237 RequiresNullCheck = true; 2238 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 2239 : ObjCTypes.getSendFn(IsSuper); 2240 } 2241 2242 // Cast function to proper signature 2243 llvm::Constant *BitcastFn = cast<llvm::Constant>( 2244 CGF.Builder.CreateBitCast(Fn.getCallee(), MSI.MessengerType)); 2245 2246 // We don't need to emit a null check to zero out an indirect result if the 2247 // result is ignored. 2248 if (Return.isUnused()) 2249 RequiresNullCheck = false; 2250 2251 // Emit a null-check if there's a consumed argument other than the receiver. 2252 if (!RequiresNullCheck && CGM.getLangOpts().ObjCAutoRefCount && Method) { 2253 for (const auto *ParamDecl : Method->parameters()) { 2254 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 2255 RequiresNullCheck = true; 2256 break; 2257 } 2258 } 2259 } 2260 2261 NullReturnState nullReturn; 2262 if (RequiresNullCheck) { 2263 nullReturn.init(CGF, Arg0); 2264 } 2265 2266 llvm::CallBase *CallSite; 2267 CGCallee Callee = CGCallee::forDirect(BitcastFn); 2268 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs, 2269 &CallSite); 2270 2271 // Mark the call as noreturn if the method is marked noreturn and the 2272 // receiver cannot be null. 2273 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 2274 CallSite->setDoesNotReturn(); 2275 } 2276 2277 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs, 2278 RequiresNullCheck ? Method : nullptr); 2279 } 2280 2281 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 2282 bool pointee = false) { 2283 // Note that GC qualification applies recursively to C pointer types 2284 // that aren't otherwise decorated. This is weird, but it's probably 2285 // an intentional workaround to the unreliable placement of GC qualifiers. 2286 if (FQT.isObjCGCStrong()) 2287 return Qualifiers::Strong; 2288 2289 if (FQT.isObjCGCWeak()) 2290 return Qualifiers::Weak; 2291 2292 if (auto ownership = FQT.getObjCLifetime()) { 2293 // Ownership does not apply recursively to C pointer types. 2294 if (pointee) return Qualifiers::GCNone; 2295 switch (ownership) { 2296 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 2297 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 2298 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 2299 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 2300 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 2301 } 2302 llvm_unreachable("bad objc ownership"); 2303 } 2304 2305 // Treat unqualified retainable pointers as strong. 2306 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2307 return Qualifiers::Strong; 2308 2309 // Walk into C pointer types, but only in GC. 2310 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2311 if (const PointerType *PT = FQT->getAs<PointerType>()) 2312 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2313 } 2314 2315 return Qualifiers::GCNone; 2316 } 2317 2318 namespace { 2319 struct IvarInfo { 2320 CharUnits Offset; 2321 uint64_t SizeInWords; 2322 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2323 : Offset(offset), SizeInWords(sizeInWords) {} 2324 2325 // Allow sorting based on byte pos. 2326 bool operator<(const IvarInfo &other) const { 2327 return Offset < other.Offset; 2328 } 2329 }; 2330 2331 /// A helper class for building GC layout strings. 2332 class IvarLayoutBuilder { 2333 CodeGenModule &CGM; 2334 2335 /// The start of the layout. Offsets will be relative to this value, 2336 /// and entries less than this value will be silently discarded. 2337 CharUnits InstanceBegin; 2338 2339 /// The end of the layout. Offsets will never exceed this value. 2340 CharUnits InstanceEnd; 2341 2342 /// Whether we're generating the strong layout or the weak layout. 2343 bool ForStrongLayout; 2344 2345 /// Whether the offsets in IvarsInfo might be out-of-order. 2346 bool IsDisordered = false; 2347 2348 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2349 2350 public: 2351 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2352 CharUnits instanceEnd, bool forStrongLayout) 2353 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2354 ForStrongLayout(forStrongLayout) { 2355 } 2356 2357 void visitRecord(const RecordType *RT, CharUnits offset); 2358 2359 template <class Iterator, class GetOffsetFn> 2360 void visitAggregate(Iterator begin, Iterator end, 2361 CharUnits aggrOffset, 2362 const GetOffsetFn &getOffset); 2363 2364 void visitField(const FieldDecl *field, CharUnits offset); 2365 2366 /// Add the layout of a block implementation. 2367 void visitBlock(const CGBlockInfo &blockInfo); 2368 2369 /// Is there any information for an interesting bitmap? 2370 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2371 2372 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2373 llvm::SmallVectorImpl<unsigned char> &buffer); 2374 2375 static void dump(ArrayRef<unsigned char> buffer) { 2376 const unsigned char *s = buffer.data(); 2377 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2378 if (!(s[i] & 0xf0)) 2379 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2380 else 2381 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2382 printf("\n"); 2383 } 2384 }; 2385 } // end anonymous namespace 2386 2387 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2388 const CGBlockInfo &blockInfo) { 2389 2390 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2391 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2392 return nullPtr; 2393 2394 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2395 /*for strong layout*/ true); 2396 2397 builder.visitBlock(blockInfo); 2398 2399 if (!builder.hasBitmapData()) 2400 return nullPtr; 2401 2402 llvm::SmallVector<unsigned char, 32> buffer; 2403 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2404 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2405 printf("\n block variable layout for block: "); 2406 builder.dump(buffer); 2407 } 2408 2409 return C; 2410 } 2411 2412 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2413 // __isa is the first field in block descriptor and must assume by runtime's 2414 // convention that it is GC'able. 2415 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2416 2417 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2418 2419 // Ignore the optional 'this' capture: C++ objects are not assumed 2420 // to be GC'ed. 2421 2422 CharUnits lastFieldOffset; 2423 2424 // Walk the captured variables. 2425 for (const auto &CI : blockDecl->captures()) { 2426 const VarDecl *variable = CI.getVariable(); 2427 QualType type = variable->getType(); 2428 2429 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2430 2431 // Ignore constant captures. 2432 if (capture.isConstant()) continue; 2433 2434 CharUnits fieldOffset = capture.getOffset(); 2435 2436 // Block fields are not necessarily ordered; if we detect that we're 2437 // adding them out-of-order, make sure we sort later. 2438 if (fieldOffset < lastFieldOffset) 2439 IsDisordered = true; 2440 lastFieldOffset = fieldOffset; 2441 2442 // __block variables are passed by their descriptor address. 2443 if (CI.isByRef()) { 2444 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2445 continue; 2446 } 2447 2448 assert(!type->isArrayType() && "array variable should not be caught"); 2449 if (const RecordType *record = type->getAs<RecordType>()) { 2450 visitRecord(record, fieldOffset); 2451 continue; 2452 } 2453 2454 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2455 2456 if (GCAttr == Qualifiers::Strong) { 2457 assert(CGM.getContext().getTypeSize(type) 2458 == CGM.getTarget().getPointerWidth(0)); 2459 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2460 } 2461 } 2462 } 2463 2464 /// getBlockCaptureLifetime - This routine returns life time of the captured 2465 /// block variable for the purpose of block layout meta-data generation. FQT is 2466 /// the type of the variable captured in the block. 2467 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2468 bool ByrefLayout) { 2469 // If it has an ownership qualifier, we're done. 2470 if (auto lifetime = FQT.getObjCLifetime()) 2471 return lifetime; 2472 2473 // If it doesn't, and this is ARC, it has no ownership. 2474 if (CGM.getLangOpts().ObjCAutoRefCount) 2475 return Qualifiers::OCL_None; 2476 2477 // In MRC, retainable pointers are owned by non-__block variables. 2478 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2479 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2480 2481 return Qualifiers::OCL_None; 2482 } 2483 2484 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2485 Qualifiers::ObjCLifetime LifeTime, 2486 CharUnits FieldOffset, 2487 CharUnits FieldSize) { 2488 // __block variables are passed by their descriptor address. 2489 if (IsByref) 2490 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2491 FieldSize)); 2492 else if (LifeTime == Qualifiers::OCL_Strong) 2493 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2494 FieldSize)); 2495 else if (LifeTime == Qualifiers::OCL_Weak) 2496 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2497 FieldSize)); 2498 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2499 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2500 FieldSize)); 2501 else 2502 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2503 FieldOffset, 2504 FieldSize)); 2505 } 2506 2507 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2508 const RecordDecl *RD, 2509 ArrayRef<const FieldDecl*> RecFields, 2510 CharUnits BytePos, bool &HasUnion, 2511 bool ByrefLayout) { 2512 bool IsUnion = (RD && RD->isUnion()); 2513 CharUnits MaxUnionSize = CharUnits::Zero(); 2514 const FieldDecl *MaxField = nullptr; 2515 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2516 CharUnits MaxFieldOffset = CharUnits::Zero(); 2517 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2518 2519 if (RecFields.empty()) 2520 return; 2521 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2522 2523 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2524 const FieldDecl *Field = RecFields[i]; 2525 // Note that 'i' here is actually the field index inside RD of Field, 2526 // although this dependency is hidden. 2527 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2528 CharUnits FieldOffset = 2529 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2530 2531 // Skip over unnamed or bitfields 2532 if (!Field->getIdentifier() || Field->isBitField()) { 2533 LastFieldBitfieldOrUnnamed = Field; 2534 LastBitfieldOrUnnamedOffset = FieldOffset; 2535 continue; 2536 } 2537 2538 LastFieldBitfieldOrUnnamed = nullptr; 2539 QualType FQT = Field->getType(); 2540 if (FQT->isRecordType() || FQT->isUnionType()) { 2541 if (FQT->isUnionType()) 2542 HasUnion = true; 2543 2544 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2545 BytePos + FieldOffset, HasUnion); 2546 continue; 2547 } 2548 2549 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2550 auto *CArray = cast<ConstantArrayType>(Array); 2551 uint64_t ElCount = CArray->getSize().getZExtValue(); 2552 assert(CArray && "only array with known element size is supported"); 2553 FQT = CArray->getElementType(); 2554 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2555 auto *CArray = cast<ConstantArrayType>(Array); 2556 ElCount *= CArray->getSize().getZExtValue(); 2557 FQT = CArray->getElementType(); 2558 } 2559 if (FQT->isRecordType() && ElCount) { 2560 int OldIndex = RunSkipBlockVars.size() - 1; 2561 const RecordType *RT = FQT->getAs<RecordType>(); 2562 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, 2563 HasUnion); 2564 2565 // Replicate layout information for each array element. Note that 2566 // one element is already done. 2567 uint64_t ElIx = 1; 2568 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2569 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2570 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2571 RunSkipBlockVars.push_back( 2572 RUN_SKIP(RunSkipBlockVars[i].opcode, 2573 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2574 RunSkipBlockVars[i].block_var_size)); 2575 } 2576 continue; 2577 } 2578 } 2579 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2580 if (IsUnion) { 2581 CharUnits UnionIvarSize = FieldSize; 2582 if (UnionIvarSize > MaxUnionSize) { 2583 MaxUnionSize = UnionIvarSize; 2584 MaxField = Field; 2585 MaxFieldOffset = FieldOffset; 2586 } 2587 } else { 2588 UpdateRunSkipBlockVars(false, 2589 getBlockCaptureLifetime(FQT, ByrefLayout), 2590 BytePos + FieldOffset, 2591 FieldSize); 2592 } 2593 } 2594 2595 if (LastFieldBitfieldOrUnnamed) { 2596 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2597 // Last field was a bitfield. Must update the info. 2598 uint64_t BitFieldSize 2599 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2600 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2601 ((BitFieldSize % ByteSizeInBits) != 0); 2602 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2603 Size += LastBitfieldOrUnnamedOffset; 2604 UpdateRunSkipBlockVars(false, 2605 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2606 ByrefLayout), 2607 BytePos + LastBitfieldOrUnnamedOffset, 2608 Size); 2609 } else { 2610 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2611 // Last field was unnamed. Must update skip info. 2612 CharUnits FieldSize 2613 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2614 UpdateRunSkipBlockVars(false, 2615 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2616 ByrefLayout), 2617 BytePos + LastBitfieldOrUnnamedOffset, 2618 FieldSize); 2619 } 2620 } 2621 2622 if (MaxField) 2623 UpdateRunSkipBlockVars(false, 2624 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2625 BytePos + MaxFieldOffset, 2626 MaxUnionSize); 2627 } 2628 2629 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2630 CharUnits BytePos, 2631 bool &HasUnion, 2632 bool ByrefLayout) { 2633 const RecordDecl *RD = RT->getDecl(); 2634 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2635 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2636 const llvm::StructLayout *RecLayout = 2637 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2638 2639 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2640 } 2641 2642 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2643 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2644 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2645 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2646 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2647 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2648 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2649 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2650 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2651 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2652 SmallVectorImpl<unsigned char> &Layout) { 2653 uint64_t Result = 0; 2654 if (Layout.size() <= 3) { 2655 unsigned size = Layout.size(); 2656 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2657 unsigned char inst; 2658 enum BLOCK_LAYOUT_OPCODE opcode ; 2659 switch (size) { 2660 case 3: 2661 inst = Layout[0]; 2662 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2663 if (opcode == BLOCK_LAYOUT_STRONG) 2664 strong_word_count = (inst & 0xF)+1; 2665 else 2666 return 0; 2667 inst = Layout[1]; 2668 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2669 if (opcode == BLOCK_LAYOUT_BYREF) 2670 byref_word_count = (inst & 0xF)+1; 2671 else 2672 return 0; 2673 inst = Layout[2]; 2674 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2675 if (opcode == BLOCK_LAYOUT_WEAK) 2676 weak_word_count = (inst & 0xF)+1; 2677 else 2678 return 0; 2679 break; 2680 2681 case 2: 2682 inst = Layout[0]; 2683 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2684 if (opcode == BLOCK_LAYOUT_STRONG) { 2685 strong_word_count = (inst & 0xF)+1; 2686 inst = Layout[1]; 2687 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2688 if (opcode == BLOCK_LAYOUT_BYREF) 2689 byref_word_count = (inst & 0xF)+1; 2690 else if (opcode == BLOCK_LAYOUT_WEAK) 2691 weak_word_count = (inst & 0xF)+1; 2692 else 2693 return 0; 2694 } 2695 else if (opcode == BLOCK_LAYOUT_BYREF) { 2696 byref_word_count = (inst & 0xF)+1; 2697 inst = Layout[1]; 2698 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2699 if (opcode == BLOCK_LAYOUT_WEAK) 2700 weak_word_count = (inst & 0xF)+1; 2701 else 2702 return 0; 2703 } 2704 else 2705 return 0; 2706 break; 2707 2708 case 1: 2709 inst = Layout[0]; 2710 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2711 if (opcode == BLOCK_LAYOUT_STRONG) 2712 strong_word_count = (inst & 0xF)+1; 2713 else if (opcode == BLOCK_LAYOUT_BYREF) 2714 byref_word_count = (inst & 0xF)+1; 2715 else if (opcode == BLOCK_LAYOUT_WEAK) 2716 weak_word_count = (inst & 0xF)+1; 2717 else 2718 return 0; 2719 break; 2720 2721 default: 2722 return 0; 2723 } 2724 2725 // Cannot inline when any of the word counts is 15. Because this is one less 2726 // than the actual work count (so 15 means 16 actual word counts), 2727 // and we can only display 0 thru 15 word counts. 2728 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2729 return 0; 2730 2731 unsigned count = 2732 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2733 2734 if (size == count) { 2735 if (strong_word_count) 2736 Result = strong_word_count; 2737 Result <<= 4; 2738 if (byref_word_count) 2739 Result += byref_word_count; 2740 Result <<= 4; 2741 if (weak_word_count) 2742 Result += weak_word_count; 2743 } 2744 } 2745 return Result; 2746 } 2747 2748 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2749 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2750 if (RunSkipBlockVars.empty()) 2751 return nullPtr; 2752 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2753 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2754 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2755 2756 // Sort on byte position; captures might not be allocated in order, 2757 // and unions can do funny things. 2758 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2759 SmallVector<unsigned char, 16> Layout; 2760 2761 unsigned size = RunSkipBlockVars.size(); 2762 for (unsigned i = 0; i < size; i++) { 2763 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2764 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2765 CharUnits end_byte_pos = start_byte_pos; 2766 unsigned j = i+1; 2767 while (j < size) { 2768 if (opcode == RunSkipBlockVars[j].opcode) { 2769 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2770 i++; 2771 } 2772 else 2773 break; 2774 } 2775 CharUnits size_in_bytes = 2776 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2777 if (j < size) { 2778 CharUnits gap = 2779 RunSkipBlockVars[j].block_var_bytepos - 2780 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2781 size_in_bytes += gap; 2782 } 2783 CharUnits residue_in_bytes = CharUnits::Zero(); 2784 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2785 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2786 size_in_bytes -= residue_in_bytes; 2787 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2788 } 2789 2790 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2791 while (size_in_words >= 16) { 2792 // Note that value in imm. is one less that the actual 2793 // value. So, 0xf means 16 words follow! 2794 unsigned char inst = (opcode << 4) | 0xf; 2795 Layout.push_back(inst); 2796 size_in_words -= 16; 2797 } 2798 if (size_in_words > 0) { 2799 // Note that value in imm. is one less that the actual 2800 // value. So, we subtract 1 away! 2801 unsigned char inst = (opcode << 4) | (size_in_words-1); 2802 Layout.push_back(inst); 2803 } 2804 if (residue_in_bytes > CharUnits::Zero()) { 2805 unsigned char inst = 2806 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2807 Layout.push_back(inst); 2808 } 2809 } 2810 2811 while (!Layout.empty()) { 2812 unsigned char inst = Layout.back(); 2813 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2814 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2815 Layout.pop_back(); 2816 else 2817 break; 2818 } 2819 2820 uint64_t Result = InlineLayoutInstruction(Layout); 2821 if (Result != 0) { 2822 // Block variable layout instruction has been inlined. 2823 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2824 if (ComputeByrefLayout) 2825 printf("\n Inline BYREF variable layout: "); 2826 else 2827 printf("\n Inline block variable layout: "); 2828 printf("0x0%" PRIx64 "", Result); 2829 if (auto numStrong = (Result & 0xF00) >> 8) 2830 printf(", BL_STRONG:%d", (int) numStrong); 2831 if (auto numByref = (Result & 0x0F0) >> 4) 2832 printf(", BL_BYREF:%d", (int) numByref); 2833 if (auto numWeak = (Result & 0x00F) >> 0) 2834 printf(", BL_WEAK:%d", (int) numWeak); 2835 printf(", BL_OPERATOR:0\n"); 2836 } 2837 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2838 } 2839 2840 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2841 Layout.push_back(inst); 2842 std::string BitMap; 2843 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2844 BitMap += Layout[i]; 2845 2846 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2847 if (ComputeByrefLayout) 2848 printf("\n Byref variable layout: "); 2849 else 2850 printf("\n Block variable layout: "); 2851 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2852 unsigned char inst = BitMap[i]; 2853 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2854 unsigned delta = 1; 2855 switch (opcode) { 2856 case BLOCK_LAYOUT_OPERATOR: 2857 printf("BL_OPERATOR:"); 2858 delta = 0; 2859 break; 2860 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2861 printf("BL_NON_OBJECT_BYTES:"); 2862 break; 2863 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2864 printf("BL_NON_OBJECT_WORD:"); 2865 break; 2866 case BLOCK_LAYOUT_STRONG: 2867 printf("BL_STRONG:"); 2868 break; 2869 case BLOCK_LAYOUT_BYREF: 2870 printf("BL_BYREF:"); 2871 break; 2872 case BLOCK_LAYOUT_WEAK: 2873 printf("BL_WEAK:"); 2874 break; 2875 case BLOCK_LAYOUT_UNRETAINED: 2876 printf("BL_UNRETAINED:"); 2877 break; 2878 } 2879 // Actual value of word count is one more that what is in the imm. 2880 // field of the instruction 2881 printf("%d", (inst & 0xf) + delta); 2882 if (i < e-1) 2883 printf(", "); 2884 else 2885 printf("\n"); 2886 } 2887 } 2888 2889 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName, 2890 /*ForceNonFragileABI=*/true, 2891 /*NullTerminate=*/false); 2892 return getConstantGEP(VMContext, Entry, 0, 0); 2893 } 2894 2895 static std::string getBlockLayoutInfoString( 2896 const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars, 2897 bool HasCopyDisposeHelpers) { 2898 std::string Str; 2899 for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) { 2900 if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) { 2901 // Copy/dispose helpers don't have any information about 2902 // __unsafe_unretained captures, so unconditionally concatenate a string. 2903 Str += "u"; 2904 } else if (HasCopyDisposeHelpers) { 2905 // Information about __strong, __weak, or byref captures has already been 2906 // encoded into the names of the copy/dispose helpers. We have to add a 2907 // string here only when the copy/dispose helpers aren't generated (which 2908 // happens when the block is non-escaping). 2909 continue; 2910 } else { 2911 switch (R.opcode) { 2912 case CGObjCCommonMac::BLOCK_LAYOUT_STRONG: 2913 Str += "s"; 2914 break; 2915 case CGObjCCommonMac::BLOCK_LAYOUT_BYREF: 2916 Str += "r"; 2917 break; 2918 case CGObjCCommonMac::BLOCK_LAYOUT_WEAK: 2919 Str += "w"; 2920 break; 2921 default: 2922 continue; 2923 } 2924 } 2925 Str += llvm::to_string(R.block_var_bytepos.getQuantity()); 2926 Str += "l" + llvm::to_string(R.block_var_size.getQuantity()); 2927 } 2928 return Str; 2929 } 2930 2931 void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM, 2932 const CGBlockInfo &blockInfo) { 2933 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2934 2935 RunSkipBlockVars.clear(); 2936 bool hasUnion = false; 2937 2938 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2939 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2940 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2941 2942 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2943 2944 // Calculate the basic layout of the block structure. 2945 const llvm::StructLayout *layout = 2946 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2947 2948 // Ignore the optional 'this' capture: C++ objects are not assumed 2949 // to be GC'ed. 2950 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2951 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2952 blockInfo.BlockHeaderForcedGapOffset, 2953 blockInfo.BlockHeaderForcedGapSize); 2954 // Walk the captured variables. 2955 for (const auto &CI : blockDecl->captures()) { 2956 const VarDecl *variable = CI.getVariable(); 2957 QualType type = variable->getType(); 2958 2959 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2960 2961 // Ignore constant captures. 2962 if (capture.isConstant()) continue; 2963 2964 CharUnits fieldOffset = 2965 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2966 2967 assert(!type->isArrayType() && "array variable should not be caught"); 2968 if (!CI.isByRef()) 2969 if (const RecordType *record = type->getAs<RecordType>()) { 2970 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2971 continue; 2972 } 2973 CharUnits fieldSize; 2974 if (CI.isByRef()) 2975 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2976 else 2977 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2978 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2979 fieldOffset, fieldSize); 2980 } 2981 } 2982 2983 llvm::Constant * 2984 CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2985 const CGBlockInfo &blockInfo) { 2986 fillRunSkipBlockVars(CGM, blockInfo); 2987 return getBitmapBlockLayout(false); 2988 } 2989 2990 std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM, 2991 const CGBlockInfo &blockInfo) { 2992 fillRunSkipBlockVars(CGM, blockInfo); 2993 return getBlockLayoutInfoString(RunSkipBlockVars, 2994 blockInfo.needsCopyDisposeHelpers()); 2995 } 2996 2997 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2998 QualType T) { 2999 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3000 assert(!T->isArrayType() && "__block array variable should not be caught"); 3001 CharUnits fieldOffset; 3002 RunSkipBlockVars.clear(); 3003 bool hasUnion = false; 3004 if (const RecordType *record = T->getAs<RecordType>()) { 3005 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 3006 llvm::Constant *Result = getBitmapBlockLayout(true); 3007 if (isa<llvm::ConstantInt>(Result)) 3008 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 3009 return Result; 3010 } 3011 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 3012 return nullPtr; 3013 } 3014 3015 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 3016 const ObjCProtocolDecl *PD) { 3017 // FIXME: I don't understand why gcc generates this, or where it is 3018 // resolved. Investigate. Its also wasteful to look this up over and over. 3019 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3020 3021 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 3022 ObjCTypes.getExternalProtocolPtrTy()); 3023 } 3024 3025 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 3026 // FIXME: We shouldn't need this, the protocol decl should contain enough 3027 // information to tell us whether this was a declaration or a definition. 3028 DefinedProtocols.insert(PD->getIdentifier()); 3029 3030 // If we have generated a forward reference to this protocol, emit 3031 // it now. Otherwise do nothing, the protocol objects are lazily 3032 // emitted. 3033 if (Protocols.count(PD->getIdentifier())) 3034 GetOrEmitProtocol(PD); 3035 } 3036 3037 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 3038 if (DefinedProtocols.count(PD->getIdentifier())) 3039 return GetOrEmitProtocol(PD); 3040 3041 return GetOrEmitProtocolRef(PD); 3042 } 3043 3044 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 3045 CodeGenFunction &CGF, 3046 const ObjCInterfaceDecl *ID, 3047 ObjCCommonTypesHelper &ObjCTypes) { 3048 llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn(); 3049 3050 llvm::Value *className = 3051 CGF.CGM.GetAddrOfConstantCString(ID->getObjCRuntimeNameAsString()) 3052 .getPointer(); 3053 ASTContext &ctx = CGF.CGM.getContext(); 3054 className = 3055 CGF.Builder.CreateBitCast(className, 3056 CGF.ConvertType( 3057 ctx.getPointerType(ctx.CharTy.withConst()))); 3058 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 3059 call->setDoesNotThrow(); 3060 return call; 3061 } 3062 3063 /* 3064 // Objective-C 1.0 extensions 3065 struct _objc_protocol { 3066 struct _objc_protocol_extension *isa; 3067 char *protocol_name; 3068 struct _objc_protocol_list *protocol_list; 3069 struct _objc__method_prototype_list *instance_methods; 3070 struct _objc__method_prototype_list *class_methods 3071 }; 3072 3073 See EmitProtocolExtension(). 3074 */ 3075 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 3076 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 3077 3078 // Early exit if a defining object has already been generated. 3079 if (Entry && Entry->hasInitializer()) 3080 return Entry; 3081 3082 // Use the protocol definition, if there is one. 3083 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 3084 PD = Def; 3085 3086 // FIXME: I don't understand why gcc generates this, or where it is 3087 // resolved. Investigate. Its also wasteful to look this up over and over. 3088 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 3089 3090 // Construct method lists. 3091 auto methodLists = ProtocolMethodLists::get(PD); 3092 3093 ConstantInitBuilder builder(CGM); 3094 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 3095 values.add(EmitProtocolExtension(PD, methodLists)); 3096 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 3097 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 3098 PD->protocol_begin(), PD->protocol_end())); 3099 values.add(methodLists.emitMethodList(this, PD, 3100 ProtocolMethodLists::RequiredInstanceMethods)); 3101 values.add(methodLists.emitMethodList(this, PD, 3102 ProtocolMethodLists::RequiredClassMethods)); 3103 3104 if (Entry) { 3105 // Already created, update the initializer. 3106 assert(Entry->hasPrivateLinkage()); 3107 values.finishAndSetAsInitializer(Entry); 3108 } else { 3109 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(), 3110 CGM.getPointerAlign(), 3111 /*constant*/ false, 3112 llvm::GlobalValue::PrivateLinkage); 3113 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3114 3115 Protocols[PD->getIdentifier()] = Entry; 3116 } 3117 CGM.addCompilerUsedGlobal(Entry); 3118 3119 return Entry; 3120 } 3121 3122 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 3123 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 3124 3125 if (!Entry) { 3126 // We use the initializer as a marker of whether this is a forward 3127 // reference or not. At module finalization we add the empty 3128 // contents for protocols which were referenced but never defined. 3129 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 3130 false, llvm::GlobalValue::PrivateLinkage, 3131 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 3132 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 3133 // FIXME: Is this necessary? Why only for protocol? 3134 Entry->setAlignment(llvm::Align(4)); 3135 } 3136 3137 return Entry; 3138 } 3139 3140 /* 3141 struct _objc_protocol_extension { 3142 uint32_t size; 3143 struct objc_method_description_list *optional_instance_methods; 3144 struct objc_method_description_list *optional_class_methods; 3145 struct objc_property_list *instance_properties; 3146 const char ** extendedMethodTypes; 3147 struct objc_property_list *class_properties; 3148 }; 3149 */ 3150 llvm::Constant * 3151 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 3152 const ProtocolMethodLists &methodLists) { 3153 auto optInstanceMethods = 3154 methodLists.emitMethodList(this, PD, 3155 ProtocolMethodLists::OptionalInstanceMethods); 3156 auto optClassMethods = 3157 methodLists.emitMethodList(this, PD, 3158 ProtocolMethodLists::OptionalClassMethods); 3159 3160 auto extendedMethodTypes = 3161 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 3162 methodLists.emitExtendedTypesArray(this), 3163 ObjCTypes); 3164 3165 auto instanceProperties = 3166 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 3167 ObjCTypes, false); 3168 auto classProperties = 3169 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 3170 PD, ObjCTypes, true); 3171 3172 // Return null if no extension bits are used. 3173 if (optInstanceMethods->isNullValue() && 3174 optClassMethods->isNullValue() && 3175 extendedMethodTypes->isNullValue() && 3176 instanceProperties->isNullValue() && 3177 classProperties->isNullValue()) { 3178 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 3179 } 3180 3181 uint64_t size = 3182 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 3183 3184 ConstantInitBuilder builder(CGM); 3185 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy); 3186 values.addInt(ObjCTypes.IntTy, size); 3187 values.add(optInstanceMethods); 3188 values.add(optClassMethods); 3189 values.add(instanceProperties); 3190 values.add(extendedMethodTypes); 3191 values.add(classProperties); 3192 3193 // No special section, but goes in llvm.used 3194 return CreateMetadataVar("_OBJC_PROTOCOLEXT_" + PD->getName(), values, 3195 StringRef(), CGM.getPointerAlign(), true); 3196 } 3197 3198 /* 3199 struct objc_protocol_list { 3200 struct objc_protocol_list *next; 3201 long count; 3202 Protocol *list[]; 3203 }; 3204 */ 3205 llvm::Constant * 3206 CGObjCMac::EmitProtocolList(Twine name, 3207 ObjCProtocolDecl::protocol_iterator begin, 3208 ObjCProtocolDecl::protocol_iterator end) { 3209 // Just return null for empty protocol lists 3210 if (begin == end) 3211 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3212 3213 ConstantInitBuilder builder(CGM); 3214 auto values = builder.beginStruct(); 3215 3216 // This field is only used by the runtime. 3217 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3218 3219 // Reserve a slot for the count. 3220 auto countSlot = values.addPlaceholder(); 3221 3222 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy); 3223 for (; begin != end; ++begin) { 3224 refsArray.add(GetProtocolRef(*begin)); 3225 } 3226 auto count = refsArray.size(); 3227 3228 // This list is null terminated. 3229 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy); 3230 3231 refsArray.finishAndAddTo(values); 3232 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 3233 3234 StringRef section; 3235 if (CGM.getTriple().isOSBinFormatMachO()) 3236 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3237 3238 llvm::GlobalVariable *GV = 3239 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false); 3240 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 3241 } 3242 3243 static void 3244 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 3245 SmallVectorImpl<const ObjCPropertyDecl *> &Properties, 3246 const ObjCProtocolDecl *Proto, 3247 bool IsClassProperty) { 3248 for (const auto *PD : Proto->properties()) { 3249 if (IsClassProperty != PD->isClassProperty()) 3250 continue; 3251 if (!PropertySet.insert(PD->getIdentifier()).second) 3252 continue; 3253 Properties.push_back(PD); 3254 } 3255 3256 for (const auto *P : Proto->protocols()) 3257 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3258 } 3259 3260 /* 3261 struct _objc_property { 3262 const char * const name; 3263 const char * const attributes; 3264 }; 3265 3266 struct _objc_property_list { 3267 uint32_t entsize; // sizeof (struct _objc_property) 3268 uint32_t prop_count; 3269 struct _objc_property[prop_count]; 3270 }; 3271 */ 3272 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 3273 const Decl *Container, 3274 const ObjCContainerDecl *OCD, 3275 const ObjCCommonTypesHelper &ObjCTypes, 3276 bool IsClassProperty) { 3277 if (IsClassProperty) { 3278 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 3279 // with deployment target < 9.0. 3280 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 3281 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 3282 (Triple.isiOS() && Triple.isOSVersionLT(9))) 3283 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3284 } 3285 3286 SmallVector<const ObjCPropertyDecl *, 16> Properties; 3287 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 3288 3289 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 3290 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 3291 for (auto *PD : ClassExt->properties()) { 3292 if (IsClassProperty != PD->isClassProperty()) 3293 continue; 3294 PropertySet.insert(PD->getIdentifier()); 3295 Properties.push_back(PD); 3296 } 3297 3298 for (const auto *PD : OCD->properties()) { 3299 if (IsClassProperty != PD->isClassProperty()) 3300 continue; 3301 // Don't emit duplicate metadata for properties that were already in a 3302 // class extension. 3303 if (!PropertySet.insert(PD->getIdentifier()).second) 3304 continue; 3305 Properties.push_back(PD); 3306 } 3307 3308 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 3309 for (const auto *P : OID->all_referenced_protocols()) 3310 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3311 } 3312 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 3313 for (const auto *P : CD->protocols()) 3314 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty); 3315 } 3316 3317 // Return null for empty list. 3318 if (Properties.empty()) 3319 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3320 3321 unsigned propertySize = 3322 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3323 3324 ConstantInitBuilder builder(CGM); 3325 auto values = builder.beginStruct(); 3326 values.addInt(ObjCTypes.IntTy, propertySize); 3327 values.addInt(ObjCTypes.IntTy, Properties.size()); 3328 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy); 3329 for (auto PD : Properties) { 3330 if (PD->isDirectProperty()) 3331 continue; 3332 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy); 3333 property.add(GetPropertyName(PD->getIdentifier())); 3334 property.add(GetPropertyTypeString(PD, Container)); 3335 property.finishAndAddTo(propertiesArray); 3336 } 3337 propertiesArray.finishAndAddTo(values); 3338 3339 StringRef Section; 3340 if (CGM.getTriple().isOSBinFormatMachO()) 3341 Section = (ObjCABI == 2) ? "__DATA, __objc_const" 3342 : "__OBJC,__property,regular,no_dead_strip"; 3343 3344 llvm::GlobalVariable *GV = 3345 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3346 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3347 } 3348 3349 llvm::Constant * 3350 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3351 ArrayRef<llvm::Constant*> MethodTypes, 3352 const ObjCCommonTypesHelper &ObjCTypes) { 3353 // Return null for empty list. 3354 if (MethodTypes.empty()) 3355 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3356 3357 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3358 MethodTypes.size()); 3359 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3360 3361 StringRef Section; 3362 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2) 3363 Section = "__DATA, __objc_const"; 3364 3365 llvm::GlobalVariable *GV = 3366 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3367 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3368 } 3369 3370 /* 3371 struct _objc_category { 3372 char *category_name; 3373 char *class_name; 3374 struct _objc_method_list *instance_methods; 3375 struct _objc_method_list *class_methods; 3376 struct _objc_protocol_list *protocols; 3377 uint32_t size; // <rdar://4585769> 3378 struct _objc_property_list *instance_properties; 3379 struct _objc_property_list *class_properties; 3380 }; 3381 */ 3382 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3383 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3384 3385 // FIXME: This is poor design, the OCD should have a pointer to the category 3386 // decl. Additionally, note that Category can be null for the @implementation 3387 // w/o an @interface case. Sema should just create one for us as it does for 3388 // @implementation so everyone else can live life under a clear blue sky. 3389 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3390 const ObjCCategoryDecl *Category = 3391 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3392 3393 SmallString<256> ExtName; 3394 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3395 << OCD->getName(); 3396 3397 ConstantInitBuilder Builder(CGM); 3398 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy); 3399 3400 enum { 3401 InstanceMethods, 3402 ClassMethods, 3403 NumMethodLists 3404 }; 3405 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3406 for (const auto *MD : OCD->methods()) { 3407 if (!MD->isDirectMethod()) 3408 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3409 } 3410 3411 Values.add(GetClassName(OCD->getName())); 3412 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString())); 3413 LazySymbols.insert(Interface->getIdentifier()); 3414 3415 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods, 3416 Methods[InstanceMethods])); 3417 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods, 3418 Methods[ClassMethods])); 3419 if (Category) { 3420 Values.add( 3421 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3422 Category->protocol_begin(), Category->protocol_end())); 3423 } else { 3424 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 3425 } 3426 Values.addInt(ObjCTypes.IntTy, Size); 3427 3428 // If there is no category @interface then there can be no properties. 3429 if (Category) { 3430 Values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 3431 OCD, Category, ObjCTypes, false)); 3432 Values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3433 OCD, Category, ObjCTypes, true)); 3434 } else { 3435 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3436 Values.addNullPointer(ObjCTypes.PropertyListPtrTy); 3437 } 3438 3439 llvm::GlobalVariable *GV = 3440 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values, 3441 "__OBJC,__category,regular,no_dead_strip", 3442 CGM.getPointerAlign(), true); 3443 DefinedCategories.push_back(GV); 3444 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName)); 3445 // method definition entries must be clear for next implementation. 3446 MethodDefinitions.clear(); 3447 } 3448 3449 enum FragileClassFlags { 3450 /// Apparently: is not a meta-class. 3451 FragileABI_Class_Factory = 0x00001, 3452 3453 /// Is a meta-class. 3454 FragileABI_Class_Meta = 0x00002, 3455 3456 /// Has a non-trivial constructor or destructor. 3457 FragileABI_Class_HasCXXStructors = 0x02000, 3458 3459 /// Has hidden visibility. 3460 FragileABI_Class_Hidden = 0x20000, 3461 3462 /// Class implementation was compiled under ARC. 3463 FragileABI_Class_CompiledByARC = 0x04000000, 3464 3465 /// Class implementation was compiled under MRC and has MRC weak ivars. 3466 /// Exclusive with CompiledByARC. 3467 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3468 }; 3469 3470 enum NonFragileClassFlags { 3471 /// Is a meta-class. 3472 NonFragileABI_Class_Meta = 0x00001, 3473 3474 /// Is a root class. 3475 NonFragileABI_Class_Root = 0x00002, 3476 3477 /// Has a non-trivial constructor or destructor. 3478 NonFragileABI_Class_HasCXXStructors = 0x00004, 3479 3480 /// Has hidden visibility. 3481 NonFragileABI_Class_Hidden = 0x00010, 3482 3483 /// Has the exception attribute. 3484 NonFragileABI_Class_Exception = 0x00020, 3485 3486 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3487 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3488 3489 /// Class implementation was compiled under ARC. 3490 NonFragileABI_Class_CompiledByARC = 0x00080, 3491 3492 /// Class has non-trivial destructors, but zero-initialization is okay. 3493 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3494 3495 /// Class implementation was compiled under MRC and has MRC weak ivars. 3496 /// Exclusive with CompiledByARC. 3497 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3498 }; 3499 3500 static bool hasWeakMember(QualType type) { 3501 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3502 return true; 3503 } 3504 3505 if (auto recType = type->getAs<RecordType>()) { 3506 for (auto field : recType->getDecl()->fields()) { 3507 if (hasWeakMember(field->getType())) 3508 return true; 3509 } 3510 } 3511 3512 return false; 3513 } 3514 3515 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3516 /// (and actually fill in a layout string) if we really do have any 3517 /// __weak ivars. 3518 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3519 const ObjCImplementationDecl *ID) { 3520 if (!CGM.getLangOpts().ObjCWeak) return false; 3521 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3522 3523 for (const ObjCIvarDecl *ivar = 3524 ID->getClassInterface()->all_declared_ivar_begin(); 3525 ivar; ivar = ivar->getNextIvar()) { 3526 if (hasWeakMember(ivar->getType())) 3527 return true; 3528 } 3529 3530 return false; 3531 } 3532 3533 /* 3534 struct _objc_class { 3535 Class isa; 3536 Class super_class; 3537 const char *name; 3538 long version; 3539 long info; 3540 long instance_size; 3541 struct _objc_ivar_list *ivars; 3542 struct _objc_method_list *methods; 3543 struct _objc_cache *cache; 3544 struct _objc_protocol_list *protocols; 3545 // Objective-C 1.0 extensions (<rdr://4585769>) 3546 const char *ivar_layout; 3547 struct _objc_class_ext *ext; 3548 }; 3549 3550 See EmitClassExtension(); 3551 */ 3552 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3553 IdentifierInfo *RuntimeName = 3554 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 3555 DefinedSymbols.insert(RuntimeName); 3556 3557 std::string ClassName = ID->getNameAsString(); 3558 // FIXME: Gross 3559 ObjCInterfaceDecl *Interface = 3560 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3561 llvm::Constant *Protocols = 3562 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3563 Interface->all_referenced_protocol_begin(), 3564 Interface->all_referenced_protocol_end()); 3565 unsigned Flags = FragileABI_Class_Factory; 3566 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3567 Flags |= FragileABI_Class_HasCXXStructors; 3568 3569 bool hasMRCWeak = false; 3570 3571 if (CGM.getLangOpts().ObjCAutoRefCount) 3572 Flags |= FragileABI_Class_CompiledByARC; 3573 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3574 Flags |= FragileABI_Class_HasMRCWeakIvars; 3575 3576 CharUnits Size = 3577 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3578 3579 // FIXME: Set CXX-structors flag. 3580 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3581 Flags |= FragileABI_Class_Hidden; 3582 3583 enum { 3584 InstanceMethods, 3585 ClassMethods, 3586 NumMethodLists 3587 }; 3588 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists]; 3589 for (const auto *MD : ID->methods()) { 3590 if (!MD->isDirectMethod()) 3591 Methods[unsigned(MD->isClassMethod())].push_back(MD); 3592 } 3593 3594 for (const auto *PID : ID->property_impls()) { 3595 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3596 if (PID->getPropertyDecl()->isDirectProperty()) 3597 continue; 3598 if (ObjCMethodDecl *MD = PID->getGetterMethodDecl()) 3599 if (GetMethodDefinition(MD)) 3600 Methods[InstanceMethods].push_back(MD); 3601 if (ObjCMethodDecl *MD = PID->getSetterMethodDecl()) 3602 if (GetMethodDefinition(MD)) 3603 Methods[InstanceMethods].push_back(MD); 3604 } 3605 } 3606 3607 ConstantInitBuilder builder(CGM); 3608 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3609 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods])); 3610 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3611 // Record a reference to the super class. 3612 LazySymbols.insert(Super->getIdentifier()); 3613 3614 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3615 ObjCTypes.ClassPtrTy); 3616 } else { 3617 values.addNullPointer(ObjCTypes.ClassPtrTy); 3618 } 3619 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3620 // Version is always 0. 3621 values.addInt(ObjCTypes.LongTy, 0); 3622 values.addInt(ObjCTypes.LongTy, Flags); 3623 values.addInt(ObjCTypes.LongTy, Size.getQuantity()); 3624 values.add(EmitIvarList(ID, false)); 3625 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods, 3626 Methods[InstanceMethods])); 3627 // cache is always NULL. 3628 values.addNullPointer(ObjCTypes.CachePtrTy); 3629 values.add(Protocols); 3630 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size)); 3631 values.add(EmitClassExtension(ID, Size, hasMRCWeak, 3632 /*isMetaclass*/ false)); 3633 3634 std::string Name("OBJC_CLASS_"); 3635 Name += ClassName; 3636 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3637 // Check for a forward reference. 3638 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3639 if (GV) { 3640 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3641 "Forward metaclass reference has incorrect type."); 3642 values.finishAndSetAsInitializer(GV); 3643 GV->setSection(Section); 3644 GV->setAlignment(CGM.getPointerAlign().getAsAlign()); 3645 CGM.addCompilerUsedGlobal(GV); 3646 } else 3647 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true); 3648 DefinedClasses.push_back(GV); 3649 ImplementedClasses.push_back(Interface); 3650 // method definition entries must be clear for next implementation. 3651 MethodDefinitions.clear(); 3652 } 3653 3654 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3655 llvm::Constant *Protocols, 3656 ArrayRef<const ObjCMethodDecl*> Methods) { 3657 unsigned Flags = FragileABI_Class_Meta; 3658 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3659 3660 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3661 Flags |= FragileABI_Class_Hidden; 3662 3663 ConstantInitBuilder builder(CGM); 3664 auto values = builder.beginStruct(ObjCTypes.ClassTy); 3665 // The isa for the metaclass is the root of the hierarchy. 3666 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3667 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3668 Root = Super; 3669 values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3670 ObjCTypes.ClassPtrTy); 3671 // The super class for the metaclass is emitted as the name of the 3672 // super class. The runtime fixes this up to point to the 3673 // *metaclass* for the super class. 3674 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3675 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3676 ObjCTypes.ClassPtrTy); 3677 } else { 3678 values.addNullPointer(ObjCTypes.ClassPtrTy); 3679 } 3680 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 3681 // Version is always 0. 3682 values.addInt(ObjCTypes.LongTy, 0); 3683 values.addInt(ObjCTypes.LongTy, Flags); 3684 values.addInt(ObjCTypes.LongTy, Size); 3685 values.add(EmitIvarList(ID, true)); 3686 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods, 3687 Methods)); 3688 // cache is always NULL. 3689 values.addNullPointer(ObjCTypes.CachePtrTy); 3690 values.add(Protocols); 3691 // ivar_layout for metaclass is always NULL. 3692 values.addNullPointer(ObjCTypes.Int8PtrTy); 3693 // The class extension is used to store class properties for metaclasses. 3694 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3695 /*isMetaclass*/true)); 3696 3697 std::string Name("OBJC_METACLASS_"); 3698 Name += ID->getName(); 3699 3700 // Check for a forward reference. 3701 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3702 if (GV) { 3703 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3704 "Forward metaclass reference has incorrect type."); 3705 values.finishAndSetAsInitializer(GV); 3706 } else { 3707 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(), 3708 /*constant*/ false, 3709 llvm::GlobalValue::PrivateLinkage); 3710 } 3711 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3712 CGM.addCompilerUsedGlobal(GV); 3713 3714 return GV; 3715 } 3716 3717 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3718 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3719 3720 // FIXME: Should we look these up somewhere other than the module. Its a bit 3721 // silly since we only generate these while processing an implementation, so 3722 // exactly one pointer would work if know when we entered/exitted an 3723 // implementation block. 3724 3725 // Check for an existing forward reference. 3726 // Previously, metaclass with internal linkage may have been defined. 3727 // pass 'true' as 2nd argument so it is returned. 3728 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3729 if (!GV) 3730 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3731 llvm::GlobalValue::PrivateLinkage, nullptr, 3732 Name); 3733 3734 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3735 "Forward metaclass reference has incorrect type."); 3736 return GV; 3737 } 3738 3739 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3740 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3741 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3742 3743 if (!GV) 3744 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3745 llvm::GlobalValue::PrivateLinkage, nullptr, 3746 Name); 3747 3748 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3749 "Forward class metadata reference has incorrect type."); 3750 return GV; 3751 } 3752 3753 /* 3754 Emit a "class extension", which in this specific context means extra 3755 data that doesn't fit in the normal fragile-ABI class structure, and 3756 has nothing to do with the language concept of a class extension. 3757 3758 struct objc_class_ext { 3759 uint32_t size; 3760 const char *weak_ivar_layout; 3761 struct _objc_property_list *properties; 3762 }; 3763 */ 3764 llvm::Constant * 3765 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3766 CharUnits InstanceSize, bool hasMRCWeakIvars, 3767 bool isMetaclass) { 3768 // Weak ivar layout. 3769 llvm::Constant *layout; 3770 if (isMetaclass) { 3771 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 3772 } else { 3773 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3774 hasMRCWeakIvars); 3775 } 3776 3777 // Properties. 3778 llvm::Constant *propertyList = 3779 EmitPropertyList((isMetaclass ? Twine("_OBJC_$_CLASS_PROP_LIST_") 3780 : Twine("_OBJC_$_PROP_LIST_")) 3781 + ID->getName(), 3782 ID, ID->getClassInterface(), ObjCTypes, isMetaclass); 3783 3784 // Return null if no extension bits are used. 3785 if (layout->isNullValue() && propertyList->isNullValue()) { 3786 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3787 } 3788 3789 uint64_t size = 3790 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3791 3792 ConstantInitBuilder builder(CGM); 3793 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy); 3794 values.addInt(ObjCTypes.IntTy, size); 3795 values.add(layout); 3796 values.add(propertyList); 3797 3798 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values, 3799 "__OBJC,__class_ext,regular,no_dead_strip", 3800 CGM.getPointerAlign(), true); 3801 } 3802 3803 /* 3804 struct objc_ivar { 3805 char *ivar_name; 3806 char *ivar_type; 3807 int ivar_offset; 3808 }; 3809 3810 struct objc_ivar_list { 3811 int ivar_count; 3812 struct objc_ivar list[count]; 3813 }; 3814 */ 3815 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3816 bool ForClass) { 3817 // When emitting the root class GCC emits ivar entries for the 3818 // actual class structure. It is not clear if we need to follow this 3819 // behavior; for now lets try and get away with not doing it. If so, 3820 // the cleanest solution would be to make up an ObjCInterfaceDecl 3821 // for the class. 3822 if (ForClass) 3823 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3824 3825 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3826 3827 ConstantInitBuilder builder(CGM); 3828 auto ivarList = builder.beginStruct(); 3829 auto countSlot = ivarList.addPlaceholder(); 3830 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy); 3831 3832 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3833 IVD; IVD = IVD->getNextIvar()) { 3834 // Ignore unnamed bit-fields. 3835 if (!IVD->getDeclName()) 3836 continue; 3837 3838 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy); 3839 ivar.add(GetMethodVarName(IVD->getIdentifier())); 3840 ivar.add(GetMethodVarType(IVD)); 3841 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD)); 3842 ivar.finishAndAddTo(ivars); 3843 } 3844 3845 // Return null for empty list. 3846 auto count = ivars.size(); 3847 if (count == 0) { 3848 ivars.abandon(); 3849 ivarList.abandon(); 3850 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3851 } 3852 3853 ivars.finishAndAddTo(ivarList); 3854 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count); 3855 3856 llvm::GlobalVariable *GV; 3857 if (ForClass) 3858 GV = 3859 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), ivarList, 3860 "__OBJC,__class_vars,regular,no_dead_strip", 3861 CGM.getPointerAlign(), true); 3862 else 3863 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList, 3864 "__OBJC,__instance_vars,regular,no_dead_strip", 3865 CGM.getPointerAlign(), true); 3866 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3867 } 3868 3869 /// Build a struct objc_method_description constant for the given method. 3870 /// 3871 /// struct objc_method_description { 3872 /// SEL method_name; 3873 /// char *method_types; 3874 /// }; 3875 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder, 3876 const ObjCMethodDecl *MD) { 3877 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy); 3878 description.addBitCast(GetMethodVarName(MD->getSelector()), 3879 ObjCTypes.SelectorPtrTy); 3880 description.add(GetMethodVarType(MD)); 3881 description.finishAndAddTo(builder); 3882 } 3883 3884 /// Build a struct objc_method constant for the given method. 3885 /// 3886 /// struct objc_method { 3887 /// SEL method_name; 3888 /// char *method_types; 3889 /// void *method; 3890 /// }; 3891 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder, 3892 const ObjCMethodDecl *MD) { 3893 llvm::Function *fn = GetMethodDefinition(MD); 3894 assert(fn && "no definition registered for method"); 3895 3896 auto method = builder.beginStruct(ObjCTypes.MethodTy); 3897 method.addBitCast(GetMethodVarName(MD->getSelector()), 3898 ObjCTypes.SelectorPtrTy); 3899 method.add(GetMethodVarType(MD)); 3900 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 3901 method.finishAndAddTo(builder); 3902 } 3903 3904 /// Build a struct objc_method_list or struct objc_method_description_list, 3905 /// as appropriate. 3906 /// 3907 /// struct objc_method_list { 3908 /// struct objc_method_list *obsolete; 3909 /// int count; 3910 /// struct objc_method methods_list[count]; 3911 /// }; 3912 /// 3913 /// struct objc_method_description_list { 3914 /// int count; 3915 /// struct objc_method_description list[count]; 3916 /// }; 3917 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT, 3918 ArrayRef<const ObjCMethodDecl *> methods) { 3919 StringRef prefix; 3920 StringRef section; 3921 bool forProtocol = false; 3922 switch (MLT) { 3923 case MethodListType::CategoryInstanceMethods: 3924 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_"; 3925 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3926 forProtocol = false; 3927 break; 3928 case MethodListType::CategoryClassMethods: 3929 prefix = "OBJC_CATEGORY_CLASS_METHODS_"; 3930 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3931 forProtocol = false; 3932 break; 3933 case MethodListType::InstanceMethods: 3934 prefix = "OBJC_INSTANCE_METHODS_"; 3935 section = "__OBJC,__inst_meth,regular,no_dead_strip"; 3936 forProtocol = false; 3937 break; 3938 case MethodListType::ClassMethods: 3939 prefix = "OBJC_CLASS_METHODS_"; 3940 section = "__OBJC,__cls_meth,regular,no_dead_strip"; 3941 forProtocol = false; 3942 break; 3943 case MethodListType::ProtocolInstanceMethods: 3944 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_"; 3945 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3946 forProtocol = true; 3947 break; 3948 case MethodListType::ProtocolClassMethods: 3949 prefix = "OBJC_PROTOCOL_CLASS_METHODS_"; 3950 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3951 forProtocol = true; 3952 break; 3953 case MethodListType::OptionalProtocolInstanceMethods: 3954 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"; 3955 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip"; 3956 forProtocol = true; 3957 break; 3958 case MethodListType::OptionalProtocolClassMethods: 3959 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_"; 3960 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip"; 3961 forProtocol = true; 3962 break; 3963 } 3964 3965 // Return null for empty list. 3966 if (methods.empty()) 3967 return llvm::Constant::getNullValue(forProtocol 3968 ? ObjCTypes.MethodDescriptionListPtrTy 3969 : ObjCTypes.MethodListPtrTy); 3970 3971 // For protocols, this is an objc_method_description_list, which has 3972 // a slightly different structure. 3973 if (forProtocol) { 3974 ConstantInitBuilder builder(CGM); 3975 auto values = builder.beginStruct(); 3976 values.addInt(ObjCTypes.IntTy, methods.size()); 3977 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy); 3978 for (auto MD : methods) { 3979 emitMethodDescriptionConstant(methodArray, MD); 3980 } 3981 methodArray.finishAndAddTo(values); 3982 3983 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 3984 CGM.getPointerAlign(), true); 3985 return llvm::ConstantExpr::getBitCast(GV, 3986 ObjCTypes.MethodDescriptionListPtrTy); 3987 } 3988 3989 // Otherwise, it's an objc_method_list. 3990 ConstantInitBuilder builder(CGM); 3991 auto values = builder.beginStruct(); 3992 values.addNullPointer(ObjCTypes.Int8PtrTy); 3993 values.addInt(ObjCTypes.IntTy, methods.size()); 3994 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 3995 for (auto MD : methods) { 3996 if (!MD->isDirectMethod()) 3997 emitMethodConstant(methodArray, MD); 3998 } 3999 methodArray.finishAndAddTo(values); 4000 4001 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section, 4002 CGM.getPointerAlign(), true); 4003 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 4004 } 4005 4006 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 4007 const ObjCContainerDecl *CD) { 4008 llvm::Function *Method; 4009 4010 if (OMD->isDirectMethod()) { 4011 Method = GenerateDirectMethod(OMD, CD); 4012 } else { 4013 SmallString<256> Name; 4014 GetNameForMethod(OMD, CD, Name); 4015 4016 CodeGenTypes &Types = CGM.getTypes(); 4017 llvm::FunctionType *MethodTy = 4018 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4019 Method = 4020 llvm::Function::Create(MethodTy, llvm::GlobalValue::InternalLinkage, 4021 Name.str(), &CGM.getModule()); 4022 } 4023 4024 MethodDefinitions.insert(std::make_pair(OMD, Method)); 4025 4026 return Method; 4027 } 4028 4029 llvm::Function * 4030 CGObjCCommonMac::GenerateDirectMethod(const ObjCMethodDecl *OMD, 4031 const ObjCContainerDecl *CD) { 4032 auto I = DirectMethodDefinitions.find(OMD->getCanonicalDecl()); 4033 if (I != DirectMethodDefinitions.end()) 4034 return I->second; 4035 4036 SmallString<256> Name; 4037 GetNameForMethod(OMD, CD, Name, /*ignoreCategoryNamespace*/true); 4038 4039 CodeGenTypes &Types = CGM.getTypes(); 4040 llvm::FunctionType *MethodTy = 4041 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 4042 llvm::Function *Method = 4043 llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, 4044 Name.str(), &CGM.getModule()); 4045 DirectMethodDefinitions.insert(std::make_pair(OMD->getCanonicalDecl(), Method)); 4046 4047 return Method; 4048 } 4049 4050 void CGObjCCommonMac::GenerateDirectMethodPrologue( 4051 CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, 4052 const ObjCContainerDecl *CD) { 4053 auto &Builder = CGF.Builder; 4054 bool ReceiverCanBeNull = true; 4055 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl()); 4056 auto selfValue = Builder.CreateLoad(selfAddr); 4057 4058 // Generate: 4059 // 4060 // /* for class methods only to force class lazy initialization */ 4061 // self = [self self]; 4062 // 4063 // /* unless the receiver is never NULL */ 4064 // if (self == nil) { 4065 // return (ReturnType){ }; 4066 // } 4067 // 4068 // _cmd = @selector(...) 4069 // ... 4070 4071 if (OMD->isClassMethod()) { 4072 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD); 4073 assert(OID && 4074 "GenerateDirectMethod() should be called with the Class Interface"); 4075 Selector SelfSel = GetNullarySelector("self", CGM.getContext()); 4076 auto ResultType = CGF.getContext().getObjCIdType(); 4077 RValue result; 4078 CallArgList Args; 4079 4080 // TODO: If this method is inlined, the caller might know that `self` is 4081 // already initialized; for example, it might be an ordinary Objective-C 4082 // method which always receives an initialized `self`, or it might have just 4083 // forced initialization on its own. 4084 // 4085 // We should find a way to eliminate this unnecessary initialization in such 4086 // cases in LLVM. 4087 result = GeneratePossiblySpecializedMessageSend( 4088 CGF, ReturnValueSlot(), ResultType, SelfSel, selfValue, Args, OID, 4089 nullptr, true); 4090 Builder.CreateStore(result.getScalarVal(), selfAddr); 4091 4092 // Nullable `Class` expressions cannot be messaged with a direct method 4093 // so the only reason why the receive can be null would be because 4094 // of weak linking. 4095 ReceiverCanBeNull = isWeakLinkedClass(OID); 4096 } 4097 4098 if (ReceiverCanBeNull) { 4099 llvm::BasicBlock *SelfIsNilBlock = 4100 CGF.createBasicBlock("objc_direct_method.self_is_nil"); 4101 llvm::BasicBlock *ContBlock = 4102 CGF.createBasicBlock("objc_direct_method.cont"); 4103 4104 // if (self == nil) { 4105 auto selfTy = cast<llvm::PointerType>(selfValue->getType()); 4106 auto Zero = llvm::ConstantPointerNull::get(selfTy); 4107 4108 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 4109 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), SelfIsNilBlock, 4110 ContBlock, MDHelper.createBranchWeights(1, 1 << 20)); 4111 4112 CGF.EmitBlock(SelfIsNilBlock); 4113 4114 // return (ReturnType){ }; 4115 auto retTy = OMD->getReturnType(); 4116 Builder.SetInsertPoint(SelfIsNilBlock); 4117 if (!retTy->isVoidType()) { 4118 CGF.EmitNullInitialization(CGF.ReturnValue, retTy); 4119 } 4120 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); 4121 // } 4122 4123 // rest of the body 4124 CGF.EmitBlock(ContBlock); 4125 Builder.SetInsertPoint(ContBlock); 4126 } 4127 4128 // only synthesize _cmd if it's referenced 4129 if (OMD->getCmdDecl()->isUsed()) { 4130 Builder.CreateStore(GetSelector(CGF, OMD), 4131 CGF.GetAddrOfLocalVar(OMD->getCmdDecl())); 4132 } 4133 } 4134 4135 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4136 ConstantStructBuilder &Init, 4137 StringRef Section, 4138 CharUnits Align, 4139 bool AddToUsed) { 4140 llvm::GlobalValue::LinkageTypes LT = 4141 getLinkageTypeForObjCMetadata(CGM, Section); 4142 llvm::GlobalVariable *GV = 4143 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, LT); 4144 if (!Section.empty()) 4145 GV->setSection(Section); 4146 if (AddToUsed) 4147 CGM.addCompilerUsedGlobal(GV); 4148 return GV; 4149 } 4150 4151 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 4152 llvm::Constant *Init, 4153 StringRef Section, 4154 CharUnits Align, 4155 bool AddToUsed) { 4156 llvm::Type *Ty = Init->getType(); 4157 llvm::GlobalValue::LinkageTypes LT = 4158 getLinkageTypeForObjCMetadata(CGM, Section); 4159 llvm::GlobalVariable *GV = 4160 new llvm::GlobalVariable(CGM.getModule(), Ty, false, LT, Init, Name); 4161 if (!Section.empty()) 4162 GV->setSection(Section); 4163 GV->setAlignment(Align.getAsAlign()); 4164 if (AddToUsed) 4165 CGM.addCompilerUsedGlobal(GV); 4166 return GV; 4167 } 4168 4169 llvm::GlobalVariable * 4170 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type, 4171 bool ForceNonFragileABI, 4172 bool NullTerminate) { 4173 StringRef Label; 4174 switch (Type) { 4175 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break; 4176 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break; 4177 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break; 4178 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break; 4179 } 4180 4181 bool NonFragile = ForceNonFragileABI || isNonFragileABI(); 4182 4183 StringRef Section; 4184 switch (Type) { 4185 case ObjCLabelType::ClassName: 4186 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals" 4187 : "__TEXT,__cstring,cstring_literals"; 4188 break; 4189 case ObjCLabelType::MethodVarName: 4190 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals" 4191 : "__TEXT,__cstring,cstring_literals"; 4192 break; 4193 case ObjCLabelType::MethodVarType: 4194 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals" 4195 : "__TEXT,__cstring,cstring_literals"; 4196 break; 4197 case ObjCLabelType::PropertyName: 4198 Section = "__TEXT,__cstring,cstring_literals"; 4199 break; 4200 } 4201 4202 llvm::Constant *Value = 4203 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate); 4204 llvm::GlobalVariable *GV = 4205 new llvm::GlobalVariable(CGM.getModule(), Value->getType(), 4206 /*isConstant=*/true, 4207 llvm::GlobalValue::PrivateLinkage, Value, Label); 4208 if (CGM.getTriple().isOSBinFormatMachO()) 4209 GV->setSection(Section); 4210 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4211 GV->setAlignment(CharUnits::One().getAsAlign()); 4212 CGM.addCompilerUsedGlobal(GV); 4213 4214 return GV; 4215 } 4216 4217 llvm::Function *CGObjCMac::ModuleInitFunction() { 4218 // Abuse this interface function as a place to finalize. 4219 FinishModule(); 4220 return nullptr; 4221 } 4222 4223 llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() { 4224 return ObjCTypes.getGetPropertyFn(); 4225 } 4226 4227 llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() { 4228 return ObjCTypes.getSetPropertyFn(); 4229 } 4230 4231 llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 4232 bool copy) { 4233 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 4234 } 4235 4236 llvm::FunctionCallee CGObjCMac::GetGetStructFunction() { 4237 return ObjCTypes.getCopyStructFn(); 4238 } 4239 4240 llvm::FunctionCallee CGObjCMac::GetSetStructFunction() { 4241 return ObjCTypes.getCopyStructFn(); 4242 } 4243 4244 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() { 4245 return ObjCTypes.getCppAtomicObjectFunction(); 4246 } 4247 4248 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() { 4249 return ObjCTypes.getCppAtomicObjectFunction(); 4250 } 4251 4252 llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() { 4253 return ObjCTypes.getEnumerationMutationFn(); 4254 } 4255 4256 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 4257 return EmitTryOrSynchronizedStmt(CGF, S); 4258 } 4259 4260 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 4261 const ObjCAtSynchronizedStmt &S) { 4262 return EmitTryOrSynchronizedStmt(CGF, S); 4263 } 4264 4265 namespace { 4266 struct PerformFragileFinally final : EHScopeStack::Cleanup { 4267 const Stmt &S; 4268 Address SyncArgSlot; 4269 Address CallTryExitVar; 4270 Address ExceptionData; 4271 ObjCTypesHelper &ObjCTypes; 4272 PerformFragileFinally(const Stmt *S, 4273 Address SyncArgSlot, 4274 Address CallTryExitVar, 4275 Address ExceptionData, 4276 ObjCTypesHelper *ObjCTypes) 4277 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 4278 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 4279 4280 void Emit(CodeGenFunction &CGF, Flags flags) override { 4281 // Check whether we need to call objc_exception_try_exit. 4282 // In optimized code, this branch will always be folded. 4283 llvm::BasicBlock *FinallyCallExit = 4284 CGF.createBasicBlock("finally.call_exit"); 4285 llvm::BasicBlock *FinallyNoCallExit = 4286 CGF.createBasicBlock("finally.no_call_exit"); 4287 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 4288 FinallyCallExit, FinallyNoCallExit); 4289 4290 CGF.EmitBlock(FinallyCallExit); 4291 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 4292 ExceptionData.getPointer()); 4293 4294 CGF.EmitBlock(FinallyNoCallExit); 4295 4296 if (isa<ObjCAtTryStmt>(S)) { 4297 if (const ObjCAtFinallyStmt* FinallyStmt = 4298 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 4299 // Don't try to do the @finally if this is an EH cleanup. 4300 if (flags.isForEHCleanup()) return; 4301 4302 // Save the current cleanup destination in case there's 4303 // control flow inside the finally statement. 4304 llvm::Value *CurCleanupDest = 4305 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 4306 4307 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 4308 4309 if (CGF.HaveInsertPoint()) { 4310 CGF.Builder.CreateStore(CurCleanupDest, 4311 CGF.getNormalCleanupDestSlot()); 4312 } else { 4313 // Currently, the end of the cleanup must always exist. 4314 CGF.EnsureInsertPoint(); 4315 } 4316 } 4317 } else { 4318 // Emit objc_sync_exit(expr); as finally's sole statement for 4319 // @synchronized. 4320 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 4321 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 4322 } 4323 } 4324 }; 4325 4326 class FragileHazards { 4327 CodeGenFunction &CGF; 4328 SmallVector<llvm::Value*, 20> Locals; 4329 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 4330 4331 llvm::InlineAsm *ReadHazard; 4332 llvm::InlineAsm *WriteHazard; 4333 4334 llvm::FunctionType *GetAsmFnType(); 4335 4336 void collectLocals(); 4337 void emitReadHazard(CGBuilderTy &Builder); 4338 4339 public: 4340 FragileHazards(CodeGenFunction &CGF); 4341 4342 void emitWriteHazard(); 4343 void emitHazardsInNewBlocks(); 4344 }; 4345 } // end anonymous namespace 4346 4347 /// Create the fragile-ABI read and write hazards based on the current 4348 /// state of the function, which is presumed to be immediately prior 4349 /// to a @try block. These hazards are used to maintain correct 4350 /// semantics in the face of optimization and the fragile ABI's 4351 /// cavalier use of setjmp/longjmp. 4352 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 4353 collectLocals(); 4354 4355 if (Locals.empty()) return; 4356 4357 // Collect all the blocks in the function. 4358 for (llvm::Function::iterator 4359 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 4360 BlocksBeforeTry.insert(&*I); 4361 4362 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 4363 4364 // Create a read hazard for the allocas. This inhibits dead-store 4365 // optimizations and forces the values to memory. This hazard is 4366 // inserted before any 'throwing' calls in the protected scope to 4367 // reflect the possibility that the variables might be read from the 4368 // catch block if the call throws. 4369 { 4370 std::string Constraint; 4371 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4372 if (I) Constraint += ','; 4373 Constraint += "*m"; 4374 } 4375 4376 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4377 } 4378 4379 // Create a write hazard for the allocas. This inhibits folding 4380 // loads across the hazard. This hazard is inserted at the 4381 // beginning of the catch path to reflect the possibility that the 4382 // variables might have been written within the protected scope. 4383 { 4384 std::string Constraint; 4385 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 4386 if (I) Constraint += ','; 4387 Constraint += "=*m"; 4388 } 4389 4390 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 4391 } 4392 } 4393 4394 /// Emit a write hazard at the current location. 4395 void FragileHazards::emitWriteHazard() { 4396 if (Locals.empty()) return; 4397 4398 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 4399 } 4400 4401 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 4402 assert(!Locals.empty()); 4403 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 4404 call->setDoesNotThrow(); 4405 call->setCallingConv(CGF.getRuntimeCC()); 4406 } 4407 4408 /// Emit read hazards in all the protected blocks, i.e. all the blocks 4409 /// which have been inserted since the beginning of the try. 4410 void FragileHazards::emitHazardsInNewBlocks() { 4411 if (Locals.empty()) return; 4412 4413 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 4414 4415 // Iterate through all blocks, skipping those prior to the try. 4416 for (llvm::Function::iterator 4417 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 4418 llvm::BasicBlock &BB = *FI; 4419 if (BlocksBeforeTry.count(&BB)) continue; 4420 4421 // Walk through all the calls in the block. 4422 for (llvm::BasicBlock::iterator 4423 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 4424 llvm::Instruction &I = *BI; 4425 4426 // Ignore instructions that aren't non-intrinsic calls. 4427 // These are the only calls that can possibly call longjmp. 4428 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) 4429 continue; 4430 if (isa<llvm::IntrinsicInst>(I)) 4431 continue; 4432 4433 // Ignore call sites marked nounwind. This may be questionable, 4434 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 4435 if (cast<llvm::CallBase>(I).doesNotThrow()) 4436 continue; 4437 4438 // Insert a read hazard before the call. This will ensure that 4439 // any writes to the locals are performed before making the 4440 // call. If the call throws, then this is sufficient to 4441 // guarantee correctness as long as it doesn't also write to any 4442 // locals. 4443 Builder.SetInsertPoint(&BB, BI); 4444 emitReadHazard(Builder); 4445 } 4446 } 4447 } 4448 4449 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 4450 if (V.isValid()) S.insert(V.getPointer()); 4451 } 4452 4453 void FragileHazards::collectLocals() { 4454 // Compute a set of allocas to ignore. 4455 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 4456 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 4457 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 4458 4459 // Collect all the allocas currently in the function. This is 4460 // probably way too aggressive. 4461 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 4462 for (llvm::BasicBlock::iterator 4463 I = Entry.begin(), E = Entry.end(); I != E; ++I) 4464 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 4465 Locals.push_back(&*I); 4466 } 4467 4468 llvm::FunctionType *FragileHazards::GetAsmFnType() { 4469 SmallVector<llvm::Type *, 16> tys(Locals.size()); 4470 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 4471 tys[i] = Locals[i]->getType(); 4472 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 4473 } 4474 4475 /* 4476 4477 Objective-C setjmp-longjmp (sjlj) Exception Handling 4478 -- 4479 4480 A catch buffer is a setjmp buffer plus: 4481 - a pointer to the exception that was caught 4482 - a pointer to the previous exception data buffer 4483 - two pointers of reserved storage 4484 Therefore catch buffers form a stack, with a pointer to the top 4485 of the stack kept in thread-local storage. 4486 4487 objc_exception_try_enter pushes a catch buffer onto the EH stack. 4488 objc_exception_try_exit pops the given catch buffer, which is 4489 required to be the top of the EH stack. 4490 objc_exception_throw pops the top of the EH stack, writes the 4491 thrown exception into the appropriate field, and longjmps 4492 to the setjmp buffer. It crashes the process (with a printf 4493 and an abort()) if there are no catch buffers on the stack. 4494 objc_exception_extract just reads the exception pointer out of the 4495 catch buffer. 4496 4497 There's no reason an implementation couldn't use a light-weight 4498 setjmp here --- something like __builtin_setjmp, but API-compatible 4499 with the heavyweight setjmp. This will be more important if we ever 4500 want to implement correct ObjC/C++ exception interactions for the 4501 fragile ABI. 4502 4503 Note that for this use of setjmp/longjmp to be correct, we may need 4504 to mark some local variables volatile: if a non-volatile local 4505 variable is modified between the setjmp and the longjmp, it has 4506 indeterminate value. For the purposes of LLVM IR, it may be 4507 sufficient to make loads and stores within the @try (to variables 4508 declared outside the @try) volatile. This is necessary for 4509 optimized correctness, but is not currently being done; this is 4510 being tracked as rdar://problem/8160285 4511 4512 The basic framework for a @try-catch-finally is as follows: 4513 { 4514 objc_exception_data d; 4515 id _rethrow = null; 4516 bool _call_try_exit = true; 4517 4518 objc_exception_try_enter(&d); 4519 if (!setjmp(d.jmp_buf)) { 4520 ... try body ... 4521 } else { 4522 // exception path 4523 id _caught = objc_exception_extract(&d); 4524 4525 // enter new try scope for handlers 4526 if (!setjmp(d.jmp_buf)) { 4527 ... match exception and execute catch blocks ... 4528 4529 // fell off end, rethrow. 4530 _rethrow = _caught; 4531 ... jump-through-finally to finally_rethrow ... 4532 } else { 4533 // exception in catch block 4534 _rethrow = objc_exception_extract(&d); 4535 _call_try_exit = false; 4536 ... jump-through-finally to finally_rethrow ... 4537 } 4538 } 4539 ... jump-through-finally to finally_end ... 4540 4541 finally: 4542 if (_call_try_exit) 4543 objc_exception_try_exit(&d); 4544 4545 ... finally block .... 4546 ... dispatch to finally destination ... 4547 4548 finally_rethrow: 4549 objc_exception_throw(_rethrow); 4550 4551 finally_end: 4552 } 4553 4554 This framework differs slightly from the one gcc uses, in that gcc 4555 uses _rethrow to determine if objc_exception_try_exit should be called 4556 and if the object should be rethrown. This breaks in the face of 4557 throwing nil and introduces unnecessary branches. 4558 4559 We specialize this framework for a few particular circumstances: 4560 4561 - If there are no catch blocks, then we avoid emitting the second 4562 exception handling context. 4563 4564 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4565 e)) we avoid emitting the code to rethrow an uncaught exception. 4566 4567 - FIXME: If there is no @finally block we can do a few more 4568 simplifications. 4569 4570 Rethrows and Jumps-Through-Finally 4571 -- 4572 4573 '@throw;' is supported by pushing the currently-caught exception 4574 onto ObjCEHStack while the @catch blocks are emitted. 4575 4576 Branches through the @finally block are handled with an ordinary 4577 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4578 exceptions are not compatible with C++ exceptions, and this is 4579 hardly the only place where this will go wrong. 4580 4581 @synchronized(expr) { stmt; } is emitted as if it were: 4582 id synch_value = expr; 4583 objc_sync_enter(synch_value); 4584 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4585 */ 4586 4587 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4588 const Stmt &S) { 4589 bool isTry = isa<ObjCAtTryStmt>(S); 4590 4591 // A destination for the fall-through edges of the catch handlers to 4592 // jump to. 4593 CodeGenFunction::JumpDest FinallyEnd = 4594 CGF.getJumpDestInCurrentScope("finally.end"); 4595 4596 // A destination for the rethrow edge of the catch handlers to jump 4597 // to. 4598 CodeGenFunction::JumpDest FinallyRethrow = 4599 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4600 4601 // For @synchronized, call objc_sync_enter(sync.expr). The 4602 // evaluation of the expression must occur before we enter the 4603 // @synchronized. We can't avoid a temp here because we need the 4604 // value to be preserved. If the backend ever does liveness 4605 // correctly after setjmp, this will be unnecessary. 4606 Address SyncArgSlot = Address::invalid(); 4607 if (!isTry) { 4608 llvm::Value *SyncArg = 4609 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4610 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4611 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4612 4613 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4614 CGF.getPointerAlign(), "sync.arg"); 4615 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4616 } 4617 4618 // Allocate memory for the setjmp buffer. This needs to be kept 4619 // live throughout the try and catch blocks. 4620 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4621 CGF.getPointerAlign(), 4622 "exceptiondata.ptr"); 4623 4624 // Create the fragile hazards. Note that this will not capture any 4625 // of the allocas required for exception processing, but will 4626 // capture the current basic block (which extends all the way to the 4627 // setjmp call) as "before the @try". 4628 FragileHazards Hazards(CGF); 4629 4630 // Create a flag indicating whether the cleanup needs to call 4631 // objc_exception_try_exit. This is true except when 4632 // - no catches match and we're branching through the cleanup 4633 // just to rethrow the exception, or 4634 // - a catch matched and we're falling out of the catch handler. 4635 // The setjmp-safety rule here is that we should always store to this 4636 // variable in a place that dominates the branch through the cleanup 4637 // without passing through any setjmps. 4638 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4639 CharUnits::One(), 4640 "_call_try_exit"); 4641 4642 // A slot containing the exception to rethrow. Only needed when we 4643 // have both a @catch and a @finally. 4644 Address PropagatingExnVar = Address::invalid(); 4645 4646 // Push a normal cleanup to leave the try scope. 4647 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4648 SyncArgSlot, 4649 CallTryExitVar, 4650 ExceptionData, 4651 &ObjCTypes); 4652 4653 // Enter a try block: 4654 // - Call objc_exception_try_enter to push ExceptionData on top of 4655 // the EH stack. 4656 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4657 ExceptionData.getPointer()); 4658 4659 // - Call setjmp on the exception data buffer. 4660 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4661 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4662 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4663 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4664 "setjmp_buffer"); 4665 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4666 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4667 SetJmpResult->setCanReturnTwice(); 4668 4669 // If setjmp returned 0, enter the protected block; otherwise, 4670 // branch to the handler. 4671 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4672 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4673 llvm::Value *DidCatch = 4674 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4675 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4676 4677 // Emit the protected block. 4678 CGF.EmitBlock(TryBlock); 4679 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4680 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4681 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4682 4683 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4684 4685 // Emit the exception handler block. 4686 CGF.EmitBlock(TryHandler); 4687 4688 // Don't optimize loads of the in-scope locals across this point. 4689 Hazards.emitWriteHazard(); 4690 4691 // For a @synchronized (or a @try with no catches), just branch 4692 // through the cleanup to the rethrow block. 4693 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4694 // Tell the cleanup not to re-pop the exit. 4695 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4696 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4697 4698 // Otherwise, we have to match against the caught exceptions. 4699 } else { 4700 // Retrieve the exception object. We may emit multiple blocks but 4701 // nothing can cross this so the value is already in SSA form. 4702 llvm::CallInst *Caught = 4703 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4704 ExceptionData.getPointer(), "caught"); 4705 4706 // Push the exception to rethrow onto the EH value stack for the 4707 // benefit of any @throws in the handlers. 4708 CGF.ObjCEHValueStack.push_back(Caught); 4709 4710 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4711 4712 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4713 4714 llvm::BasicBlock *CatchBlock = nullptr; 4715 llvm::BasicBlock *CatchHandler = nullptr; 4716 if (HasFinally) { 4717 // Save the currently-propagating exception before 4718 // objc_exception_try_enter clears the exception slot. 4719 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4720 CGF.getPointerAlign(), 4721 "propagating_exception"); 4722 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4723 4724 // Enter a new exception try block (in case a @catch block 4725 // throws an exception). 4726 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4727 ExceptionData.getPointer()); 4728 4729 llvm::CallInst *SetJmpResult = 4730 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4731 SetJmpBuffer, "setjmp.result"); 4732 SetJmpResult->setCanReturnTwice(); 4733 4734 llvm::Value *Threw = 4735 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4736 4737 CatchBlock = CGF.createBasicBlock("catch"); 4738 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4739 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4740 4741 CGF.EmitBlock(CatchBlock); 4742 } 4743 4744 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4745 4746 // Handle catch list. As a special case we check if everything is 4747 // matched and avoid generating code for falling off the end if 4748 // so. 4749 bool AllMatched = false; 4750 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 4751 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 4752 4753 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4754 const ObjCObjectPointerType *OPT = nullptr; 4755 4756 // catch(...) always matches. 4757 if (!CatchParam) { 4758 AllMatched = true; 4759 } else { 4760 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4761 4762 // catch(id e) always matches under this ABI, since only 4763 // ObjC exceptions end up here in the first place. 4764 // FIXME: For the time being we also match id<X>; this should 4765 // be rejected by Sema instead. 4766 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4767 AllMatched = true; 4768 } 4769 4770 // If this is a catch-all, we don't need to test anything. 4771 if (AllMatched) { 4772 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4773 4774 if (CatchParam) { 4775 CGF.EmitAutoVarDecl(*CatchParam); 4776 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4777 4778 // These types work out because ConvertType(id) == i8*. 4779 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4780 } 4781 4782 CGF.EmitStmt(CatchStmt->getCatchBody()); 4783 4784 // The scope of the catch variable ends right here. 4785 CatchVarCleanups.ForceCleanup(); 4786 4787 CGF.EmitBranchThroughCleanup(FinallyEnd); 4788 break; 4789 } 4790 4791 assert(OPT && "Unexpected non-object pointer type in @catch"); 4792 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4793 4794 // FIXME: @catch (Class c) ? 4795 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4796 assert(IDecl && "Catch parameter must have Objective-C type!"); 4797 4798 // Check if the @catch block matches the exception object. 4799 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4800 4801 llvm::Value *matchArgs[] = { Class, Caught }; 4802 llvm::CallInst *Match = 4803 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4804 matchArgs, "match"); 4805 4806 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4807 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4808 4809 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4810 MatchedBlock, NextCatchBlock); 4811 4812 // Emit the @catch block. 4813 CGF.EmitBlock(MatchedBlock); 4814 4815 // Collect any cleanups for the catch variable. The scope lasts until 4816 // the end of the catch body. 4817 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4818 4819 CGF.EmitAutoVarDecl(*CatchParam); 4820 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4821 4822 // Initialize the catch variable. 4823 llvm::Value *Tmp = 4824 CGF.Builder.CreateBitCast(Caught, 4825 CGF.ConvertType(CatchParam->getType())); 4826 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4827 4828 CGF.EmitStmt(CatchStmt->getCatchBody()); 4829 4830 // We're done with the catch variable. 4831 CatchVarCleanups.ForceCleanup(); 4832 4833 CGF.EmitBranchThroughCleanup(FinallyEnd); 4834 4835 CGF.EmitBlock(NextCatchBlock); 4836 } 4837 4838 CGF.ObjCEHValueStack.pop_back(); 4839 4840 // If nothing wanted anything to do with the caught exception, 4841 // kill the extract call. 4842 if (Caught->use_empty()) 4843 Caught->eraseFromParent(); 4844 4845 if (!AllMatched) 4846 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4847 4848 if (HasFinally) { 4849 // Emit the exception handler for the @catch blocks. 4850 CGF.EmitBlock(CatchHandler); 4851 4852 // In theory we might now need a write hazard, but actually it's 4853 // unnecessary because there's no local-accessing code between 4854 // the try's write hazard and here. 4855 //Hazards.emitWriteHazard(); 4856 4857 // Extract the new exception and save it to the 4858 // propagating-exception slot. 4859 assert(PropagatingExnVar.isValid()); 4860 llvm::CallInst *NewCaught = 4861 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4862 ExceptionData.getPointer(), "caught"); 4863 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4864 4865 // Don't pop the catch handler; the throw already did. 4866 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4867 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4868 } 4869 } 4870 4871 // Insert read hazards as required in the new blocks. 4872 Hazards.emitHazardsInNewBlocks(); 4873 4874 // Pop the cleanup. 4875 CGF.Builder.restoreIP(TryFallthroughIP); 4876 if (CGF.HaveInsertPoint()) 4877 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4878 CGF.PopCleanupBlock(); 4879 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4880 4881 // Emit the rethrow block. 4882 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4883 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4884 if (CGF.HaveInsertPoint()) { 4885 // If we have a propagating-exception variable, check it. 4886 llvm::Value *PropagatingExn; 4887 if (PropagatingExnVar.isValid()) { 4888 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4889 4890 // Otherwise, just look in the buffer for the exception to throw. 4891 } else { 4892 llvm::CallInst *Caught = 4893 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4894 ExceptionData.getPointer()); 4895 PropagatingExn = Caught; 4896 } 4897 4898 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4899 PropagatingExn); 4900 CGF.Builder.CreateUnreachable(); 4901 } 4902 4903 CGF.Builder.restoreIP(SavedIP); 4904 } 4905 4906 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4907 const ObjCAtThrowStmt &S, 4908 bool ClearInsertionPoint) { 4909 llvm::Value *ExceptionAsObject; 4910 4911 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4912 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4913 ExceptionAsObject = 4914 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4915 } else { 4916 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4917 "Unexpected rethrow outside @catch block."); 4918 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4919 } 4920 4921 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4922 ->setDoesNotReturn(); 4923 CGF.Builder.CreateUnreachable(); 4924 4925 // Clear the insertion point to indicate we are in unreachable code. 4926 if (ClearInsertionPoint) 4927 CGF.Builder.ClearInsertionPoint(); 4928 } 4929 4930 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4931 /// object: objc_read_weak (id *src) 4932 /// 4933 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4934 Address AddrWeakObj) { 4935 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4936 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4937 ObjCTypes.PtrObjectPtrTy); 4938 llvm::Value *read_weak = 4939 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4940 AddrWeakObj.getPointer(), "weakread"); 4941 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4942 return read_weak; 4943 } 4944 4945 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4946 /// objc_assign_weak (id src, id *dst) 4947 /// 4948 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4949 llvm::Value *src, Address dst) { 4950 llvm::Type * SrcTy = src->getType(); 4951 if (!isa<llvm::PointerType>(SrcTy)) { 4952 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4953 assert(Size <= 8 && "does not support size > 8"); 4954 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4955 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4956 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4957 } 4958 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4959 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4960 llvm::Value *args[] = { src, dst.getPointer() }; 4961 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4962 args, "weakassign"); 4963 } 4964 4965 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4966 /// objc_assign_global (id src, id *dst) 4967 /// 4968 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4969 llvm::Value *src, Address dst, 4970 bool threadlocal) { 4971 llvm::Type * SrcTy = src->getType(); 4972 if (!isa<llvm::PointerType>(SrcTy)) { 4973 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4974 assert(Size <= 8 && "does not support size > 8"); 4975 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 4976 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 4977 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4978 } 4979 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4980 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4981 llvm::Value *args[] = { src, dst.getPointer() }; 4982 if (!threadlocal) 4983 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4984 args, "globalassign"); 4985 else 4986 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4987 args, "threadlocalassign"); 4988 } 4989 4990 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4991 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4992 /// 4993 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4994 llvm::Value *src, Address dst, 4995 llvm::Value *ivarOffset) { 4996 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4997 llvm::Type * SrcTy = src->getType(); 4998 if (!isa<llvm::PointerType>(SrcTy)) { 4999 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5000 assert(Size <= 8 && "does not support size > 8"); 5001 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5002 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5003 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5004 } 5005 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5006 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5007 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 5008 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 5009 } 5010 5011 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 5012 /// objc_assign_strongCast (id src, id *dst) 5013 /// 5014 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 5015 llvm::Value *src, Address dst) { 5016 llvm::Type * SrcTy = src->getType(); 5017 if (!isa<llvm::PointerType>(SrcTy)) { 5018 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5019 assert(Size <= 8 && "does not support size > 8"); 5020 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty) 5021 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty); 5022 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 5023 } 5024 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 5025 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 5026 llvm::Value *args[] = { src, dst.getPointer() }; 5027 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 5028 args, "strongassign"); 5029 } 5030 5031 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 5032 Address DestPtr, 5033 Address SrcPtr, 5034 llvm::Value *size) { 5035 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 5036 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 5037 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 5038 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 5039 } 5040 5041 /// EmitObjCValueForIvar - Code Gen for ivar reference. 5042 /// 5043 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 5044 QualType ObjectTy, 5045 llvm::Value *BaseValue, 5046 const ObjCIvarDecl *Ivar, 5047 unsigned CVRQualifiers) { 5048 const ObjCInterfaceDecl *ID = 5049 ObjectTy->castAs<ObjCObjectType>()->getInterface(); 5050 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 5051 EmitIvarOffset(CGF, ID, Ivar)); 5052 } 5053 5054 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 5055 const ObjCInterfaceDecl *Interface, 5056 const ObjCIvarDecl *Ivar) { 5057 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 5058 return llvm::ConstantInt::get( 5059 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 5060 Offset); 5061 } 5062 5063 /* *** Private Interface *** */ 5064 5065 std::string CGObjCCommonMac::GetSectionName(StringRef Section, 5066 StringRef MachOAttributes) { 5067 switch (CGM.getTriple().getObjectFormat()) { 5068 case llvm::Triple::UnknownObjectFormat: 5069 llvm_unreachable("unexpected object file format"); 5070 case llvm::Triple::MachO: { 5071 if (MachOAttributes.empty()) 5072 return ("__DATA," + Section).str(); 5073 return ("__DATA," + Section + "," + MachOAttributes).str(); 5074 } 5075 case llvm::Triple::ELF: 5076 assert(Section.substr(0, 2) == "__" && 5077 "expected the name to begin with __"); 5078 return Section.substr(2).str(); 5079 case llvm::Triple::COFF: 5080 assert(Section.substr(0, 2) == "__" && 5081 "expected the name to begin with __"); 5082 return ("." + Section.substr(2) + "$B").str(); 5083 case llvm::Triple::Wasm: 5084 case llvm::Triple::XCOFF: 5085 llvm::report_fatal_error( 5086 "Objective-C support is unimplemented for object file format."); 5087 } 5088 5089 llvm_unreachable("Unhandled llvm::Triple::ObjectFormatType enum"); 5090 } 5091 5092 /// EmitImageInfo - Emit the image info marker used to encode some module 5093 /// level information. 5094 /// 5095 /// See: <rdr://4810609&4810587&4810587> 5096 /// struct IMAGE_INFO { 5097 /// unsigned version; 5098 /// unsigned flags; 5099 /// }; 5100 enum ImageInfoFlags { 5101 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 5102 eImageInfo_GarbageCollected = (1 << 1), 5103 eImageInfo_GCOnly = (1 << 2), 5104 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 5105 5106 // A flag indicating that the module has no instances of a @synthesize of a 5107 // superclass variable. <rdar://problem/6803242> 5108 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 5109 eImageInfo_ImageIsSimulated = (1 << 5), 5110 eImageInfo_ClassProperties = (1 << 6) 5111 }; 5112 5113 void CGObjCCommonMac::EmitImageInfo() { 5114 unsigned version = 0; // Version is unused? 5115 std::string Section = 5116 (ObjCABI == 1) 5117 ? "__OBJC,__image_info,regular" 5118 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip"); 5119 5120 // Generate module-level named metadata to convey this information to the 5121 // linker and code-gen. 5122 llvm::Module &Mod = CGM.getModule(); 5123 5124 // Add the ObjC ABI version to the module flags. 5125 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 5126 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 5127 version); 5128 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 5129 llvm::MDString::get(VMContext, Section)); 5130 5131 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5132 // Non-GC overrides those files which specify GC. 5133 Mod.addModuleFlag(llvm::Module::Override, 5134 "Objective-C Garbage Collection", (uint32_t)0); 5135 } else { 5136 // Add the ObjC garbage collection value. 5137 Mod.addModuleFlag(llvm::Module::Error, 5138 "Objective-C Garbage Collection", 5139 eImageInfo_GarbageCollected); 5140 5141 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 5142 // Add the ObjC GC Only value. 5143 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 5144 eImageInfo_GCOnly); 5145 5146 // Require that GC be specified and set to eImageInfo_GarbageCollected. 5147 llvm::Metadata *Ops[2] = { 5148 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 5149 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 5150 llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))}; 5151 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 5152 llvm::MDNode::get(VMContext, Ops)); 5153 } 5154 } 5155 5156 // Indicate whether we're compiling this to run on a simulator. 5157 if (CGM.getTarget().getTriple().isSimulatorEnvironment()) 5158 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 5159 eImageInfo_ImageIsSimulated); 5160 5161 // Indicate whether we are generating class properties. 5162 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 5163 eImageInfo_ClassProperties); 5164 } 5165 5166 // struct objc_module { 5167 // unsigned long version; 5168 // unsigned long size; 5169 // const char *name; 5170 // Symtab symtab; 5171 // }; 5172 5173 // FIXME: Get from somewhere 5174 static const int ModuleVersion = 7; 5175 5176 void CGObjCMac::EmitModuleInfo() { 5177 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 5178 5179 ConstantInitBuilder builder(CGM); 5180 auto values = builder.beginStruct(ObjCTypes.ModuleTy); 5181 values.addInt(ObjCTypes.LongTy, ModuleVersion); 5182 values.addInt(ObjCTypes.LongTy, Size); 5183 // This used to be the filename, now it is unused. <rdr://4327263> 5184 values.add(GetClassName(StringRef(""))); 5185 values.add(EmitModuleSymbols()); 5186 CreateMetadataVar("OBJC_MODULES", values, 5187 "__OBJC,__module_info,regular,no_dead_strip", 5188 CGM.getPointerAlign(), true); 5189 } 5190 5191 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 5192 unsigned NumClasses = DefinedClasses.size(); 5193 unsigned NumCategories = DefinedCategories.size(); 5194 5195 // Return null if no symbols were defined. 5196 if (!NumClasses && !NumCategories) 5197 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 5198 5199 ConstantInitBuilder builder(CGM); 5200 auto values = builder.beginStruct(); 5201 values.addInt(ObjCTypes.LongTy, 0); 5202 values.addNullPointer(ObjCTypes.SelectorPtrTy); 5203 values.addInt(ObjCTypes.ShortTy, NumClasses); 5204 values.addInt(ObjCTypes.ShortTy, NumCategories); 5205 5206 // The runtime expects exactly the list of defined classes followed 5207 // by the list of defined categories, in a single array. 5208 auto array = values.beginArray(ObjCTypes.Int8PtrTy); 5209 for (unsigned i=0; i<NumClasses; i++) { 5210 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5211 assert(ID); 5212 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5213 // We are implementing a weak imported interface. Give it external linkage 5214 if (ID->isWeakImported() && !IMP->isWeakImported()) 5215 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5216 5217 array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy); 5218 } 5219 for (unsigned i=0; i<NumCategories; i++) 5220 array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy); 5221 5222 array.finishAndAddTo(values); 5223 5224 llvm::GlobalVariable *GV = CreateMetadataVar( 5225 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip", 5226 CGM.getPointerAlign(), true); 5227 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 5228 } 5229 5230 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 5231 IdentifierInfo *II) { 5232 LazySymbols.insert(II); 5233 5234 llvm::GlobalVariable *&Entry = ClassReferences[II]; 5235 5236 if (!Entry) { 5237 llvm::Constant *Casted = 5238 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 5239 ObjCTypes.ClassPtrTy); 5240 Entry = CreateMetadataVar( 5241 "OBJC_CLASS_REFERENCES_", Casted, 5242 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 5243 CGM.getPointerAlign(), true); 5244 } 5245 5246 return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign()); 5247 } 5248 5249 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 5250 const ObjCInterfaceDecl *ID) { 5251 // If the class has the objc_runtime_visible attribute, we need to 5252 // use the Objective-C runtime to get the class. 5253 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 5254 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 5255 5256 IdentifierInfo *RuntimeName = 5257 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString()); 5258 return EmitClassRefFromId(CGF, RuntimeName); 5259 } 5260 5261 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 5262 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 5263 return EmitClassRefFromId(CGF, II); 5264 } 5265 5266 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 5267 return CGF.Builder.CreateLoad(EmitSelectorAddr(Sel)); 5268 } 5269 5270 Address CGObjCMac::EmitSelectorAddr(Selector Sel) { 5271 CharUnits Align = CGM.getPointerAlign(); 5272 5273 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 5274 if (!Entry) { 5275 llvm::Constant *Casted = 5276 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 5277 ObjCTypes.SelectorPtrTy); 5278 Entry = CreateMetadataVar( 5279 "OBJC_SELECTOR_REFERENCES_", Casted, 5280 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 5281 Entry->setExternallyInitialized(true); 5282 } 5283 5284 return Address(Entry, Align); 5285 } 5286 5287 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 5288 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 5289 if (!Entry) 5290 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName); 5291 return getConstantGEP(VMContext, Entry, 0, 0); 5292 } 5293 5294 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 5295 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 5296 I = MethodDefinitions.find(MD); 5297 if (I != MethodDefinitions.end()) 5298 return I->second; 5299 5300 return nullptr; 5301 } 5302 5303 /// GetIvarLayoutName - Returns a unique constant for the given 5304 /// ivar layout bitmap. 5305 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 5306 const ObjCCommonTypesHelper &ObjCTypes) { 5307 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 5308 } 5309 5310 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 5311 CharUnits offset) { 5312 const RecordDecl *RD = RT->getDecl(); 5313 5314 // If this is a union, remember that we had one, because it might mess 5315 // up the ordering of layout entries. 5316 if (RD->isUnion()) 5317 IsDisordered = true; 5318 5319 const ASTRecordLayout *recLayout = nullptr; 5320 visitAggregate(RD->field_begin(), RD->field_end(), offset, 5321 [&](const FieldDecl *field) -> CharUnits { 5322 if (!recLayout) 5323 recLayout = &CGM.getContext().getASTRecordLayout(RD); 5324 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 5325 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 5326 }); 5327 } 5328 5329 template <class Iterator, class GetOffsetFn> 5330 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 5331 CharUnits aggregateOffset, 5332 const GetOffsetFn &getOffset) { 5333 for (; begin != end; ++begin) { 5334 auto field = *begin; 5335 5336 // Skip over bitfields. 5337 if (field->isBitField()) { 5338 continue; 5339 } 5340 5341 // Compute the offset of the field within the aggregate. 5342 CharUnits fieldOffset = aggregateOffset + getOffset(field); 5343 5344 visitField(field, fieldOffset); 5345 } 5346 } 5347 5348 /// Collect layout information for the given fields into IvarsInfo. 5349 void IvarLayoutBuilder::visitField(const FieldDecl *field, 5350 CharUnits fieldOffset) { 5351 QualType fieldType = field->getType(); 5352 5353 // Drill down into arrays. 5354 uint64_t numElts = 1; 5355 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) { 5356 numElts = 0; 5357 fieldType = arrayType->getElementType(); 5358 } 5359 // Unlike incomplete arrays, constant arrays can be nested. 5360 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 5361 numElts *= arrayType->getSize().getZExtValue(); 5362 fieldType = arrayType->getElementType(); 5363 } 5364 5365 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 5366 5367 // If we ended up with a zero-sized array, we've done what we can do within 5368 // the limits of this layout encoding. 5369 if (numElts == 0) return; 5370 5371 // Recurse if the base element type is a record type. 5372 if (auto recType = fieldType->getAs<RecordType>()) { 5373 size_t oldEnd = IvarsInfo.size(); 5374 5375 visitRecord(recType, fieldOffset); 5376 5377 // If we have an array, replicate the first entry's layout information. 5378 auto numEltEntries = IvarsInfo.size() - oldEnd; 5379 if (numElts != 1 && numEltEntries != 0) { 5380 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 5381 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 5382 // Copy the last numEltEntries onto the end of the array, adjusting 5383 // each for the element size. 5384 for (size_t i = 0; i != numEltEntries; ++i) { 5385 auto firstEntry = IvarsInfo[oldEnd + i]; 5386 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 5387 firstEntry.SizeInWords)); 5388 } 5389 } 5390 } 5391 5392 return; 5393 } 5394 5395 // Classify the element type. 5396 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 5397 5398 // If it matches what we're looking for, add an entry. 5399 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 5400 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 5401 assert(CGM.getContext().getTypeSizeInChars(fieldType) 5402 == CGM.getPointerSize()); 5403 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 5404 } 5405 } 5406 5407 /// buildBitmap - This routine does the horsework of taking the offsets of 5408 /// strong/weak references and creating a bitmap. The bitmap is also 5409 /// returned in the given buffer, suitable for being passed to \c dump(). 5410 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 5411 llvm::SmallVectorImpl<unsigned char> &buffer) { 5412 // The bitmap is a series of skip/scan instructions, aligned to word 5413 // boundaries. The skip is performed first. 5414 const unsigned char MaxNibble = 0xF; 5415 const unsigned char SkipMask = 0xF0, SkipShift = 4; 5416 const unsigned char ScanMask = 0x0F, ScanShift = 0; 5417 5418 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 5419 5420 // Sort the ivar info on byte position in case we encounterred a 5421 // union nested in the ivar list. 5422 if (IsDisordered) { 5423 // This isn't a stable sort, but our algorithm should handle it fine. 5424 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 5425 } else { 5426 assert(std::is_sorted(IvarsInfo.begin(), IvarsInfo.end())); 5427 } 5428 assert(IvarsInfo.back().Offset < InstanceEnd); 5429 5430 assert(buffer.empty()); 5431 5432 // Skip the next N words. 5433 auto skip = [&](unsigned numWords) { 5434 assert(numWords > 0); 5435 5436 // Try to merge into the previous byte. Since scans happen second, we 5437 // can't do this if it includes a scan. 5438 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 5439 unsigned lastSkip = buffer.back() >> SkipShift; 5440 if (lastSkip < MaxNibble) { 5441 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 5442 numWords -= claimed; 5443 lastSkip += claimed; 5444 buffer.back() = (lastSkip << SkipShift); 5445 } 5446 } 5447 5448 while (numWords >= MaxNibble) { 5449 buffer.push_back(MaxNibble << SkipShift); 5450 numWords -= MaxNibble; 5451 } 5452 if (numWords) { 5453 buffer.push_back(numWords << SkipShift); 5454 } 5455 }; 5456 5457 // Scan the next N words. 5458 auto scan = [&](unsigned numWords) { 5459 assert(numWords > 0); 5460 5461 // Try to merge into the previous byte. Since scans happen second, we can 5462 // do this even if it includes a skip. 5463 if (!buffer.empty()) { 5464 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 5465 if (lastScan < MaxNibble) { 5466 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 5467 numWords -= claimed; 5468 lastScan += claimed; 5469 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 5470 } 5471 } 5472 5473 while (numWords >= MaxNibble) { 5474 buffer.push_back(MaxNibble << ScanShift); 5475 numWords -= MaxNibble; 5476 } 5477 if (numWords) { 5478 buffer.push_back(numWords << ScanShift); 5479 } 5480 }; 5481 5482 // One past the end of the last scan. 5483 unsigned endOfLastScanInWords = 0; 5484 const CharUnits WordSize = CGM.getPointerSize(); 5485 5486 // Consider all the scan requests. 5487 for (auto &request : IvarsInfo) { 5488 CharUnits beginOfScan = request.Offset - InstanceBegin; 5489 5490 // Ignore scan requests that don't start at an even multiple of the 5491 // word size. We can't encode them. 5492 if ((beginOfScan % WordSize) != 0) continue; 5493 5494 // Ignore scan requests that start before the instance start. 5495 // This assumes that scans never span that boundary. The boundary 5496 // isn't the true start of the ivars, because in the fragile-ARC case 5497 // it's rounded up to word alignment, but the test above should leave 5498 // us ignoring that possibility. 5499 if (beginOfScan.isNegative()) { 5500 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 5501 continue; 5502 } 5503 5504 unsigned beginOfScanInWords = beginOfScan / WordSize; 5505 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 5506 5507 // If the scan starts some number of words after the last one ended, 5508 // skip forward. 5509 if (beginOfScanInWords > endOfLastScanInWords) { 5510 skip(beginOfScanInWords - endOfLastScanInWords); 5511 5512 // Otherwise, start scanning where the last left off. 5513 } else { 5514 beginOfScanInWords = endOfLastScanInWords; 5515 5516 // If that leaves us with nothing to scan, ignore this request. 5517 if (beginOfScanInWords >= endOfScanInWords) continue; 5518 } 5519 5520 // Scan to the end of the request. 5521 assert(beginOfScanInWords < endOfScanInWords); 5522 scan(endOfScanInWords - beginOfScanInWords); 5523 endOfLastScanInWords = endOfScanInWords; 5524 } 5525 5526 if (buffer.empty()) 5527 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 5528 5529 // For GC layouts, emit a skip to the end of the allocation so that we 5530 // have precise information about the entire thing. This isn't useful 5531 // or necessary for the ARC-style layout strings. 5532 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5533 unsigned lastOffsetInWords = 5534 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 5535 if (lastOffsetInWords > endOfLastScanInWords) { 5536 skip(lastOffsetInWords - endOfLastScanInWords); 5537 } 5538 } 5539 5540 // Null terminate the string. 5541 buffer.push_back(0); 5542 5543 auto *Entry = CGObjC.CreateCStringLiteral( 5544 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName); 5545 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 5546 } 5547 5548 /// BuildIvarLayout - Builds ivar layout bitmap for the class 5549 /// implementation for the __strong or __weak case. 5550 /// The layout map displays which words in ivar list must be skipped 5551 /// and which must be scanned by GC (see below). String is built of bytes. 5552 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 5553 /// of words to skip and right nibble is count of words to scan. So, each 5554 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 5555 /// represented by a 0x00 byte which also ends the string. 5556 /// 1. when ForStrongLayout is true, following ivars are scanned: 5557 /// - id, Class 5558 /// - object * 5559 /// - __strong anything 5560 /// 5561 /// 2. When ForStrongLayout is false, following ivars are scanned: 5562 /// - __weak anything 5563 /// 5564 llvm::Constant * 5565 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 5566 CharUnits beginOffset, CharUnits endOffset, 5567 bool ForStrongLayout, bool HasMRCWeakIvars) { 5568 // If this is MRC, and we're either building a strong layout or there 5569 // are no weak ivars, bail out early. 5570 llvm::Type *PtrTy = CGM.Int8PtrTy; 5571 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5572 !CGM.getLangOpts().ObjCAutoRefCount && 5573 (ForStrongLayout || !HasMRCWeakIvars)) 5574 return llvm::Constant::getNullValue(PtrTy); 5575 5576 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5577 SmallVector<const ObjCIvarDecl*, 32> ivars; 5578 5579 // GC layout strings include the complete object layout, possibly 5580 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5581 // up. 5582 // 5583 // ARC layout strings only include the class's ivars. In non-fragile 5584 // runtimes, that means starting at InstanceStart, rounded up to word 5585 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5586 // starting at the offset of the first ivar, rounded up to word alignment. 5587 // 5588 // MRC weak layout strings follow the ARC style. 5589 CharUnits baseOffset; 5590 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5591 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5592 IVD; IVD = IVD->getNextIvar()) 5593 ivars.push_back(IVD); 5594 5595 if (isNonFragileABI()) { 5596 baseOffset = beginOffset; // InstanceStart 5597 } else if (!ivars.empty()) { 5598 baseOffset = 5599 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5600 } else { 5601 baseOffset = CharUnits::Zero(); 5602 } 5603 5604 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5605 } 5606 else { 5607 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5608 5609 baseOffset = CharUnits::Zero(); 5610 } 5611 5612 if (ivars.empty()) 5613 return llvm::Constant::getNullValue(PtrTy); 5614 5615 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5616 5617 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5618 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5619 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5620 }); 5621 5622 if (!builder.hasBitmapData()) 5623 return llvm::Constant::getNullValue(PtrTy); 5624 5625 llvm::SmallVector<unsigned char, 4> buffer; 5626 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5627 5628 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5629 printf("\n%s ivar layout for class '%s': ", 5630 ForStrongLayout ? "strong" : "weak", 5631 OMD->getClassInterface()->getName().str().c_str()); 5632 builder.dump(buffer); 5633 } 5634 return C; 5635 } 5636 5637 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5638 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5639 // FIXME: Avoid std::string in "Sel.getAsString()" 5640 if (!Entry) 5641 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName); 5642 return getConstantGEP(VMContext, Entry, 0, 0); 5643 } 5644 5645 // FIXME: Merge into a single cstring creation function. 5646 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5647 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5648 } 5649 5650 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5651 std::string TypeStr; 5652 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5653 5654 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5655 if (!Entry) 5656 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5657 return getConstantGEP(VMContext, Entry, 0, 0); 5658 } 5659 5660 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5661 bool Extended) { 5662 std::string TypeStr = 5663 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended); 5664 5665 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5666 if (!Entry) 5667 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType); 5668 return getConstantGEP(VMContext, Entry, 0, 0); 5669 } 5670 5671 // FIXME: Merge into a single cstring creation function. 5672 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5673 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5674 if (!Entry) 5675 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName); 5676 return getConstantGEP(VMContext, Entry, 0, 0); 5677 } 5678 5679 // FIXME: Merge into a single cstring creation function. 5680 // FIXME: This Decl should be more precise. 5681 llvm::Constant * 5682 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5683 const Decl *Container) { 5684 std::string TypeStr = 5685 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container); 5686 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5687 } 5688 5689 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D, 5690 const ObjCContainerDecl *CD, 5691 SmallVectorImpl<char> &Name, 5692 bool ignoreCategoryNamespace) { 5693 llvm::raw_svector_ostream OS(Name); 5694 assert (CD && "Missing container decl in GetNameForMethod"); 5695 OS << '\01' << (D->isInstanceMethod() ? '-' : '+') 5696 << '[' << CD->getName(); 5697 if (!ignoreCategoryNamespace) 5698 if (const ObjCCategoryImplDecl *CID = 5699 dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext())) 5700 OS << '(' << *CID << ')'; 5701 OS << ' ' << D->getSelector().getAsString() << ']'; 5702 } 5703 5704 void CGObjCMac::FinishModule() { 5705 EmitModuleInfo(); 5706 5707 // Emit the dummy bodies for any protocols which were referenced but 5708 // never defined. 5709 for (auto &entry : Protocols) { 5710 llvm::GlobalVariable *global = entry.second; 5711 if (global->hasInitializer()) 5712 continue; 5713 5714 ConstantInitBuilder builder(CGM); 5715 auto values = builder.beginStruct(ObjCTypes.ProtocolTy); 5716 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy); 5717 values.add(GetClassName(entry.first->getName())); 5718 values.addNullPointer(ObjCTypes.ProtocolListPtrTy); 5719 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5720 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy); 5721 values.finishAndSetAsInitializer(global); 5722 CGM.addCompilerUsedGlobal(global); 5723 } 5724 5725 // Add assembler directives to add lazy undefined symbol references 5726 // for classes which are referenced but not defined. This is 5727 // important for correct linker interaction. 5728 // 5729 // FIXME: It would be nice if we had an LLVM construct for this. 5730 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) && 5731 CGM.getTriple().isOSBinFormatMachO()) { 5732 SmallString<256> Asm; 5733 Asm += CGM.getModule().getModuleInlineAsm(); 5734 if (!Asm.empty() && Asm.back() != '\n') 5735 Asm += '\n'; 5736 5737 llvm::raw_svector_ostream OS(Asm); 5738 for (const auto *Sym : DefinedSymbols) 5739 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n" 5740 << "\t.globl .objc_class_name_" << Sym->getName() << "\n"; 5741 for (const auto *Sym : LazySymbols) 5742 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n"; 5743 for (const auto &Category : DefinedCategoryNames) 5744 OS << "\t.objc_category_name_" << Category << "=0\n" 5745 << "\t.globl .objc_category_name_" << Category << "\n"; 5746 5747 CGM.getModule().setModuleInlineAsm(OS.str()); 5748 } 5749 } 5750 5751 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5752 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr), 5753 ObjCEmptyVtableVar(nullptr) { 5754 ObjCABI = 2; 5755 } 5756 5757 /* *** */ 5758 5759 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5760 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5761 { 5762 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5763 ASTContext &Ctx = CGM.getContext(); 5764 5765 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy)); 5766 IntTy = CGM.IntTy; 5767 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy)); 5768 Int8PtrTy = CGM.Int8PtrTy; 5769 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5770 5771 // arm64 targets use "int" ivar offset variables. All others, 5772 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5773 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5774 IvarOffsetVarTy = IntTy; 5775 else 5776 IvarOffsetVarTy = LongTy; 5777 5778 ObjectPtrTy = 5779 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType())); 5780 PtrObjectPtrTy = 5781 llvm::PointerType::getUnqual(ObjectPtrTy); 5782 SelectorPtrTy = 5783 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType())); 5784 5785 // I'm not sure I like this. The implicit coordination is a bit 5786 // gross. We should solve this in a reasonable fashion because this 5787 // is a pretty common task (match some runtime data structure with 5788 // an LLVM data structure). 5789 5790 // FIXME: This is leaked. 5791 // FIXME: Merge with rewriter code? 5792 5793 // struct _objc_super { 5794 // id self; 5795 // Class cls; 5796 // } 5797 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5798 Ctx.getTranslationUnitDecl(), 5799 SourceLocation(), SourceLocation(), 5800 &Ctx.Idents.get("_objc_super")); 5801 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5802 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5803 false, ICIS_NoInit)); 5804 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5805 nullptr, Ctx.getObjCClassType(), nullptr, 5806 nullptr, false, ICIS_NoInit)); 5807 RD->completeDefinition(); 5808 5809 SuperCTy = Ctx.getTagDeclType(RD); 5810 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5811 5812 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5813 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5814 5815 // struct _prop_t { 5816 // char *name; 5817 // char *attributes; 5818 // } 5819 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy); 5820 5821 // struct _prop_list_t { 5822 // uint32_t entsize; // sizeof(struct _prop_t) 5823 // uint32_t count_of_properties; 5824 // struct _prop_t prop_list[count_of_properties]; 5825 // } 5826 PropertyListTy = llvm::StructType::create( 5827 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0)); 5828 // struct _prop_list_t * 5829 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5830 5831 // struct _objc_method { 5832 // SEL _cmd; 5833 // char *method_type; 5834 // char *_imp; 5835 // } 5836 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy, 5837 Int8PtrTy, Int8PtrTy); 5838 5839 // struct _objc_cache * 5840 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5841 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5842 } 5843 5844 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5845 : ObjCCommonTypesHelper(cgm) { 5846 // struct _objc_method_description { 5847 // SEL name; 5848 // char *types; 5849 // } 5850 MethodDescriptionTy = llvm::StructType::create( 5851 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy); 5852 5853 // struct _objc_method_description_list { 5854 // int count; 5855 // struct _objc_method_description[1]; 5856 // } 5857 MethodDescriptionListTy = 5858 llvm::StructType::create("struct._objc_method_description_list", IntTy, 5859 llvm::ArrayType::get(MethodDescriptionTy, 0)); 5860 5861 // struct _objc_method_description_list * 5862 MethodDescriptionListPtrTy = 5863 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5864 5865 // Protocol description structures 5866 5867 // struct _objc_protocol_extension { 5868 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5869 // struct _objc_method_description_list *optional_instance_methods; 5870 // struct _objc_method_description_list *optional_class_methods; 5871 // struct _objc_property_list *instance_properties; 5872 // const char ** extendedMethodTypes; 5873 // struct _objc_property_list *class_properties; 5874 // } 5875 ProtocolExtensionTy = llvm::StructType::create( 5876 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy, 5877 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy, 5878 PropertyListPtrTy); 5879 5880 // struct _objc_protocol_extension * 5881 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5882 5883 // Handle recursive construction of Protocol and ProtocolList types 5884 5885 ProtocolTy = 5886 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5887 5888 ProtocolListTy = 5889 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5890 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy, 5891 llvm::ArrayType::get(ProtocolTy, 0)); 5892 5893 // struct _objc_protocol { 5894 // struct _objc_protocol_extension *isa; 5895 // char *protocol_name; 5896 // struct _objc_protocol **_objc_protocol_list; 5897 // struct _objc_method_description_list *instance_methods; 5898 // struct _objc_method_description_list *class_methods; 5899 // } 5900 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5901 llvm::PointerType::getUnqual(ProtocolListTy), 5902 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy); 5903 5904 // struct _objc_protocol_list * 5905 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5906 5907 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5908 5909 // Class description structures 5910 5911 // struct _objc_ivar { 5912 // char *ivar_name; 5913 // char *ivar_type; 5914 // int ivar_offset; 5915 // } 5916 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy, 5917 IntTy); 5918 5919 // struct _objc_ivar_list * 5920 IvarListTy = 5921 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5922 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5923 5924 // struct _objc_method_list * 5925 MethodListTy = 5926 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5927 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5928 5929 // struct _objc_class_extension * 5930 ClassExtensionTy = llvm::StructType::create( 5931 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy); 5932 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5933 5934 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5935 5936 // struct _objc_class { 5937 // Class isa; 5938 // Class super_class; 5939 // char *name; 5940 // long version; 5941 // long info; 5942 // long instance_size; 5943 // struct _objc_ivar_list *ivars; 5944 // struct _objc_method_list *methods; 5945 // struct _objc_cache *cache; 5946 // struct _objc_protocol_list *protocols; 5947 // char *ivar_layout; 5948 // struct _objc_class_ext *ext; 5949 // }; 5950 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5951 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy, 5952 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy, 5953 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy); 5954 5955 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5956 5957 // struct _objc_category { 5958 // char *category_name; 5959 // char *class_name; 5960 // struct _objc_method_list *instance_method; 5961 // struct _objc_method_list *class_method; 5962 // struct _objc_protocol_list *protocols; 5963 // uint32_t size; // sizeof(struct _objc_category) 5964 // struct _objc_property_list *instance_properties;// category's @property 5965 // struct _objc_property_list *class_properties; 5966 // } 5967 CategoryTy = llvm::StructType::create( 5968 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5969 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy, 5970 PropertyListPtrTy); 5971 5972 // Global metadata structures 5973 5974 // struct _objc_symtab { 5975 // long sel_ref_cnt; 5976 // SEL *refs; 5977 // short cls_def_cnt; 5978 // short cat_def_cnt; 5979 // char *defs[cls_def_cnt + cat_def_cnt]; 5980 // } 5981 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy, 5982 SelectorPtrTy, ShortTy, ShortTy, 5983 llvm::ArrayType::get(Int8PtrTy, 0)); 5984 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5985 5986 // struct _objc_module { 5987 // long version; 5988 // long size; // sizeof(struct _objc_module) 5989 // char *name; 5990 // struct _objc_symtab* symtab; 5991 // } 5992 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy, 5993 Int8PtrTy, SymtabPtrTy); 5994 5995 // FIXME: This is the size of the setjmp buffer and should be target 5996 // specific. 18 is what's used on 32-bit X86. 5997 uint64_t SetJmpBufferSize = 18; 5998 5999 // Exceptions 6000 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 6001 6002 ExceptionDataTy = llvm::StructType::create( 6003 "struct._objc_exception_data", 6004 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy); 6005 } 6006 6007 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 6008 : ObjCCommonTypesHelper(cgm) { 6009 // struct _method_list_t { 6010 // uint32_t entsize; // sizeof(struct _objc_method) 6011 // uint32_t method_count; 6012 // struct _objc_method method_list[method_count]; 6013 // } 6014 MethodListnfABITy = 6015 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 6016 llvm::ArrayType::get(MethodTy, 0)); 6017 // struct method_list_t * 6018 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 6019 6020 // struct _protocol_t { 6021 // id isa; // NULL 6022 // const char * const protocol_name; 6023 // const struct _protocol_list_t * protocol_list; // super protocols 6024 // const struct method_list_t * const instance_methods; 6025 // const struct method_list_t * const class_methods; 6026 // const struct method_list_t *optionalInstanceMethods; 6027 // const struct method_list_t *optionalClassMethods; 6028 // const struct _prop_list_t * properties; 6029 // const uint32_t size; // sizeof(struct _protocol_t) 6030 // const uint32_t flags; // = 0 6031 // const char ** extendedMethodTypes; 6032 // const char *demangledName; 6033 // const struct _prop_list_t * class_properties; 6034 // } 6035 6036 // Holder for struct _protocol_list_t * 6037 ProtocolListnfABITy = 6038 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 6039 6040 ProtocolnfABITy = llvm::StructType::create( 6041 "struct._protocol_t", ObjectPtrTy, Int8PtrTy, 6042 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy, 6043 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy, 6044 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy, 6045 PropertyListPtrTy); 6046 6047 // struct _protocol_t* 6048 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 6049 6050 // struct _protocol_list_t { 6051 // long protocol_count; // Note, this is 32/64 bit 6052 // struct _protocol_t *[protocol_count]; 6053 // } 6054 ProtocolListnfABITy->setBody(LongTy, 6055 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0)); 6056 6057 // struct _objc_protocol_list* 6058 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 6059 6060 // struct _ivar_t { 6061 // unsigned [long] int *offset; // pointer to ivar offset location 6062 // char *name; 6063 // char *type; 6064 // uint32_t alignment; 6065 // uint32_t size; 6066 // } 6067 IvarnfABITy = llvm::StructType::create( 6068 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 6069 Int8PtrTy, Int8PtrTy, IntTy, IntTy); 6070 6071 // struct _ivar_list_t { 6072 // uint32 entsize; // sizeof(struct _ivar_t) 6073 // uint32 count; 6074 // struct _iver_t list[count]; 6075 // } 6076 IvarListnfABITy = 6077 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 6078 llvm::ArrayType::get(IvarnfABITy, 0)); 6079 6080 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 6081 6082 // struct _class_ro_t { 6083 // uint32_t const flags; 6084 // uint32_t const instanceStart; 6085 // uint32_t const instanceSize; 6086 // uint32_t const reserved; // only when building for 64bit targets 6087 // const uint8_t * const ivarLayout; 6088 // const char *const name; 6089 // const struct _method_list_t * const baseMethods; 6090 // const struct _objc_protocol_list *const baseProtocols; 6091 // const struct _ivar_list_t *const ivars; 6092 // const uint8_t * const weakIvarLayout; 6093 // const struct _prop_list_t * const properties; 6094 // } 6095 6096 // FIXME. Add 'reserved' field in 64bit abi mode! 6097 ClassRonfABITy = llvm::StructType::create( 6098 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy, 6099 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy, 6100 Int8PtrTy, PropertyListPtrTy); 6101 6102 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 6103 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 6104 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 6105 ->getPointerTo(); 6106 6107 // struct _class_t { 6108 // struct _class_t *isa; 6109 // struct _class_t * const superclass; 6110 // void *cache; 6111 // IMP *vtable; 6112 // struct class_ro_t *ro; 6113 // } 6114 6115 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 6116 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 6117 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy, 6118 llvm::PointerType::getUnqual(ImpnfABITy), 6119 llvm::PointerType::getUnqual(ClassRonfABITy)); 6120 6121 // LLVM for struct _class_t * 6122 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 6123 6124 // struct _category_t { 6125 // const char * const name; 6126 // struct _class_t *const cls; 6127 // const struct _method_list_t * const instance_methods; 6128 // const struct _method_list_t * const class_methods; 6129 // const struct _protocol_list_t * const protocols; 6130 // const struct _prop_list_t * const properties; 6131 // const struct _prop_list_t * const class_properties; 6132 // const uint32_t size; 6133 // } 6134 CategorynfABITy = llvm::StructType::create( 6135 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy, 6136 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy, 6137 PropertyListPtrTy, IntTy); 6138 6139 // New types for nonfragile abi messaging. 6140 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 6141 ASTContext &Ctx = CGM.getContext(); 6142 6143 // MessageRefTy - LLVM for: 6144 // struct _message_ref_t { 6145 // IMP messenger; 6146 // SEL name; 6147 // }; 6148 6149 // First the clang type for struct _message_ref_t 6150 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 6151 Ctx.getTranslationUnitDecl(), 6152 SourceLocation(), SourceLocation(), 6153 &Ctx.Idents.get("_message_ref_t")); 6154 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6155 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 6156 ICIS_NoInit)); 6157 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 6158 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 6159 false, ICIS_NoInit)); 6160 RD->completeDefinition(); 6161 6162 MessageRefCTy = Ctx.getTagDeclType(RD); 6163 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 6164 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 6165 6166 // MessageRefPtrTy - LLVM for struct _message_ref_t* 6167 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 6168 6169 // SuperMessageRefTy - LLVM for: 6170 // struct _super_message_ref_t { 6171 // SUPER_IMP messenger; 6172 // SEL name; 6173 // }; 6174 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t", 6175 ImpnfABITy, SelectorPtrTy); 6176 6177 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 6178 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 6179 6180 6181 // struct objc_typeinfo { 6182 // const void** vtable; // objc_ehtype_vtable + 2 6183 // const char* name; // c++ typeinfo string 6184 // Class cls; 6185 // }; 6186 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo", 6187 llvm::PointerType::getUnqual(Int8PtrTy), 6188 Int8PtrTy, ClassnfABIPtrTy); 6189 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 6190 } 6191 6192 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 6193 FinishNonFragileABIModule(); 6194 6195 return nullptr; 6196 } 6197 6198 void CGObjCNonFragileABIMac::AddModuleClassList( 6199 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 6200 StringRef SectionName) { 6201 unsigned NumClasses = Container.size(); 6202 6203 if (!NumClasses) 6204 return; 6205 6206 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 6207 for (unsigned i=0; i<NumClasses; i++) 6208 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 6209 ObjCTypes.Int8PtrTy); 6210 llvm::Constant *Init = 6211 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 6212 Symbols.size()), 6213 Symbols); 6214 6215 // Section name is obtained by calling GetSectionName, which returns 6216 // sections in the __DATA segment on MachO. 6217 assert((!CGM.getTriple().isOSBinFormatMachO() || 6218 SectionName.startswith("__DATA")) && 6219 "SectionName expected to start with __DATA on MachO"); 6220 llvm::GlobalValue::LinkageTypes LT = 6221 getLinkageTypeForObjCMetadata(CGM, SectionName); 6222 llvm::GlobalVariable *GV = 6223 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, LT, Init, 6224 SymbolName); 6225 GV->setAlignment( 6226 llvm::Align(CGM.getDataLayout().getABITypeAlignment(Init->getType()))); 6227 GV->setSection(SectionName); 6228 CGM.addCompilerUsedGlobal(GV); 6229 } 6230 6231 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 6232 // nonfragile abi has no module definition. 6233 6234 // Build list of all implemented class addresses in array 6235 // L_OBJC_LABEL_CLASS_$. 6236 6237 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 6238 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 6239 assert(ID); 6240 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 6241 // We are implementing a weak imported interface. Give it external linkage 6242 if (ID->isWeakImported() && !IMP->isWeakImported()) { 6243 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6244 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 6245 } 6246 } 6247 6248 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 6249 GetSectionName("__objc_classlist", 6250 "regular,no_dead_strip")); 6251 6252 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 6253 GetSectionName("__objc_nlclslist", 6254 "regular,no_dead_strip")); 6255 6256 // Build list of all implemented category addresses in array 6257 // L_OBJC_LABEL_CATEGORY_$. 6258 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 6259 GetSectionName("__objc_catlist", 6260 "regular,no_dead_strip")); 6261 AddModuleClassList(DefinedStubCategories, "OBJC_LABEL_STUB_CATEGORY_$", 6262 GetSectionName("__objc_catlist2", 6263 "regular,no_dead_strip")); 6264 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 6265 GetSectionName("__objc_nlcatlist", 6266 "regular,no_dead_strip")); 6267 6268 EmitImageInfo(); 6269 } 6270 6271 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 6272 /// VTableDispatchMethods; false otherwise. What this means is that 6273 /// except for the 19 selectors in the list, we generate 32bit-style 6274 /// message dispatch call for all the rest. 6275 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 6276 // At various points we've experimented with using vtable-based 6277 // dispatch for all methods. 6278 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 6279 case CodeGenOptions::Legacy: 6280 return false; 6281 case CodeGenOptions::NonLegacy: 6282 return true; 6283 case CodeGenOptions::Mixed: 6284 break; 6285 } 6286 6287 // If so, see whether this selector is in the white-list of things which must 6288 // use the new dispatch convention. We lazily build a dense set for this. 6289 if (VTableDispatchMethods.empty()) { 6290 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 6291 VTableDispatchMethods.insert(GetNullarySelector("class")); 6292 VTableDispatchMethods.insert(GetNullarySelector("self")); 6293 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 6294 VTableDispatchMethods.insert(GetNullarySelector("length")); 6295 VTableDispatchMethods.insert(GetNullarySelector("count")); 6296 6297 // These are vtable-based if GC is disabled. 6298 // Optimistically use vtable dispatch for hybrid compiles. 6299 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 6300 VTableDispatchMethods.insert(GetNullarySelector("retain")); 6301 VTableDispatchMethods.insert(GetNullarySelector("release")); 6302 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 6303 } 6304 6305 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 6306 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 6307 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 6308 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 6309 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 6310 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 6311 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 6312 6313 // These are vtable-based if GC is enabled. 6314 // Optimistically use vtable dispatch for hybrid compiles. 6315 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 6316 VTableDispatchMethods.insert(GetNullarySelector("hash")); 6317 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 6318 6319 // "countByEnumeratingWithState:objects:count" 6320 IdentifierInfo *KeyIdents[] = { 6321 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 6322 &CGM.getContext().Idents.get("objects"), 6323 &CGM.getContext().Idents.get("count") 6324 }; 6325 VTableDispatchMethods.insert( 6326 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 6327 } 6328 } 6329 6330 return VTableDispatchMethods.count(Sel); 6331 } 6332 6333 /// BuildClassRoTInitializer - generate meta-data for: 6334 /// struct _class_ro_t { 6335 /// uint32_t const flags; 6336 /// uint32_t const instanceStart; 6337 /// uint32_t const instanceSize; 6338 /// uint32_t const reserved; // only when building for 64bit targets 6339 /// const uint8_t * const ivarLayout; 6340 /// const char *const name; 6341 /// const struct _method_list_t * const baseMethods; 6342 /// const struct _protocol_list_t *const baseProtocols; 6343 /// const struct _ivar_list_t *const ivars; 6344 /// const uint8_t * const weakIvarLayout; 6345 /// const struct _prop_list_t * const properties; 6346 /// } 6347 /// 6348 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 6349 unsigned flags, 6350 unsigned InstanceStart, 6351 unsigned InstanceSize, 6352 const ObjCImplementationDecl *ID) { 6353 std::string ClassName = ID->getObjCRuntimeNameAsString(); 6354 6355 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 6356 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 6357 6358 bool hasMRCWeak = false; 6359 if (CGM.getLangOpts().ObjCAutoRefCount) 6360 flags |= NonFragileABI_Class_CompiledByARC; 6361 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 6362 flags |= NonFragileABI_Class_HasMRCWeakIvars; 6363 6364 ConstantInitBuilder builder(CGM); 6365 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy); 6366 6367 values.addInt(ObjCTypes.IntTy, flags); 6368 values.addInt(ObjCTypes.IntTy, InstanceStart); 6369 values.addInt(ObjCTypes.IntTy, InstanceSize); 6370 values.add((flags & NonFragileABI_Class_Meta) 6371 ? GetIvarLayoutName(nullptr, ObjCTypes) 6372 : BuildStrongIvarLayout(ID, beginInstance, endInstance)); 6373 values.add(GetClassName(ID->getObjCRuntimeNameAsString())); 6374 6375 // const struct _method_list_t * const baseMethods; 6376 SmallVector<const ObjCMethodDecl*, 16> methods; 6377 if (flags & NonFragileABI_Class_Meta) { 6378 for (const auto *MD : ID->class_methods()) 6379 if (!MD->isDirectMethod()) 6380 methods.push_back(MD); 6381 } else { 6382 for (const auto *MD : ID->instance_methods()) 6383 if (!MD->isDirectMethod()) 6384 methods.push_back(MD); 6385 } 6386 6387 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(), 6388 (flags & NonFragileABI_Class_Meta) 6389 ? MethodListType::ClassMethods 6390 : MethodListType::InstanceMethods, 6391 methods)); 6392 6393 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6394 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 6395 values.add(EmitProtocolList("_OBJC_CLASS_PROTOCOLS_$_" 6396 + OID->getObjCRuntimeNameAsString(), 6397 OID->all_referenced_protocol_begin(), 6398 OID->all_referenced_protocol_end())); 6399 6400 if (flags & NonFragileABI_Class_Meta) { 6401 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy); 6402 values.add(GetIvarLayoutName(nullptr, ObjCTypes)); 6403 values.add(EmitPropertyList( 6404 "_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6405 ID, ID->getClassInterface(), ObjCTypes, true)); 6406 } else { 6407 values.add(EmitIvarList(ID)); 6408 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak)); 6409 values.add(EmitPropertyList( 6410 "_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 6411 ID, ID->getClassInterface(), ObjCTypes, false)); 6412 } 6413 6414 llvm::SmallString<64> roLabel; 6415 llvm::raw_svector_ostream(roLabel) 6416 << ((flags & NonFragileABI_Class_Meta) ? "_OBJC_METACLASS_RO_$_" 6417 : "_OBJC_CLASS_RO_$_") 6418 << ClassName; 6419 6420 return finishAndCreateGlobal(values, roLabel, CGM); 6421 } 6422 6423 /// Build the metaclass object for a class. 6424 /// 6425 /// struct _class_t { 6426 /// struct _class_t *isa; 6427 /// struct _class_t * const superclass; 6428 /// void *cache; 6429 /// IMP *vtable; 6430 /// struct class_ro_t *ro; 6431 /// } 6432 /// 6433 llvm::GlobalVariable * 6434 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI, 6435 bool isMetaclass, 6436 llvm::Constant *IsAGV, 6437 llvm::Constant *SuperClassGV, 6438 llvm::Constant *ClassRoGV, 6439 bool HiddenVisibility) { 6440 ConstantInitBuilder builder(CGM); 6441 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy); 6442 values.add(IsAGV); 6443 if (SuperClassGV) { 6444 values.add(SuperClassGV); 6445 } else { 6446 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy); 6447 } 6448 values.add(ObjCEmptyCacheVar); 6449 values.add(ObjCEmptyVtableVar); 6450 values.add(ClassRoGV); 6451 6452 llvm::GlobalVariable *GV = 6453 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition)); 6454 values.finishAndSetAsInitializer(GV); 6455 6456 if (CGM.getTriple().isOSBinFormatMachO()) 6457 GV->setSection("__DATA, __objc_data"); 6458 GV->setAlignment(llvm::Align( 6459 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy))); 6460 if (!CGM.getTriple().isOSBinFormatCOFF()) 6461 if (HiddenVisibility) 6462 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6463 return GV; 6464 } 6465 6466 bool CGObjCNonFragileABIMac::ImplementationIsNonLazy( 6467 const ObjCImplDecl *OD) const { 6468 return OD->getClassMethod(GetNullarySelector("load")) != nullptr || 6469 OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>() || 6470 OD->hasAttr<ObjCNonLazyClassAttr>(); 6471 } 6472 6473 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 6474 uint32_t &InstanceStart, 6475 uint32_t &InstanceSize) { 6476 const ASTRecordLayout &RL = 6477 CGM.getContext().getASTObjCImplementationLayout(OID); 6478 6479 // InstanceSize is really instance end. 6480 InstanceSize = RL.getDataSize().getQuantity(); 6481 6482 // If there are no fields, the start is the same as the end. 6483 if (!RL.getFieldCount()) 6484 InstanceStart = InstanceSize; 6485 else 6486 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 6487 } 6488 6489 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM, 6490 StringRef Name) { 6491 IdentifierInfo &II = CGM.getContext().Idents.get(Name); 6492 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); 6493 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6494 6495 const VarDecl *VD = nullptr; 6496 for (const auto &Result : DC->lookup(&II)) 6497 if ((VD = dyn_cast<VarDecl>(Result))) 6498 break; 6499 6500 if (!VD) 6501 return llvm::GlobalValue::DLLImportStorageClass; 6502 if (VD->hasAttr<DLLExportAttr>()) 6503 return llvm::GlobalValue::DLLExportStorageClass; 6504 if (VD->hasAttr<DLLImportAttr>()) 6505 return llvm::GlobalValue::DLLImportStorageClass; 6506 return llvm::GlobalValue::DefaultStorageClass; 6507 } 6508 6509 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 6510 if (!ObjCEmptyCacheVar) { 6511 ObjCEmptyCacheVar = 6512 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false, 6513 llvm::GlobalValue::ExternalLinkage, nullptr, 6514 "_objc_empty_cache"); 6515 if (CGM.getTriple().isOSBinFormatCOFF()) 6516 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache")); 6517 6518 // Only OS X with deployment version <10.9 use the empty vtable symbol 6519 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 6520 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9)) 6521 ObjCEmptyVtableVar = 6522 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false, 6523 llvm::GlobalValue::ExternalLinkage, nullptr, 6524 "_objc_empty_vtable"); 6525 else 6526 ObjCEmptyVtableVar = 6527 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo()); 6528 } 6529 6530 // FIXME: Is this correct (that meta class size is never computed)? 6531 uint32_t InstanceStart = 6532 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6533 uint32_t InstanceSize = InstanceStart; 6534 uint32_t flags = NonFragileABI_Class_Meta; 6535 6536 llvm::Constant *SuperClassGV, *IsAGV; 6537 6538 const auto *CI = ID->getClassInterface(); 6539 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6540 6541 // Build the flags for the metaclass. 6542 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF()) 6543 ? !CI->hasAttr<DLLExportAttr>() 6544 : CI->getVisibility() == HiddenVisibility; 6545 if (classIsHidden) 6546 flags |= NonFragileABI_Class_Hidden; 6547 6548 // FIXME: why is this flag set on the metaclass? 6549 // ObjC metaclasses have no fields and don't really get constructed. 6550 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6551 flags |= NonFragileABI_Class_HasCXXStructors; 6552 if (!ID->hasNonZeroConstructors()) 6553 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6554 } 6555 6556 if (!CI->getSuperClass()) { 6557 // class is root 6558 flags |= NonFragileABI_Class_Root; 6559 6560 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition); 6561 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition); 6562 } else { 6563 // Has a root. Current class is not a root. 6564 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6565 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6566 Root = Super; 6567 6568 const auto *Super = CI->getSuperClass(); 6569 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition); 6570 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition); 6571 } 6572 6573 llvm::GlobalVariable *CLASS_RO_GV = 6574 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6575 6576 llvm::GlobalVariable *MetaTClass = 6577 BuildClassObject(CI, /*metaclass*/ true, 6578 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden); 6579 CGM.setGVProperties(MetaTClass, CI); 6580 DefinedMetaClasses.push_back(MetaTClass); 6581 6582 // Metadata for the class 6583 flags = 0; 6584 if (classIsHidden) 6585 flags |= NonFragileABI_Class_Hidden; 6586 6587 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6588 flags |= NonFragileABI_Class_HasCXXStructors; 6589 6590 // Set a flag to enable a runtime optimization when a class has 6591 // fields that require destruction but which don't require 6592 // anything except zero-initialization during construction. This 6593 // is most notably true of __strong and __weak types, but you can 6594 // also imagine there being C++ types with non-trivial default 6595 // constructors that merely set all fields to null. 6596 if (!ID->hasNonZeroConstructors()) 6597 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6598 } 6599 6600 if (hasObjCExceptionAttribute(CGM.getContext(), CI)) 6601 flags |= NonFragileABI_Class_Exception; 6602 6603 if (!CI->getSuperClass()) { 6604 flags |= NonFragileABI_Class_Root; 6605 SuperClassGV = nullptr; 6606 } else { 6607 // Has a root. Current class is not a root. 6608 const auto *Super = CI->getSuperClass(); 6609 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition); 6610 } 6611 6612 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6613 CLASS_RO_GV = 6614 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID); 6615 6616 llvm::GlobalVariable *ClassMD = 6617 BuildClassObject(CI, /*metaclass*/ false, 6618 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden); 6619 CGM.setGVProperties(ClassMD, CI); 6620 DefinedClasses.push_back(ClassMD); 6621 ImplementedClasses.push_back(CI); 6622 6623 // Determine if this class is also "non-lazy". 6624 if (ImplementationIsNonLazy(ID)) 6625 DefinedNonLazyClasses.push_back(ClassMD); 6626 6627 // Force the definition of the EHType if necessary. 6628 if (flags & NonFragileABI_Class_Exception) 6629 (void) GetInterfaceEHType(CI, ForDefinition); 6630 // Make sure method definition entries are all clear for next implementation. 6631 MethodDefinitions.clear(); 6632 } 6633 6634 /// GenerateProtocolRef - This routine is called to generate code for 6635 /// a protocol reference expression; as in: 6636 /// @code 6637 /// @protocol(Proto1); 6638 /// @endcode 6639 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6640 /// which will hold address of the protocol meta-data. 6641 /// 6642 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6643 const ObjCProtocolDecl *PD) { 6644 6645 // This routine is called for @protocol only. So, we must build definition 6646 // of protocol's meta-data (not a reference to it!) 6647 // 6648 llvm::Constant *Init = 6649 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6650 ObjCTypes.getExternalProtocolPtrTy()); 6651 6652 std::string ProtocolName("_OBJC_PROTOCOL_REFERENCE_$_"); 6653 ProtocolName += PD->getObjCRuntimeNameAsString(); 6654 6655 CharUnits Align = CGF.getPointerAlign(); 6656 6657 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6658 if (PTGV) 6659 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6660 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6661 llvm::GlobalValue::WeakAnyLinkage, Init, 6662 ProtocolName); 6663 PTGV->setSection(GetSectionName("__objc_protorefs", 6664 "coalesced,no_dead_strip")); 6665 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6666 PTGV->setAlignment(Align.getAsAlign()); 6667 if (!CGM.getTriple().isOSBinFormatMachO()) 6668 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName)); 6669 CGM.addUsedGlobal(PTGV); 6670 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6671 } 6672 6673 /// GenerateCategory - Build metadata for a category implementation. 6674 /// struct _category_t { 6675 /// const char * const name; 6676 /// struct _class_t *const cls; 6677 /// const struct _method_list_t * const instance_methods; 6678 /// const struct _method_list_t * const class_methods; 6679 /// const struct _protocol_list_t * const protocols; 6680 /// const struct _prop_list_t * const properties; 6681 /// const struct _prop_list_t * const class_properties; 6682 /// const uint32_t size; 6683 /// } 6684 /// 6685 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6686 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6687 const char *Prefix = "_OBJC_$_CATEGORY_"; 6688 6689 llvm::SmallString<64> ExtCatName(Prefix); 6690 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6691 ExtCatName += "_$_"; 6692 ExtCatName += OCD->getNameAsString(); 6693 6694 ConstantInitBuilder builder(CGM); 6695 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy); 6696 values.add(GetClassName(OCD->getIdentifier()->getName())); 6697 // meta-class entry symbol 6698 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition)); 6699 std::string listName = 6700 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str(); 6701 6702 SmallVector<const ObjCMethodDecl *, 16> instanceMethods; 6703 SmallVector<const ObjCMethodDecl *, 8> classMethods; 6704 for (const auto *MD : OCD->methods()) { 6705 if (MD->isDirectMethod()) 6706 continue; 6707 if (MD->isInstanceMethod()) { 6708 instanceMethods.push_back(MD); 6709 } else { 6710 classMethods.push_back(MD); 6711 } 6712 } 6713 6714 values.add(emitMethodList(listName, MethodListType::CategoryInstanceMethods, 6715 instanceMethods)); 6716 values.add(emitMethodList(listName, MethodListType::CategoryClassMethods, 6717 classMethods)); 6718 6719 const ObjCCategoryDecl *Category = 6720 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6721 if (Category) { 6722 SmallString<256> ExtName; 6723 llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_" 6724 << OCD->getName(); 6725 values.add(EmitProtocolList("_OBJC_CATEGORY_PROTOCOLS_$_" 6726 + Interface->getObjCRuntimeNameAsString() + "_$_" 6727 + Category->getName(), 6728 Category->protocol_begin(), 6729 Category->protocol_end())); 6730 values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(), 6731 OCD, Category, ObjCTypes, false)); 6732 values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 6733 OCD, Category, ObjCTypes, true)); 6734 } else { 6735 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy); 6736 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6737 values.addNullPointer(ObjCTypes.PropertyListPtrTy); 6738 } 6739 6740 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6741 values.addInt(ObjCTypes.IntTy, Size); 6742 6743 llvm::GlobalVariable *GCATV = 6744 finishAndCreateGlobal(values, ExtCatName.str(), CGM); 6745 CGM.addCompilerUsedGlobal(GCATV); 6746 if (Interface->hasAttr<ObjCClassStubAttr>()) 6747 DefinedStubCategories.push_back(GCATV); 6748 else 6749 DefinedCategories.push_back(GCATV); 6750 6751 // Determine if this category is also "non-lazy". 6752 if (ImplementationIsNonLazy(OCD)) 6753 DefinedNonLazyCategories.push_back(GCATV); 6754 // method definition entries must be clear for next implementation. 6755 MethodDefinitions.clear(); 6756 } 6757 6758 /// emitMethodConstant - Return a struct objc_method constant. If 6759 /// forProtocol is true, the implementation will be null; otherwise, 6760 /// the method must have a definition registered with the runtime. 6761 /// 6762 /// struct _objc_method { 6763 /// SEL _cmd; 6764 /// char *method_type; 6765 /// char *_imp; 6766 /// } 6767 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder, 6768 const ObjCMethodDecl *MD, 6769 bool forProtocol) { 6770 auto method = builder.beginStruct(ObjCTypes.MethodTy); 6771 method.addBitCast(GetMethodVarName(MD->getSelector()), 6772 ObjCTypes.SelectorPtrTy); 6773 method.add(GetMethodVarType(MD)); 6774 6775 if (forProtocol) { 6776 // Protocol methods have no implementation. So, this entry is always NULL. 6777 method.addNullPointer(ObjCTypes.Int8PtrTy); 6778 } else { 6779 llvm::Function *fn = GetMethodDefinition(MD); 6780 assert(fn && "no definition for method?"); 6781 method.addBitCast(fn, ObjCTypes.Int8PtrTy); 6782 } 6783 6784 method.finishAndAddTo(builder); 6785 } 6786 6787 /// Build meta-data for method declarations. 6788 /// 6789 /// struct _method_list_t { 6790 /// uint32_t entsize; // sizeof(struct _objc_method) 6791 /// uint32_t method_count; 6792 /// struct _objc_method method_list[method_count]; 6793 /// } 6794 /// 6795 llvm::Constant * 6796 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind, 6797 ArrayRef<const ObjCMethodDecl *> methods) { 6798 // Return null for empty list. 6799 if (methods.empty()) 6800 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6801 6802 StringRef prefix; 6803 bool forProtocol; 6804 switch (kind) { 6805 case MethodListType::CategoryInstanceMethods: 6806 prefix = "_OBJC_$_CATEGORY_INSTANCE_METHODS_"; 6807 forProtocol = false; 6808 break; 6809 case MethodListType::CategoryClassMethods: 6810 prefix = "_OBJC_$_CATEGORY_CLASS_METHODS_"; 6811 forProtocol = false; 6812 break; 6813 case MethodListType::InstanceMethods: 6814 prefix = "_OBJC_$_INSTANCE_METHODS_"; 6815 forProtocol = false; 6816 break; 6817 case MethodListType::ClassMethods: 6818 prefix = "_OBJC_$_CLASS_METHODS_"; 6819 forProtocol = false; 6820 break; 6821 6822 case MethodListType::ProtocolInstanceMethods: 6823 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_"; 6824 forProtocol = true; 6825 break; 6826 case MethodListType::ProtocolClassMethods: 6827 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_"; 6828 forProtocol = true; 6829 break; 6830 case MethodListType::OptionalProtocolInstanceMethods: 6831 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"; 6832 forProtocol = true; 6833 break; 6834 case MethodListType::OptionalProtocolClassMethods: 6835 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"; 6836 forProtocol = true; 6837 break; 6838 } 6839 6840 ConstantInitBuilder builder(CGM); 6841 auto values = builder.beginStruct(); 6842 6843 // sizeof(struct _objc_method) 6844 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6845 values.addInt(ObjCTypes.IntTy, Size); 6846 // method_count 6847 values.addInt(ObjCTypes.IntTy, methods.size()); 6848 auto methodArray = values.beginArray(ObjCTypes.MethodTy); 6849 for (auto MD : methods) 6850 emitMethodConstant(methodArray, MD, forProtocol); 6851 methodArray.finishAndAddTo(values); 6852 6853 llvm::GlobalVariable *GV = finishAndCreateGlobal(values, prefix + name, CGM); 6854 CGM.addCompilerUsedGlobal(GV); 6855 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6856 } 6857 6858 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6859 /// the given ivar. 6860 llvm::GlobalVariable * 6861 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6862 const ObjCIvarDecl *Ivar) { 6863 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6864 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6865 Name += Container->getObjCRuntimeNameAsString(); 6866 Name += "."; 6867 Name += Ivar->getName(); 6868 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name); 6869 if (!IvarOffsetGV) { 6870 IvarOffsetGV = 6871 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy, 6872 false, llvm::GlobalValue::ExternalLinkage, 6873 nullptr, Name.str()); 6874 if (CGM.getTriple().isOSBinFormatCOFF()) { 6875 bool IsPrivateOrPackage = 6876 Ivar->getAccessControl() == ObjCIvarDecl::Private || 6877 Ivar->getAccessControl() == ObjCIvarDecl::Package; 6878 6879 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface(); 6880 6881 if (ContainingID->hasAttr<DLLImportAttr>()) 6882 IvarOffsetGV 6883 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6884 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage) 6885 IvarOffsetGV 6886 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6887 } 6888 } 6889 return IvarOffsetGV; 6890 } 6891 6892 llvm::Constant * 6893 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6894 const ObjCIvarDecl *Ivar, 6895 unsigned long int Offset) { 6896 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6897 IvarOffsetGV->setInitializer( 6898 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6899 IvarOffsetGV->setAlignment(llvm::Align( 6900 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy))); 6901 6902 if (!CGM.getTriple().isOSBinFormatCOFF()) { 6903 // FIXME: This matches gcc, but shouldn't the visibility be set on the use 6904 // as well (i.e., in ObjCIvarOffsetVariable). 6905 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6906 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6907 ID->getVisibility() == HiddenVisibility) 6908 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6909 else 6910 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6911 } 6912 6913 // If ID's layout is known, then make the global constant. This serves as a 6914 // useful assertion: we'll never use this variable to calculate ivar offsets, 6915 // so if the runtime tries to patch it then we should crash. 6916 if (isClassLayoutKnownStatically(ID)) 6917 IvarOffsetGV->setConstant(true); 6918 6919 if (CGM.getTriple().isOSBinFormatMachO()) 6920 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6921 return IvarOffsetGV; 6922 } 6923 6924 /// EmitIvarList - Emit the ivar list for the given 6925 /// implementation. The return value has type 6926 /// IvarListnfABIPtrTy. 6927 /// struct _ivar_t { 6928 /// unsigned [long] int *offset; // pointer to ivar offset location 6929 /// char *name; 6930 /// char *type; 6931 /// uint32_t alignment; 6932 /// uint32_t size; 6933 /// } 6934 /// struct _ivar_list_t { 6935 /// uint32 entsize; // sizeof(struct _ivar_t) 6936 /// uint32 count; 6937 /// struct _iver_t list[count]; 6938 /// } 6939 /// 6940 6941 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6942 const ObjCImplementationDecl *ID) { 6943 6944 ConstantInitBuilder builder(CGM); 6945 auto ivarList = builder.beginStruct(); 6946 ivarList.addInt(ObjCTypes.IntTy, 6947 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy)); 6948 auto ivarCountSlot = ivarList.addPlaceholder(); 6949 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy); 6950 6951 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6952 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6953 6954 // FIXME. Consolidate this with similar code in GenerateClass. 6955 6956 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6957 IVD; IVD = IVD->getNextIvar()) { 6958 // Ignore unnamed bit-fields. 6959 if (!IVD->getDeclName()) 6960 continue; 6961 6962 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy); 6963 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6964 ComputeIvarBaseOffset(CGM, ID, IVD))); 6965 ivar.add(GetMethodVarName(IVD->getIdentifier())); 6966 ivar.add(GetMethodVarType(IVD)); 6967 llvm::Type *FieldTy = 6968 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6969 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6970 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6971 IVD->getType().getTypePtr()) >> 3; 6972 Align = llvm::Log2_32(Align); 6973 ivar.addInt(ObjCTypes.IntTy, Align); 6974 // NOTE. Size of a bitfield does not match gcc's, because of the 6975 // way bitfields are treated special in each. But I am told that 6976 // 'size' for bitfield ivars is ignored by the runtime so it does 6977 // not matter. If it matters, there is enough info to get the 6978 // bitfield right! 6979 ivar.addInt(ObjCTypes.IntTy, Size); 6980 ivar.finishAndAddTo(ivars); 6981 } 6982 // Return null for empty list. 6983 if (ivars.empty()) { 6984 ivars.abandon(); 6985 ivarList.abandon(); 6986 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6987 } 6988 6989 auto ivarCount = ivars.size(); 6990 ivars.finishAndAddTo(ivarList); 6991 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount); 6992 6993 const char *Prefix = "_OBJC_$_INSTANCE_VARIABLES_"; 6994 llvm::GlobalVariable *GV = finishAndCreateGlobal( 6995 ivarList, Prefix + OID->getObjCRuntimeNameAsString(), CGM); 6996 CGM.addCompilerUsedGlobal(GV); 6997 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 6998 } 6999 7000 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 7001 const ObjCProtocolDecl *PD) { 7002 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 7003 7004 if (!Entry) { 7005 // We use the initializer as a marker of whether this is a forward 7006 // reference or not. At module finalization we add the empty 7007 // contents for protocols which were referenced but never defined. 7008 llvm::SmallString<64> Protocol; 7009 llvm::raw_svector_ostream(Protocol) << "_OBJC_PROTOCOL_$_" 7010 << PD->getObjCRuntimeNameAsString(); 7011 7012 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 7013 false, llvm::GlobalValue::ExternalLinkage, 7014 nullptr, Protocol); 7015 if (!CGM.getTriple().isOSBinFormatMachO()) 7016 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol)); 7017 } 7018 7019 return Entry; 7020 } 7021 7022 /// GetOrEmitProtocol - Generate the protocol meta-data: 7023 /// @code 7024 /// struct _protocol_t { 7025 /// id isa; // NULL 7026 /// const char * const protocol_name; 7027 /// const struct _protocol_list_t * protocol_list; // super protocols 7028 /// const struct method_list_t * const instance_methods; 7029 /// const struct method_list_t * const class_methods; 7030 /// const struct method_list_t *optionalInstanceMethods; 7031 /// const struct method_list_t *optionalClassMethods; 7032 /// const struct _prop_list_t * properties; 7033 /// const uint32_t size; // sizeof(struct _protocol_t) 7034 /// const uint32_t flags; // = 0 7035 /// const char ** extendedMethodTypes; 7036 /// const char *demangledName; 7037 /// const struct _prop_list_t * class_properties; 7038 /// } 7039 /// @endcode 7040 /// 7041 7042 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 7043 const ObjCProtocolDecl *PD) { 7044 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 7045 7046 // Early exit if a defining object has already been generated. 7047 if (Entry && Entry->hasInitializer()) 7048 return Entry; 7049 7050 // Use the protocol definition, if there is one. 7051 assert(PD->hasDefinition() && 7052 "emitting protocol metadata without definition"); 7053 PD = PD->getDefinition(); 7054 7055 auto methodLists = ProtocolMethodLists::get(PD); 7056 7057 ConstantInitBuilder builder(CGM); 7058 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy); 7059 7060 // isa is NULL 7061 values.addNullPointer(ObjCTypes.ObjectPtrTy); 7062 values.add(GetClassName(PD->getObjCRuntimeNameAsString())); 7063 values.add(EmitProtocolList("_OBJC_$_PROTOCOL_REFS_" 7064 + PD->getObjCRuntimeNameAsString(), 7065 PD->protocol_begin(), 7066 PD->protocol_end())); 7067 values.add(methodLists.emitMethodList(this, PD, 7068 ProtocolMethodLists::RequiredInstanceMethods)); 7069 values.add(methodLists.emitMethodList(this, PD, 7070 ProtocolMethodLists::RequiredClassMethods)); 7071 values.add(methodLists.emitMethodList(this, PD, 7072 ProtocolMethodLists::OptionalInstanceMethods)); 7073 values.add(methodLists.emitMethodList(this, PD, 7074 ProtocolMethodLists::OptionalClassMethods)); 7075 values.add(EmitPropertyList( 7076 "_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7077 nullptr, PD, ObjCTypes, false)); 7078 uint32_t Size = 7079 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 7080 values.addInt(ObjCTypes.IntTy, Size); 7081 values.addInt(ObjCTypes.IntTy, 0); 7082 values.add(EmitProtocolMethodTypes("_OBJC_$_PROTOCOL_METHOD_TYPES_" 7083 + PD->getObjCRuntimeNameAsString(), 7084 methodLists.emitExtendedTypesArray(this), 7085 ObjCTypes)); 7086 7087 // const char *demangledName; 7088 values.addNullPointer(ObjCTypes.Int8PtrTy); 7089 7090 values.add(EmitPropertyList( 7091 "_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 7092 nullptr, PD, ObjCTypes, true)); 7093 7094 if (Entry) { 7095 // Already created, fix the linkage and update the initializer. 7096 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 7097 values.finishAndSetAsInitializer(Entry); 7098 } else { 7099 llvm::SmallString<64> symbolName; 7100 llvm::raw_svector_ostream(symbolName) 7101 << "_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString(); 7102 7103 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(), 7104 /*constant*/ false, 7105 llvm::GlobalValue::WeakAnyLinkage); 7106 if (!CGM.getTriple().isOSBinFormatMachO()) 7107 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName)); 7108 7109 Protocols[PD->getIdentifier()] = Entry; 7110 } 7111 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7112 CGM.addUsedGlobal(Entry); 7113 7114 // Use this protocol meta-data to build protocol list table in section 7115 // __DATA, __objc_protolist 7116 llvm::SmallString<64> ProtocolRef; 7117 llvm::raw_svector_ostream(ProtocolRef) << "_OBJC_LABEL_PROTOCOL_$_" 7118 << PD->getObjCRuntimeNameAsString(); 7119 7120 llvm::GlobalVariable *PTGV = 7121 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 7122 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 7123 ProtocolRef); 7124 if (!CGM.getTriple().isOSBinFormatMachO()) 7125 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef)); 7126 PTGV->setAlignment(llvm::Align( 7127 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy))); 7128 PTGV->setSection(GetSectionName("__objc_protolist", 7129 "coalesced,no_dead_strip")); 7130 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 7131 CGM.addUsedGlobal(PTGV); 7132 return Entry; 7133 } 7134 7135 /// EmitProtocolList - Generate protocol list meta-data: 7136 /// @code 7137 /// struct _protocol_list_t { 7138 /// long protocol_count; // Note, this is 32/64 bit 7139 /// struct _protocol_t[protocol_count]; 7140 /// } 7141 /// @endcode 7142 /// 7143 llvm::Constant * 7144 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 7145 ObjCProtocolDecl::protocol_iterator begin, 7146 ObjCProtocolDecl::protocol_iterator end) { 7147 SmallVector<llvm::Constant *, 16> ProtocolRefs; 7148 7149 // Just return null for empty protocol lists 7150 if (begin == end) 7151 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 7152 7153 // FIXME: We shouldn't need to do this lookup here, should we? 7154 SmallString<256> TmpName; 7155 Name.toVector(TmpName); 7156 llvm::GlobalVariable *GV = 7157 CGM.getModule().getGlobalVariable(TmpName.str(), true); 7158 if (GV) 7159 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 7160 7161 ConstantInitBuilder builder(CGM); 7162 auto values = builder.beginStruct(); 7163 auto countSlot = values.addPlaceholder(); 7164 7165 // A null-terminated array of protocols. 7166 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy); 7167 for (; begin != end; ++begin) 7168 array.add(GetProtocolRef(*begin)); // Implemented??? 7169 auto count = array.size(); 7170 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy); 7171 7172 array.finishAndAddTo(values); 7173 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count); 7174 7175 GV = finishAndCreateGlobal(values, Name, CGM); 7176 CGM.addCompilerUsedGlobal(GV); 7177 return llvm::ConstantExpr::getBitCast(GV, 7178 ObjCTypes.ProtocolListnfABIPtrTy); 7179 } 7180 7181 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 7182 /// This code gen. amounts to generating code for: 7183 /// @code 7184 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 7185 /// @encode 7186 /// 7187 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 7188 CodeGen::CodeGenFunction &CGF, 7189 QualType ObjectTy, 7190 llvm::Value *BaseValue, 7191 const ObjCIvarDecl *Ivar, 7192 unsigned CVRQualifiers) { 7193 ObjCInterfaceDecl *ID = ObjectTy->castAs<ObjCObjectType>()->getInterface(); 7194 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 7195 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 7196 Offset); 7197 } 7198 7199 llvm::Value * 7200 CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 7201 const ObjCInterfaceDecl *Interface, 7202 const ObjCIvarDecl *Ivar) { 7203 llvm::Value *IvarOffsetValue; 7204 if (isClassLayoutKnownStatically(Interface)) { 7205 IvarOffsetValue = llvm::ConstantInt::get( 7206 ObjCTypes.IvarOffsetVarTy, 7207 ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar)); 7208 } else { 7209 llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(Interface, Ivar); 7210 IvarOffsetValue = 7211 CGF.Builder.CreateAlignedLoad(GV, CGF.getSizeAlign(), "ivar"); 7212 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 7213 cast<llvm::LoadInst>(IvarOffsetValue) 7214 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7215 llvm::MDNode::get(VMContext, None)); 7216 } 7217 7218 // This could be 32bit int or 64bit integer depending on the architecture. 7219 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 7220 // as this is what caller always expects. 7221 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 7222 IvarOffsetValue = CGF.Builder.CreateIntCast( 7223 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 7224 return IvarOffsetValue; 7225 } 7226 7227 static void appendSelectorForMessageRefTable(std::string &buffer, 7228 Selector selector) { 7229 if (selector.isUnarySelector()) { 7230 buffer += selector.getNameForSlot(0); 7231 return; 7232 } 7233 7234 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 7235 buffer += selector.getNameForSlot(i); 7236 buffer += '_'; 7237 } 7238 } 7239 7240 /// Emit a "vtable" message send. We emit a weak hidden-visibility 7241 /// struct, initially containing the selector pointer and a pointer to 7242 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 7243 /// load and call the function pointer, passing the address of the 7244 /// struct as the second parameter. The runtime determines whether 7245 /// the selector is currently emitted using vtable dispatch; if so, it 7246 /// substitutes a stub function which simply tail-calls through the 7247 /// appropriate vtable slot, and if not, it substitues a stub function 7248 /// which tail-calls objc_msgSend. Both stubs adjust the selector 7249 /// argument to correctly point to the selector. 7250 RValue 7251 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 7252 ReturnValueSlot returnSlot, 7253 QualType resultType, 7254 Selector selector, 7255 llvm::Value *arg0, 7256 QualType arg0Type, 7257 bool isSuper, 7258 const CallArgList &formalArgs, 7259 const ObjCMethodDecl *method) { 7260 // Compute the actual arguments. 7261 CallArgList args; 7262 7263 // First argument: the receiver / super-call structure. 7264 if (!isSuper) 7265 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 7266 args.add(RValue::get(arg0), arg0Type); 7267 7268 // Second argument: a pointer to the message ref structure. Leave 7269 // the actual argument value blank for now. 7270 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 7271 7272 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 7273 7274 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 7275 7276 NullReturnState nullReturn; 7277 7278 // Find the function to call and the mangled name for the message 7279 // ref structure. Using a different mangled name wouldn't actually 7280 // be a problem; it would just be a waste. 7281 // 7282 // The runtime currently never uses vtable dispatch for anything 7283 // except normal, non-super message-sends. 7284 // FIXME: don't use this for that. 7285 llvm::FunctionCallee fn = nullptr; 7286 std::string messageRefName("_"); 7287 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 7288 if (isSuper) { 7289 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 7290 messageRefName += "objc_msgSendSuper2_stret_fixup"; 7291 } else { 7292 nullReturn.init(CGF, arg0); 7293 fn = ObjCTypes.getMessageSendStretFixupFn(); 7294 messageRefName += "objc_msgSend_stret_fixup"; 7295 } 7296 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 7297 fn = ObjCTypes.getMessageSendFpretFixupFn(); 7298 messageRefName += "objc_msgSend_fpret_fixup"; 7299 } else { 7300 if (isSuper) { 7301 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 7302 messageRefName += "objc_msgSendSuper2_fixup"; 7303 } else { 7304 fn = ObjCTypes.getMessageSendFixupFn(); 7305 messageRefName += "objc_msgSend_fixup"; 7306 } 7307 } 7308 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 7309 messageRefName += '_'; 7310 7311 // Append the selector name, except use underscores anywhere we 7312 // would have used colons. 7313 appendSelectorForMessageRefTable(messageRefName, selector); 7314 7315 llvm::GlobalVariable *messageRef 7316 = CGM.getModule().getGlobalVariable(messageRefName); 7317 if (!messageRef) { 7318 // Build the message ref structure. 7319 ConstantInitBuilder builder(CGM); 7320 auto values = builder.beginStruct(); 7321 values.add(cast<llvm::Constant>(fn.getCallee())); 7322 values.add(GetMethodVarName(selector)); 7323 messageRef = values.finishAndCreateGlobal(messageRefName, 7324 CharUnits::fromQuantity(16), 7325 /*constant*/ false, 7326 llvm::GlobalValue::WeakAnyLinkage); 7327 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 7328 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced")); 7329 } 7330 7331 bool requiresnullCheck = false; 7332 if (CGM.getLangOpts().ObjCAutoRefCount && method) 7333 for (const auto *ParamDecl : method->parameters()) { 7334 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 7335 if (!nullReturn.NullBB) 7336 nullReturn.init(CGF, arg0); 7337 requiresnullCheck = true; 7338 break; 7339 } 7340 } 7341 7342 Address mref = 7343 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 7344 CGF.getPointerAlign()); 7345 7346 // Update the message ref argument. 7347 args[1].setRValue(RValue::get(mref.getPointer())); 7348 7349 // Load the function to call from the message ref table. 7350 Address calleeAddr = CGF.Builder.CreateStructGEP(mref, 0); 7351 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 7352 7353 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType); 7354 CGCallee callee(CGCalleeInfo(), calleePtr); 7355 7356 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 7357 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs, 7358 requiresnullCheck ? method : nullptr); 7359 } 7360 7361 /// Generate code for a message send expression in the nonfragile abi. 7362 CodeGen::RValue 7363 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 7364 ReturnValueSlot Return, 7365 QualType ResultType, 7366 Selector Sel, 7367 llvm::Value *Receiver, 7368 const CallArgList &CallArgs, 7369 const ObjCInterfaceDecl *Class, 7370 const ObjCMethodDecl *Method) { 7371 return isVTableDispatchedSelector(Sel) 7372 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7373 Receiver, CGF.getContext().getObjCIdType(), 7374 false, CallArgs, Method) 7375 : EmitMessageSend(CGF, Return, ResultType, Sel, 7376 Receiver, CGF.getContext().getObjCIdType(), 7377 false, CallArgs, Method, Class, ObjCTypes); 7378 } 7379 7380 llvm::Constant * 7381 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID, 7382 bool metaclass, 7383 ForDefinition_t isForDefinition) { 7384 auto prefix = 7385 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix()); 7386 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(), 7387 isForDefinition, 7388 ID->isWeakImported(), 7389 !isForDefinition 7390 && CGM.getTriple().isOSBinFormatCOFF() 7391 && ID->hasAttr<DLLImportAttr>()); 7392 } 7393 7394 llvm::Constant * 7395 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, 7396 ForDefinition_t IsForDefinition, 7397 bool Weak, bool DLLImport) { 7398 llvm::GlobalValue::LinkageTypes L = 7399 Weak ? llvm::GlobalValue::ExternalWeakLinkage 7400 : llvm::GlobalValue::ExternalLinkage; 7401 7402 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 7403 if (!GV || GV->getType() != ObjCTypes.ClassnfABITy->getPointerTo()) { 7404 auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L, 7405 nullptr, Name); 7406 7407 if (DLLImport) 7408 NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 7409 7410 if (GV) { 7411 GV->replaceAllUsesWith( 7412 llvm::ConstantExpr::getBitCast(NewGV, GV->getType())); 7413 GV->eraseFromParent(); 7414 } 7415 GV = NewGV; 7416 CGM.getModule().getGlobalList().push_back(GV); 7417 } 7418 7419 assert(GV->getLinkage() == L); 7420 return GV; 7421 } 7422 7423 llvm::Constant * 7424 CGObjCNonFragileABIMac::GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID) { 7425 llvm::Constant *ClassGV = GetClassGlobal(ID, /*metaclass*/ false, 7426 NotForDefinition); 7427 7428 if (!ID->hasAttr<ObjCClassStubAttr>()) 7429 return ClassGV; 7430 7431 ClassGV = llvm::ConstantExpr::getPointerCast(ClassGV, ObjCTypes.Int8PtrTy); 7432 7433 // Stub classes are pointer-aligned. Classrefs pointing at stub classes 7434 // must set the least significant bit set to 1. 7435 auto *Idx = llvm::ConstantInt::get(CGM.Int32Ty, 1); 7436 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, ClassGV, Idx); 7437 } 7438 7439 llvm::Value * 7440 CGObjCNonFragileABIMac::EmitLoadOfClassRef(CodeGenFunction &CGF, 7441 const ObjCInterfaceDecl *ID, 7442 llvm::GlobalVariable *Entry) { 7443 if (ID && ID->hasAttr<ObjCClassStubAttr>()) { 7444 // Classrefs pointing at Objective-C stub classes must be loaded by calling 7445 // a special runtime function. 7446 return CGF.EmitRuntimeCall( 7447 ObjCTypes.getLoadClassrefFn(), Entry, "load_classref_result"); 7448 } 7449 7450 CharUnits Align = CGF.getPointerAlign(); 7451 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7452 } 7453 7454 llvm::Value * 7455 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 7456 IdentifierInfo *II, 7457 const ObjCInterfaceDecl *ID) { 7458 llvm::GlobalVariable *&Entry = ClassReferences[II]; 7459 7460 if (!Entry) { 7461 llvm::Constant *ClassGV; 7462 if (ID) { 7463 ClassGV = GetClassGlobalForClassRef(ID); 7464 } else { 7465 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(), 7466 NotForDefinition); 7467 assert(ClassGV->getType() == ObjCTypes.ClassnfABIPtrTy && 7468 "classref was emitted with the wrong type?"); 7469 } 7470 7471 std::string SectionName = 7472 GetSectionName("__objc_classrefs", "regular,no_dead_strip"); 7473 Entry = new llvm::GlobalVariable( 7474 CGM.getModule(), ClassGV->getType(), false, 7475 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7476 "OBJC_CLASSLIST_REFERENCES_$_"); 7477 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7478 if (!ID || !ID->hasAttr<ObjCClassStubAttr>()) 7479 Entry->setSection(SectionName); 7480 7481 CGM.addCompilerUsedGlobal(Entry); 7482 } 7483 7484 return EmitLoadOfClassRef(CGF, ID, Entry); 7485 } 7486 7487 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 7488 const ObjCInterfaceDecl *ID) { 7489 // If the class has the objc_runtime_visible attribute, we need to 7490 // use the Objective-C runtime to get the class. 7491 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 7492 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 7493 7494 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID); 7495 } 7496 7497 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 7498 CodeGenFunction &CGF) { 7499 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 7500 return EmitClassRefFromId(CGF, II, nullptr); 7501 } 7502 7503 llvm::Value * 7504 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 7505 const ObjCInterfaceDecl *ID) { 7506 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 7507 7508 if (!Entry) { 7509 llvm::Constant *ClassGV = GetClassGlobalForClassRef(ID); 7510 std::string SectionName = 7511 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7512 Entry = new llvm::GlobalVariable( 7513 CGM.getModule(), ClassGV->getType(), false, 7514 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV, 7515 "OBJC_CLASSLIST_SUP_REFS_$_"); 7516 Entry->setAlignment(CGF.getPointerAlign().getAsAlign()); 7517 Entry->setSection(SectionName); 7518 CGM.addCompilerUsedGlobal(Entry); 7519 } 7520 7521 return EmitLoadOfClassRef(CGF, ID, Entry); 7522 } 7523 7524 /// EmitMetaClassRef - Return a Value * of the address of _class_t 7525 /// meta-data 7526 /// 7527 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 7528 const ObjCInterfaceDecl *ID, 7529 bool Weak) { 7530 CharUnits Align = CGF.getPointerAlign(); 7531 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 7532 if (!Entry) { 7533 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition); 7534 std::string SectionName = 7535 GetSectionName("__objc_superrefs", "regular,no_dead_strip"); 7536 Entry = new llvm::GlobalVariable( 7537 CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, false, 7538 getLinkageTypeForObjCMetadata(CGM, SectionName), MetaClassGV, 7539 "OBJC_CLASSLIST_SUP_REFS_$_"); 7540 Entry->setAlignment(Align.getAsAlign()); 7541 Entry->setSection(SectionName); 7542 CGM.addCompilerUsedGlobal(Entry); 7543 } 7544 7545 return CGF.Builder.CreateAlignedLoad(Entry, Align); 7546 } 7547 7548 /// GetClass - Return a reference to the class for the given interface 7549 /// decl. 7550 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 7551 const ObjCInterfaceDecl *ID) { 7552 if (ID->isWeakImported()) { 7553 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition); 7554 (void)ClassGV; 7555 assert(!isa<llvm::GlobalVariable>(ClassGV) || 7556 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage()); 7557 } 7558 7559 return EmitClassRef(CGF, ID); 7560 } 7561 7562 /// Generates a message send where the super is the receiver. This is 7563 /// a message send to self with special delivery semantics indicating 7564 /// which class's method should be called. 7565 CodeGen::RValue 7566 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 7567 ReturnValueSlot Return, 7568 QualType ResultType, 7569 Selector Sel, 7570 const ObjCInterfaceDecl *Class, 7571 bool isCategoryImpl, 7572 llvm::Value *Receiver, 7573 bool IsClassMessage, 7574 const CodeGen::CallArgList &CallArgs, 7575 const ObjCMethodDecl *Method) { 7576 // ... 7577 // Create and init a super structure; this is a (receiver, class) 7578 // pair we will pass to objc_msgSendSuper. 7579 Address ObjCSuper = 7580 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7581 "objc_super"); 7582 7583 llvm::Value *ReceiverAsObject = 7584 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7585 CGF.Builder.CreateStore(ReceiverAsObject, 7586 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 7587 7588 // If this is a class message the metaclass is passed as the target. 7589 llvm::Value *Target; 7590 if (IsClassMessage) 7591 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7592 else 7593 Target = EmitSuperClassRef(CGF, Class); 7594 7595 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7596 // ObjCTypes types. 7597 llvm::Type *ClassTy = 7598 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7599 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7600 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 7601 7602 return (isVTableDispatchedSelector(Sel)) 7603 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7604 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7605 true, CallArgs, Method) 7606 : EmitMessageSend(CGF, Return, ResultType, Sel, 7607 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7608 true, CallArgs, Method, Class, ObjCTypes); 7609 } 7610 7611 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7612 Selector Sel) { 7613 Address Addr = EmitSelectorAddr(Sel); 7614 7615 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7616 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7617 llvm::MDNode::get(VMContext, None)); 7618 return LI; 7619 } 7620 7621 Address CGObjCNonFragileABIMac::EmitSelectorAddr(Selector Sel) { 7622 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7623 CharUnits Align = CGM.getPointerAlign(); 7624 if (!Entry) { 7625 llvm::Constant *Casted = 7626 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7627 ObjCTypes.SelectorPtrTy); 7628 std::string SectionName = 7629 GetSectionName("__objc_selrefs", "literal_pointers,no_dead_strip"); 7630 Entry = new llvm::GlobalVariable( 7631 CGM.getModule(), ObjCTypes.SelectorPtrTy, false, 7632 getLinkageTypeForObjCMetadata(CGM, SectionName), Casted, 7633 "OBJC_SELECTOR_REFERENCES_"); 7634 Entry->setExternallyInitialized(true); 7635 Entry->setSection(SectionName); 7636 Entry->setAlignment(Align.getAsAlign()); 7637 CGM.addCompilerUsedGlobal(Entry); 7638 } 7639 7640 return Address(Entry, Align); 7641 } 7642 7643 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7644 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7645 /// 7646 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7647 llvm::Value *src, 7648 Address dst, 7649 llvm::Value *ivarOffset) { 7650 llvm::Type * SrcTy = src->getType(); 7651 if (!isa<llvm::PointerType>(SrcTy)) { 7652 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7653 assert(Size <= 8 && "does not support size > 8"); 7654 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7655 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7656 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7657 } 7658 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7659 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7660 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 7661 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7662 } 7663 7664 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7665 /// objc_assign_strongCast (id src, id *dst) 7666 /// 7667 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7668 CodeGen::CodeGenFunction &CGF, 7669 llvm::Value *src, Address dst) { 7670 llvm::Type * SrcTy = src->getType(); 7671 if (!isa<llvm::PointerType>(SrcTy)) { 7672 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7673 assert(Size <= 8 && "does not support size > 8"); 7674 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7675 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7676 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7677 } 7678 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7679 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7680 llvm::Value *args[] = { src, dst.getPointer() }; 7681 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7682 args, "weakassign"); 7683 } 7684 7685 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7686 CodeGen::CodeGenFunction &CGF, 7687 Address DestPtr, 7688 Address SrcPtr, 7689 llvm::Value *Size) { 7690 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7691 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7692 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7693 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7694 } 7695 7696 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7697 /// object: objc_read_weak (id *src) 7698 /// 7699 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7700 CodeGen::CodeGenFunction &CGF, 7701 Address AddrWeakObj) { 7702 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7703 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7704 llvm::Value *read_weak = 7705 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7706 AddrWeakObj.getPointer(), "weakread"); 7707 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7708 return read_weak; 7709 } 7710 7711 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7712 /// objc_assign_weak (id src, id *dst) 7713 /// 7714 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7715 llvm::Value *src, Address dst) { 7716 llvm::Type * SrcTy = src->getType(); 7717 if (!isa<llvm::PointerType>(SrcTy)) { 7718 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7719 assert(Size <= 8 && "does not support size > 8"); 7720 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7721 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7722 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7723 } 7724 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7725 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7726 llvm::Value *args[] = { src, dst.getPointer() }; 7727 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7728 args, "weakassign"); 7729 } 7730 7731 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7732 /// objc_assign_global (id src, id *dst) 7733 /// 7734 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7735 llvm::Value *src, Address dst, 7736 bool threadlocal) { 7737 llvm::Type * SrcTy = src->getType(); 7738 if (!isa<llvm::PointerType>(SrcTy)) { 7739 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7740 assert(Size <= 8 && "does not support size > 8"); 7741 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7742 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7743 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7744 } 7745 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7746 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7747 llvm::Value *args[] = { src, dst.getPointer() }; 7748 if (!threadlocal) 7749 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7750 args, "globalassign"); 7751 else 7752 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7753 args, "threadlocalassign"); 7754 } 7755 7756 void 7757 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7758 const ObjCAtSynchronizedStmt &S) { 7759 EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(), 7760 ObjCTypes.getSyncExitFn()); 7761 } 7762 7763 llvm::Constant * 7764 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7765 // There's a particular fixed type info for 'id'. 7766 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) { 7767 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7768 if (!IDEHType) { 7769 IDEHType = 7770 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7771 llvm::GlobalValue::ExternalLinkage, nullptr, 7772 "OBJC_EHTYPE_id"); 7773 if (CGM.getTriple().isOSBinFormatCOFF()) 7774 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id")); 7775 } 7776 return IDEHType; 7777 } 7778 7779 // All other types should be Objective-C interface pointer types. 7780 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); 7781 assert(PT && "Invalid @catch type."); 7782 7783 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7784 assert(IT && "Invalid @catch type."); 7785 7786 return GetInterfaceEHType(IT->getDecl(), NotForDefinition); 7787 } 7788 7789 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7790 const ObjCAtTryStmt &S) { 7791 EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(), 7792 ObjCTypes.getObjCEndCatchFn(), 7793 ObjCTypes.getExceptionRethrowFn()); 7794 } 7795 7796 /// EmitThrowStmt - Generate code for a throw statement. 7797 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7798 const ObjCAtThrowStmt &S, 7799 bool ClearInsertionPoint) { 7800 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7801 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7802 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7803 llvm::CallBase *Call = 7804 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception); 7805 Call->setDoesNotReturn(); 7806 } else { 7807 llvm::CallBase *Call = 7808 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()); 7809 Call->setDoesNotReturn(); 7810 } 7811 7812 CGF.Builder.CreateUnreachable(); 7813 if (ClearInsertionPoint) 7814 CGF.Builder.ClearInsertionPoint(); 7815 } 7816 7817 llvm::Constant * 7818 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7819 ForDefinition_t IsForDefinition) { 7820 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7821 StringRef ClassName = ID->getObjCRuntimeNameAsString(); 7822 7823 // If we don't need a definition, return the entry if found or check 7824 // if we use an external reference. 7825 if (!IsForDefinition) { 7826 if (Entry) 7827 return Entry; 7828 7829 // If this type (or a super class) has the __objc_exception__ 7830 // attribute, emit an external reference. 7831 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) { 7832 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str(); 7833 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7834 false, llvm::GlobalValue::ExternalLinkage, 7835 nullptr, EHTypeName); 7836 CGM.setGVProperties(Entry, ID); 7837 return Entry; 7838 } 7839 } 7840 7841 // Otherwise we need to either make a new entry or fill in the initializer. 7842 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7843 7844 std::string VTableName = "objc_ehtype_vtable"; 7845 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName); 7846 if (!VTableGV) { 7847 VTableGV = 7848 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false, 7849 llvm::GlobalValue::ExternalLinkage, nullptr, 7850 VTableName); 7851 if (CGM.getTriple().isOSBinFormatCOFF()) 7852 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName)); 7853 } 7854 7855 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7856 ConstantInitBuilder builder(CGM); 7857 auto values = builder.beginStruct(ObjCTypes.EHTypeTy); 7858 values.add( 7859 llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(), 7860 VTableGV, VTableIdx)); 7861 values.add(GetClassName(ClassName)); 7862 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition)); 7863 7864 llvm::GlobalValue::LinkageTypes L = IsForDefinition 7865 ? llvm::GlobalValue::ExternalLinkage 7866 : llvm::GlobalValue::WeakAnyLinkage; 7867 if (Entry) { 7868 values.finishAndSetAsInitializer(Entry); 7869 Entry->setAlignment(CGM.getPointerAlign().getAsAlign()); 7870 } else { 7871 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName, 7872 CGM.getPointerAlign(), 7873 /*constant*/ false, 7874 L); 7875 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7876 CGM.setGVProperties(Entry, ID); 7877 } 7878 assert(Entry->getLinkage() == L); 7879 7880 if (!CGM.getTriple().isOSBinFormatCOFF()) 7881 if (ID->getVisibility() == HiddenVisibility) 7882 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7883 7884 if (IsForDefinition) 7885 if (CGM.getTriple().isOSBinFormatMachO()) 7886 Entry->setSection("__DATA,__objc_const"); 7887 7888 return Entry; 7889 } 7890 7891 /* *** */ 7892 7893 CodeGen::CGObjCRuntime * 7894 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7895 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7896 case ObjCRuntime::FragileMacOSX: 7897 return new CGObjCMac(CGM); 7898 7899 case ObjCRuntime::MacOSX: 7900 case ObjCRuntime::iOS: 7901 case ObjCRuntime::WatchOS: 7902 return new CGObjCNonFragileABIMac(CGM); 7903 7904 case ObjCRuntime::GNUstep: 7905 case ObjCRuntime::GCC: 7906 case ObjCRuntime::ObjFW: 7907 llvm_unreachable("these runtimes are not Mac runtimes"); 7908 } 7909 llvm_unreachable("bad runtime"); 7910 } 7911