xref: /openbsd/gnu/llvm/clang/lib/Sema/SemaDeclAttr.cpp (revision 73471bf0)
1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements decl-related attribute processing.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/Basic/CharInfo.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/DelayedDiagnostic.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/Support/MathExtras.h"
39 
40 using namespace clang;
41 using namespace sema;
42 
43 namespace AttributeLangSupport {
44   enum LANG {
45     C,
46     Cpp,
47     ObjC
48   };
49 } // end namespace AttributeLangSupport
50 
51 //===----------------------------------------------------------------------===//
52 //  Helper functions
53 //===----------------------------------------------------------------------===//
54 
55 /// isFunctionOrMethod - Return true if the given decl has function
56 /// type (function or function-typed variable) or an Objective-C
57 /// method.
58 static bool isFunctionOrMethod(const Decl *D) {
59   return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
60 }
61 
62 /// Return true if the given decl has function type (function or
63 /// function-typed variable) or an Objective-C method or a block.
64 static bool isFunctionOrMethodOrBlock(const Decl *D) {
65   return isFunctionOrMethod(D) || isa<BlockDecl>(D);
66 }
67 
68 /// Return true if the given decl has a declarator that should have
69 /// been processed by Sema::GetTypeForDeclarator.
70 static bool hasDeclarator(const Decl *D) {
71   // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
72   return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
73          isa<ObjCPropertyDecl>(D);
74 }
75 
76 /// hasFunctionProto - Return true if the given decl has a argument
77 /// information. This decl should have already passed
78 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
79 static bool hasFunctionProto(const Decl *D) {
80   if (const FunctionType *FnTy = D->getFunctionType())
81     return isa<FunctionProtoType>(FnTy);
82   return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
83 }
84 
85 /// getFunctionOrMethodNumParams - Return number of function or method
86 /// parameters. It is an error to call this on a K&R function (use
87 /// hasFunctionProto first).
88 static unsigned getFunctionOrMethodNumParams(const Decl *D) {
89   if (const FunctionType *FnTy = D->getFunctionType())
90     return cast<FunctionProtoType>(FnTy)->getNumParams();
91   if (const auto *BD = dyn_cast<BlockDecl>(D))
92     return BD->getNumParams();
93   return cast<ObjCMethodDecl>(D)->param_size();
94 }
95 
96 static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D,
97                                                    unsigned Idx) {
98   if (const auto *FD = dyn_cast<FunctionDecl>(D))
99     return FD->getParamDecl(Idx);
100   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
101     return MD->getParamDecl(Idx);
102   if (const auto *BD = dyn_cast<BlockDecl>(D))
103     return BD->getParamDecl(Idx);
104   return nullptr;
105 }
106 
107 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
108   if (const FunctionType *FnTy = D->getFunctionType())
109     return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
110   if (const auto *BD = dyn_cast<BlockDecl>(D))
111     return BD->getParamDecl(Idx)->getType();
112 
113   return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
114 }
115 
116 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
117   if (auto *PVD = getFunctionOrMethodParam(D, Idx))
118     return PVD->getSourceRange();
119   return SourceRange();
120 }
121 
122 static QualType getFunctionOrMethodResultType(const Decl *D) {
123   if (const FunctionType *FnTy = D->getFunctionType())
124     return FnTy->getReturnType();
125   return cast<ObjCMethodDecl>(D)->getReturnType();
126 }
127 
128 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
129   if (const auto *FD = dyn_cast<FunctionDecl>(D))
130     return FD->getReturnTypeSourceRange();
131   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
132     return MD->getReturnTypeSourceRange();
133   return SourceRange();
134 }
135 
136 static bool isFunctionOrMethodVariadic(const Decl *D) {
137   if (const FunctionType *FnTy = D->getFunctionType())
138     return cast<FunctionProtoType>(FnTy)->isVariadic();
139   if (const auto *BD = dyn_cast<BlockDecl>(D))
140     return BD->isVariadic();
141   return cast<ObjCMethodDecl>(D)->isVariadic();
142 }
143 
144 static bool isInstanceMethod(const Decl *D) {
145   if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D))
146     return MethodDecl->isInstance();
147   return false;
148 }
149 
150 static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
151   const auto *PT = T->getAs<ObjCObjectPointerType>();
152   if (!PT)
153     return false;
154 
155   ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
156   if (!Cls)
157     return false;
158 
159   IdentifierInfo* ClsName = Cls->getIdentifier();
160 
161   // FIXME: Should we walk the chain of classes?
162   return ClsName == &Ctx.Idents.get("NSString") ||
163          ClsName == &Ctx.Idents.get("NSMutableString");
164 }
165 
166 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
167   const auto *PT = T->getAs<PointerType>();
168   if (!PT)
169     return false;
170 
171   const auto *RT = PT->getPointeeType()->getAs<RecordType>();
172   if (!RT)
173     return false;
174 
175   const RecordDecl *RD = RT->getDecl();
176   if (RD->getTagKind() != TTK_Struct)
177     return false;
178 
179   return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
180 }
181 
182 static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
183   // FIXME: Include the type in the argument list.
184   return AL.getNumArgs() + AL.hasParsedType();
185 }
186 
187 template <typename Compare>
188 static bool checkAttributeNumArgsImpl(Sema &S, const ParsedAttr &AL,
189                                       unsigned Num, unsigned Diag,
190                                       Compare Comp) {
191   if (Comp(getNumAttributeArgs(AL), Num)) {
192     S.Diag(AL.getLoc(), Diag) << AL << Num;
193     return false;
194   }
195 
196   return true;
197 }
198 
199 /// Check if the attribute has exactly as many args as Num. May
200 /// output an error.
201 static bool checkAttributeNumArgs(Sema &S, const ParsedAttr &AL, unsigned Num) {
202   return checkAttributeNumArgsImpl(S, AL, Num,
203                                    diag::err_attribute_wrong_number_arguments,
204                                    std::not_equal_to<unsigned>());
205 }
206 
207 /// Check if the attribute has at least as many args as Num. May
208 /// output an error.
209 static bool checkAttributeAtLeastNumArgs(Sema &S, const ParsedAttr &AL,
210                                          unsigned Num) {
211   return checkAttributeNumArgsImpl(S, AL, Num,
212                                    diag::err_attribute_too_few_arguments,
213                                    std::less<unsigned>());
214 }
215 
216 /// Check if the attribute has at most as many args as Num. May
217 /// output an error.
218 static bool checkAttributeAtMostNumArgs(Sema &S, const ParsedAttr &AL,
219                                         unsigned Num) {
220   return checkAttributeNumArgsImpl(S, AL, Num,
221                                    diag::err_attribute_too_many_arguments,
222                                    std::greater<unsigned>());
223 }
224 
225 /// A helper function to provide Attribute Location for the Attr types
226 /// AND the ParsedAttr.
227 template <typename AttrInfo>
228 static std::enable_if_t<std::is_base_of<Attr, AttrInfo>::value, SourceLocation>
229 getAttrLoc(const AttrInfo &AL) {
230   return AL.getLocation();
231 }
232 static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); }
233 
234 /// If Expr is a valid integer constant, get the value of the integer
235 /// expression and return success or failure. May output an error.
236 ///
237 /// Negative argument is implicitly converted to unsigned, unless
238 /// \p StrictlyUnsigned is true.
239 template <typename AttrInfo>
240 static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr,
241                                 uint32_t &Val, unsigned Idx = UINT_MAX,
242                                 bool StrictlyUnsigned = false) {
243   llvm::APSInt I(32);
244   if (Expr->isTypeDependent() || Expr->isValueDependent() ||
245       !Expr->isIntegerConstantExpr(I, S.Context)) {
246     if (Idx != UINT_MAX)
247       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
248           << &AI << Idx << AANT_ArgumentIntegerConstant
249           << Expr->getSourceRange();
250     else
251       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
252           << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange();
253     return false;
254   }
255 
256   if (!I.isIntN(32)) {
257     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
258         << I.toString(10, false) << 32 << /* Unsigned */ 1;
259     return false;
260   }
261 
262   if (StrictlyUnsigned && I.isSigned() && I.isNegative()) {
263     S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer)
264         << &AI << /*non-negative*/ 1;
265     return false;
266   }
267 
268   Val = (uint32_t)I.getZExtValue();
269   return true;
270 }
271 
272 /// Wrapper around checkUInt32Argument, with an extra check to be sure
273 /// that the result will fit into a regular (signed) int. All args have the same
274 /// purpose as they do in checkUInt32Argument.
275 template <typename AttrInfo>
276 static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
277                                      int &Val, unsigned Idx = UINT_MAX) {
278   uint32_t UVal;
279   if (!checkUInt32Argument(S, AI, Expr, UVal, Idx))
280     return false;
281 
282   if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
283     llvm::APSInt I(32); // for toString
284     I = UVal;
285     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
286         << I.toString(10, false) << 32 << /* Unsigned */ 0;
287     return false;
288   }
289 
290   Val = UVal;
291   return true;
292 }
293 
294 /// Diagnose mutually exclusive attributes when present on a given
295 /// declaration. Returns true if diagnosed.
296 template <typename AttrTy>
297 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) {
298   if (const auto *A = D->getAttr<AttrTy>()) {
299     S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A;
300     S.Diag(A->getLocation(), diag::note_conflicting_attribute);
301     return true;
302   }
303   return false;
304 }
305 
306 template <typename AttrTy>
307 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) {
308   if (const auto *A = D->getAttr<AttrTy>()) {
309     S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL
310                                                                       << A;
311     S.Diag(A->getLocation(), diag::note_conflicting_attribute);
312     return true;
313   }
314   return false;
315 }
316 
317 /// Check if IdxExpr is a valid parameter index for a function or
318 /// instance method D.  May output an error.
319 ///
320 /// \returns true if IdxExpr is a valid index.
321 template <typename AttrInfo>
322 static bool checkFunctionOrMethodParameterIndex(
323     Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
324     const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) {
325   assert(isFunctionOrMethodOrBlock(D));
326 
327   // In C++ the implicit 'this' function parameter also counts.
328   // Parameters are counted from one.
329   bool HP = hasFunctionProto(D);
330   bool HasImplicitThisParam = isInstanceMethod(D);
331   bool IV = HP && isFunctionOrMethodVariadic(D);
332   unsigned NumParams =
333       (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
334 
335   llvm::APSInt IdxInt;
336   if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
337       !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
338     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
339         << &AI << AttrArgNum << AANT_ArgumentIntegerConstant
340         << IdxExpr->getSourceRange();
341     return false;
342   }
343 
344   unsigned IdxSource = IdxInt.getLimitedValue(UINT_MAX);
345   if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
346     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
347         << &AI << AttrArgNum << IdxExpr->getSourceRange();
348     return false;
349   }
350   if (HasImplicitThisParam && !CanIndexImplicitThis) {
351     if (IdxSource == 1) {
352       S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument)
353           << &AI << IdxExpr->getSourceRange();
354       return false;
355     }
356   }
357 
358   Idx = ParamIdx(IdxSource, D);
359   return true;
360 }
361 
362 /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
363 /// If not emit an error and return false. If the argument is an identifier it
364 /// will emit an error with a fixit hint and treat it as if it was a string
365 /// literal.
366 bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
367                                           StringRef &Str,
368                                           SourceLocation *ArgLocation) {
369   // Look for identifiers. If we have one emit a hint to fix it to a literal.
370   if (AL.isArgIdent(ArgNum)) {
371     IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
372     Diag(Loc->Loc, diag::err_attribute_argument_type)
373         << AL << AANT_ArgumentString
374         << FixItHint::CreateInsertion(Loc->Loc, "\"")
375         << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
376     Str = Loc->Ident->getName();
377     if (ArgLocation)
378       *ArgLocation = Loc->Loc;
379     return true;
380   }
381 
382   // Now check for an actual string literal.
383   Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
384   const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
385   if (ArgLocation)
386     *ArgLocation = ArgExpr->getBeginLoc();
387 
388   if (!Literal || !Literal->isAscii()) {
389     Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type)
390         << AL << AANT_ArgumentString;
391     return false;
392   }
393 
394   Str = Literal->getString();
395   return true;
396 }
397 
398 /// Applies the given attribute to the Decl without performing any
399 /// additional semantic checking.
400 template <typename AttrType>
401 static void handleSimpleAttribute(Sema &S, Decl *D,
402                                   const AttributeCommonInfo &CI) {
403   D->addAttr(::new (S.Context) AttrType(S.Context, CI));
404 }
405 
406 template <typename... DiagnosticArgs>
407 static const Sema::SemaDiagnosticBuilder&
408 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) {
409   return Bldr;
410 }
411 
412 template <typename T, typename... DiagnosticArgs>
413 static const Sema::SemaDiagnosticBuilder&
414 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg,
415                   DiagnosticArgs &&... ExtraArgs) {
416   return appendDiagnostics(Bldr << std::forward<T>(ExtraArg),
417                            std::forward<DiagnosticArgs>(ExtraArgs)...);
418 }
419 
420 /// Add an attribute {@code AttrType} to declaration {@code D}, provided that
421 /// {@code PassesCheck} is true.
422 /// Otherwise, emit diagnostic {@code DiagID}, passing in all parameters
423 /// specified in {@code ExtraArgs}.
424 template <typename AttrType, typename... DiagnosticArgs>
425 static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D,
426                                             const AttributeCommonInfo &CI,
427                                             bool PassesCheck, unsigned DiagID,
428                                             DiagnosticArgs &&... ExtraArgs) {
429   if (!PassesCheck) {
430     Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID);
431     appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...);
432     return;
433   }
434   handleSimpleAttribute<AttrType>(S, D, CI);
435 }
436 
437 template <typename AttrType>
438 static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
439                                                 const ParsedAttr &AL) {
440   handleSimpleAttribute<AttrType>(S, D, AL);
441 }
442 
443 /// Applies the given attribute to the Decl so long as the Decl doesn't
444 /// already have one of the given incompatible attributes.
445 template <typename AttrType, typename IncompatibleAttrType,
446           typename... IncompatibleAttrTypes>
447 static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
448                                                 const ParsedAttr &AL) {
449   if (checkAttrMutualExclusion<IncompatibleAttrType>(S, D, AL))
450     return;
451   handleSimpleAttributeWithExclusions<AttrType, IncompatibleAttrTypes...>(S, D,
452                                                                           AL);
453 }
454 
455 /// Check if the passed-in expression is of type int or bool.
456 static bool isIntOrBool(Expr *Exp) {
457   QualType QT = Exp->getType();
458   return QT->isBooleanType() || QT->isIntegerType();
459 }
460 
461 
462 // Check to see if the type is a smart pointer of some kind.  We assume
463 // it's a smart pointer if it defines both operator-> and operator*.
464 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
465   auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
466                                           OverloadedOperatorKind Op) {
467     DeclContextLookupResult Result =
468         Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op));
469     return !Result.empty();
470   };
471 
472   const RecordDecl *Record = RT->getDecl();
473   bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
474   bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
475   if (foundStarOperator && foundArrowOperator)
476     return true;
477 
478   const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
479   if (!CXXRecord)
480     return false;
481 
482   for (auto BaseSpecifier : CXXRecord->bases()) {
483     if (!foundStarOperator)
484       foundStarOperator = IsOverloadedOperatorPresent(
485           BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
486     if (!foundArrowOperator)
487       foundArrowOperator = IsOverloadedOperatorPresent(
488           BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
489   }
490 
491   if (foundStarOperator && foundArrowOperator)
492     return true;
493 
494   return false;
495 }
496 
497 /// Check if passed in Decl is a pointer type.
498 /// Note that this function may produce an error message.
499 /// \return true if the Decl is a pointer type; false otherwise
500 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
501                                        const ParsedAttr &AL) {
502   const auto *VD = cast<ValueDecl>(D);
503   QualType QT = VD->getType();
504   if (QT->isAnyPointerType())
505     return true;
506 
507   if (const auto *RT = QT->getAs<RecordType>()) {
508     // If it's an incomplete type, it could be a smart pointer; skip it.
509     // (We don't want to force template instantiation if we can avoid it,
510     // since that would alter the order in which templates are instantiated.)
511     if (RT->isIncompleteType())
512       return true;
513 
514     if (threadSafetyCheckIsSmartPointer(S, RT))
515       return true;
516   }
517 
518   S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
519   return false;
520 }
521 
522 /// Checks that the passed in QualType either is of RecordType or points
523 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
524 static const RecordType *getRecordType(QualType QT) {
525   if (const auto *RT = QT->getAs<RecordType>())
526     return RT;
527 
528   // Now check if we point to record type.
529   if (const auto *PT = QT->getAs<PointerType>())
530     return PT->getPointeeType()->getAs<RecordType>();
531 
532   return nullptr;
533 }
534 
535 template <typename AttrType>
536 static bool checkRecordDeclForAttr(const RecordDecl *RD) {
537   // Check if the record itself has the attribute.
538   if (RD->hasAttr<AttrType>())
539     return true;
540 
541   // Else check if any base classes have the attribute.
542   if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
543     CXXBasePaths BPaths(false, false);
544     if (CRD->lookupInBases(
545             [](const CXXBaseSpecifier *BS, CXXBasePath &) {
546               const auto &Ty = *BS->getType();
547               // If it's type-dependent, we assume it could have the attribute.
548               if (Ty.isDependentType())
549                 return true;
550               return Ty.castAs<RecordType>()->getDecl()->hasAttr<AttrType>();
551             },
552             BPaths, true))
553       return true;
554   }
555   return false;
556 }
557 
558 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
559   const RecordType *RT = getRecordType(Ty);
560 
561   if (!RT)
562     return false;
563 
564   // Don't check for the capability if the class hasn't been defined yet.
565   if (RT->isIncompleteType())
566     return true;
567 
568   // Allow smart pointers to be used as capability objects.
569   // FIXME -- Check the type that the smart pointer points to.
570   if (threadSafetyCheckIsSmartPointer(S, RT))
571     return true;
572 
573   return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl());
574 }
575 
576 static bool checkTypedefTypeForCapability(QualType Ty) {
577   const auto *TD = Ty->getAs<TypedefType>();
578   if (!TD)
579     return false;
580 
581   TypedefNameDecl *TN = TD->getDecl();
582   if (!TN)
583     return false;
584 
585   return TN->hasAttr<CapabilityAttr>();
586 }
587 
588 static bool typeHasCapability(Sema &S, QualType Ty) {
589   if (checkTypedefTypeForCapability(Ty))
590     return true;
591 
592   if (checkRecordTypeForCapability(S, Ty))
593     return true;
594 
595   return false;
596 }
597 
598 static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
599   // Capability expressions are simple expressions involving the boolean logic
600   // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
601   // a DeclRefExpr is found, its type should be checked to determine whether it
602   // is a capability or not.
603 
604   if (const auto *E = dyn_cast<CastExpr>(Ex))
605     return isCapabilityExpr(S, E->getSubExpr());
606   else if (const auto *E = dyn_cast<ParenExpr>(Ex))
607     return isCapabilityExpr(S, E->getSubExpr());
608   else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
609     if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
610         E->getOpcode() == UO_Deref)
611       return isCapabilityExpr(S, E->getSubExpr());
612     return false;
613   } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
614     if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
615       return isCapabilityExpr(S, E->getLHS()) &&
616              isCapabilityExpr(S, E->getRHS());
617     return false;
618   }
619 
620   return typeHasCapability(S, Ex->getType());
621 }
622 
623 /// Checks that all attribute arguments, starting from Sidx, resolve to
624 /// a capability object.
625 /// \param Sidx The attribute argument index to start checking with.
626 /// \param ParamIdxOk Whether an argument can be indexing into a function
627 /// parameter list.
628 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
629                                            const ParsedAttr &AL,
630                                            SmallVectorImpl<Expr *> &Args,
631                                            unsigned Sidx = 0,
632                                            bool ParamIdxOk = false) {
633   if (Sidx == AL.getNumArgs()) {
634     // If we don't have any capability arguments, the attribute implicitly
635     // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
636     // a non-static method, and that the class is a (scoped) capability.
637     const auto *MD = dyn_cast<const CXXMethodDecl>(D);
638     if (MD && !MD->isStatic()) {
639       const CXXRecordDecl *RD = MD->getParent();
640       // FIXME -- need to check this again on template instantiation
641       if (!checkRecordDeclForAttr<CapabilityAttr>(RD) &&
642           !checkRecordDeclForAttr<ScopedLockableAttr>(RD))
643         S.Diag(AL.getLoc(),
644                diag::warn_thread_attribute_not_on_capability_member)
645             << AL << MD->getParent();
646     } else {
647       S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
648           << AL;
649     }
650   }
651 
652   for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
653     Expr *ArgExp = AL.getArgAsExpr(Idx);
654 
655     if (ArgExp->isTypeDependent()) {
656       // FIXME -- need to check this again on template instantiation
657       Args.push_back(ArgExp);
658       continue;
659     }
660 
661     if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
662       if (StrLit->getLength() == 0 ||
663           (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
664         // Pass empty strings to the analyzer without warnings.
665         // Treat "*" as the universal lock.
666         Args.push_back(ArgExp);
667         continue;
668       }
669 
670       // We allow constant strings to be used as a placeholder for expressions
671       // that are not valid C++ syntax, but warn that they are ignored.
672       S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
673       Args.push_back(ArgExp);
674       continue;
675     }
676 
677     QualType ArgTy = ArgExp->getType();
678 
679     // A pointer to member expression of the form  &MyClass::mu is treated
680     // specially -- we need to look at the type of the member.
681     if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
682       if (UOp->getOpcode() == UO_AddrOf)
683         if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
684           if (DRE->getDecl()->isCXXInstanceMember())
685             ArgTy = DRE->getDecl()->getType();
686 
687     // First see if we can just cast to record type, or pointer to record type.
688     const RecordType *RT = getRecordType(ArgTy);
689 
690     // Now check if we index into a record type function param.
691     if(!RT && ParamIdxOk) {
692       const auto *FD = dyn_cast<FunctionDecl>(D);
693       const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
694       if(FD && IL) {
695         unsigned int NumParams = FD->getNumParams();
696         llvm::APInt ArgValue = IL->getValue();
697         uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
698         uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
699         if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
700           S.Diag(AL.getLoc(),
701                  diag::err_attribute_argument_out_of_bounds_extra_info)
702               << AL << Idx + 1 << NumParams;
703           continue;
704         }
705         ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
706       }
707     }
708 
709     // If the type does not have a capability, see if the components of the
710     // expression have capabilities. This allows for writing C code where the
711     // capability may be on the type, and the expression is a capability
712     // boolean logic expression. Eg) requires_capability(A || B && !C)
713     if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
714       S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
715           << AL << ArgTy;
716 
717     Args.push_back(ArgExp);
718   }
719 }
720 
721 //===----------------------------------------------------------------------===//
722 // Attribute Implementations
723 //===----------------------------------------------------------------------===//
724 
725 static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
726   if (!threadSafetyCheckIsPointer(S, D, AL))
727     return;
728 
729   D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
730 }
731 
732 static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
733                                      Expr *&Arg) {
734   SmallVector<Expr *, 1> Args;
735   // check that all arguments are lockable objects
736   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
737   unsigned Size = Args.size();
738   if (Size != 1)
739     return false;
740 
741   Arg = Args[0];
742 
743   return true;
744 }
745 
746 static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
747   Expr *Arg = nullptr;
748   if (!checkGuardedByAttrCommon(S, D, AL, Arg))
749     return;
750 
751   D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
752 }
753 
754 static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
755   Expr *Arg = nullptr;
756   if (!checkGuardedByAttrCommon(S, D, AL, Arg))
757     return;
758 
759   if (!threadSafetyCheckIsPointer(S, D, AL))
760     return;
761 
762   D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
763 }
764 
765 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
766                                         SmallVectorImpl<Expr *> &Args) {
767   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
768     return false;
769 
770   // Check that this attribute only applies to lockable types.
771   QualType QT = cast<ValueDecl>(D)->getType();
772   if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
773     S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
774     return false;
775   }
776 
777   // Check that all arguments are lockable objects.
778   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
779   if (Args.empty())
780     return false;
781 
782   return true;
783 }
784 
785 static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
786   SmallVector<Expr *, 1> Args;
787   if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
788     return;
789 
790   Expr **StartArg = &Args[0];
791   D->addAttr(::new (S.Context)
792                  AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
793 }
794 
795 static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
796   SmallVector<Expr *, 1> Args;
797   if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
798     return;
799 
800   Expr **StartArg = &Args[0];
801   D->addAttr(::new (S.Context)
802                  AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
803 }
804 
805 static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
806                                    SmallVectorImpl<Expr *> &Args) {
807   // zero or more arguments ok
808   // check that all arguments are lockable objects
809   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
810 
811   return true;
812 }
813 
814 static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
815   SmallVector<Expr *, 1> Args;
816   if (!checkLockFunAttrCommon(S, D, AL, Args))
817     return;
818 
819   unsigned Size = Args.size();
820   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
821   D->addAttr(::new (S.Context)
822                  AssertSharedLockAttr(S.Context, AL, StartArg, Size));
823 }
824 
825 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
826                                           const ParsedAttr &AL) {
827   SmallVector<Expr *, 1> Args;
828   if (!checkLockFunAttrCommon(S, D, AL, Args))
829     return;
830 
831   unsigned Size = Args.size();
832   Expr **StartArg = Size == 0 ? nullptr : &Args[0];
833   D->addAttr(::new (S.Context)
834                  AssertExclusiveLockAttr(S.Context, AL, StartArg, Size));
835 }
836 
837 /// Checks to be sure that the given parameter number is in bounds, and
838 /// is an integral type. Will emit appropriate diagnostics if this returns
839 /// false.
840 ///
841 /// AttrArgNo is used to actually retrieve the argument, so it's base-0.
842 template <typename AttrInfo>
843 static bool checkParamIsIntegerType(Sema &S, const FunctionDecl *FD,
844                                     const AttrInfo &AI, unsigned AttrArgNo) {
845   assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
846   Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
847   ParamIdx Idx;
848   if (!checkFunctionOrMethodParameterIndex(S, FD, AI, AttrArgNo + 1, AttrArg,
849                                            Idx))
850     return false;
851 
852   const ParmVarDecl *Param = FD->getParamDecl(Idx.getASTIndex());
853   if (!Param->getType()->isIntegerType() && !Param->getType()->isCharType()) {
854     SourceLocation SrcLoc = AttrArg->getBeginLoc();
855     S.Diag(SrcLoc, diag::err_attribute_integers_only)
856         << AI << Param->getSourceRange();
857     return false;
858   }
859   return true;
860 }
861 
862 static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
863   if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
864       !checkAttributeAtMostNumArgs(S, AL, 2))
865     return;
866 
867   const auto *FD = cast<FunctionDecl>(D);
868   if (!FD->getReturnType()->isPointerType()) {
869     S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
870     return;
871   }
872 
873   const Expr *SizeExpr = AL.getArgAsExpr(0);
874   int SizeArgNoVal;
875   // Parameter indices are 1-indexed, hence Index=1
876   if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
877     return;
878   if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/0))
879     return;
880   ParamIdx SizeArgNo(SizeArgNoVal, D);
881 
882   ParamIdx NumberArgNo;
883   if (AL.getNumArgs() == 2) {
884     const Expr *NumberExpr = AL.getArgAsExpr(1);
885     int Val;
886     // Parameter indices are 1-based, hence Index=2
887     if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
888       return;
889     if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/1))
890       return;
891     NumberArgNo = ParamIdx(Val, D);
892   }
893 
894   D->addAttr(::new (S.Context)
895                  AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
896 }
897 
898 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
899                                       SmallVectorImpl<Expr *> &Args) {
900   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
901     return false;
902 
903   if (!isIntOrBool(AL.getArgAsExpr(0))) {
904     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
905         << AL << 1 << AANT_ArgumentIntOrBool;
906     return false;
907   }
908 
909   // check that all arguments are lockable objects
910   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
911 
912   return true;
913 }
914 
915 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
916                                             const ParsedAttr &AL) {
917   SmallVector<Expr*, 2> Args;
918   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
919     return;
920 
921   D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(
922       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
923 }
924 
925 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
926                                                const ParsedAttr &AL) {
927   SmallVector<Expr*, 2> Args;
928   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
929     return;
930 
931   D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
932       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
933 }
934 
935 static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
936   // check that the argument is lockable object
937   SmallVector<Expr*, 1> Args;
938   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
939   unsigned Size = Args.size();
940   if (Size == 0)
941     return;
942 
943   D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
944 }
945 
946 static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
947   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
948     return;
949 
950   // check that all arguments are lockable objects
951   SmallVector<Expr*, 1> Args;
952   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
953   unsigned Size = Args.size();
954   if (Size == 0)
955     return;
956   Expr **StartArg = &Args[0];
957 
958   D->addAttr(::new (S.Context)
959                  LocksExcludedAttr(S.Context, AL, StartArg, Size));
960 }
961 
962 static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
963                                        Expr *&Cond, StringRef &Msg) {
964   Cond = AL.getArgAsExpr(0);
965   if (!Cond->isTypeDependent()) {
966     ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
967     if (Converted.isInvalid())
968       return false;
969     Cond = Converted.get();
970   }
971 
972   if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
973     return false;
974 
975   if (Msg.empty())
976     Msg = "<no message provided>";
977 
978   SmallVector<PartialDiagnosticAt, 8> Diags;
979   if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
980       !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
981                                                 Diags)) {
982     S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
983     for (const PartialDiagnosticAt &PDiag : Diags)
984       S.Diag(PDiag.first, PDiag.second);
985     return false;
986   }
987   return true;
988 }
989 
990 static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
991   S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
992 
993   Expr *Cond;
994   StringRef Msg;
995   if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
996     D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
997 }
998 
999 namespace {
1000 /// Determines if a given Expr references any of the given function's
1001 /// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
1002 class ArgumentDependenceChecker
1003     : public RecursiveASTVisitor<ArgumentDependenceChecker> {
1004 #ifndef NDEBUG
1005   const CXXRecordDecl *ClassType;
1006 #endif
1007   llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
1008   bool Result;
1009 
1010 public:
1011   ArgumentDependenceChecker(const FunctionDecl *FD) {
1012 #ifndef NDEBUG
1013     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1014       ClassType = MD->getParent();
1015     else
1016       ClassType = nullptr;
1017 #endif
1018     Parms.insert(FD->param_begin(), FD->param_end());
1019   }
1020 
1021   bool referencesArgs(Expr *E) {
1022     Result = false;
1023     TraverseStmt(E);
1024     return Result;
1025   }
1026 
1027   bool VisitCXXThisExpr(CXXThisExpr *E) {
1028     assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
1029            "`this` doesn't refer to the enclosing class?");
1030     Result = true;
1031     return false;
1032   }
1033 
1034   bool VisitDeclRefExpr(DeclRefExpr *DRE) {
1035     if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
1036       if (Parms.count(PVD)) {
1037         Result = true;
1038         return false;
1039       }
1040     return true;
1041   }
1042 };
1043 }
1044 
1045 static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1046   S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
1047 
1048   Expr *Cond;
1049   StringRef Msg;
1050   if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
1051     return;
1052 
1053   StringRef DiagTypeStr;
1054   if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr))
1055     return;
1056 
1057   DiagnoseIfAttr::DiagnosticType DiagType;
1058   if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
1059     S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
1060            diag::err_diagnose_if_invalid_diagnostic_type);
1061     return;
1062   }
1063 
1064   bool ArgDependent = false;
1065   if (const auto *FD = dyn_cast<FunctionDecl>(D))
1066     ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
1067   D->addAttr(::new (S.Context) DiagnoseIfAttr(
1068       S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D)));
1069 }
1070 
1071 static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1072   static constexpr const StringRef kWildcard = "*";
1073 
1074   llvm::SmallVector<StringRef, 16> Names;
1075   bool HasWildcard = false;
1076 
1077   const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
1078     if (Name == kWildcard)
1079       HasWildcard = true;
1080     Names.push_back(Name);
1081   };
1082 
1083   // Add previously defined attributes.
1084   if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
1085     for (StringRef BuiltinName : NBA->builtinNames())
1086       AddBuiltinName(BuiltinName);
1087 
1088   // Add current attributes.
1089   if (AL.getNumArgs() == 0)
1090     AddBuiltinName(kWildcard);
1091   else
1092     for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
1093       StringRef BuiltinName;
1094       SourceLocation LiteralLoc;
1095       if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
1096         return;
1097 
1098       if (Builtin::Context::isBuiltinFunc(BuiltinName))
1099         AddBuiltinName(BuiltinName);
1100       else
1101         S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
1102             << BuiltinName << AL;
1103     }
1104 
1105   // Repeating the same attribute is fine.
1106   llvm::sort(Names);
1107   Names.erase(std::unique(Names.begin(), Names.end()), Names.end());
1108 
1109   // Empty no_builtin must be on its own.
1110   if (HasWildcard && Names.size() > 1)
1111     S.Diag(D->getLocation(),
1112            diag::err_attribute_no_builtin_wildcard_or_builtin_name)
1113         << AL;
1114 
1115   if (D->hasAttr<NoBuiltinAttr>())
1116     D->dropAttr<NoBuiltinAttr>();
1117   D->addAttr(::new (S.Context)
1118                  NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
1119 }
1120 
1121 static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1122   if (D->hasAttr<PassObjectSizeAttr>()) {
1123     S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
1124     return;
1125   }
1126 
1127   Expr *E = AL.getArgAsExpr(0);
1128   uint32_t Type;
1129   if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1))
1130     return;
1131 
1132   // pass_object_size's argument is passed in as the second argument of
1133   // __builtin_object_size. So, it has the same constraints as that second
1134   // argument; namely, it must be in the range [0, 3].
1135   if (Type > 3) {
1136     S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
1137         << AL << 0 << 3 << E->getSourceRange();
1138     return;
1139   }
1140 
1141   // pass_object_size is only supported on constant pointer parameters; as a
1142   // kindness to users, we allow the parameter to be non-const for declarations.
1143   // At this point, we have no clue if `D` belongs to a function declaration or
1144   // definition, so we defer the constness check until later.
1145   if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
1146     S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
1147     return;
1148   }
1149 
1150   D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
1151 }
1152 
1153 static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1154   ConsumableAttr::ConsumedState DefaultState;
1155 
1156   if (AL.isArgIdent(0)) {
1157     IdentifierLoc *IL = AL.getArgAsIdent(0);
1158     if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1159                                                    DefaultState)) {
1160       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1161                                                                << IL->Ident;
1162       return;
1163     }
1164   } else {
1165     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1166         << AL << AANT_ArgumentIdentifier;
1167     return;
1168   }
1169 
1170   D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
1171 }
1172 
1173 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
1174                                     const ParsedAttr &AL) {
1175   QualType ThisType = MD->getThisType()->getPointeeType();
1176 
1177   if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
1178     if (!RD->hasAttr<ConsumableAttr>()) {
1179       S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD;
1180 
1181       return false;
1182     }
1183   }
1184 
1185   return true;
1186 }
1187 
1188 static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1189   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
1190     return;
1191 
1192   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1193     return;
1194 
1195   SmallVector<CallableWhenAttr::ConsumedState, 3> States;
1196   for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
1197     CallableWhenAttr::ConsumedState CallableState;
1198 
1199     StringRef StateString;
1200     SourceLocation Loc;
1201     if (AL.isArgIdent(ArgIndex)) {
1202       IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
1203       StateString = Ident->Ident->getName();
1204       Loc = Ident->Loc;
1205     } else {
1206       if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
1207         return;
1208     }
1209 
1210     if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
1211                                                      CallableState)) {
1212       S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
1213       return;
1214     }
1215 
1216     States.push_back(CallableState);
1217   }
1218 
1219   D->addAttr(::new (S.Context)
1220                  CallableWhenAttr(S.Context, AL, States.data(), States.size()));
1221 }
1222 
1223 static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1224   ParamTypestateAttr::ConsumedState ParamState;
1225 
1226   if (AL.isArgIdent(0)) {
1227     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1228     StringRef StateString = Ident->Ident->getName();
1229 
1230     if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
1231                                                        ParamState)) {
1232       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1233           << AL << StateString;
1234       return;
1235     }
1236   } else {
1237     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1238         << AL << AANT_ArgumentIdentifier;
1239     return;
1240   }
1241 
1242   // FIXME: This check is currently being done in the analysis.  It can be
1243   //        enabled here only after the parser propagates attributes at
1244   //        template specialization definition, not declaration.
1245   //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
1246   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1247   //
1248   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1249   //    S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1250   //      ReturnType.getAsString();
1251   //    return;
1252   //}
1253 
1254   D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
1255 }
1256 
1257 static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1258   ReturnTypestateAttr::ConsumedState ReturnState;
1259 
1260   if (AL.isArgIdent(0)) {
1261     IdentifierLoc *IL = AL.getArgAsIdent(0);
1262     if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1263                                                         ReturnState)) {
1264       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1265                                                                << IL->Ident;
1266       return;
1267     }
1268   } else {
1269     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1270         << AL << AANT_ArgumentIdentifier;
1271     return;
1272   }
1273 
1274   // FIXME: This check is currently being done in the analysis.  It can be
1275   //        enabled here only after the parser propagates attributes at
1276   //        template specialization definition, not declaration.
1277   //QualType ReturnType;
1278   //
1279   //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
1280   //  ReturnType = Param->getType();
1281   //
1282   //} else if (const CXXConstructorDecl *Constructor =
1283   //             dyn_cast<CXXConstructorDecl>(D)) {
1284   //  ReturnType = Constructor->getThisType()->getPointeeType();
1285   //
1286   //} else {
1287   //
1288   //  ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1289   //}
1290   //
1291   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1292   //
1293   //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1294   //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1295   //      ReturnType.getAsString();
1296   //    return;
1297   //}
1298 
1299   D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
1300 }
1301 
1302 static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1303   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1304     return;
1305 
1306   SetTypestateAttr::ConsumedState NewState;
1307   if (AL.isArgIdent(0)) {
1308     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1309     StringRef Param = Ident->Ident->getName();
1310     if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1311       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1312                                                                   << Param;
1313       return;
1314     }
1315   } else {
1316     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1317         << AL << AANT_ArgumentIdentifier;
1318     return;
1319   }
1320 
1321   D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
1322 }
1323 
1324 static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1325   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1326     return;
1327 
1328   TestTypestateAttr::ConsumedState TestState;
1329   if (AL.isArgIdent(0)) {
1330     IdentifierLoc *Ident = AL.getArgAsIdent(0);
1331     StringRef Param = Ident->Ident->getName();
1332     if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1333       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1334                                                                   << Param;
1335       return;
1336     }
1337   } else {
1338     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1339         << AL << AANT_ArgumentIdentifier;
1340     return;
1341   }
1342 
1343   D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
1344 }
1345 
1346 static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1347   // Remember this typedef decl, we will need it later for diagnostics.
1348   S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
1349 }
1350 
1351 static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1352   if (auto *TD = dyn_cast<TagDecl>(D))
1353     TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1354   else if (auto *FD = dyn_cast<FieldDecl>(D)) {
1355     bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
1356                                 !FD->getType()->isIncompleteType() &&
1357                                 FD->isBitField() &&
1358                                 S.Context.getTypeAlign(FD->getType()) <= 8);
1359 
1360     if (S.getASTContext().getTargetInfo().getTriple().isPS4()) {
1361       if (BitfieldByteAligned)
1362         // The PS4 target needs to maintain ABI backwards compatibility.
1363         S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1364             << AL << FD->getType();
1365       else
1366         FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1367     } else {
1368       // Report warning about changed offset in the newer compiler versions.
1369       if (BitfieldByteAligned)
1370         S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
1371 
1372       FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1373     }
1374 
1375   } else
1376     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
1377 }
1378 
1379 static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) {
1380   // The IBOutlet/IBOutletCollection attributes only apply to instance
1381   // variables or properties of Objective-C classes.  The outlet must also
1382   // have an object reference type.
1383   if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) {
1384     if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1385       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1386           << AL << VD->getType() << 0;
1387       return false;
1388     }
1389   }
1390   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1391     if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1392       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1393           << AL << PD->getType() << 1;
1394       return false;
1395     }
1396   }
1397   else {
1398     S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL;
1399     return false;
1400   }
1401 
1402   return true;
1403 }
1404 
1405 static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) {
1406   if (!checkIBOutletCommon(S, D, AL))
1407     return;
1408 
1409   D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL));
1410 }
1411 
1412 static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) {
1413 
1414   // The iboutletcollection attribute can have zero or one arguments.
1415   if (AL.getNumArgs() > 1) {
1416     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1417     return;
1418   }
1419 
1420   if (!checkIBOutletCommon(S, D, AL))
1421     return;
1422 
1423   ParsedType PT;
1424 
1425   if (AL.hasParsedType())
1426     PT = AL.getTypeArg();
1427   else {
1428     PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(),
1429                        S.getScopeForContext(D->getDeclContext()->getParent()));
1430     if (!PT) {
1431       S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
1432       return;
1433     }
1434   }
1435 
1436   TypeSourceInfo *QTLoc = nullptr;
1437   QualType QT = S.GetTypeFromParser(PT, &QTLoc);
1438   if (!QTLoc)
1439     QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc());
1440 
1441   // Diagnose use of non-object type in iboutletcollection attribute.
1442   // FIXME. Gnu attribute extension ignores use of builtin types in
1443   // attributes. So, __attribute__((iboutletcollection(char))) will be
1444   // treated as __attribute__((iboutletcollection())).
1445   if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1446     S.Diag(AL.getLoc(),
1447            QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
1448                                : diag::err_iboutletcollection_type) << QT;
1449     return;
1450   }
1451 
1452   D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc));
1453 }
1454 
1455 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
1456   if (RefOkay) {
1457     if (T->isReferenceType())
1458       return true;
1459   } else {
1460     T = T.getNonReferenceType();
1461   }
1462 
1463   // The nonnull attribute, and other similar attributes, can be applied to a
1464   // transparent union that contains a pointer type.
1465   if (const RecordType *UT = T->getAsUnionType()) {
1466     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1467       RecordDecl *UD = UT->getDecl();
1468       for (const auto *I : UD->fields()) {
1469         QualType QT = I->getType();
1470         if (QT->isAnyPointerType() || QT->isBlockPointerType())
1471           return true;
1472       }
1473     }
1474   }
1475 
1476   return T->isAnyPointerType() || T->isBlockPointerType();
1477 }
1478 
1479 static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
1480                                 SourceRange AttrParmRange,
1481                                 SourceRange TypeRange,
1482                                 bool isReturnValue = false) {
1483   if (!S.isValidPointerAttrType(T)) {
1484     if (isReturnValue)
1485       S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1486           << AL << AttrParmRange << TypeRange;
1487     else
1488       S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1489           << AL << AttrParmRange << TypeRange << 0;
1490     return false;
1491   }
1492   return true;
1493 }
1494 
1495 static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1496   SmallVector<ParamIdx, 8> NonNullArgs;
1497   for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
1498     Expr *Ex = AL.getArgAsExpr(I);
1499     ParamIdx Idx;
1500     if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx))
1501       return;
1502 
1503     // Is the function argument a pointer type?
1504     if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) &&
1505         !attrNonNullArgCheck(
1506             S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL,
1507             Ex->getSourceRange(),
1508             getFunctionOrMethodParamRange(D, Idx.getASTIndex())))
1509       continue;
1510 
1511     NonNullArgs.push_back(Idx);
1512   }
1513 
1514   // If no arguments were specified to __attribute__((nonnull)) then all pointer
1515   // arguments have a nonnull attribute; warn if there aren't any. Skip this
1516   // check if the attribute came from a macro expansion or a template
1517   // instantiation.
1518   if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
1519       !S.inTemplateInstantiation()) {
1520     bool AnyPointers = isFunctionOrMethodVariadic(D);
1521     for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1522          I != E && !AnyPointers; ++I) {
1523       QualType T = getFunctionOrMethodParamType(D, I);
1524       if (T->isDependentType() || S.isValidPointerAttrType(T))
1525         AnyPointers = true;
1526     }
1527 
1528     if (!AnyPointers)
1529       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1530   }
1531 
1532   ParamIdx *Start = NonNullArgs.data();
1533   unsigned Size = NonNullArgs.size();
1534   llvm::array_pod_sort(Start, Start + Size);
1535   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
1536 }
1537 
1538 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
1539                                        const ParsedAttr &AL) {
1540   if (AL.getNumArgs() > 0) {
1541     if (D->getFunctionType()) {
1542       handleNonNullAttr(S, D, AL);
1543     } else {
1544       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1545         << D->getSourceRange();
1546     }
1547     return;
1548   }
1549 
1550   // Is the argument a pointer type?
1551   if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
1552                            D->getSourceRange()))
1553     return;
1554 
1555   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
1556 }
1557 
1558 static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1559   QualType ResultType = getFunctionOrMethodResultType(D);
1560   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1561   if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
1562                            /* isReturnValue */ true))
1563     return;
1564 
1565   D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
1566 }
1567 
1568 static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1569   if (D->isInvalidDecl())
1570     return;
1571 
1572   // noescape only applies to pointer types.
1573   QualType T = cast<ParmVarDecl>(D)->getType();
1574   if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
1575     S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1576         << AL << AL.getRange() << 0;
1577     return;
1578   }
1579 
1580   D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
1581 }
1582 
1583 static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1584   Expr *E = AL.getArgAsExpr(0),
1585        *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
1586   S.AddAssumeAlignedAttr(D, AL, E, OE);
1587 }
1588 
1589 static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1590   S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
1591 }
1592 
1593 void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
1594                                 Expr *OE) {
1595   QualType ResultType = getFunctionOrMethodResultType(D);
1596   SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1597 
1598   AssumeAlignedAttr TmpAttr(Context, CI, E, OE);
1599   SourceLocation AttrLoc = TmpAttr.getLocation();
1600 
1601   if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1602     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1603         << &TmpAttr << TmpAttr.getRange() << SR;
1604     return;
1605   }
1606 
1607   if (!E->isValueDependent()) {
1608     llvm::APSInt I(64);
1609     if (!E->isIntegerConstantExpr(I, Context)) {
1610       if (OE)
1611         Diag(AttrLoc, diag::err_attribute_argument_n_type)
1612           << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
1613           << E->getSourceRange();
1614       else
1615         Diag(AttrLoc, diag::err_attribute_argument_type)
1616           << &TmpAttr << AANT_ArgumentIntegerConstant
1617           << E->getSourceRange();
1618       return;
1619     }
1620 
1621     if (!I.isPowerOf2()) {
1622       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1623         << E->getSourceRange();
1624       return;
1625     }
1626 
1627     if (I > Sema::MaximumAlignment)
1628       Diag(CI.getLoc(), diag::warn_assume_aligned_too_great)
1629           << CI.getRange() << Sema::MaximumAlignment;
1630   }
1631 
1632   if (OE) {
1633     if (!OE->isValueDependent()) {
1634       llvm::APSInt I(64);
1635       if (!OE->isIntegerConstantExpr(I, Context)) {
1636         Diag(AttrLoc, diag::err_attribute_argument_n_type)
1637           << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
1638           << OE->getSourceRange();
1639         return;
1640       }
1641     }
1642   }
1643 
1644   D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
1645 }
1646 
1647 void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
1648                              Expr *ParamExpr) {
1649   QualType ResultType = getFunctionOrMethodResultType(D);
1650 
1651   AllocAlignAttr TmpAttr(Context, CI, ParamIdx());
1652   SourceLocation AttrLoc = CI.getLoc();
1653 
1654   if (!ResultType->isDependentType() &&
1655       !isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1656     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1657         << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D);
1658     return;
1659   }
1660 
1661   ParamIdx Idx;
1662   const auto *FuncDecl = cast<FunctionDecl>(D);
1663   if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr,
1664                                            /*AttrArgNum=*/1, ParamExpr, Idx))
1665     return;
1666 
1667   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1668   if (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
1669       !Ty->isAlignValT()) {
1670     Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
1671         << &TmpAttr
1672         << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
1673     return;
1674   }
1675 
1676   D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
1677 }
1678 
1679 /// Normalize the attribute, __foo__ becomes foo.
1680 /// Returns true if normalization was applied.
1681 static bool normalizeName(StringRef &AttrName) {
1682   if (AttrName.size() > 4 && AttrName.startswith("__") &&
1683       AttrName.endswith("__")) {
1684     AttrName = AttrName.drop_front(2).drop_back(2);
1685     return true;
1686   }
1687   return false;
1688 }
1689 
1690 static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1691   // This attribute must be applied to a function declaration. The first
1692   // argument to the attribute must be an identifier, the name of the resource,
1693   // for example: malloc. The following arguments must be argument indexes, the
1694   // arguments must be of integer type for Returns, otherwise of pointer type.
1695   // The difference between Holds and Takes is that a pointer may still be used
1696   // after being held. free() should be __attribute((ownership_takes)), whereas
1697   // a list append function may well be __attribute((ownership_holds)).
1698 
1699   if (!AL.isArgIdent(0)) {
1700     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1701         << AL << 1 << AANT_ArgumentIdentifier;
1702     return;
1703   }
1704 
1705   // Figure out our Kind.
1706   OwnershipAttr::OwnershipKind K =
1707       OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
1708 
1709   // Check arguments.
1710   switch (K) {
1711   case OwnershipAttr::Takes:
1712   case OwnershipAttr::Holds:
1713     if (AL.getNumArgs() < 2) {
1714       S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
1715       return;
1716     }
1717     break;
1718   case OwnershipAttr::Returns:
1719     if (AL.getNumArgs() > 2) {
1720       S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
1721       return;
1722     }
1723     break;
1724   }
1725 
1726   IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
1727 
1728   StringRef ModuleName = Module->getName();
1729   if (normalizeName(ModuleName)) {
1730     Module = &S.PP.getIdentifierTable().get(ModuleName);
1731   }
1732 
1733   SmallVector<ParamIdx, 8> OwnershipArgs;
1734   for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1735     Expr *Ex = AL.getArgAsExpr(i);
1736     ParamIdx Idx;
1737     if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
1738       return;
1739 
1740     // Is the function argument a pointer type?
1741     QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1742     int Err = -1;  // No error
1743     switch (K) {
1744       case OwnershipAttr::Takes:
1745       case OwnershipAttr::Holds:
1746         if (!T->isAnyPointerType() && !T->isBlockPointerType())
1747           Err = 0;
1748         break;
1749       case OwnershipAttr::Returns:
1750         if (!T->isIntegerType())
1751           Err = 1;
1752         break;
1753     }
1754     if (-1 != Err) {
1755       S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
1756                                                     << Ex->getSourceRange();
1757       return;
1758     }
1759 
1760     // Check we don't have a conflict with another ownership attribute.
1761     for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1762       // Cannot have two ownership attributes of different kinds for the same
1763       // index.
1764       if (I->getOwnKind() != K && I->args_end() !=
1765           std::find(I->args_begin(), I->args_end(), Idx)) {
1766         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I;
1767         return;
1768       } else if (K == OwnershipAttr::Returns &&
1769                  I->getOwnKind() == OwnershipAttr::Returns) {
1770         // A returns attribute conflicts with any other returns attribute using
1771         // a different index.
1772         if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) {
1773           S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1774               << I->args_begin()->getSourceIndex();
1775           if (I->args_size())
1776             S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1777                 << Idx.getSourceIndex() << Ex->getSourceRange();
1778           return;
1779         }
1780       }
1781     }
1782     OwnershipArgs.push_back(Idx);
1783   }
1784 
1785   ParamIdx *Start = OwnershipArgs.data();
1786   unsigned Size = OwnershipArgs.size();
1787   llvm::array_pod_sort(Start, Start + Size);
1788   D->addAttr(::new (S.Context)
1789                  OwnershipAttr(S.Context, AL, Module, Start, Size));
1790 }
1791 
1792 static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1793   // Check the attribute arguments.
1794   if (AL.getNumArgs() > 1) {
1795     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1796     return;
1797   }
1798 
1799   // gcc rejects
1800   // class c {
1801   //   static int a __attribute__((weakref ("v2")));
1802   //   static int b() __attribute__((weakref ("f3")));
1803   // };
1804   // and ignores the attributes of
1805   // void f(void) {
1806   //   static int a __attribute__((weakref ("v2")));
1807   // }
1808   // we reject them
1809   const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1810   if (!Ctx->isFileContext()) {
1811     S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
1812         << cast<NamedDecl>(D);
1813     return;
1814   }
1815 
1816   // The GCC manual says
1817   //
1818   // At present, a declaration to which `weakref' is attached can only
1819   // be `static'.
1820   //
1821   // It also says
1822   //
1823   // Without a TARGET,
1824   // given as an argument to `weakref' or to `alias', `weakref' is
1825   // equivalent to `weak'.
1826   //
1827   // gcc 4.4.1 will accept
1828   // int a7 __attribute__((weakref));
1829   // as
1830   // int a7 __attribute__((weak));
1831   // This looks like a bug in gcc. We reject that for now. We should revisit
1832   // it if this behaviour is actually used.
1833 
1834   // GCC rejects
1835   // static ((alias ("y"), weakref)).
1836   // Should we? How to check that weakref is before or after alias?
1837 
1838   // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1839   // of transforming it into an AliasAttr.  The WeakRefAttr never uses the
1840   // StringRef parameter it was given anyway.
1841   StringRef Str;
1842   if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
1843     // GCC will accept anything as the argument of weakref. Should we
1844     // check for an existing decl?
1845     D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1846 
1847   D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
1848 }
1849 
1850 static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1851   StringRef Str;
1852   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1853     return;
1854 
1855   // Aliases should be on declarations, not definitions.
1856   const auto *FD = cast<FunctionDecl>(D);
1857   if (FD->isThisDeclarationADefinition()) {
1858     S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
1859     return;
1860   }
1861 
1862   D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
1863 }
1864 
1865 static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1866   StringRef Str;
1867   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1868     return;
1869 
1870   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1871     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
1872     return;
1873   }
1874   if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
1875     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
1876   }
1877 
1878   // Aliases should be on declarations, not definitions.
1879   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1880     if (FD->isThisDeclarationADefinition()) {
1881       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
1882       return;
1883     }
1884   } else {
1885     const auto *VD = cast<VarDecl>(D);
1886     if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
1887       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
1888       return;
1889     }
1890   }
1891 
1892   // Mark target used to prevent unneeded-internal-declaration warnings.
1893   if (!S.LangOpts.CPlusPlus) {
1894     // FIXME: demangle Str for C++, as the attribute refers to the mangled
1895     // linkage name, not the pre-mangled identifier.
1896     const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc());
1897     LookupResult LR(S, target, Sema::LookupOrdinaryName);
1898     if (S.LookupQualifiedName(LR, S.getCurLexicalContext()))
1899       for (NamedDecl *ND : LR)
1900         ND->markUsed(S.Context);
1901   }
1902 
1903   D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1904 }
1905 
1906 static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1907   StringRef Model;
1908   SourceLocation LiteralLoc;
1909   // Check that it is a string.
1910   if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
1911     return;
1912 
1913   // Check that the value.
1914   if (Model != "global-dynamic" && Model != "local-dynamic"
1915       && Model != "initial-exec" && Model != "local-exec") {
1916     S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
1917     return;
1918   }
1919 
1920   D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
1921 }
1922 
1923 static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1924   QualType ResultType = getFunctionOrMethodResultType(D);
1925   if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
1926     D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
1927     return;
1928   }
1929 
1930   S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1931       << AL << getFunctionOrMethodResultSourceRange(D);
1932 }
1933 
1934 static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1935   FunctionDecl *FD = cast<FunctionDecl>(D);
1936 
1937   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
1938     if (MD->getParent()->isLambda()) {
1939       S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
1940       return;
1941     }
1942   }
1943 
1944   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
1945     return;
1946 
1947   SmallVector<IdentifierInfo *, 8> CPUs;
1948   for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
1949     if (!AL.isArgIdent(ArgNo)) {
1950       S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1951           << AL << AANT_ArgumentIdentifier;
1952       return;
1953     }
1954 
1955     IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
1956     StringRef CPUName = CPUArg->Ident->getName().trim();
1957 
1958     if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) {
1959       S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value)
1960           << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
1961       return;
1962     }
1963 
1964     const TargetInfo &Target = S.Context.getTargetInfo();
1965     if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
1966           return Target.CPUSpecificManglingCharacter(CPUName) ==
1967                  Target.CPUSpecificManglingCharacter(Cur->getName());
1968         })) {
1969       S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
1970       return;
1971     }
1972     CPUs.push_back(CPUArg->Ident);
1973   }
1974 
1975   FD->setIsMultiVersion(true);
1976   if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
1977     D->addAttr(::new (S.Context)
1978                    CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
1979   else
1980     D->addAttr(::new (S.Context)
1981                    CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
1982 }
1983 
1984 static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1985   if (S.LangOpts.CPlusPlus) {
1986     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
1987         << AL << AttributeLangSupport::Cpp;
1988     return;
1989   }
1990 
1991   if (CommonAttr *CA = S.mergeCommonAttr(D, AL))
1992     D->addAttr(CA);
1993 }
1994 
1995 static void handleCmseNSEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1996   if (S.LangOpts.CPlusPlus && !D->getDeclContext()->isExternCContext()) {
1997     S.Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL;
1998     return;
1999   }
2000 
2001   const auto *FD = cast<FunctionDecl>(D);
2002   if (!FD->isExternallyVisible()) {
2003     S.Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static);
2004     return;
2005   }
2006 
2007   D->addAttr(::new (S.Context) CmseNSEntryAttr(S.Context, AL));
2008 }
2009 
2010 static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2011   if (checkAttrMutualExclusion<DisableTailCallsAttr>(S, D, AL))
2012     return;
2013 
2014   if (AL.isDeclspecAttribute()) {
2015     const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
2016     const auto &Arch = Triple.getArch();
2017     if (Arch != llvm::Triple::x86 &&
2018         (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
2019       S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
2020           << AL << Triple.getArchName();
2021       return;
2022     }
2023   }
2024 
2025   D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
2026 }
2027 
2028 static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2029   if (hasDeclarator(D)) return;
2030 
2031   if (!isa<ObjCMethodDecl>(D)) {
2032     S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
2033         << Attrs << ExpectedFunctionOrMethod;
2034     return;
2035   }
2036 
2037   D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
2038 }
2039 
2040 static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2041   if (!S.getLangOpts().CFProtectionBranch)
2042     S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
2043   else
2044     handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs);
2045 }
2046 
2047 bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) {
2048   if (!checkAttributeNumArgs(*this, Attrs, 0)) {
2049     Attrs.setInvalid();
2050     return true;
2051   }
2052 
2053   return false;
2054 }
2055 
2056 bool Sema::CheckAttrTarget(const ParsedAttr &AL) {
2057   // Check whether the attribute is valid on the current target.
2058   if (!AL.existsInTarget(Context.getTargetInfo())) {
2059     Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL;
2060     AL.setInvalid();
2061     return true;
2062   }
2063 
2064   return false;
2065 }
2066 
2067 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2068 
2069   // The checking path for 'noreturn' and 'analyzer_noreturn' are different
2070   // because 'analyzer_noreturn' does not impact the type.
2071   if (!isFunctionOrMethodOrBlock(D)) {
2072     ValueDecl *VD = dyn_cast<ValueDecl>(D);
2073     if (!VD || (!VD->getType()->isBlockPointerType() &&
2074                 !VD->getType()->isFunctionPointerType())) {
2075       S.Diag(AL.getLoc(), AL.isCXX11Attribute()
2076                               ? diag::err_attribute_wrong_decl_type
2077                               : diag::warn_attribute_wrong_decl_type)
2078           << AL << ExpectedFunctionMethodOrBlock;
2079       return;
2080     }
2081   }
2082 
2083   D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
2084 }
2085 
2086 // PS3 PPU-specific.
2087 static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2088   /*
2089     Returning a Vector Class in Registers
2090 
2091     According to the PPU ABI specifications, a class with a single member of
2092     vector type is returned in memory when used as the return value of a
2093     function.
2094     This results in inefficient code when implementing vector classes. To return
2095     the value in a single vector register, add the vecreturn attribute to the
2096     class definition. This attribute is also applicable to struct types.
2097 
2098     Example:
2099 
2100     struct Vector
2101     {
2102       __vector float xyzw;
2103     } __attribute__((vecreturn));
2104 
2105     Vector Add(Vector lhs, Vector rhs)
2106     {
2107       Vector result;
2108       result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
2109       return result; // This will be returned in a register
2110     }
2111   */
2112   if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
2113     S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
2114     return;
2115   }
2116 
2117   const auto *R = cast<RecordDecl>(D);
2118   int count = 0;
2119 
2120   if (!isa<CXXRecordDecl>(R)) {
2121     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2122     return;
2123   }
2124 
2125   if (!cast<CXXRecordDecl>(R)->isPOD()) {
2126     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
2127     return;
2128   }
2129 
2130   for (const auto *I : R->fields()) {
2131     if ((count == 1) || !I->getType()->isVectorType()) {
2132       S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2133       return;
2134     }
2135     count++;
2136   }
2137 
2138   D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
2139 }
2140 
2141 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
2142                                  const ParsedAttr &AL) {
2143   if (isa<ParmVarDecl>(D)) {
2144     // [[carries_dependency]] can only be applied to a parameter if it is a
2145     // parameter of a function declaration or lambda.
2146     if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
2147       S.Diag(AL.getLoc(),
2148              diag::err_carries_dependency_param_not_function_decl);
2149       return;
2150     }
2151   }
2152 
2153   D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
2154 }
2155 
2156 static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2157   bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
2158 
2159   // If this is spelled as the standard C++17 attribute, but not in C++17, warn
2160   // about using it as an extension.
2161   if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
2162     S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2163 
2164   D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
2165 }
2166 
2167 static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2168   uint32_t priority = ConstructorAttr::DefaultPriority;
2169   if (AL.getNumArgs() &&
2170       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2171     return;
2172 
2173   D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority));
2174 }
2175 
2176 static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2177   uint32_t priority = DestructorAttr::DefaultPriority;
2178   if (AL.getNumArgs() &&
2179       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2180     return;
2181 
2182   D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority));
2183 }
2184 
2185 template <typename AttrTy>
2186 static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
2187   // Handle the case where the attribute has a text message.
2188   StringRef Str;
2189   if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
2190     return;
2191 
2192   D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
2193 }
2194 
2195 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
2196                                           const ParsedAttr &AL) {
2197   if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
2198     S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition)
2199         << AL << AL.getRange();
2200     return;
2201   }
2202 
2203   D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL));
2204 }
2205 
2206 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
2207                                   IdentifierInfo *Platform,
2208                                   VersionTuple Introduced,
2209                                   VersionTuple Deprecated,
2210                                   VersionTuple Obsoleted) {
2211   StringRef PlatformName
2212     = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2213   if (PlatformName.empty())
2214     PlatformName = Platform->getName();
2215 
2216   // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2217   // of these steps are needed).
2218   if (!Introduced.empty() && !Deprecated.empty() &&
2219       !(Introduced <= Deprecated)) {
2220     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2221       << 1 << PlatformName << Deprecated.getAsString()
2222       << 0 << Introduced.getAsString();
2223     return true;
2224   }
2225 
2226   if (!Introduced.empty() && !Obsoleted.empty() &&
2227       !(Introduced <= Obsoleted)) {
2228     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2229       << 2 << PlatformName << Obsoleted.getAsString()
2230       << 0 << Introduced.getAsString();
2231     return true;
2232   }
2233 
2234   if (!Deprecated.empty() && !Obsoleted.empty() &&
2235       !(Deprecated <= Obsoleted)) {
2236     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2237       << 2 << PlatformName << Obsoleted.getAsString()
2238       << 1 << Deprecated.getAsString();
2239     return true;
2240   }
2241 
2242   return false;
2243 }
2244 
2245 /// Check whether the two versions match.
2246 ///
2247 /// If either version tuple is empty, then they are assumed to match. If
2248 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
2249 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2250                           bool BeforeIsOkay) {
2251   if (X.empty() || Y.empty())
2252     return true;
2253 
2254   if (X == Y)
2255     return true;
2256 
2257   if (BeforeIsOkay && X < Y)
2258     return true;
2259 
2260   return false;
2261 }
2262 
2263 AvailabilityAttr *Sema::mergeAvailabilityAttr(
2264     NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
2265     bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
2266     VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
2267     bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
2268     int Priority) {
2269   VersionTuple MergedIntroduced = Introduced;
2270   VersionTuple MergedDeprecated = Deprecated;
2271   VersionTuple MergedObsoleted = Obsoleted;
2272   bool FoundAny = false;
2273   bool OverrideOrImpl = false;
2274   switch (AMK) {
2275   case AMK_None:
2276   case AMK_Redeclaration:
2277     OverrideOrImpl = false;
2278     break;
2279 
2280   case AMK_Override:
2281   case AMK_ProtocolImplementation:
2282     OverrideOrImpl = true;
2283     break;
2284   }
2285 
2286   if (D->hasAttrs()) {
2287     AttrVec &Attrs = D->getAttrs();
2288     for (unsigned i = 0, e = Attrs.size(); i != e;) {
2289       const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2290       if (!OldAA) {
2291         ++i;
2292         continue;
2293       }
2294 
2295       IdentifierInfo *OldPlatform = OldAA->getPlatform();
2296       if (OldPlatform != Platform) {
2297         ++i;
2298         continue;
2299       }
2300 
2301       // If there is an existing availability attribute for this platform that
2302       // has a lower priority use the existing one and discard the new
2303       // attribute.
2304       if (OldAA->getPriority() < Priority)
2305         return nullptr;
2306 
2307       // If there is an existing attribute for this platform that has a higher
2308       // priority than the new attribute then erase the old one and continue
2309       // processing the attributes.
2310       if (OldAA->getPriority() > Priority) {
2311         Attrs.erase(Attrs.begin() + i);
2312         --e;
2313         continue;
2314       }
2315 
2316       FoundAny = true;
2317       VersionTuple OldIntroduced = OldAA->getIntroduced();
2318       VersionTuple OldDeprecated = OldAA->getDeprecated();
2319       VersionTuple OldObsoleted = OldAA->getObsoleted();
2320       bool OldIsUnavailable = OldAA->getUnavailable();
2321 
2322       if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
2323           !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
2324           !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
2325           !(OldIsUnavailable == IsUnavailable ||
2326             (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
2327         if (OverrideOrImpl) {
2328           int Which = -1;
2329           VersionTuple FirstVersion;
2330           VersionTuple SecondVersion;
2331           if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
2332             Which = 0;
2333             FirstVersion = OldIntroduced;
2334             SecondVersion = Introduced;
2335           } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
2336             Which = 1;
2337             FirstVersion = Deprecated;
2338             SecondVersion = OldDeprecated;
2339           } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
2340             Which = 2;
2341             FirstVersion = Obsoleted;
2342             SecondVersion = OldObsoleted;
2343           }
2344 
2345           if (Which == -1) {
2346             Diag(OldAA->getLocation(),
2347                  diag::warn_mismatched_availability_override_unavail)
2348               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2349               << (AMK == AMK_Override);
2350           } else {
2351             Diag(OldAA->getLocation(),
2352                  diag::warn_mismatched_availability_override)
2353               << Which
2354               << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2355               << FirstVersion.getAsString() << SecondVersion.getAsString()
2356               << (AMK == AMK_Override);
2357           }
2358           if (AMK == AMK_Override)
2359             Diag(CI.getLoc(), diag::note_overridden_method);
2360           else
2361             Diag(CI.getLoc(), diag::note_protocol_method);
2362         } else {
2363           Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2364           Diag(CI.getLoc(), diag::note_previous_attribute);
2365         }
2366 
2367         Attrs.erase(Attrs.begin() + i);
2368         --e;
2369         continue;
2370       }
2371 
2372       VersionTuple MergedIntroduced2 = MergedIntroduced;
2373       VersionTuple MergedDeprecated2 = MergedDeprecated;
2374       VersionTuple MergedObsoleted2 = MergedObsoleted;
2375 
2376       if (MergedIntroduced2.empty())
2377         MergedIntroduced2 = OldIntroduced;
2378       if (MergedDeprecated2.empty())
2379         MergedDeprecated2 = OldDeprecated;
2380       if (MergedObsoleted2.empty())
2381         MergedObsoleted2 = OldObsoleted;
2382 
2383       if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2384                                 MergedIntroduced2, MergedDeprecated2,
2385                                 MergedObsoleted2)) {
2386         Attrs.erase(Attrs.begin() + i);
2387         --e;
2388         continue;
2389       }
2390 
2391       MergedIntroduced = MergedIntroduced2;
2392       MergedDeprecated = MergedDeprecated2;
2393       MergedObsoleted = MergedObsoleted2;
2394       ++i;
2395     }
2396   }
2397 
2398   if (FoundAny &&
2399       MergedIntroduced == Introduced &&
2400       MergedDeprecated == Deprecated &&
2401       MergedObsoleted == Obsoleted)
2402     return nullptr;
2403 
2404   // Only create a new attribute if !OverrideOrImpl, but we want to do
2405   // the checking.
2406   if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced,
2407                              MergedDeprecated, MergedObsoleted) &&
2408       !OverrideOrImpl) {
2409     auto *Avail = ::new (Context) AvailabilityAttr(
2410         Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable,
2411         Message, IsStrict, Replacement, Priority);
2412     Avail->setImplicit(Implicit);
2413     return Avail;
2414   }
2415   return nullptr;
2416 }
2417 
2418 static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2419   if (!checkAttributeNumArgs(S, AL, 1))
2420     return;
2421   IdentifierLoc *Platform = AL.getArgAsIdent(0);
2422 
2423   IdentifierInfo *II = Platform->Ident;
2424   if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
2425     S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
2426       << Platform->Ident;
2427 
2428   auto *ND = dyn_cast<NamedDecl>(D);
2429   if (!ND) // We warned about this already, so just return.
2430     return;
2431 
2432   AvailabilityChange Introduced = AL.getAvailabilityIntroduced();
2433   AvailabilityChange Deprecated = AL.getAvailabilityDeprecated();
2434   AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted();
2435   bool IsUnavailable = AL.getUnavailableLoc().isValid();
2436   bool IsStrict = AL.getStrictLoc().isValid();
2437   StringRef Str;
2438   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr()))
2439     Str = SE->getString();
2440   StringRef Replacement;
2441   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr()))
2442     Replacement = SE->getString();
2443 
2444   if (II->isStr("swift")) {
2445     if (Introduced.isValid() || Obsoleted.isValid() ||
2446         (!IsUnavailable && !Deprecated.isValid())) {
2447       S.Diag(AL.getLoc(),
2448              diag::warn_availability_swift_unavailable_deprecated_only);
2449       return;
2450     }
2451   }
2452 
2453   int PriorityModifier = AL.isPragmaClangAttribute()
2454                              ? Sema::AP_PragmaClangAttribute
2455                              : Sema::AP_Explicit;
2456   AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2457       ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version,
2458       Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement,
2459       Sema::AMK_None, PriorityModifier);
2460   if (NewAttr)
2461     D->addAttr(NewAttr);
2462 
2463   // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
2464   // matches before the start of the watchOS platform.
2465   if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
2466     IdentifierInfo *NewII = nullptr;
2467     if (II->getName() == "ios")
2468       NewII = &S.Context.Idents.get("watchos");
2469     else if (II->getName() == "ios_app_extension")
2470       NewII = &S.Context.Idents.get("watchos_app_extension");
2471 
2472     if (NewII) {
2473         auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple {
2474           if (Version.empty())
2475             return Version;
2476           auto Major = Version.getMajor();
2477           auto NewMajor = Major >= 9 ? Major - 7 : 0;
2478           if (NewMajor >= 2) {
2479             if (Version.getMinor().hasValue()) {
2480               if (Version.getSubminor().hasValue())
2481                 return VersionTuple(NewMajor, Version.getMinor().getValue(),
2482                                     Version.getSubminor().getValue());
2483               else
2484                 return VersionTuple(NewMajor, Version.getMinor().getValue());
2485             }
2486             return VersionTuple(NewMajor);
2487           }
2488 
2489           return VersionTuple(2, 0);
2490         };
2491 
2492         auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
2493         auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
2494         auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
2495 
2496         AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2497             ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2498             NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2499             Sema::AMK_None,
2500             PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2501         if (NewAttr)
2502           D->addAttr(NewAttr);
2503       }
2504   } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
2505     // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
2506     // matches before the start of the tvOS platform.
2507     IdentifierInfo *NewII = nullptr;
2508     if (II->getName() == "ios")
2509       NewII = &S.Context.Idents.get("tvos");
2510     else if (II->getName() == "ios_app_extension")
2511       NewII = &S.Context.Idents.get("tvos_app_extension");
2512 
2513     if (NewII) {
2514       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2515           ND, AL, NewII, true /*Implicit*/, Introduced.Version,
2516           Deprecated.Version, Obsoleted.Version, IsUnavailable, Str, IsStrict,
2517           Replacement, Sema::AMK_None,
2518           PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2519       if (NewAttr)
2520         D->addAttr(NewAttr);
2521       }
2522   }
2523 }
2524 
2525 static void handleExternalSourceSymbolAttr(Sema &S, Decl *D,
2526                                            const ParsedAttr &AL) {
2527   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
2528     return;
2529   assert(checkAttributeAtMostNumArgs(S, AL, 3) &&
2530          "Invalid number of arguments in an external_source_symbol attribute");
2531 
2532   StringRef Language;
2533   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0)))
2534     Language = SE->getString();
2535   StringRef DefinedIn;
2536   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1)))
2537     DefinedIn = SE->getString();
2538   bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
2539 
2540   D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
2541       S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration));
2542 }
2543 
2544 template <class T>
2545 static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI,
2546                               typename T::VisibilityType value) {
2547   T *existingAttr = D->getAttr<T>();
2548   if (existingAttr) {
2549     typename T::VisibilityType existingValue = existingAttr->getVisibility();
2550     if (existingValue == value)
2551       return nullptr;
2552     S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2553     S.Diag(CI.getLoc(), diag::note_previous_attribute);
2554     D->dropAttr<T>();
2555   }
2556   return ::new (S.Context) T(S.Context, CI, value);
2557 }
2558 
2559 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D,
2560                                           const AttributeCommonInfo &CI,
2561                                           VisibilityAttr::VisibilityType Vis) {
2562   return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis);
2563 }
2564 
2565 TypeVisibilityAttr *
2566 Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
2567                               TypeVisibilityAttr::VisibilityType Vis) {
2568   return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis);
2569 }
2570 
2571 static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
2572                                  bool isTypeVisibility) {
2573   // Visibility attributes don't mean anything on a typedef.
2574   if (isa<TypedefNameDecl>(D)) {
2575     S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL;
2576     return;
2577   }
2578 
2579   // 'type_visibility' can only go on a type or namespace.
2580   if (isTypeVisibility &&
2581       !(isa<TagDecl>(D) ||
2582         isa<ObjCInterfaceDecl>(D) ||
2583         isa<NamespaceDecl>(D))) {
2584     S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2585         << AL << ExpectedTypeOrNamespace;
2586     return;
2587   }
2588 
2589   // Check that the argument is a string literal.
2590   StringRef TypeStr;
2591   SourceLocation LiteralLoc;
2592   if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
2593     return;
2594 
2595   VisibilityAttr::VisibilityType type;
2596   if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2597     S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL
2598                                                                 << TypeStr;
2599     return;
2600   }
2601 
2602   // Complain about attempts to use protected visibility on targets
2603   // (like Darwin) that don't support it.
2604   if (type == VisibilityAttr::Protected &&
2605       !S.Context.getTargetInfo().hasProtectedVisibility()) {
2606     S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
2607     type = VisibilityAttr::Default;
2608   }
2609 
2610   Attr *newAttr;
2611   if (isTypeVisibility) {
2612     newAttr = S.mergeTypeVisibilityAttr(
2613         D, AL, (TypeVisibilityAttr::VisibilityType)type);
2614   } else {
2615     newAttr = S.mergeVisibilityAttr(D, AL, type);
2616   }
2617   if (newAttr)
2618     D->addAttr(newAttr);
2619 }
2620 
2621 static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2622   // objc_direct cannot be set on methods declared in the context of a protocol
2623   if (isa<ObjCProtocolDecl>(D->getDeclContext())) {
2624     S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false;
2625     return;
2626   }
2627 
2628   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2629     handleSimpleAttribute<ObjCDirectAttr>(S, D, AL);
2630   } else {
2631     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2632   }
2633 }
2634 
2635 static void handleObjCDirectMembersAttr(Sema &S, Decl *D,
2636                                         const ParsedAttr &AL) {
2637   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2638     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
2639   } else {
2640     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2641   }
2642 }
2643 
2644 static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2645   const auto *M = cast<ObjCMethodDecl>(D);
2646   if (!AL.isArgIdent(0)) {
2647     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2648         << AL << 1 << AANT_ArgumentIdentifier;
2649     return;
2650   }
2651 
2652   IdentifierLoc *IL = AL.getArgAsIdent(0);
2653   ObjCMethodFamilyAttr::FamilyKind F;
2654   if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
2655     S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident;
2656     return;
2657   }
2658 
2659   if (F == ObjCMethodFamilyAttr::OMF_init &&
2660       !M->getReturnType()->isObjCObjectPointerType()) {
2661     S.Diag(M->getLocation(), diag::err_init_method_bad_return_type)
2662         << M->getReturnType();
2663     // Ignore the attribute.
2664     return;
2665   }
2666 
2667   D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F));
2668 }
2669 
2670 static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) {
2671   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2672     QualType T = TD->getUnderlyingType();
2673     if (!T->isCARCBridgableType()) {
2674       S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2675       return;
2676     }
2677   }
2678   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2679     QualType T = PD->getType();
2680     if (!T->isCARCBridgableType()) {
2681       S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2682       return;
2683     }
2684   }
2685   else {
2686     // It is okay to include this attribute on properties, e.g.:
2687     //
2688     //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2689     //
2690     // In this case it follows tradition and suppresses an error in the above
2691     // case.
2692     S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
2693   }
2694   D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL));
2695 }
2696 
2697 static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) {
2698   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2699     QualType T = TD->getUnderlyingType();
2700     if (!T->isObjCObjectPointerType()) {
2701       S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
2702       return;
2703     }
2704   } else {
2705     S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
2706     return;
2707   }
2708   D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL));
2709 }
2710 
2711 static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2712   if (!AL.isArgIdent(0)) {
2713     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2714         << AL << 1 << AANT_ArgumentIdentifier;
2715     return;
2716   }
2717 
2718   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
2719   BlocksAttr::BlockType type;
2720   if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
2721     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
2722     return;
2723   }
2724 
2725   D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type));
2726 }
2727 
2728 static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2729   unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
2730   if (AL.getNumArgs() > 0) {
2731     Expr *E = AL.getArgAsExpr(0);
2732     llvm::APSInt Idx(32);
2733     if (E->isTypeDependent() || E->isValueDependent() ||
2734         !E->isIntegerConstantExpr(Idx, S.Context)) {
2735       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2736           << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2737       return;
2738     }
2739 
2740     if (Idx.isSigned() && Idx.isNegative()) {
2741       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2742         << E->getSourceRange();
2743       return;
2744     }
2745 
2746     sentinel = Idx.getZExtValue();
2747   }
2748 
2749   unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
2750   if (AL.getNumArgs() > 1) {
2751     Expr *E = AL.getArgAsExpr(1);
2752     llvm::APSInt Idx(32);
2753     if (E->isTypeDependent() || E->isValueDependent() ||
2754         !E->isIntegerConstantExpr(Idx, S.Context)) {
2755       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2756           << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2757       return;
2758     }
2759     nullPos = Idx.getZExtValue();
2760 
2761     if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
2762       // FIXME: This error message could be improved, it would be nice
2763       // to say what the bounds actually are.
2764       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2765         << E->getSourceRange();
2766       return;
2767     }
2768   }
2769 
2770   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2771     const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2772     if (isa<FunctionNoProtoType>(FT)) {
2773       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2774       return;
2775     }
2776 
2777     if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2778       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2779       return;
2780     }
2781   } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
2782     if (!MD->isVariadic()) {
2783       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2784       return;
2785     }
2786   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
2787     if (!BD->isVariadic()) {
2788       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2789       return;
2790     }
2791   } else if (const auto *V = dyn_cast<VarDecl>(D)) {
2792     QualType Ty = V->getType();
2793     if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2794       const FunctionType *FT = Ty->isFunctionPointerType()
2795        ? D->getFunctionType()
2796        : Ty->castAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
2797       if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2798         int m = Ty->isFunctionPointerType() ? 0 : 1;
2799         S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2800         return;
2801       }
2802     } else {
2803       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2804           << AL << ExpectedFunctionMethodOrBlock;
2805       return;
2806     }
2807   } else {
2808     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2809         << AL << ExpectedFunctionMethodOrBlock;
2810     return;
2811   }
2812   D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos));
2813 }
2814 
2815 static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
2816   if (D->getFunctionType() &&
2817       D->getFunctionType()->getReturnType()->isVoidType() &&
2818       !isa<CXXConstructorDecl>(D)) {
2819     S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0;
2820     return;
2821   }
2822   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
2823     if (MD->getReturnType()->isVoidType()) {
2824       S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1;
2825       return;
2826     }
2827 
2828   StringRef Str;
2829   if ((AL.isCXX11Attribute() || AL.isC2xAttribute()) && !AL.getScopeName()) {
2830     // The standard attribute cannot be applied to variable declarations such
2831     // as a function pointer.
2832     if (isa<VarDecl>(D))
2833       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
2834           << AL << "functions, classes, or enumerations";
2835 
2836     // If this is spelled as the standard C++17 attribute, but not in C++17,
2837     // warn about using it as an extension. If there are attribute arguments,
2838     // then claim it's a C++2a extension instead.
2839     // FIXME: If WG14 does not seem likely to adopt the same feature, add an
2840     // extension warning for C2x mode.
2841     const LangOptions &LO = S.getLangOpts();
2842     if (AL.getNumArgs() == 1) {
2843       if (LO.CPlusPlus && !LO.CPlusPlus20)
2844         S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL;
2845 
2846       // Since this this is spelled [[nodiscard]], get the optional string
2847       // literal. If in C++ mode, but not in C++2a mode, diagnose as an
2848       // extension.
2849       // FIXME: C2x should support this feature as well, even as an extension.
2850       if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
2851         return;
2852     } else if (LO.CPlusPlus && !LO.CPlusPlus17)
2853       S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2854   }
2855 
2856   D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str));
2857 }
2858 
2859 static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2860   // weak_import only applies to variable & function declarations.
2861   bool isDef = false;
2862   if (!D->canBeWeakImported(isDef)) {
2863     if (isDef)
2864       S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
2865         << "weak_import";
2866     else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2867              (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2868               (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
2869       // Nothing to warn about here.
2870     } else
2871       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2872           << AL << ExpectedVariableOrFunction;
2873 
2874     return;
2875   }
2876 
2877   D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL));
2878 }
2879 
2880 // Handles reqd_work_group_size and work_group_size_hint.
2881 template <typename WorkGroupAttr>
2882 static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
2883   uint32_t WGSize[3];
2884   for (unsigned i = 0; i < 3; ++i) {
2885     const Expr *E = AL.getArgAsExpr(i);
2886     if (!checkUInt32Argument(S, AL, E, WGSize[i], i,
2887                              /*StrictlyUnsigned=*/true))
2888       return;
2889     if (WGSize[i] == 0) {
2890       S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
2891           << AL << E->getSourceRange();
2892       return;
2893     }
2894   }
2895 
2896   WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
2897   if (Existing && !(Existing->getXDim() == WGSize[0] &&
2898                     Existing->getYDim() == WGSize[1] &&
2899                     Existing->getZDim() == WGSize[2]))
2900     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
2901 
2902   D->addAttr(::new (S.Context)
2903                  WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2]));
2904 }
2905 
2906 // Handles intel_reqd_sub_group_size.
2907 static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
2908   uint32_t SGSize;
2909   const Expr *E = AL.getArgAsExpr(0);
2910   if (!checkUInt32Argument(S, AL, E, SGSize))
2911     return;
2912   if (SGSize == 0) {
2913     S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
2914         << AL << E->getSourceRange();
2915     return;
2916   }
2917 
2918   OpenCLIntelReqdSubGroupSizeAttr *Existing =
2919       D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>();
2920   if (Existing && Existing->getSubGroupSize() != SGSize)
2921     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
2922 
2923   D->addAttr(::new (S.Context)
2924                  OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize));
2925 }
2926 
2927 static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
2928   if (!AL.hasParsedType()) {
2929     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
2930     return;
2931   }
2932 
2933   TypeSourceInfo *ParmTSI = nullptr;
2934   QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
2935   assert(ParmTSI && "no type source info for attribute argument");
2936 
2937   if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
2938       (ParmType->isBooleanType() ||
2939        !ParmType->isIntegralType(S.getASTContext()))) {
2940     S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL;
2941     return;
2942   }
2943 
2944   if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
2945     if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
2946       S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
2947       return;
2948     }
2949   }
2950 
2951   D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI));
2952 }
2953 
2954 SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
2955                                     StringRef Name) {
2956   // Explicit or partial specializations do not inherit
2957   // the section attribute from the primary template.
2958   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2959     if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate &&
2960         FD->isFunctionTemplateSpecialization())
2961       return nullptr;
2962   }
2963   if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
2964     if (ExistingAttr->getName() == Name)
2965       return nullptr;
2966     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
2967          << 1 /*section*/;
2968     Diag(CI.getLoc(), diag::note_previous_attribute);
2969     return nullptr;
2970   }
2971   return ::new (Context) SectionAttr(Context, CI, Name);
2972 }
2973 
2974 bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
2975   std::string Error = Context.getTargetInfo().isValidSectionSpecifier(SecName);
2976   if (!Error.empty()) {
2977     Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error
2978          << 1 /*'section'*/;
2979     return false;
2980   }
2981   return true;
2982 }
2983 
2984 static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2985   // Make sure that there is a string literal as the sections's single
2986   // argument.
2987   StringRef Str;
2988   SourceLocation LiteralLoc;
2989   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
2990     return;
2991 
2992   if (!S.checkSectionName(LiteralLoc, Str))
2993     return;
2994 
2995   // If the target wants to validate the section specifier, make it happen.
2996   std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str);
2997   if (!Error.empty()) {
2998     S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
2999     << Error;
3000     return;
3001   }
3002 
3003   SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str);
3004   if (NewAttr)
3005     D->addAttr(NewAttr);
3006 }
3007 
3008 // This is used for `__declspec(code_seg("segname"))` on a decl.
3009 // `#pragma code_seg("segname")` uses checkSectionName() instead.
3010 static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc,
3011                              StringRef CodeSegName) {
3012   std::string Error =
3013       S.Context.getTargetInfo().isValidSectionSpecifier(CodeSegName);
3014   if (!Error.empty()) {
3015     S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3016         << Error << 0 /*'code-seg'*/;
3017     return false;
3018   }
3019 
3020   return true;
3021 }
3022 
3023 CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3024                                     StringRef Name) {
3025   // Explicit or partial specializations do not inherit
3026   // the code_seg attribute from the primary template.
3027   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3028     if (FD->isFunctionTemplateSpecialization())
3029       return nullptr;
3030   }
3031   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3032     if (ExistingAttr->getName() == Name)
3033       return nullptr;
3034     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3035          << 0 /*codeseg*/;
3036     Diag(CI.getLoc(), diag::note_previous_attribute);
3037     return nullptr;
3038   }
3039   return ::new (Context) CodeSegAttr(Context, CI, Name);
3040 }
3041 
3042 static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3043   StringRef Str;
3044   SourceLocation LiteralLoc;
3045   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3046     return;
3047   if (!checkCodeSegName(S, LiteralLoc, Str))
3048     return;
3049   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3050     if (!ExistingAttr->isImplicit()) {
3051       S.Diag(AL.getLoc(),
3052              ExistingAttr->getName() == Str
3053              ? diag::warn_duplicate_codeseg_attribute
3054              : diag::err_conflicting_codeseg_attribute);
3055       return;
3056     }
3057     D->dropAttr<CodeSegAttr>();
3058   }
3059   if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str))
3060     D->addAttr(CSA);
3061 }
3062 
3063 // Check for things we'd like to warn about. Multiversioning issues are
3064 // handled later in the process, once we know how many exist.
3065 bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
3066   enum FirstParam { Unsupported, Duplicate };
3067   enum SecondParam { None, Architecture };
3068   for (auto Str : {"tune=", "fpmath="})
3069     if (AttrStr.find(Str) != StringRef::npos)
3070       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3071              << Unsupported << None << Str;
3072 
3073   ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr);
3074 
3075   if (!ParsedAttrs.Architecture.empty() &&
3076       !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture))
3077     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3078            << Unsupported << Architecture << ParsedAttrs.Architecture;
3079 
3080   if (ParsedAttrs.DuplicateArchitecture)
3081     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3082            << Duplicate << None << "arch=";
3083 
3084   for (const auto &Feature : ParsedAttrs.Features) {
3085     auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
3086     if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
3087       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3088              << Unsupported << None << CurFeature;
3089   }
3090 
3091   TargetInfo::BranchProtectionInfo BPI;
3092   StringRef Error;
3093   if (!ParsedAttrs.BranchProtection.empty() &&
3094       !Context.getTargetInfo().validateBranchProtection(
3095           ParsedAttrs.BranchProtection, BPI, Error)) {
3096     if (Error.empty())
3097       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3098              << Unsupported << None << "branch-protection";
3099     else
3100       return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec)
3101              << Error;
3102   }
3103 
3104   return false;
3105 }
3106 
3107 static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3108   StringRef Str;
3109   SourceLocation LiteralLoc;
3110   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3111       S.checkTargetAttr(LiteralLoc, Str))
3112     return;
3113 
3114   TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str);
3115   D->addAttr(NewAttr);
3116 }
3117 
3118 static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3119   Expr *E = AL.getArgAsExpr(0);
3120   uint32_t VecWidth;
3121   if (!checkUInt32Argument(S, AL, E, VecWidth)) {
3122     AL.setInvalid();
3123     return;
3124   }
3125 
3126   MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
3127   if (Existing && Existing->getVectorWidth() != VecWidth) {
3128     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3129     return;
3130   }
3131 
3132   D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth));
3133 }
3134 
3135 static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3136   Expr *E = AL.getArgAsExpr(0);
3137   SourceLocation Loc = E->getExprLoc();
3138   FunctionDecl *FD = nullptr;
3139   DeclarationNameInfo NI;
3140 
3141   // gcc only allows for simple identifiers. Since we support more than gcc, we
3142   // will warn the user.
3143   if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3144     if (DRE->hasQualifier())
3145       S.Diag(Loc, diag::warn_cleanup_ext);
3146     FD = dyn_cast<FunctionDecl>(DRE->getDecl());
3147     NI = DRE->getNameInfo();
3148     if (!FD) {
3149       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
3150         << NI.getName();
3151       return;
3152     }
3153   } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
3154     if (ULE->hasExplicitTemplateArgs())
3155       S.Diag(Loc, diag::warn_cleanup_ext);
3156     FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
3157     NI = ULE->getNameInfo();
3158     if (!FD) {
3159       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
3160         << NI.getName();
3161       if (ULE->getType() == S.Context.OverloadTy)
3162         S.NoteAllOverloadCandidates(ULE);
3163       return;
3164     }
3165   } else {
3166     S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
3167     return;
3168   }
3169 
3170   if (FD->getNumParams() != 1) {
3171     S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
3172       << NI.getName();
3173     return;
3174   }
3175 
3176   // We're currently more strict than GCC about what function types we accept.
3177   // If this ever proves to be a problem it should be easy to fix.
3178   QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType());
3179   QualType ParamTy = FD->getParamDecl(0)->getType();
3180   if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
3181                                    ParamTy, Ty) != Sema::Compatible) {
3182     S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
3183       << NI.getName() << ParamTy << Ty;
3184     return;
3185   }
3186 
3187   D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD));
3188 }
3189 
3190 static void handleEnumExtensibilityAttr(Sema &S, Decl *D,
3191                                         const ParsedAttr &AL) {
3192   if (!AL.isArgIdent(0)) {
3193     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3194         << AL << 0 << AANT_ArgumentIdentifier;
3195     return;
3196   }
3197 
3198   EnumExtensibilityAttr::Kind ExtensibilityKind;
3199   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3200   if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
3201                                                ExtensibilityKind)) {
3202     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3203     return;
3204   }
3205 
3206   D->addAttr(::new (S.Context)
3207                  EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind));
3208 }
3209 
3210 /// Handle __attribute__((format_arg((idx)))) attribute based on
3211 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3212 static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3213   Expr *IdxExpr = AL.getArgAsExpr(0);
3214   ParamIdx Idx;
3215   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx))
3216     return;
3217 
3218   // Make sure the format string is really a string.
3219   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
3220 
3221   bool NotNSStringTy = !isNSStringType(Ty, S.Context);
3222   if (NotNSStringTy &&
3223       !isCFStringType(Ty, S.Context) &&
3224       (!Ty->isPointerType() ||
3225        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3226     S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3227         << "a string type" << IdxExpr->getSourceRange()
3228         << getFunctionOrMethodParamRange(D, 0);
3229     return;
3230   }
3231   Ty = getFunctionOrMethodResultType(D);
3232   if (!isNSStringType(Ty, S.Context) &&
3233       !isCFStringType(Ty, S.Context) &&
3234       (!Ty->isPointerType() ||
3235        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3236     S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
3237         << (NotNSStringTy ? "string type" : "NSString")
3238         << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3239     return;
3240   }
3241 
3242   D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx));
3243 }
3244 
3245 enum FormatAttrKind {
3246   CFStringFormat,
3247   NSStringFormat,
3248   StrftimeFormat,
3249   SupportedFormat,
3250   IgnoredFormat,
3251   InvalidFormat
3252 };
3253 
3254 /// getFormatAttrKind - Map from format attribute names to supported format
3255 /// types.
3256 static FormatAttrKind getFormatAttrKind(StringRef Format) {
3257   return llvm::StringSwitch<FormatAttrKind>(Format)
3258       // Check for formats that get handled specially.
3259       .Case("NSString", NSStringFormat)
3260       .Case("CFString", CFStringFormat)
3261       .Case("strftime", StrftimeFormat)
3262 
3263       // Otherwise, check for supported formats.
3264       .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
3265       .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
3266       .Case("kprintf", SupportedFormat)         // OpenBSD.
3267       .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
3268       .Case("os_trace", SupportedFormat)
3269       .Case("os_log", SupportedFormat)
3270       .Case("syslog", SupportedFormat)
3271 
3272       .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
3273       .Default(InvalidFormat);
3274 }
3275 
3276 /// Handle __attribute__((init_priority(priority))) attributes based on
3277 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
3278 static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3279   if (!S.getLangOpts().CPlusPlus) {
3280     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
3281     return;
3282   }
3283 
3284   if (S.getCurFunctionOrMethodDecl()) {
3285     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3286     AL.setInvalid();
3287     return;
3288   }
3289   QualType T = cast<VarDecl>(D)->getType();
3290   if (S.Context.getAsArrayType(T))
3291     T = S.Context.getBaseElementType(T);
3292   if (!T->getAs<RecordType>()) {
3293     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3294     AL.setInvalid();
3295     return;
3296   }
3297 
3298   Expr *E = AL.getArgAsExpr(0);
3299   uint32_t prioritynum;
3300   if (!checkUInt32Argument(S, AL, E, prioritynum)) {
3301     AL.setInvalid();
3302     return;
3303   }
3304 
3305   // Only perform the priority check if the attribute is outside of a system
3306   // header. Values <= 100 are reserved for the implementation, and libc++
3307   // benefits from being able to specify values in that range.
3308   if ((prioritynum < 101 || prioritynum > 65535) &&
3309       !S.getSourceManager().isInSystemHeader(AL.getLoc())) {
3310     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
3311         << E->getSourceRange() << AL << 101 << 65535;
3312     AL.setInvalid();
3313     return;
3314   }
3315   D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum));
3316 }
3317 
3318 FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3319                                   IdentifierInfo *Format, int FormatIdx,
3320                                   int FirstArg) {
3321   // Check whether we already have an equivalent format attribute.
3322   for (auto *F : D->specific_attrs<FormatAttr>()) {
3323     if (F->getType() == Format &&
3324         F->getFormatIdx() == FormatIdx &&
3325         F->getFirstArg() == FirstArg) {
3326       // If we don't have a valid location for this attribute, adopt the
3327       // location.
3328       if (F->getLocation().isInvalid())
3329         F->setRange(CI.getRange());
3330       return nullptr;
3331     }
3332   }
3333 
3334   return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg);
3335 }
3336 
3337 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3338 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3339 static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3340   if (!AL.isArgIdent(0)) {
3341     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3342         << AL << 1 << AANT_ArgumentIdentifier;
3343     return;
3344   }
3345 
3346   // In C++ the implicit 'this' function parameter also counts, and they are
3347   // counted from one.
3348   bool HasImplicitThisParam = isInstanceMethod(D);
3349   unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
3350 
3351   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3352   StringRef Format = II->getName();
3353 
3354   if (normalizeName(Format)) {
3355     // If we've modified the string name, we need a new identifier for it.
3356     II = &S.Context.Idents.get(Format);
3357   }
3358 
3359   // Check for supported formats.
3360   FormatAttrKind Kind = getFormatAttrKind(Format);
3361 
3362   if (Kind == IgnoredFormat)
3363     return;
3364 
3365   if (Kind == InvalidFormat) {
3366     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
3367         << AL << II->getName();
3368     return;
3369   }
3370 
3371   // checks for the 2nd argument
3372   Expr *IdxExpr = AL.getArgAsExpr(1);
3373   uint32_t Idx;
3374   if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2))
3375     return;
3376 
3377   if (Idx < 1 || Idx > NumArgs) {
3378     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3379         << AL << 2 << IdxExpr->getSourceRange();
3380     return;
3381   }
3382 
3383   // FIXME: Do we need to bounds check?
3384   unsigned ArgIdx = Idx - 1;
3385 
3386   if (HasImplicitThisParam) {
3387     if (ArgIdx == 0) {
3388       S.Diag(AL.getLoc(),
3389              diag::err_format_attribute_implicit_this_format_string)
3390         << IdxExpr->getSourceRange();
3391       return;
3392     }
3393     ArgIdx--;
3394   }
3395 
3396   // make sure the format string is really a string
3397   QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
3398 
3399   if (Kind == CFStringFormat) {
3400     if (!isCFStringType(Ty, S.Context)) {
3401       S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3402         << "a CFString" << IdxExpr->getSourceRange()
3403         << getFunctionOrMethodParamRange(D, ArgIdx);
3404       return;
3405     }
3406   } else if (Kind == NSStringFormat) {
3407     // FIXME: do we need to check if the type is NSString*?  What are the
3408     // semantics?
3409     if (!isNSStringType(Ty, S.Context)) {
3410       S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3411         << "an NSString" << IdxExpr->getSourceRange()
3412         << getFunctionOrMethodParamRange(D, ArgIdx);
3413       return;
3414     }
3415   } else if (!Ty->isPointerType() ||
3416              !Ty->castAs<PointerType>()->getPointeeType()->isCharType()) {
3417     S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3418       << "a string type" << IdxExpr->getSourceRange()
3419       << getFunctionOrMethodParamRange(D, ArgIdx);
3420     return;
3421   }
3422 
3423   // check the 3rd argument
3424   Expr *FirstArgExpr = AL.getArgAsExpr(2);
3425   uint32_t FirstArg;
3426   if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3))
3427     return;
3428 
3429   // check if the function is variadic if the 3rd argument non-zero
3430   if (FirstArg != 0) {
3431     if (isFunctionOrMethodVariadic(D)) {
3432       ++NumArgs; // +1 for ...
3433     } else {
3434       S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
3435       return;
3436     }
3437   }
3438 
3439   // strftime requires FirstArg to be 0 because it doesn't read from any
3440   // variable the input is just the current time + the format string.
3441   if (Kind == StrftimeFormat) {
3442     if (FirstArg != 0) {
3443       S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
3444         << FirstArgExpr->getSourceRange();
3445       return;
3446     }
3447   // if 0 it disables parameter checking (to use with e.g. va_list)
3448   } else if (FirstArg != 0 && FirstArg != NumArgs) {
3449     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3450         << AL << 3 << FirstArgExpr->getSourceRange();
3451     return;
3452   }
3453 
3454   FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg);
3455   if (NewAttr)
3456     D->addAttr(NewAttr);
3457 }
3458 
3459 /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
3460 static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3461   // The index that identifies the callback callee is mandatory.
3462   if (AL.getNumArgs() == 0) {
3463     S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee)
3464         << AL.getRange();
3465     return;
3466   }
3467 
3468   bool HasImplicitThisParam = isInstanceMethod(D);
3469   int32_t NumArgs = getFunctionOrMethodNumParams(D);
3470 
3471   FunctionDecl *FD = D->getAsFunction();
3472   assert(FD && "Expected a function declaration!");
3473 
3474   llvm::StringMap<int> NameIdxMapping;
3475   NameIdxMapping["__"] = -1;
3476 
3477   NameIdxMapping["this"] = 0;
3478 
3479   int Idx = 1;
3480   for (const ParmVarDecl *PVD : FD->parameters())
3481     NameIdxMapping[PVD->getName()] = Idx++;
3482 
3483   auto UnknownName = NameIdxMapping.end();
3484 
3485   SmallVector<int, 8> EncodingIndices;
3486   for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) {
3487     SourceRange SR;
3488     int32_t ArgIdx;
3489 
3490     if (AL.isArgIdent(I)) {
3491       IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
3492       auto It = NameIdxMapping.find(IdLoc->Ident->getName());
3493       if (It == UnknownName) {
3494         S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown)
3495             << IdLoc->Ident << IdLoc->Loc;
3496         return;
3497       }
3498 
3499       SR = SourceRange(IdLoc->Loc);
3500       ArgIdx = It->second;
3501     } else if (AL.isArgExpr(I)) {
3502       Expr *IdxExpr = AL.getArgAsExpr(I);
3503 
3504       // If the expression is not parseable as an int32_t we have a problem.
3505       if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1,
3506                                false)) {
3507         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3508             << AL << (I + 1) << IdxExpr->getSourceRange();
3509         return;
3510       }
3511 
3512       // Check oob, excluding the special values, 0 and -1.
3513       if (ArgIdx < -1 || ArgIdx > NumArgs) {
3514         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3515             << AL << (I + 1) << IdxExpr->getSourceRange();
3516         return;
3517       }
3518 
3519       SR = IdxExpr->getSourceRange();
3520     } else {
3521       llvm_unreachable("Unexpected ParsedAttr argument type!");
3522     }
3523 
3524     if (ArgIdx == 0 && !HasImplicitThisParam) {
3525       S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available)
3526           << (I + 1) << SR;
3527       return;
3528     }
3529 
3530     // Adjust for the case we do not have an implicit "this" parameter. In this
3531     // case we decrease all positive values by 1 to get LLVM argument indices.
3532     if (!HasImplicitThisParam && ArgIdx > 0)
3533       ArgIdx -= 1;
3534 
3535     EncodingIndices.push_back(ArgIdx);
3536   }
3537 
3538   int CalleeIdx = EncodingIndices.front();
3539   // Check if the callee index is proper, thus not "this" and not "unknown".
3540   // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam"
3541   // is false and positive if "HasImplicitThisParam" is true.
3542   if (CalleeIdx < (int)HasImplicitThisParam) {
3543     S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee)
3544         << AL.getRange();
3545     return;
3546   }
3547 
3548   // Get the callee type, note the index adjustment as the AST doesn't contain
3549   // the this type (which the callee cannot reference anyway!).
3550   const Type *CalleeType =
3551       getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam)
3552           .getTypePtr();
3553   if (!CalleeType || !CalleeType->isFunctionPointerType()) {
3554     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
3555         << AL.getRange();
3556     return;
3557   }
3558 
3559   const Type *CalleeFnType =
3560       CalleeType->getPointeeType()->getUnqualifiedDesugaredType();
3561 
3562   // TODO: Check the type of the callee arguments.
3563 
3564   const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType);
3565   if (!CalleeFnProtoType) {
3566     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
3567         << AL.getRange();
3568     return;
3569   }
3570 
3571   if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) {
3572     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
3573         << AL << (unsigned)(EncodingIndices.size() - 1);
3574     return;
3575   }
3576 
3577   if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) {
3578     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
3579         << AL << (unsigned)(EncodingIndices.size() - 1);
3580     return;
3581   }
3582 
3583   if (CalleeFnProtoType->isVariadic()) {
3584     S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange();
3585     return;
3586   }
3587 
3588   // Do not allow multiple callback attributes.
3589   if (D->hasAttr<CallbackAttr>()) {
3590     S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange();
3591     return;
3592   }
3593 
3594   D->addAttr(::new (S.Context) CallbackAttr(
3595       S.Context, AL, EncodingIndices.data(), EncodingIndices.size()));
3596 }
3597 
3598 static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3599   // Try to find the underlying union declaration.
3600   RecordDecl *RD = nullptr;
3601   const auto *TD = dyn_cast<TypedefNameDecl>(D);
3602   if (TD && TD->getUnderlyingType()->isUnionType())
3603     RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
3604   else
3605     RD = dyn_cast<RecordDecl>(D);
3606 
3607   if (!RD || !RD->isUnion()) {
3608     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL
3609                                                               << ExpectedUnion;
3610     return;
3611   }
3612 
3613   if (!RD->isCompleteDefinition()) {
3614     if (!RD->isBeingDefined())
3615       S.Diag(AL.getLoc(),
3616              diag::warn_transparent_union_attribute_not_definition);
3617     return;
3618   }
3619 
3620   RecordDecl::field_iterator Field = RD->field_begin(),
3621                           FieldEnd = RD->field_end();
3622   if (Field == FieldEnd) {
3623     S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
3624     return;
3625   }
3626 
3627   FieldDecl *FirstField = *Field;
3628   QualType FirstType = FirstField->getType();
3629   if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
3630     S.Diag(FirstField->getLocation(),
3631            diag::warn_transparent_union_attribute_floating)
3632       << FirstType->isVectorType() << FirstType;
3633     return;
3634   }
3635 
3636   if (FirstType->isIncompleteType())
3637     return;
3638   uint64_t FirstSize = S.Context.getTypeSize(FirstType);
3639   uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
3640   for (; Field != FieldEnd; ++Field) {
3641     QualType FieldType = Field->getType();
3642     if (FieldType->isIncompleteType())
3643       return;
3644     // FIXME: this isn't fully correct; we also need to test whether the
3645     // members of the union would all have the same calling convention as the
3646     // first member of the union. Checking just the size and alignment isn't
3647     // sufficient (consider structs passed on the stack instead of in registers
3648     // as an example).
3649     if (S.Context.getTypeSize(FieldType) != FirstSize ||
3650         S.Context.getTypeAlign(FieldType) > FirstAlign) {
3651       // Warn if we drop the attribute.
3652       bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
3653       unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
3654                                  : S.Context.getTypeAlign(FieldType);
3655       S.Diag(Field->getLocation(),
3656           diag::warn_transparent_union_attribute_field_size_align)
3657         << isSize << Field->getDeclName() << FieldBits;
3658       unsigned FirstBits = isSize? FirstSize : FirstAlign;
3659       S.Diag(FirstField->getLocation(),
3660              diag::note_transparent_union_first_field_size_align)
3661         << isSize << FirstBits;
3662       return;
3663     }
3664   }
3665 
3666   RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL));
3667 }
3668 
3669 static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3670   // Make sure that there is a string literal as the annotation's single
3671   // argument.
3672   StringRef Str;
3673   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
3674     return;
3675 
3676   // Don't duplicate annotations that are already set.
3677   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
3678     if (I->getAnnotation() == Str)
3679       return;
3680   }
3681 
3682   D->addAttr(::new (S.Context) AnnotateAttr(S.Context, AL, Str));
3683 }
3684 
3685 static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3686   S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0));
3687 }
3688 
3689 void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) {
3690   AlignValueAttr TmpAttr(Context, CI, E);
3691   SourceLocation AttrLoc = CI.getLoc();
3692 
3693   QualType T;
3694   if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
3695     T = TD->getUnderlyingType();
3696   else if (const auto *VD = dyn_cast<ValueDecl>(D))
3697     T = VD->getType();
3698   else
3699     llvm_unreachable("Unknown decl type for align_value");
3700 
3701   if (!T->isDependentType() && !T->isAnyPointerType() &&
3702       !T->isReferenceType() && !T->isMemberPointerType()) {
3703     Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
3704       << &TmpAttr << T << D->getSourceRange();
3705     return;
3706   }
3707 
3708   if (!E->isValueDependent()) {
3709     llvm::APSInt Alignment;
3710     ExprResult ICE
3711       = VerifyIntegerConstantExpression(E, &Alignment,
3712           diag::err_align_value_attribute_argument_not_int,
3713             /*AllowFold*/ false);
3714     if (ICE.isInvalid())
3715       return;
3716 
3717     if (!Alignment.isPowerOf2()) {
3718       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
3719         << E->getSourceRange();
3720       return;
3721     }
3722 
3723     D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get()));
3724     return;
3725   }
3726 
3727   // Save dependent expressions in the AST to be instantiated.
3728   D->addAttr(::new (Context) AlignValueAttr(Context, CI, E));
3729 }
3730 
3731 static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3732   // check the attribute arguments.
3733   if (AL.getNumArgs() > 1) {
3734     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
3735     return;
3736   }
3737 
3738   if (AL.getNumArgs() == 0) {
3739     D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr));
3740     return;
3741   }
3742 
3743   Expr *E = AL.getArgAsExpr(0);
3744   if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
3745     S.Diag(AL.getEllipsisLoc(),
3746            diag::err_pack_expansion_without_parameter_packs);
3747     return;
3748   }
3749 
3750   if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
3751     return;
3752 
3753   S.AddAlignedAttr(D, AL, E, AL.isPackExpansion());
3754 }
3755 
3756 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
3757                           bool IsPackExpansion) {
3758   AlignedAttr TmpAttr(Context, CI, true, E);
3759   SourceLocation AttrLoc = CI.getLoc();
3760 
3761   // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
3762   if (TmpAttr.isAlignas()) {
3763     // C++11 [dcl.align]p1:
3764     //   An alignment-specifier may be applied to a variable or to a class
3765     //   data member, but it shall not be applied to a bit-field, a function
3766     //   parameter, the formal parameter of a catch clause, or a variable
3767     //   declared with the register storage class specifier. An
3768     //   alignment-specifier may also be applied to the declaration of a class
3769     //   or enumeration type.
3770     // C11 6.7.5/2:
3771     //   An alignment attribute shall not be specified in a declaration of
3772     //   a typedef, or a bit-field, or a function, or a parameter, or an
3773     //   object declared with the register storage-class specifier.
3774     int DiagKind = -1;
3775     if (isa<ParmVarDecl>(D)) {
3776       DiagKind = 0;
3777     } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
3778       if (VD->getStorageClass() == SC_Register)
3779         DiagKind = 1;
3780       if (VD->isExceptionVariable())
3781         DiagKind = 2;
3782     } else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
3783       if (FD->isBitField())
3784         DiagKind = 3;
3785     } else if (!isa<TagDecl>(D)) {
3786       Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
3787         << (TmpAttr.isC11() ? ExpectedVariableOrField
3788                             : ExpectedVariableFieldOrTag);
3789       return;
3790     }
3791     if (DiagKind != -1) {
3792       Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
3793         << &TmpAttr << DiagKind;
3794       return;
3795     }
3796   }
3797 
3798   if (E->isValueDependent()) {
3799     // We can't support a dependent alignment on a non-dependent type,
3800     // because we have no way to model that a type is "alignment-dependent"
3801     // but not dependent in any other way.
3802     if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
3803       if (!TND->getUnderlyingType()->isDependentType()) {
3804         Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
3805             << E->getSourceRange();
3806         return;
3807       }
3808     }
3809 
3810     // Save dependent expressions in the AST to be instantiated.
3811     AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E);
3812     AA->setPackExpansion(IsPackExpansion);
3813     D->addAttr(AA);
3814     return;
3815   }
3816 
3817   // FIXME: Cache the number on the AL object?
3818   llvm::APSInt Alignment;
3819   ExprResult ICE
3820     = VerifyIntegerConstantExpression(E, &Alignment,
3821         diag::err_aligned_attribute_argument_not_int,
3822         /*AllowFold*/ false);
3823   if (ICE.isInvalid())
3824     return;
3825 
3826   uint64_t AlignVal = Alignment.getZExtValue();
3827 
3828   // C++11 [dcl.align]p2:
3829   //   -- if the constant expression evaluates to zero, the alignment
3830   //      specifier shall have no effect
3831   // C11 6.7.5p6:
3832   //   An alignment specification of zero has no effect.
3833   if (!(TmpAttr.isAlignas() && !Alignment)) {
3834     if (!llvm::isPowerOf2_64(AlignVal)) {
3835       Diag(AttrLoc, diag::err_alignment_not_power_of_two)
3836         << E->getSourceRange();
3837       return;
3838     }
3839   }
3840 
3841   unsigned MaximumAlignment = Sema::MaximumAlignment;
3842   if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF())
3843     MaximumAlignment = std::min(MaximumAlignment, 8192u);
3844   if (AlignVal > MaximumAlignment) {
3845     Diag(AttrLoc, diag::err_attribute_aligned_too_great)
3846         << MaximumAlignment << E->getSourceRange();
3847     return;
3848   }
3849 
3850   if (Context.getTargetInfo().isTLSSupported()) {
3851     unsigned MaxTLSAlign =
3852         Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
3853             .getQuantity();
3854     const auto *VD = dyn_cast<VarDecl>(D);
3855     if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD &&
3856         VD->getTLSKind() != VarDecl::TLS_None) {
3857       Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
3858           << (unsigned)AlignVal << VD << MaxTLSAlign;
3859       return;
3860     }
3861   }
3862 
3863   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get());
3864   AA->setPackExpansion(IsPackExpansion);
3865   D->addAttr(AA);
3866 }
3867 
3868 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI,
3869                           TypeSourceInfo *TS, bool IsPackExpansion) {
3870   // FIXME: Cache the number on the AL object if non-dependent?
3871   // FIXME: Perform checking of type validity
3872   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
3873   AA->setPackExpansion(IsPackExpansion);
3874   D->addAttr(AA);
3875 }
3876 
3877 void Sema::CheckAlignasUnderalignment(Decl *D) {
3878   assert(D->hasAttrs() && "no attributes on decl");
3879 
3880   QualType UnderlyingTy, DiagTy;
3881   if (const auto *VD = dyn_cast<ValueDecl>(D)) {
3882     UnderlyingTy = DiagTy = VD->getType();
3883   } else {
3884     UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
3885     if (const auto *ED = dyn_cast<EnumDecl>(D))
3886       UnderlyingTy = ED->getIntegerType();
3887   }
3888   if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
3889     return;
3890 
3891   // C++11 [dcl.align]p5, C11 6.7.5/4:
3892   //   The combined effect of all alignment attributes in a declaration shall
3893   //   not specify an alignment that is less strict than the alignment that
3894   //   would otherwise be required for the entity being declared.
3895   AlignedAttr *AlignasAttr = nullptr;
3896   AlignedAttr *LastAlignedAttr = nullptr;
3897   unsigned Align = 0;
3898   for (auto *I : D->specific_attrs<AlignedAttr>()) {
3899     if (I->isAlignmentDependent())
3900       return;
3901     if (I->isAlignas())
3902       AlignasAttr = I;
3903     Align = std::max(Align, I->getAlignment(Context));
3904     LastAlignedAttr = I;
3905   }
3906 
3907   if (Align && DiagTy->isSizelessType()) {
3908     Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type)
3909         << LastAlignedAttr << DiagTy;
3910   } else if (AlignasAttr && Align) {
3911     CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
3912     CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
3913     if (NaturalAlign > RequestedAlign)
3914       Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
3915         << DiagTy << (unsigned)NaturalAlign.getQuantity();
3916   }
3917 }
3918 
3919 bool Sema::checkMSInheritanceAttrOnDefinition(
3920     CXXRecordDecl *RD, SourceRange Range, bool BestCase,
3921     MSInheritanceModel ExplicitModel) {
3922   assert(RD->hasDefinition() && "RD has no definition!");
3923 
3924   // We may not have seen base specifiers or any virtual methods yet.  We will
3925   // have to wait until the record is defined to catch any mismatches.
3926   if (!RD->getDefinition()->isCompleteDefinition())
3927     return false;
3928 
3929   // The unspecified model never matches what a definition could need.
3930   if (ExplicitModel == MSInheritanceModel::Unspecified)
3931     return false;
3932 
3933   if (BestCase) {
3934     if (RD->calculateInheritanceModel() == ExplicitModel)
3935       return false;
3936   } else {
3937     if (RD->calculateInheritanceModel() <= ExplicitModel)
3938       return false;
3939   }
3940 
3941   Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
3942       << 0 /*definition*/;
3943   Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD;
3944   return true;
3945 }
3946 
3947 /// parseModeAttrArg - Parses attribute mode string and returns parsed type
3948 /// attribute.
3949 static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
3950                              bool &IntegerMode, bool &ComplexMode,
3951                              bool &ExplicitIEEE) {
3952   IntegerMode = true;
3953   ComplexMode = false;
3954   switch (Str.size()) {
3955   case 2:
3956     switch (Str[0]) {
3957     case 'Q':
3958       DestWidth = 8;
3959       break;
3960     case 'H':
3961       DestWidth = 16;
3962       break;
3963     case 'S':
3964       DestWidth = 32;
3965       break;
3966     case 'D':
3967       DestWidth = 64;
3968       break;
3969     case 'X':
3970       DestWidth = 96;
3971       break;
3972     case 'K': // KFmode - IEEE quad precision (__float128)
3973       ExplicitIEEE = true;
3974       DestWidth = Str[1] == 'I' ? 0 : 128;
3975       break;
3976     case 'T':
3977       ExplicitIEEE = false;
3978       DestWidth = 128;
3979       break;
3980     }
3981     if (Str[1] == 'F') {
3982       IntegerMode = false;
3983     } else if (Str[1] == 'C') {
3984       IntegerMode = false;
3985       ComplexMode = true;
3986     } else if (Str[1] != 'I') {
3987       DestWidth = 0;
3988     }
3989     break;
3990   case 4:
3991     // FIXME: glibc uses 'word' to define register_t; this is narrower than a
3992     // pointer on PIC16 and other embedded platforms.
3993     if (Str == "word")
3994       DestWidth = S.Context.getTargetInfo().getRegisterWidth();
3995     else if (Str == "byte")
3996       DestWidth = S.Context.getTargetInfo().getCharWidth();
3997     break;
3998   case 7:
3999     if (Str == "pointer")
4000       DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
4001     break;
4002   case 11:
4003     if (Str == "unwind_word")
4004       DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
4005     break;
4006   }
4007 }
4008 
4009 /// handleModeAttr - This attribute modifies the width of a decl with primitive
4010 /// type.
4011 ///
4012 /// Despite what would be logical, the mode attribute is a decl attribute, not a
4013 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
4014 /// HImode, not an intermediate pointer.
4015 static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4016   // This attribute isn't documented, but glibc uses it.  It changes
4017   // the width of an int or unsigned int to the specified size.
4018   if (!AL.isArgIdent(0)) {
4019     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
4020         << AL << AANT_ArgumentIdentifier;
4021     return;
4022   }
4023 
4024   IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident;
4025 
4026   S.AddModeAttr(D, AL, Name);
4027 }
4028 
4029 void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI,
4030                        IdentifierInfo *Name, bool InInstantiation) {
4031   StringRef Str = Name->getName();
4032   normalizeName(Str);
4033   SourceLocation AttrLoc = CI.getLoc();
4034 
4035   unsigned DestWidth = 0;
4036   bool IntegerMode = true;
4037   bool ComplexMode = false;
4038   bool ExplicitIEEE = false;
4039   llvm::APInt VectorSize(64, 0);
4040   if (Str.size() >= 4 && Str[0] == 'V') {
4041     // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
4042     size_t StrSize = Str.size();
4043     size_t VectorStringLength = 0;
4044     while ((VectorStringLength + 1) < StrSize &&
4045            isdigit(Str[VectorStringLength + 1]))
4046       ++VectorStringLength;
4047     if (VectorStringLength &&
4048         !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
4049         VectorSize.isPowerOf2()) {
4050       parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
4051                        IntegerMode, ComplexMode, ExplicitIEEE);
4052       // Avoid duplicate warning from template instantiation.
4053       if (!InInstantiation)
4054         Diag(AttrLoc, diag::warn_vector_mode_deprecated);
4055     } else {
4056       VectorSize = 0;
4057     }
4058   }
4059 
4060   if (!VectorSize)
4061     parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode,
4062                      ExplicitIEEE);
4063 
4064   // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
4065   // and friends, at least with glibc.
4066   // FIXME: Make sure floating-point mappings are accurate
4067   // FIXME: Support XF and TF types
4068   if (!DestWidth) {
4069     Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
4070     return;
4071   }
4072 
4073   QualType OldTy;
4074   if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4075     OldTy = TD->getUnderlyingType();
4076   else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4077     // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
4078     // Try to get type from enum declaration, default to int.
4079     OldTy = ED->getIntegerType();
4080     if (OldTy.isNull())
4081       OldTy = Context.IntTy;
4082   } else
4083     OldTy = cast<ValueDecl>(D)->getType();
4084 
4085   if (OldTy->isDependentType()) {
4086     D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4087     return;
4088   }
4089 
4090   // Base type can also be a vector type (see PR17453).
4091   // Distinguish between base type and base element type.
4092   QualType OldElemTy = OldTy;
4093   if (const auto *VT = OldTy->getAs<VectorType>())
4094     OldElemTy = VT->getElementType();
4095 
4096   // GCC allows 'mode' attribute on enumeration types (even incomplete), except
4097   // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
4098   // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
4099   if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
4100       VectorSize.getBoolValue()) {
4101     Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange();
4102     return;
4103   }
4104   bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() &&
4105                                 !OldElemTy->isExtIntType()) ||
4106                                OldElemTy->getAs<EnumType>();
4107 
4108   if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
4109       !IntegralOrAnyEnumType)
4110     Diag(AttrLoc, diag::err_mode_not_primitive);
4111   else if (IntegerMode) {
4112     if (!IntegralOrAnyEnumType)
4113       Diag(AttrLoc, diag::err_mode_wrong_type);
4114   } else if (ComplexMode) {
4115     if (!OldElemTy->isComplexType())
4116       Diag(AttrLoc, diag::err_mode_wrong_type);
4117   } else {
4118     if (!OldElemTy->isFloatingType())
4119       Diag(AttrLoc, diag::err_mode_wrong_type);
4120   }
4121 
4122   QualType NewElemTy;
4123 
4124   if (IntegerMode)
4125     NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
4126                                               OldElemTy->isSignedIntegerType());
4127   else
4128     NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitIEEE);
4129 
4130   if (NewElemTy.isNull()) {
4131     Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
4132     return;
4133   }
4134 
4135   if (ComplexMode) {
4136     NewElemTy = Context.getComplexType(NewElemTy);
4137   }
4138 
4139   QualType NewTy = NewElemTy;
4140   if (VectorSize.getBoolValue()) {
4141     NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
4142                                   VectorType::GenericVector);
4143   } else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
4144     // Complex machine mode does not support base vector types.
4145     if (ComplexMode) {
4146       Diag(AttrLoc, diag::err_complex_mode_vector_type);
4147       return;
4148     }
4149     unsigned NumElements = Context.getTypeSize(OldElemTy) *
4150                            OldVT->getNumElements() /
4151                            Context.getTypeSize(NewElemTy);
4152     NewTy =
4153         Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
4154   }
4155 
4156   if (NewTy.isNull()) {
4157     Diag(AttrLoc, diag::err_mode_wrong_type);
4158     return;
4159   }
4160 
4161   // Install the new type.
4162   if (auto *TD = dyn_cast<TypedefNameDecl>(D))
4163     TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
4164   else if (auto *ED = dyn_cast<EnumDecl>(D))
4165     ED->setIntegerType(NewTy);
4166   else
4167     cast<ValueDecl>(D)->setType(NewTy);
4168 
4169   D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4170 }
4171 
4172 static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4173   D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL));
4174 }
4175 
4176 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D,
4177                                               const AttributeCommonInfo &CI,
4178                                               const IdentifierInfo *Ident) {
4179   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4180     Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident;
4181     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4182     return nullptr;
4183   }
4184 
4185   if (D->hasAttr<AlwaysInlineAttr>())
4186     return nullptr;
4187 
4188   return ::new (Context) AlwaysInlineAttr(Context, CI);
4189 }
4190 
4191 CommonAttr *Sema::mergeCommonAttr(Decl *D, const ParsedAttr &AL) {
4192   if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL))
4193     return nullptr;
4194 
4195   return ::new (Context) CommonAttr(Context, AL);
4196 }
4197 
4198 CommonAttr *Sema::mergeCommonAttr(Decl *D, const CommonAttr &AL) {
4199   if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL))
4200     return nullptr;
4201 
4202   return ::new (Context) CommonAttr(Context, AL);
4203 }
4204 
4205 InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D,
4206                                                     const ParsedAttr &AL) {
4207   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4208     // Attribute applies to Var but not any subclass of it (like ParmVar,
4209     // ImplicitParm or VarTemplateSpecialization).
4210     if (VD->getKind() != Decl::Var) {
4211       Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4212           << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4213                                             : ExpectedVariableOrFunction);
4214       return nullptr;
4215     }
4216     // Attribute does not apply to non-static local variables.
4217     if (VD->hasLocalStorage()) {
4218       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4219       return nullptr;
4220     }
4221   }
4222 
4223   if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL))
4224     return nullptr;
4225 
4226   return ::new (Context) InternalLinkageAttr(Context, AL);
4227 }
4228 InternalLinkageAttr *
4229 Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) {
4230   if (const auto *VD = dyn_cast<VarDecl>(D)) {
4231     // Attribute applies to Var but not any subclass of it (like ParmVar,
4232     // ImplicitParm or VarTemplateSpecialization).
4233     if (VD->getKind() != Decl::Var) {
4234       Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type)
4235           << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4236                                              : ExpectedVariableOrFunction);
4237       return nullptr;
4238     }
4239     // Attribute does not apply to non-static local variables.
4240     if (VD->hasLocalStorage()) {
4241       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4242       return nullptr;
4243     }
4244   }
4245 
4246   if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL))
4247     return nullptr;
4248 
4249   return ::new (Context) InternalLinkageAttr(Context, AL);
4250 }
4251 
4252 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) {
4253   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4254     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'";
4255     Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4256     return nullptr;
4257   }
4258 
4259   if (D->hasAttr<MinSizeAttr>())
4260     return nullptr;
4261 
4262   return ::new (Context) MinSizeAttr(Context, CI);
4263 }
4264 
4265 NoSpeculativeLoadHardeningAttr *Sema::mergeNoSpeculativeLoadHardeningAttr(
4266     Decl *D, const NoSpeculativeLoadHardeningAttr &AL) {
4267   if (checkAttrMutualExclusion<SpeculativeLoadHardeningAttr>(*this, D, AL))
4268     return nullptr;
4269 
4270   return ::new (Context) NoSpeculativeLoadHardeningAttr(Context, AL);
4271 }
4272 
4273 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D,
4274                                               const AttributeCommonInfo &CI) {
4275   if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
4276     Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
4277     Diag(CI.getLoc(), diag::note_conflicting_attribute);
4278     D->dropAttr<AlwaysInlineAttr>();
4279   }
4280   if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
4281     Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
4282     Diag(CI.getLoc(), diag::note_conflicting_attribute);
4283     D->dropAttr<MinSizeAttr>();
4284   }
4285 
4286   if (D->hasAttr<OptimizeNoneAttr>())
4287     return nullptr;
4288 
4289   return ::new (Context) OptimizeNoneAttr(Context, CI);
4290 }
4291 
4292 SpeculativeLoadHardeningAttr *Sema::mergeSpeculativeLoadHardeningAttr(
4293     Decl *D, const SpeculativeLoadHardeningAttr &AL) {
4294   if (checkAttrMutualExclusion<NoSpeculativeLoadHardeningAttr>(*this, D, AL))
4295     return nullptr;
4296 
4297   return ::new (Context) SpeculativeLoadHardeningAttr(Context, AL);
4298 }
4299 
4300 static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4301   if (checkAttrMutualExclusion<NotTailCalledAttr>(S, D, AL))
4302     return;
4303 
4304   if (AlwaysInlineAttr *Inline =
4305           S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName()))
4306     D->addAttr(Inline);
4307 }
4308 
4309 static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4310   if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL))
4311     D->addAttr(MinSize);
4312 }
4313 
4314 static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4315   if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL))
4316     D->addAttr(Optnone);
4317 }
4318 
4319 static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4320   if (checkAttrMutualExclusion<CUDASharedAttr>(S, D, AL))
4321     return;
4322   const auto *VD = cast<VarDecl>(D);
4323   if (!VD->hasGlobalStorage()) {
4324     S.Diag(AL.getLoc(), diag::err_cuda_nonglobal_constant);
4325     return;
4326   }
4327   D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL));
4328 }
4329 
4330 static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4331   if (checkAttrMutualExclusion<CUDAConstantAttr>(S, D, AL))
4332     return;
4333   const auto *VD = cast<VarDecl>(D);
4334   // extern __shared__ is only allowed on arrays with no length (e.g.
4335   // "int x[]").
4336   if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() &&
4337       !isa<IncompleteArrayType>(VD->getType())) {
4338     S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
4339     return;
4340   }
4341   if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
4342       S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
4343           << S.CurrentCUDATarget())
4344     return;
4345   D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL));
4346 }
4347 
4348 static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4349   if (checkAttrMutualExclusion<CUDADeviceAttr>(S, D, AL) ||
4350       checkAttrMutualExclusion<CUDAHostAttr>(S, D, AL)) {
4351     return;
4352   }
4353   const auto *FD = cast<FunctionDecl>(D);
4354   if (!FD->getReturnType()->isVoidType() &&
4355       !FD->getReturnType()->getAs<AutoType>() &&
4356       !FD->getReturnType()->isInstantiationDependentType()) {
4357     SourceRange RTRange = FD->getReturnTypeSourceRange();
4358     S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
4359         << FD->getType()
4360         << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
4361                               : FixItHint());
4362     return;
4363   }
4364   if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
4365     if (Method->isInstance()) {
4366       S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method)
4367           << Method;
4368       return;
4369     }
4370     S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method;
4371   }
4372   // Only warn for "inline" when compiling for host, to cut down on noise.
4373   if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
4374     S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD;
4375 
4376   D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL));
4377   // In host compilation the kernel is emitted as a stub function, which is
4378   // a helper function for launching the kernel. The instructions in the helper
4379   // function has nothing to do with the source code of the kernel. Do not emit
4380   // debug info for the stub function to avoid confusing the debugger.
4381   if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice)
4382     D->addAttr(NoDebugAttr::CreateImplicit(S.Context));
4383 }
4384 
4385 static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4386   const auto *Fn = cast<FunctionDecl>(D);
4387   if (!Fn->isInlineSpecified()) {
4388     S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
4389     return;
4390   }
4391 
4392   if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern)
4393     S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern);
4394 
4395   D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL));
4396 }
4397 
4398 static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4399   if (hasDeclarator(D)) return;
4400 
4401   // Diagnostic is emitted elsewhere: here we store the (valid) AL
4402   // in the Decl node for syntactic reasoning, e.g., pretty-printing.
4403   CallingConv CC;
4404   if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr))
4405     return;
4406 
4407   if (!isa<ObjCMethodDecl>(D)) {
4408     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4409         << AL << ExpectedFunctionOrMethod;
4410     return;
4411   }
4412 
4413   switch (AL.getKind()) {
4414   case ParsedAttr::AT_FastCall:
4415     D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL));
4416     return;
4417   case ParsedAttr::AT_StdCall:
4418     D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL));
4419     return;
4420   case ParsedAttr::AT_ThisCall:
4421     D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL));
4422     return;
4423   case ParsedAttr::AT_CDecl:
4424     D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL));
4425     return;
4426   case ParsedAttr::AT_Pascal:
4427     D->addAttr(::new (S.Context) PascalAttr(S.Context, AL));
4428     return;
4429   case ParsedAttr::AT_SwiftCall:
4430     D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL));
4431     return;
4432   case ParsedAttr::AT_VectorCall:
4433     D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL));
4434     return;
4435   case ParsedAttr::AT_MSABI:
4436     D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL));
4437     return;
4438   case ParsedAttr::AT_SysVABI:
4439     D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL));
4440     return;
4441   case ParsedAttr::AT_RegCall:
4442     D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL));
4443     return;
4444   case ParsedAttr::AT_Pcs: {
4445     PcsAttr::PCSType PCS;
4446     switch (CC) {
4447     case CC_AAPCS:
4448       PCS = PcsAttr::AAPCS;
4449       break;
4450     case CC_AAPCS_VFP:
4451       PCS = PcsAttr::AAPCS_VFP;
4452       break;
4453     default:
4454       llvm_unreachable("unexpected calling convention in pcs attribute");
4455     }
4456 
4457     D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS));
4458     return;
4459   }
4460   case ParsedAttr::AT_AArch64VectorPcs:
4461     D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL));
4462     return;
4463   case ParsedAttr::AT_IntelOclBicc:
4464     D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL));
4465     return;
4466   case ParsedAttr::AT_PreserveMost:
4467     D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL));
4468     return;
4469   case ParsedAttr::AT_PreserveAll:
4470     D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL));
4471     return;
4472   default:
4473     llvm_unreachable("unexpected attribute kind");
4474   }
4475 }
4476 
4477 static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4478   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
4479     return;
4480 
4481   std::vector<StringRef> DiagnosticIdentifiers;
4482   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
4483     StringRef RuleName;
4484 
4485     if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
4486       return;
4487 
4488     // FIXME: Warn if the rule name is unknown. This is tricky because only
4489     // clang-tidy knows about available rules.
4490     DiagnosticIdentifiers.push_back(RuleName);
4491   }
4492   D->addAttr(::new (S.Context)
4493                  SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(),
4494                               DiagnosticIdentifiers.size()));
4495 }
4496 
4497 static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4498   TypeSourceInfo *DerefTypeLoc = nullptr;
4499   QualType ParmType;
4500   if (AL.hasParsedType()) {
4501     ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc);
4502 
4503     unsigned SelectIdx = ~0U;
4504     if (ParmType->isReferenceType())
4505       SelectIdx = 0;
4506     else if (ParmType->isArrayType())
4507       SelectIdx = 1;
4508 
4509     if (SelectIdx != ~0U) {
4510       S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument)
4511           << SelectIdx << AL;
4512       return;
4513     }
4514   }
4515 
4516   // To check if earlier decl attributes do not conflict the newly parsed ones
4517   // we always add (and check) the attribute to the cannonical decl.
4518   D = D->getCanonicalDecl();
4519   if (AL.getKind() == ParsedAttr::AT_Owner) {
4520     if (checkAttrMutualExclusion<PointerAttr>(S, D, AL))
4521       return;
4522     if (const auto *OAttr = D->getAttr<OwnerAttr>()) {
4523       const Type *ExistingDerefType = OAttr->getDerefTypeLoc()
4524                                           ? OAttr->getDerefType().getTypePtr()
4525                                           : nullptr;
4526       if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
4527         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
4528             << AL << OAttr;
4529         S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute);
4530       }
4531       return;
4532     }
4533     for (Decl *Redecl : D->redecls()) {
4534       Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc));
4535     }
4536   } else {
4537     if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL))
4538       return;
4539     if (const auto *PAttr = D->getAttr<PointerAttr>()) {
4540       const Type *ExistingDerefType = PAttr->getDerefTypeLoc()
4541                                           ? PAttr->getDerefType().getTypePtr()
4542                                           : nullptr;
4543       if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
4544         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
4545             << AL << PAttr;
4546         S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute);
4547       }
4548       return;
4549     }
4550     for (Decl *Redecl : D->redecls()) {
4551       Redecl->addAttr(::new (S.Context)
4552                           PointerAttr(S.Context, AL, DerefTypeLoc));
4553     }
4554   }
4555 }
4556 
4557 bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC,
4558                                 const FunctionDecl *FD) {
4559   if (Attrs.isInvalid())
4560     return true;
4561 
4562   if (Attrs.hasProcessingCache()) {
4563     CC = (CallingConv) Attrs.getProcessingCache();
4564     return false;
4565   }
4566 
4567   unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
4568   if (!checkAttributeNumArgs(*this, Attrs, ReqArgs)) {
4569     Attrs.setInvalid();
4570     return true;
4571   }
4572 
4573   // TODO: diagnose uses of these conventions on the wrong target.
4574   switch (Attrs.getKind()) {
4575   case ParsedAttr::AT_CDecl:
4576     CC = CC_C;
4577     break;
4578   case ParsedAttr::AT_FastCall:
4579     CC = CC_X86FastCall;
4580     break;
4581   case ParsedAttr::AT_StdCall:
4582     CC = CC_X86StdCall;
4583     break;
4584   case ParsedAttr::AT_ThisCall:
4585     CC = CC_X86ThisCall;
4586     break;
4587   case ParsedAttr::AT_Pascal:
4588     CC = CC_X86Pascal;
4589     break;
4590   case ParsedAttr::AT_SwiftCall:
4591     CC = CC_Swift;
4592     break;
4593   case ParsedAttr::AT_VectorCall:
4594     CC = CC_X86VectorCall;
4595     break;
4596   case ParsedAttr::AT_AArch64VectorPcs:
4597     CC = CC_AArch64VectorCall;
4598     break;
4599   case ParsedAttr::AT_RegCall:
4600     CC = CC_X86RegCall;
4601     break;
4602   case ParsedAttr::AT_MSABI:
4603     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
4604                                                              CC_Win64;
4605     break;
4606   case ParsedAttr::AT_SysVABI:
4607     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
4608                                                              CC_C;
4609     break;
4610   case ParsedAttr::AT_Pcs: {
4611     StringRef StrRef;
4612     if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
4613       Attrs.setInvalid();
4614       return true;
4615     }
4616     if (StrRef == "aapcs") {
4617       CC = CC_AAPCS;
4618       break;
4619     } else if (StrRef == "aapcs-vfp") {
4620       CC = CC_AAPCS_VFP;
4621       break;
4622     }
4623 
4624     Attrs.setInvalid();
4625     Diag(Attrs.getLoc(), diag::err_invalid_pcs);
4626     return true;
4627   }
4628   case ParsedAttr::AT_IntelOclBicc:
4629     CC = CC_IntelOclBicc;
4630     break;
4631   case ParsedAttr::AT_PreserveMost:
4632     CC = CC_PreserveMost;
4633     break;
4634   case ParsedAttr::AT_PreserveAll:
4635     CC = CC_PreserveAll;
4636     break;
4637   default: llvm_unreachable("unexpected attribute kind");
4638   }
4639 
4640   TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK;
4641   const TargetInfo &TI = Context.getTargetInfo();
4642   // CUDA functions may have host and/or device attributes which indicate
4643   // their targeted execution environment, therefore the calling convention
4644   // of functions in CUDA should be checked against the target deduced based
4645   // on their host/device attributes.
4646   if (LangOpts.CUDA) {
4647     auto *Aux = Context.getAuxTargetInfo();
4648     auto CudaTarget = IdentifyCUDATarget(FD);
4649     bool CheckHost = false, CheckDevice = false;
4650     switch (CudaTarget) {
4651     case CFT_HostDevice:
4652       CheckHost = true;
4653       CheckDevice = true;
4654       break;
4655     case CFT_Host:
4656       CheckHost = true;
4657       break;
4658     case CFT_Device:
4659     case CFT_Global:
4660       CheckDevice = true;
4661       break;
4662     case CFT_InvalidTarget:
4663       llvm_unreachable("unexpected cuda target");
4664     }
4665     auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI;
4666     auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux;
4667     if (CheckHost && HostTI)
4668       A = HostTI->checkCallingConvention(CC);
4669     if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI)
4670       A = DeviceTI->checkCallingConvention(CC);
4671   } else {
4672     A = TI.checkCallingConvention(CC);
4673   }
4674 
4675   switch (A) {
4676   case TargetInfo::CCCR_OK:
4677     break;
4678 
4679   case TargetInfo::CCCR_Ignore:
4680     // Treat an ignored convention as if it was an explicit C calling convention
4681     // attribute. For example, __stdcall on Win x64 functions as __cdecl, so
4682     // that command line flags that change the default convention to
4683     // __vectorcall don't affect declarations marked __stdcall.
4684     CC = CC_C;
4685     break;
4686 
4687   case TargetInfo::CCCR_Error:
4688     Diag(Attrs.getLoc(), diag::error_cconv_unsupported)
4689         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
4690     break;
4691 
4692   case TargetInfo::CCCR_Warning: {
4693     Diag(Attrs.getLoc(), diag::warn_cconv_unsupported)
4694         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
4695 
4696     // This convention is not valid for the target. Use the default function or
4697     // method calling convention.
4698     bool IsCXXMethod = false, IsVariadic = false;
4699     if (FD) {
4700       IsCXXMethod = FD->isCXXInstanceMember();
4701       IsVariadic = FD->isVariadic();
4702     }
4703     CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
4704     break;
4705   }
4706   }
4707 
4708   Attrs.setProcessingCache((unsigned) CC);
4709   return false;
4710 }
4711 
4712 /// Pointer-like types in the default address space.
4713 static bool isValidSwiftContextType(QualType Ty) {
4714   if (!Ty->hasPointerRepresentation())
4715     return Ty->isDependentType();
4716   return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
4717 }
4718 
4719 /// Pointers and references in the default address space.
4720 static bool isValidSwiftIndirectResultType(QualType Ty) {
4721   if (const auto *PtrType = Ty->getAs<PointerType>()) {
4722     Ty = PtrType->getPointeeType();
4723   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
4724     Ty = RefType->getPointeeType();
4725   } else {
4726     return Ty->isDependentType();
4727   }
4728   return Ty.getAddressSpace() == LangAS::Default;
4729 }
4730 
4731 /// Pointers and references to pointers in the default address space.
4732 static bool isValidSwiftErrorResultType(QualType Ty) {
4733   if (const auto *PtrType = Ty->getAs<PointerType>()) {
4734     Ty = PtrType->getPointeeType();
4735   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
4736     Ty = RefType->getPointeeType();
4737   } else {
4738     return Ty->isDependentType();
4739   }
4740   if (!Ty.getQualifiers().empty())
4741     return false;
4742   return isValidSwiftContextType(Ty);
4743 }
4744 
4745 void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
4746                                ParameterABI abi) {
4747 
4748   QualType type = cast<ParmVarDecl>(D)->getType();
4749 
4750   if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
4751     if (existingAttr->getABI() != abi) {
4752       Diag(CI.getLoc(), diag::err_attributes_are_not_compatible)
4753           << getParameterABISpelling(abi) << existingAttr;
4754       Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
4755       return;
4756     }
4757   }
4758 
4759   switch (abi) {
4760   case ParameterABI::Ordinary:
4761     llvm_unreachable("explicit attribute for ordinary parameter ABI?");
4762 
4763   case ParameterABI::SwiftContext:
4764     if (!isValidSwiftContextType(type)) {
4765       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
4766           << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
4767     }
4768     D->addAttr(::new (Context) SwiftContextAttr(Context, CI));
4769     return;
4770 
4771   case ParameterABI::SwiftErrorResult:
4772     if (!isValidSwiftErrorResultType(type)) {
4773       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
4774           << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type;
4775     }
4776     D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI));
4777     return;
4778 
4779   case ParameterABI::SwiftIndirectResult:
4780     if (!isValidSwiftIndirectResultType(type)) {
4781       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
4782           << getParameterABISpelling(abi) << /*pointer*/ 0 << type;
4783     }
4784     D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI));
4785     return;
4786   }
4787   llvm_unreachable("bad parameter ABI attribute");
4788 }
4789 
4790 /// Checks a regparm attribute, returning true if it is ill-formed and
4791 /// otherwise setting numParams to the appropriate value.
4792 bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
4793   if (AL.isInvalid())
4794     return true;
4795 
4796   if (!checkAttributeNumArgs(*this, AL, 1)) {
4797     AL.setInvalid();
4798     return true;
4799   }
4800 
4801   uint32_t NP;
4802   Expr *NumParamsExpr = AL.getArgAsExpr(0);
4803   if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) {
4804     AL.setInvalid();
4805     return true;
4806   }
4807 
4808   if (Context.getTargetInfo().getRegParmMax() == 0) {
4809     Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
4810       << NumParamsExpr->getSourceRange();
4811     AL.setInvalid();
4812     return true;
4813   }
4814 
4815   numParams = NP;
4816   if (numParams > Context.getTargetInfo().getRegParmMax()) {
4817     Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
4818       << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
4819     AL.setInvalid();
4820     return true;
4821   }
4822 
4823   return false;
4824 }
4825 
4826 // Checks whether an argument of launch_bounds attribute is
4827 // acceptable, performs implicit conversion to Rvalue, and returns
4828 // non-nullptr Expr result on success. Otherwise, it returns nullptr
4829 // and may output an error.
4830 static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
4831                                      const CUDALaunchBoundsAttr &AL,
4832                                      const unsigned Idx) {
4833   if (S.DiagnoseUnexpandedParameterPack(E))
4834     return nullptr;
4835 
4836   // Accept template arguments for now as they depend on something else.
4837   // We'll get to check them when they eventually get instantiated.
4838   if (E->isValueDependent())
4839     return E;
4840 
4841   llvm::APSInt I(64);
4842   if (!E->isIntegerConstantExpr(I, S.Context)) {
4843     S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
4844         << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
4845     return nullptr;
4846   }
4847   // Make sure we can fit it in 32 bits.
4848   if (!I.isIntN(32)) {
4849     S.Diag(E->getExprLoc(), diag::err_ice_too_large) << I.toString(10, false)
4850                                                      << 32 << /* Unsigned */ 1;
4851     return nullptr;
4852   }
4853   if (I < 0)
4854     S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
4855         << &AL << Idx << E->getSourceRange();
4856 
4857   // We may need to perform implicit conversion of the argument.
4858   InitializedEntity Entity = InitializedEntity::InitializeParameter(
4859       S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
4860   ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
4861   assert(!ValArg.isInvalid() &&
4862          "Unexpected PerformCopyInitialization() failure.");
4863 
4864   return ValArg.getAs<Expr>();
4865 }
4866 
4867 void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
4868                                Expr *MaxThreads, Expr *MinBlocks) {
4869   CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks);
4870   MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
4871   if (MaxThreads == nullptr)
4872     return;
4873 
4874   if (MinBlocks) {
4875     MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
4876     if (MinBlocks == nullptr)
4877       return;
4878   }
4879 
4880   D->addAttr(::new (Context)
4881                  CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks));
4882 }
4883 
4884 static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4885   if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
4886       !checkAttributeAtMostNumArgs(S, AL, 2))
4887     return;
4888 
4889   S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0),
4890                         AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr);
4891 }
4892 
4893 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
4894                                           const ParsedAttr &AL) {
4895   if (!AL.isArgIdent(0)) {
4896     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
4897         << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier;
4898     return;
4899   }
4900 
4901   ParamIdx ArgumentIdx;
4902   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1),
4903                                            ArgumentIdx))
4904     return;
4905 
4906   ParamIdx TypeTagIdx;
4907   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2),
4908                                            TypeTagIdx))
4909     return;
4910 
4911   bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag";
4912   if (IsPointer) {
4913     // Ensure that buffer has a pointer type.
4914     unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
4915     if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
4916         !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
4917       S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0;
4918   }
4919 
4920   D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
4921       S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx,
4922       IsPointer));
4923 }
4924 
4925 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
4926                                          const ParsedAttr &AL) {
4927   if (!AL.isArgIdent(0)) {
4928     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
4929         << AL << 1 << AANT_ArgumentIdentifier;
4930     return;
4931   }
4932 
4933   if (!checkAttributeNumArgs(S, AL, 1))
4934     return;
4935 
4936   if (!isa<VarDecl>(D)) {
4937     S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
4938         << AL << ExpectedVariable;
4939     return;
4940   }
4941 
4942   IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident;
4943   TypeSourceInfo *MatchingCTypeLoc = nullptr;
4944   S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
4945   assert(MatchingCTypeLoc && "no type source info for attribute argument");
4946 
4947   D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
4948       S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(),
4949       AL.getMustBeNull()));
4950 }
4951 
4952 static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4953   ParamIdx ArgCount;
4954 
4955   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0),
4956                                            ArgCount,
4957                                            true /* CanIndexImplicitThis */))
4958     return;
4959 
4960   // ArgCount isn't a parameter index [0;n), it's a count [1;n]
4961   D->addAttr(::new (S.Context)
4962                  XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex()));
4963 }
4964 
4965 static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D,
4966                                              const ParsedAttr &AL) {
4967   uint32_t Count = 0, Offset = 0;
4968   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true))
4969     return;
4970   if (AL.getNumArgs() == 2) {
4971     Expr *Arg = AL.getArgAsExpr(1);
4972     if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true))
4973       return;
4974     if (Count < Offset) {
4975       S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range)
4976           << &AL << 0 << Count << Arg->getBeginLoc();
4977       return;
4978     }
4979   }
4980   D->addAttr(::new (S.Context)
4981                  PatchableFunctionEntryAttr(S.Context, AL, Count, Offset));
4982 }
4983 
4984 namespace {
4985 struct IntrinToName {
4986   uint32_t Id;
4987   int32_t FullName;
4988   int32_t ShortName;
4989 };
4990 } // unnamed namespace
4991 
4992 static bool ArmBuiltinAliasValid(unsigned BuiltinID, StringRef AliasName,
4993                                  ArrayRef<IntrinToName> Map,
4994                                  const char *IntrinNames) {
4995   if (AliasName.startswith("__arm_"))
4996     AliasName = AliasName.substr(6);
4997   const IntrinToName *It = std::lower_bound(
4998       Map.begin(), Map.end(), BuiltinID,
4999       [](const IntrinToName &L, unsigned Id) { return L.Id < Id; });
5000   if (It == Map.end() || It->Id != BuiltinID)
5001     return false;
5002   StringRef FullName(&IntrinNames[It->FullName]);
5003   if (AliasName == FullName)
5004     return true;
5005   if (It->ShortName == -1)
5006     return false;
5007   StringRef ShortName(&IntrinNames[It->ShortName]);
5008   return AliasName == ShortName;
5009 }
5010 
5011 static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) {
5012 #include "clang/Basic/arm_mve_builtin_aliases.inc"
5013   // The included file defines:
5014   // - ArrayRef<IntrinToName> Map
5015   // - const char IntrinNames[]
5016   return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5017 }
5018 
5019 static bool ArmCdeAliasValid(unsigned BuiltinID, StringRef AliasName) {
5020 #include "clang/Basic/arm_cde_builtin_aliases.inc"
5021   return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5022 }
5023 
5024 static bool ArmSveAliasValid(unsigned BuiltinID, StringRef AliasName) {
5025   switch (BuiltinID) {
5026   default:
5027     return false;
5028 #define GET_SVE_BUILTINS
5029 #define BUILTIN(name, types, attr) case SVE::BI##name:
5030 #include "clang/Basic/arm_sve_builtins.inc"
5031     return true;
5032   }
5033 }
5034 
5035 static void handleArmBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5036   if (!AL.isArgIdent(0)) {
5037     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5038         << AL << 1 << AANT_ArgumentIdentifier;
5039     return;
5040   }
5041 
5042   IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
5043   unsigned BuiltinID = Ident->getBuiltinID();
5044   StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5045 
5046   bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5047   if ((IsAArch64 && !ArmSveAliasValid(BuiltinID, AliasName)) ||
5048       (!IsAArch64 && !ArmMveAliasValid(BuiltinID, AliasName) &&
5049        !ArmCdeAliasValid(BuiltinID, AliasName))) {
5050     S.Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias);
5051     return;
5052   }
5053 
5054   D->addAttr(::new (S.Context) ArmBuiltinAliasAttr(S.Context, AL, Ident));
5055 }
5056 
5057 //===----------------------------------------------------------------------===//
5058 // Checker-specific attribute handlers.
5059 //===----------------------------------------------------------------------===//
5060 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) {
5061   return QT->isDependentType() || QT->isObjCRetainableType();
5062 }
5063 
5064 static bool isValidSubjectOfNSAttribute(QualType QT) {
5065   return QT->isDependentType() || QT->isObjCObjectPointerType() ||
5066          QT->isObjCNSObjectType();
5067 }
5068 
5069 static bool isValidSubjectOfCFAttribute(QualType QT) {
5070   return QT->isDependentType() || QT->isPointerType() ||
5071          isValidSubjectOfNSAttribute(QT);
5072 }
5073 
5074 static bool isValidSubjectOfOSAttribute(QualType QT) {
5075   if (QT->isDependentType())
5076     return true;
5077   QualType PT = QT->getPointeeType();
5078   return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr;
5079 }
5080 
5081 void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
5082                             RetainOwnershipKind K,
5083                             bool IsTemplateInstantiation) {
5084   ValueDecl *VD = cast<ValueDecl>(D);
5085   switch (K) {
5086   case RetainOwnershipKind::OS:
5087     handleSimpleAttributeOrDiagnose<OSConsumedAttr>(
5088         *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()),
5089         diag::warn_ns_attribute_wrong_parameter_type,
5090         /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1);
5091     return;
5092   case RetainOwnershipKind::NS:
5093     handleSimpleAttributeOrDiagnose<NSConsumedAttr>(
5094         *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()),
5095 
5096         // These attributes are normally just advisory, but in ARC, ns_consumed
5097         // is significant.  Allow non-dependent code to contain inappropriate
5098         // attributes even in ARC, but require template instantiations to be
5099         // set up correctly.
5100         ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount)
5101              ? diag::err_ns_attribute_wrong_parameter_type
5102              : diag::warn_ns_attribute_wrong_parameter_type),
5103         /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0);
5104     return;
5105   case RetainOwnershipKind::CF:
5106     handleSimpleAttributeOrDiagnose<CFConsumedAttr>(
5107         *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()),
5108         diag::warn_ns_attribute_wrong_parameter_type,
5109         /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1);
5110     return;
5111   }
5112 }
5113 
5114 static Sema::RetainOwnershipKind
5115 parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) {
5116   switch (AL.getKind()) {
5117   case ParsedAttr::AT_CFConsumed:
5118   case ParsedAttr::AT_CFReturnsRetained:
5119   case ParsedAttr::AT_CFReturnsNotRetained:
5120     return Sema::RetainOwnershipKind::CF;
5121   case ParsedAttr::AT_OSConsumesThis:
5122   case ParsedAttr::AT_OSConsumed:
5123   case ParsedAttr::AT_OSReturnsRetained:
5124   case ParsedAttr::AT_OSReturnsNotRetained:
5125   case ParsedAttr::AT_OSReturnsRetainedOnZero:
5126   case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
5127     return Sema::RetainOwnershipKind::OS;
5128   case ParsedAttr::AT_NSConsumesSelf:
5129   case ParsedAttr::AT_NSConsumed:
5130   case ParsedAttr::AT_NSReturnsRetained:
5131   case ParsedAttr::AT_NSReturnsNotRetained:
5132   case ParsedAttr::AT_NSReturnsAutoreleased:
5133     return Sema::RetainOwnershipKind::NS;
5134   default:
5135     llvm_unreachable("Wrong argument supplied");
5136   }
5137 }
5138 
5139 bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) {
5140   if (isValidSubjectOfNSReturnsRetainedAttribute(QT))
5141     return false;
5142 
5143   Diag(Loc, diag::warn_ns_attribute_wrong_return_type)
5144       << "'ns_returns_retained'" << 0 << 0;
5145   return true;
5146 }
5147 
5148 /// \return whether the parameter is a pointer to OSObject pointer.
5149 static bool isValidOSObjectOutParameter(const Decl *D) {
5150   const auto *PVD = dyn_cast<ParmVarDecl>(D);
5151   if (!PVD)
5152     return false;
5153   QualType QT = PVD->getType();
5154   QualType PT = QT->getPointeeType();
5155   return !PT.isNull() && isValidSubjectOfOSAttribute(PT);
5156 }
5157 
5158 static void handleXReturnsXRetainedAttr(Sema &S, Decl *D,
5159                                         const ParsedAttr &AL) {
5160   QualType ReturnType;
5161   Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL);
5162 
5163   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
5164     ReturnType = MD->getReturnType();
5165   } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
5166              (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) {
5167     return; // ignore: was handled as a type attribute
5168   } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
5169     ReturnType = PD->getType();
5170   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
5171     ReturnType = FD->getReturnType();
5172   } else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) {
5173     // Attributes on parameters are used for out-parameters,
5174     // passed as pointers-to-pointers.
5175     unsigned DiagID = K == Sema::RetainOwnershipKind::CF
5176             ? /*pointer-to-CF-pointer*/2
5177             : /*pointer-to-OSObject-pointer*/3;
5178     ReturnType = Param->getType()->getPointeeType();
5179     if (ReturnType.isNull()) {
5180       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5181           << AL << DiagID << AL.getRange();
5182       return;
5183     }
5184   } else if (AL.isUsedAsTypeAttr()) {
5185     return;
5186   } else {
5187     AttributeDeclKind ExpectedDeclKind;
5188     switch (AL.getKind()) {
5189     default: llvm_unreachable("invalid ownership attribute");
5190     case ParsedAttr::AT_NSReturnsRetained:
5191     case ParsedAttr::AT_NSReturnsAutoreleased:
5192     case ParsedAttr::AT_NSReturnsNotRetained:
5193       ExpectedDeclKind = ExpectedFunctionOrMethod;
5194       break;
5195 
5196     case ParsedAttr::AT_OSReturnsRetained:
5197     case ParsedAttr::AT_OSReturnsNotRetained:
5198     case ParsedAttr::AT_CFReturnsRetained:
5199     case ParsedAttr::AT_CFReturnsNotRetained:
5200       ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
5201       break;
5202     }
5203     S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type)
5204         << AL.getRange() << AL << ExpectedDeclKind;
5205     return;
5206   }
5207 
5208   bool TypeOK;
5209   bool Cf;
5210   unsigned ParmDiagID = 2; // Pointer-to-CF-pointer
5211   switch (AL.getKind()) {
5212   default: llvm_unreachable("invalid ownership attribute");
5213   case ParsedAttr::AT_NSReturnsRetained:
5214     TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType);
5215     Cf = false;
5216     break;
5217 
5218   case ParsedAttr::AT_NSReturnsAutoreleased:
5219   case ParsedAttr::AT_NSReturnsNotRetained:
5220     TypeOK = isValidSubjectOfNSAttribute(ReturnType);
5221     Cf = false;
5222     break;
5223 
5224   case ParsedAttr::AT_CFReturnsRetained:
5225   case ParsedAttr::AT_CFReturnsNotRetained:
5226     TypeOK = isValidSubjectOfCFAttribute(ReturnType);
5227     Cf = true;
5228     break;
5229 
5230   case ParsedAttr::AT_OSReturnsRetained:
5231   case ParsedAttr::AT_OSReturnsNotRetained:
5232     TypeOK = isValidSubjectOfOSAttribute(ReturnType);
5233     Cf = true;
5234     ParmDiagID = 3; // Pointer-to-OSObject-pointer
5235     break;
5236   }
5237 
5238   if (!TypeOK) {
5239     if (AL.isUsedAsTypeAttr())
5240       return;
5241 
5242     if (isa<ParmVarDecl>(D)) {
5243       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5244           << AL << ParmDiagID << AL.getRange();
5245     } else {
5246       // Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
5247       enum : unsigned {
5248         Function,
5249         Method,
5250         Property
5251       } SubjectKind = Function;
5252       if (isa<ObjCMethodDecl>(D))
5253         SubjectKind = Method;
5254       else if (isa<ObjCPropertyDecl>(D))
5255         SubjectKind = Property;
5256       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5257           << AL << SubjectKind << Cf << AL.getRange();
5258     }
5259     return;
5260   }
5261 
5262   switch (AL.getKind()) {
5263     default:
5264       llvm_unreachable("invalid ownership attribute");
5265     case ParsedAttr::AT_NSReturnsAutoreleased:
5266       handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL);
5267       return;
5268     case ParsedAttr::AT_CFReturnsNotRetained:
5269       handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL);
5270       return;
5271     case ParsedAttr::AT_NSReturnsNotRetained:
5272       handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL);
5273       return;
5274     case ParsedAttr::AT_CFReturnsRetained:
5275       handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL);
5276       return;
5277     case ParsedAttr::AT_NSReturnsRetained:
5278       handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL);
5279       return;
5280     case ParsedAttr::AT_OSReturnsRetained:
5281       handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL);
5282       return;
5283     case ParsedAttr::AT_OSReturnsNotRetained:
5284       handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL);
5285       return;
5286   };
5287 }
5288 
5289 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
5290                                               const ParsedAttr &Attrs) {
5291   const int EP_ObjCMethod = 1;
5292   const int EP_ObjCProperty = 2;
5293 
5294   SourceLocation loc = Attrs.getLoc();
5295   QualType resultType;
5296   if (isa<ObjCMethodDecl>(D))
5297     resultType = cast<ObjCMethodDecl>(D)->getReturnType();
5298   else
5299     resultType = cast<ObjCPropertyDecl>(D)->getType();
5300 
5301   if (!resultType->isReferenceType() &&
5302       (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
5303     S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5304         << SourceRange(loc) << Attrs
5305         << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
5306         << /*non-retainable pointer*/ 2;
5307 
5308     // Drop the attribute.
5309     return;
5310   }
5311 
5312   D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs));
5313 }
5314 
5315 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
5316                                         const ParsedAttr &Attrs) {
5317   const auto *Method = cast<ObjCMethodDecl>(D);
5318 
5319   const DeclContext *DC = Method->getDeclContext();
5320   if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
5321     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
5322                                                                       << 0;
5323     S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
5324     return;
5325   }
5326   if (Method->getMethodFamily() == OMF_dealloc) {
5327     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
5328                                                                       << 1;
5329     return;
5330   }
5331 
5332   D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs));
5333 }
5334 
5335 static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5336   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
5337 
5338   if (!Parm) {
5339     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5340     return;
5341   }
5342 
5343   // Typedefs only allow objc_bridge(id) and have some additional checking.
5344   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
5345     if (!Parm->Ident->isStr("id")) {
5346       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL;
5347       return;
5348     }
5349 
5350     // Only allow 'cv void *'.
5351     QualType T = TD->getUnderlyingType();
5352     if (!T->isVoidPointerType()) {
5353       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
5354       return;
5355     }
5356   }
5357 
5358   D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident));
5359 }
5360 
5361 static void handleObjCBridgeMutableAttr(Sema &S, Decl *D,
5362                                         const ParsedAttr &AL) {
5363   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
5364 
5365   if (!Parm) {
5366     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5367     return;
5368   }
5369 
5370   D->addAttr(::new (S.Context)
5371                  ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident));
5372 }
5373 
5374 static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D,
5375                                         const ParsedAttr &AL) {
5376   IdentifierInfo *RelatedClass =
5377       AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr;
5378   if (!RelatedClass) {
5379     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5380     return;
5381   }
5382   IdentifierInfo *ClassMethod =
5383     AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr;
5384   IdentifierInfo *InstanceMethod =
5385     AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr;
5386   D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr(
5387       S.Context, AL, RelatedClass, ClassMethod, InstanceMethod));
5388 }
5389 
5390 static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
5391                                             const ParsedAttr &AL) {
5392   DeclContext *Ctx = D->getDeclContext();
5393 
5394   // This attribute can only be applied to methods in interfaces or class
5395   // extensions.
5396   if (!isa<ObjCInterfaceDecl>(Ctx) &&
5397       !(isa<ObjCCategoryDecl>(Ctx) &&
5398         cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) {
5399     S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
5400     return;
5401   }
5402 
5403   ObjCInterfaceDecl *IFace;
5404   if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx))
5405     IFace = CatDecl->getClassInterface();
5406   else
5407     IFace = cast<ObjCInterfaceDecl>(Ctx);
5408 
5409   if (!IFace)
5410     return;
5411 
5412   IFace->setHasDesignatedInitializers();
5413   D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL));
5414 }
5415 
5416 static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) {
5417   StringRef MetaDataName;
5418   if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName))
5419     return;
5420   D->addAttr(::new (S.Context)
5421                  ObjCRuntimeNameAttr(S.Context, AL, MetaDataName));
5422 }
5423 
5424 // When a user wants to use objc_boxable with a union or struct
5425 // but they don't have access to the declaration (legacy/third-party code)
5426 // then they can 'enable' this feature with a typedef:
5427 // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
5428 static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) {
5429   bool notify = false;
5430 
5431   auto *RD = dyn_cast<RecordDecl>(D);
5432   if (RD && RD->getDefinition()) {
5433     RD = RD->getDefinition();
5434     notify = true;
5435   }
5436 
5437   if (RD) {
5438     ObjCBoxableAttr *BoxableAttr =
5439         ::new (S.Context) ObjCBoxableAttr(S.Context, AL);
5440     RD->addAttr(BoxableAttr);
5441     if (notify) {
5442       // we need to notify ASTReader/ASTWriter about
5443       // modification of existing declaration
5444       if (ASTMutationListener *L = S.getASTMutationListener())
5445         L->AddedAttributeToRecord(BoxableAttr, RD);
5446     }
5447   }
5448 }
5449 
5450 static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5451   if (hasDeclarator(D)) return;
5452 
5453   S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type)
5454       << AL.getRange() << AL << ExpectedVariable;
5455 }
5456 
5457 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
5458                                           const ParsedAttr &AL) {
5459   const auto *VD = cast<ValueDecl>(D);
5460   QualType QT = VD->getType();
5461 
5462   if (!QT->isDependentType() &&
5463       !QT->isObjCLifetimeType()) {
5464     S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type)
5465       << QT;
5466     return;
5467   }
5468 
5469   Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime();
5470 
5471   // If we have no lifetime yet, check the lifetime we're presumably
5472   // going to infer.
5473   if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType())
5474     Lifetime = QT->getObjCARCImplicitLifetime();
5475 
5476   switch (Lifetime) {
5477   case Qualifiers::OCL_None:
5478     assert(QT->isDependentType() &&
5479            "didn't infer lifetime for non-dependent type?");
5480     break;
5481 
5482   case Qualifiers::OCL_Weak:   // meaningful
5483   case Qualifiers::OCL_Strong: // meaningful
5484     break;
5485 
5486   case Qualifiers::OCL_ExplicitNone:
5487   case Qualifiers::OCL_Autoreleasing:
5488     S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
5489         << (Lifetime == Qualifiers::OCL_Autoreleasing);
5490     break;
5491   }
5492 
5493   D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL));
5494 }
5495 
5496 //===----------------------------------------------------------------------===//
5497 // Microsoft specific attribute handlers.
5498 //===----------------------------------------------------------------------===//
5499 
5500 UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
5501                               StringRef UuidAsWritten, MSGuidDecl *GuidDecl) {
5502   if (const auto *UA = D->getAttr<UuidAttr>()) {
5503     if (declaresSameEntity(UA->getGuidDecl(), GuidDecl))
5504       return nullptr;
5505     if (!UA->getGuid().empty()) {
5506       Diag(UA->getLocation(), diag::err_mismatched_uuid);
5507       Diag(CI.getLoc(), diag::note_previous_uuid);
5508       D->dropAttr<UuidAttr>();
5509     }
5510   }
5511 
5512   return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl);
5513 }
5514 
5515 static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5516   if (!S.LangOpts.CPlusPlus) {
5517     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
5518         << AL << AttributeLangSupport::C;
5519     return;
5520   }
5521 
5522   StringRef OrigStrRef;
5523   SourceLocation LiteralLoc;
5524   if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc))
5525     return;
5526 
5527   // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
5528   // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
5529   StringRef StrRef = OrigStrRef;
5530   if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
5531     StrRef = StrRef.drop_front().drop_back();
5532 
5533   // Validate GUID length.
5534   if (StrRef.size() != 36) {
5535     S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5536     return;
5537   }
5538 
5539   for (unsigned i = 0; i < 36; ++i) {
5540     if (i == 8 || i == 13 || i == 18 || i == 23) {
5541       if (StrRef[i] != '-') {
5542         S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5543         return;
5544       }
5545     } else if (!isHexDigit(StrRef[i])) {
5546       S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5547       return;
5548     }
5549   }
5550 
5551   // Convert to our parsed format and canonicalize.
5552   MSGuidDecl::Parts Parsed;
5553   StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1);
5554   StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2);
5555   StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3);
5556   for (unsigned i = 0; i != 8; ++i)
5557     StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2)
5558         .getAsInteger(16, Parsed.Part4And5[i]);
5559   MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed);
5560 
5561   // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
5562   // the only thing in the [] list, the [] too), and add an insertion of
5563   // __declspec(uuid(...)).  But sadly, neither the SourceLocs of the commas
5564   // separating attributes nor of the [ and the ] are in the AST.
5565   // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
5566   // on cfe-dev.
5567   if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
5568     S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
5569 
5570   UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid);
5571   if (UA)
5572     D->addAttr(UA);
5573 }
5574 
5575 static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5576   if (!S.LangOpts.CPlusPlus) {
5577     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
5578         << AL << AttributeLangSupport::C;
5579     return;
5580   }
5581   MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
5582       D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling());
5583   if (IA) {
5584     D->addAttr(IA);
5585     S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
5586   }
5587 }
5588 
5589 static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5590   const auto *VD = cast<VarDecl>(D);
5591   if (!S.Context.getTargetInfo().isTLSSupported()) {
5592     S.Diag(AL.getLoc(), diag::err_thread_unsupported);
5593     return;
5594   }
5595   if (VD->getTSCSpec() != TSCS_unspecified) {
5596     S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
5597     return;
5598   }
5599   if (VD->hasLocalStorage()) {
5600     S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
5601     return;
5602   }
5603   D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL));
5604 }
5605 
5606 static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5607   SmallVector<StringRef, 4> Tags;
5608   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
5609     StringRef Tag;
5610     if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
5611       return;
5612     Tags.push_back(Tag);
5613   }
5614 
5615   if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
5616     if (!NS->isInline()) {
5617       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
5618       return;
5619     }
5620     if (NS->isAnonymousNamespace()) {
5621       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
5622       return;
5623     }
5624     if (AL.getNumArgs() == 0)
5625       Tags.push_back(NS->getName());
5626   } else if (!checkAttributeAtLeastNumArgs(S, AL, 1))
5627     return;
5628 
5629   // Store tags sorted and without duplicates.
5630   llvm::sort(Tags);
5631   Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
5632 
5633   D->addAttr(::new (S.Context)
5634                  AbiTagAttr(S.Context, AL, Tags.data(), Tags.size()));
5635 }
5636 
5637 static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5638   // Check the attribute arguments.
5639   if (AL.getNumArgs() > 1) {
5640     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
5641     return;
5642   }
5643 
5644   StringRef Str;
5645   SourceLocation ArgLoc;
5646 
5647   if (AL.getNumArgs() == 0)
5648     Str = "";
5649   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5650     return;
5651 
5652   ARMInterruptAttr::InterruptType Kind;
5653   if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
5654     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
5655                                                                  << ArgLoc;
5656     return;
5657   }
5658 
5659   D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind));
5660 }
5661 
5662 static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5663   // MSP430 'interrupt' attribute is applied to
5664   // a function with no parameters and void return type.
5665   if (!isFunctionOrMethod(D)) {
5666     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5667         << "'interrupt'" << ExpectedFunctionOrMethod;
5668     return;
5669   }
5670 
5671   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
5672     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5673         << /*MSP430*/ 1 << 0;
5674     return;
5675   }
5676 
5677   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
5678     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5679         << /*MSP430*/ 1 << 1;
5680     return;
5681   }
5682 
5683   // The attribute takes one integer argument.
5684   if (!checkAttributeNumArgs(S, AL, 1))
5685     return;
5686 
5687   if (!AL.isArgExpr(0)) {
5688     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
5689         << AL << AANT_ArgumentIntegerConstant;
5690     return;
5691   }
5692 
5693   Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
5694   llvm::APSInt NumParams(32);
5695   if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) {
5696     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
5697         << AL << AANT_ArgumentIntegerConstant
5698         << NumParamsExpr->getSourceRange();
5699     return;
5700   }
5701   // The argument should be in range 0..63.
5702   unsigned Num = NumParams.getLimitedValue(255);
5703   if (Num > 63) {
5704     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
5705         << AL << (int)NumParams.getSExtValue()
5706         << NumParamsExpr->getSourceRange();
5707     return;
5708   }
5709 
5710   D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num));
5711   D->addAttr(UsedAttr::CreateImplicit(S.Context));
5712 }
5713 
5714 static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5715   // Only one optional argument permitted.
5716   if (AL.getNumArgs() > 1) {
5717     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
5718     return;
5719   }
5720 
5721   StringRef Str;
5722   SourceLocation ArgLoc;
5723 
5724   if (AL.getNumArgs() == 0)
5725     Str = "";
5726   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5727     return;
5728 
5729   // Semantic checks for a function with the 'interrupt' attribute for MIPS:
5730   // a) Must be a function.
5731   // b) Must have no parameters.
5732   // c) Must have the 'void' return type.
5733   // d) Cannot have the 'mips16' attribute, as that instruction set
5734   //    lacks the 'eret' instruction.
5735   // e) The attribute itself must either have no argument or one of the
5736   //    valid interrupt types, see [MipsInterruptDocs].
5737 
5738   if (!isFunctionOrMethod(D)) {
5739     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5740         << "'interrupt'" << ExpectedFunctionOrMethod;
5741     return;
5742   }
5743 
5744   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
5745     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5746         << /*MIPS*/ 0 << 0;
5747     return;
5748   }
5749 
5750   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
5751     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
5752         << /*MIPS*/ 0 << 1;
5753     return;
5754   }
5755 
5756   if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL))
5757     return;
5758 
5759   MipsInterruptAttr::InterruptType Kind;
5760   if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
5761     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
5762         << AL << "'" + std::string(Str) + "'";
5763     return;
5764   }
5765 
5766   D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind));
5767 }
5768 
5769 static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5770   // Semantic checks for a function with the 'interrupt' attribute.
5771   // a) Must be a function.
5772   // b) Must have the 'void' return type.
5773   // c) Must take 1 or 2 arguments.
5774   // d) The 1st argument must be a pointer.
5775   // e) The 2nd argument (if any) must be an unsigned integer.
5776   if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
5777       CXXMethodDecl::isStaticOverloadedOperator(
5778           cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
5779     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
5780         << AL << ExpectedFunctionWithProtoType;
5781     return;
5782   }
5783   // Interrupt handler must have void return type.
5784   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
5785     S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
5786            diag::err_anyx86_interrupt_attribute)
5787         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5788                 ? 0
5789                 : 1)
5790         << 0;
5791     return;
5792   }
5793   // Interrupt handler must have 1 or 2 parameters.
5794   unsigned NumParams = getFunctionOrMethodNumParams(D);
5795   if (NumParams < 1 || NumParams > 2) {
5796     S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute)
5797         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5798                 ? 0
5799                 : 1)
5800         << 1;
5801     return;
5802   }
5803   // The first argument must be a pointer.
5804   if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
5805     S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
5806            diag::err_anyx86_interrupt_attribute)
5807         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5808                 ? 0
5809                 : 1)
5810         << 2;
5811     return;
5812   }
5813   // The second argument, if present, must be an unsigned integer.
5814   unsigned TypeSize =
5815       S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
5816           ? 64
5817           : 32;
5818   if (NumParams == 2 &&
5819       (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
5820        S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
5821     S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
5822            diag::err_anyx86_interrupt_attribute)
5823         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5824                 ? 0
5825                 : 1)
5826         << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
5827     return;
5828   }
5829   D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL));
5830   D->addAttr(UsedAttr::CreateImplicit(S.Context));
5831 }
5832 
5833 static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5834   if (!isFunctionOrMethod(D)) {
5835     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5836         << "'interrupt'" << ExpectedFunction;
5837     return;
5838   }
5839 
5840   if (!checkAttributeNumArgs(S, AL, 0))
5841     return;
5842 
5843   handleSimpleAttribute<AVRInterruptAttr>(S, D, AL);
5844 }
5845 
5846 static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5847   if (!isFunctionOrMethod(D)) {
5848     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5849         << "'signal'" << ExpectedFunction;
5850     return;
5851   }
5852 
5853   if (!checkAttributeNumArgs(S, AL, 0))
5854     return;
5855 
5856   handleSimpleAttribute<AVRSignalAttr>(S, D, AL);
5857 }
5858 
5859 static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) {
5860   // Add preserve_access_index attribute to all fields and inner records.
5861   for (auto D : RD->decls()) {
5862     if (D->hasAttr<BPFPreserveAccessIndexAttr>())
5863       continue;
5864 
5865     D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context));
5866     if (auto *Rec = dyn_cast<RecordDecl>(D))
5867       handleBPFPreserveAIRecord(S, Rec);
5868   }
5869 }
5870 
5871 static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D,
5872     const ParsedAttr &AL) {
5873   auto *Rec = cast<RecordDecl>(D);
5874   handleBPFPreserveAIRecord(S, Rec);
5875   Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL));
5876 }
5877 
5878 static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5879   if (!isFunctionOrMethod(D)) {
5880     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5881         << "'export_name'" << ExpectedFunction;
5882     return;
5883   }
5884 
5885   auto *FD = cast<FunctionDecl>(D);
5886   if (FD->isThisDeclarationADefinition()) {
5887     S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
5888     return;
5889   }
5890 
5891   StringRef Str;
5892   SourceLocation ArgLoc;
5893   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5894     return;
5895 
5896   D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str));
5897   D->addAttr(UsedAttr::CreateImplicit(S.Context));
5898 }
5899 
5900 WebAssemblyImportModuleAttr *
5901 Sema::mergeImportModuleAttr(Decl *D, const WebAssemblyImportModuleAttr &AL) {
5902   auto *FD = cast<FunctionDecl>(D);
5903 
5904   if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
5905     if (ExistingAttr->getImportModule() == AL.getImportModule())
5906       return nullptr;
5907     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 0
5908       << ExistingAttr->getImportModule() << AL.getImportModule();
5909     Diag(AL.getLoc(), diag::note_previous_attribute);
5910     return nullptr;
5911   }
5912   if (FD->hasBody()) {
5913     Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
5914     return nullptr;
5915   }
5916   return ::new (Context) WebAssemblyImportModuleAttr(Context, AL,
5917                                                      AL.getImportModule());
5918 }
5919 
5920 WebAssemblyImportNameAttr *
5921 Sema::mergeImportNameAttr(Decl *D, const WebAssemblyImportNameAttr &AL) {
5922   auto *FD = cast<FunctionDecl>(D);
5923 
5924   if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportNameAttr>()) {
5925     if (ExistingAttr->getImportName() == AL.getImportName())
5926       return nullptr;
5927     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 1
5928       << ExistingAttr->getImportName() << AL.getImportName();
5929     Diag(AL.getLoc(), diag::note_previous_attribute);
5930     return nullptr;
5931   }
5932   if (FD->hasBody()) {
5933     Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
5934     return nullptr;
5935   }
5936   return ::new (Context) WebAssemblyImportNameAttr(Context, AL,
5937                                                    AL.getImportName());
5938 }
5939 
5940 static void
5941 handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5942   auto *FD = cast<FunctionDecl>(D);
5943 
5944   StringRef Str;
5945   SourceLocation ArgLoc;
5946   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5947     return;
5948   if (FD->hasBody()) {
5949     S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
5950     return;
5951   }
5952 
5953   FD->addAttr(::new (S.Context)
5954                   WebAssemblyImportModuleAttr(S.Context, AL, Str));
5955 }
5956 
5957 static void
5958 handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5959   auto *FD = cast<FunctionDecl>(D);
5960 
5961   StringRef Str;
5962   SourceLocation ArgLoc;
5963   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5964     return;
5965   if (FD->hasBody()) {
5966     S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
5967     return;
5968   }
5969 
5970   FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str));
5971 }
5972 
5973 static void handleRISCVInterruptAttr(Sema &S, Decl *D,
5974                                      const ParsedAttr &AL) {
5975   // Warn about repeated attributes.
5976   if (const auto *A = D->getAttr<RISCVInterruptAttr>()) {
5977     S.Diag(AL.getRange().getBegin(),
5978       diag::warn_riscv_repeated_interrupt_attribute);
5979     S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute);
5980     return;
5981   }
5982 
5983   // Check the attribute argument. Argument is optional.
5984   if (!checkAttributeAtMostNumArgs(S, AL, 1))
5985     return;
5986 
5987   StringRef Str;
5988   SourceLocation ArgLoc;
5989 
5990   // 'machine'is the default interrupt mode.
5991   if (AL.getNumArgs() == 0)
5992     Str = "machine";
5993   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5994     return;
5995 
5996   // Semantic checks for a function with the 'interrupt' attribute:
5997   // - Must be a function.
5998   // - Must have no parameters.
5999   // - Must have the 'void' return type.
6000   // - The attribute itself must either have no argument or one of the
6001   //   valid interrupt types, see [RISCVInterruptDocs].
6002 
6003   if (D->getFunctionType() == nullptr) {
6004     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6005       << "'interrupt'" << ExpectedFunction;
6006     return;
6007   }
6008 
6009   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
6010     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6011       << /*RISC-V*/ 2 << 0;
6012     return;
6013   }
6014 
6015   if (!getFunctionOrMethodResultType(D)->isVoidType()) {
6016     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6017       << /*RISC-V*/ 2 << 1;
6018     return;
6019   }
6020 
6021   RISCVInterruptAttr::InterruptType Kind;
6022   if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
6023     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
6024                                                                  << ArgLoc;
6025     return;
6026   }
6027 
6028   D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind));
6029 }
6030 
6031 static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6032   // Dispatch the interrupt attribute based on the current target.
6033   switch (S.Context.getTargetInfo().getTriple().getArch()) {
6034   case llvm::Triple::msp430:
6035     handleMSP430InterruptAttr(S, D, AL);
6036     break;
6037   case llvm::Triple::mipsel:
6038   case llvm::Triple::mips:
6039     handleMipsInterruptAttr(S, D, AL);
6040     break;
6041   case llvm::Triple::x86:
6042   case llvm::Triple::x86_64:
6043     handleAnyX86InterruptAttr(S, D, AL);
6044     break;
6045   case llvm::Triple::avr:
6046     handleAVRInterruptAttr(S, D, AL);
6047     break;
6048   case llvm::Triple::riscv32:
6049   case llvm::Triple::riscv64:
6050     handleRISCVInterruptAttr(S, D, AL);
6051     break;
6052   default:
6053     handleARMInterruptAttr(S, D, AL);
6054     break;
6055   }
6056 }
6057 
6058 static bool
6059 checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr,
6060                                       const AMDGPUFlatWorkGroupSizeAttr &Attr) {
6061   // Accept template arguments for now as they depend on something else.
6062   // We'll get to check them when they eventually get instantiated.
6063   if (MinExpr->isValueDependent() || MaxExpr->isValueDependent())
6064     return false;
6065 
6066   uint32_t Min = 0;
6067   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
6068     return true;
6069 
6070   uint32_t Max = 0;
6071   if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
6072     return true;
6073 
6074   if (Min == 0 && Max != 0) {
6075     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
6076         << &Attr << 0;
6077     return true;
6078   }
6079   if (Min > Max) {
6080     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
6081         << &Attr << 1;
6082     return true;
6083   }
6084 
6085   return false;
6086 }
6087 
6088 void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D,
6089                                           const AttributeCommonInfo &CI,
6090                                           Expr *MinExpr, Expr *MaxExpr) {
6091   AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
6092 
6093   if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr))
6094     return;
6095 
6096   D->addAttr(::new (Context)
6097                  AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr));
6098 }
6099 
6100 static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D,
6101                                               const ParsedAttr &AL) {
6102   Expr *MinExpr = AL.getArgAsExpr(0);
6103   Expr *MaxExpr = AL.getArgAsExpr(1);
6104 
6105   S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr);
6106 }
6107 
6108 static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr,
6109                                            Expr *MaxExpr,
6110                                            const AMDGPUWavesPerEUAttr &Attr) {
6111   if (S.DiagnoseUnexpandedParameterPack(MinExpr) ||
6112       (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr)))
6113     return true;
6114 
6115   // Accept template arguments for now as they depend on something else.
6116   // We'll get to check them when they eventually get instantiated.
6117   if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent()))
6118     return false;
6119 
6120   uint32_t Min = 0;
6121   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
6122     return true;
6123 
6124   uint32_t Max = 0;
6125   if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
6126     return true;
6127 
6128   if (Min == 0 && Max != 0) {
6129     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
6130         << &Attr << 0;
6131     return true;
6132   }
6133   if (Max != 0 && Min > Max) {
6134     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
6135         << &Attr << 1;
6136     return true;
6137   }
6138 
6139   return false;
6140 }
6141 
6142 void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
6143                                    Expr *MinExpr, Expr *MaxExpr) {
6144   AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
6145 
6146   if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr))
6147     return;
6148 
6149   D->addAttr(::new (Context)
6150                  AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr));
6151 }
6152 
6153 static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6154   if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
6155       !checkAttributeAtMostNumArgs(S, AL, 2))
6156     return;
6157 
6158   Expr *MinExpr = AL.getArgAsExpr(0);
6159   Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr;
6160 
6161   S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr);
6162 }
6163 
6164 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6165   uint32_t NumSGPR = 0;
6166   Expr *NumSGPRExpr = AL.getArgAsExpr(0);
6167   if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR))
6168     return;
6169 
6170   D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR));
6171 }
6172 
6173 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6174   uint32_t NumVGPR = 0;
6175   Expr *NumVGPRExpr = AL.getArgAsExpr(0);
6176   if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR))
6177     return;
6178 
6179   D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR));
6180 }
6181 
6182 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
6183                                               const ParsedAttr &AL) {
6184   // If we try to apply it to a function pointer, don't warn, but don't
6185   // do anything, either. It doesn't matter anyway, because there's nothing
6186   // special about calling a force_align_arg_pointer function.
6187   const auto *VD = dyn_cast<ValueDecl>(D);
6188   if (VD && VD->getType()->isFunctionPointerType())
6189     return;
6190   // Also don't warn on function pointer typedefs.
6191   const auto *TD = dyn_cast<TypedefNameDecl>(D);
6192   if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
6193     TD->getUnderlyingType()->isFunctionType()))
6194     return;
6195   // Attribute can only be applied to function types.
6196   if (!isa<FunctionDecl>(D)) {
6197     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
6198         << AL << ExpectedFunction;
6199     return;
6200   }
6201 
6202   D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL));
6203 }
6204 
6205 static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
6206   uint32_t Version;
6207   Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
6208   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version))
6209     return;
6210 
6211   // TODO: Investigate what happens with the next major version of MSVC.
6212   if (Version != LangOptions::MSVC2015 / 100) {
6213     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
6214         << AL << Version << VersionExpr->getSourceRange();
6215     return;
6216   }
6217 
6218   // The attribute expects a "major" version number like 19, but new versions of
6219   // MSVC have moved to updating the "minor", or less significant numbers, so we
6220   // have to multiply by 100 now.
6221   Version *= 100;
6222 
6223   D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version));
6224 }
6225 
6226 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D,
6227                                         const AttributeCommonInfo &CI) {
6228   if (D->hasAttr<DLLExportAttr>()) {
6229     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'";
6230     return nullptr;
6231   }
6232 
6233   if (D->hasAttr<DLLImportAttr>())
6234     return nullptr;
6235 
6236   return ::new (Context) DLLImportAttr(Context, CI);
6237 }
6238 
6239 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D,
6240                                         const AttributeCommonInfo &CI) {
6241   if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
6242     Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
6243     D->dropAttr<DLLImportAttr>();
6244   }
6245 
6246   if (D->hasAttr<DLLExportAttr>())
6247     return nullptr;
6248 
6249   return ::new (Context) DLLExportAttr(Context, CI);
6250 }
6251 
6252 static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
6253   if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
6254       S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
6255     S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A;
6256     return;
6257   }
6258 
6259   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
6260     if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
6261         !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
6262       // MinGW doesn't allow dllimport on inline functions.
6263       S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
6264           << A;
6265       return;
6266     }
6267   }
6268 
6269   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
6270     if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
6271         MD->getParent()->isLambda()) {
6272       S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A;
6273       return;
6274     }
6275   }
6276 
6277   Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
6278                       ? (Attr *)S.mergeDLLExportAttr(D, A)
6279                       : (Attr *)S.mergeDLLImportAttr(D, A);
6280   if (NewAttr)
6281     D->addAttr(NewAttr);
6282 }
6283 
6284 MSInheritanceAttr *
6285 Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI,
6286                              bool BestCase,
6287                              MSInheritanceModel Model) {
6288   if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
6289     if (IA->getInheritanceModel() == Model)
6290       return nullptr;
6291     Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
6292         << 1 /*previous declaration*/;
6293     Diag(CI.getLoc(), diag::note_previous_ms_inheritance);
6294     D->dropAttr<MSInheritanceAttr>();
6295   }
6296 
6297   auto *RD = cast<CXXRecordDecl>(D);
6298   if (RD->hasDefinition()) {
6299     if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase,
6300                                            Model)) {
6301       return nullptr;
6302     }
6303   } else {
6304     if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
6305       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
6306           << 1 /*partial specialization*/;
6307       return nullptr;
6308     }
6309     if (RD->getDescribedClassTemplate()) {
6310       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
6311           << 0 /*primary template*/;
6312       return nullptr;
6313     }
6314   }
6315 
6316   return ::new (Context) MSInheritanceAttr(Context, CI, BestCase);
6317 }
6318 
6319 static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6320   // The capability attributes take a single string parameter for the name of
6321   // the capability they represent. The lockable attribute does not take any
6322   // parameters. However, semantically, both attributes represent the same
6323   // concept, and so they use the same semantic attribute. Eventually, the
6324   // lockable attribute will be removed.
6325   //
6326   // For backward compatibility, any capability which has no specified string
6327   // literal will be considered a "mutex."
6328   StringRef N("mutex");
6329   SourceLocation LiteralLoc;
6330   if (AL.getKind() == ParsedAttr::AT_Capability &&
6331       !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
6332     return;
6333 
6334   D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N));
6335 }
6336 
6337 static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6338   SmallVector<Expr*, 1> Args;
6339   if (!checkLockFunAttrCommon(S, D, AL, Args))
6340     return;
6341 
6342   D->addAttr(::new (S.Context)
6343                  AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size()));
6344 }
6345 
6346 static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
6347                                         const ParsedAttr &AL) {
6348   SmallVector<Expr*, 1> Args;
6349   if (!checkLockFunAttrCommon(S, D, AL, Args))
6350     return;
6351 
6352   D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(),
6353                                                      Args.size()));
6354 }
6355 
6356 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
6357                                            const ParsedAttr &AL) {
6358   SmallVector<Expr*, 2> Args;
6359   if (!checkTryLockFunAttrCommon(S, D, AL, Args))
6360     return;
6361 
6362   D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(
6363       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
6364 }
6365 
6366 static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
6367                                         const ParsedAttr &AL) {
6368   // Check that all arguments are lockable objects.
6369   SmallVector<Expr *, 1> Args;
6370   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
6371 
6372   D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(),
6373                                                      Args.size()));
6374 }
6375 
6376 static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
6377                                          const ParsedAttr &AL) {
6378   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
6379     return;
6380 
6381   // check that all arguments are lockable objects
6382   SmallVector<Expr*, 1> Args;
6383   checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
6384   if (Args.empty())
6385     return;
6386 
6387   RequiresCapabilityAttr *RCA = ::new (S.Context)
6388       RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size());
6389 
6390   D->addAttr(RCA);
6391 }
6392 
6393 static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6394   if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
6395     if (NSD->isAnonymousNamespace()) {
6396       S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
6397       // Do not want to attach the attribute to the namespace because that will
6398       // cause confusing diagnostic reports for uses of declarations within the
6399       // namespace.
6400       return;
6401     }
6402   }
6403 
6404   // Handle the cases where the attribute has a text message.
6405   StringRef Str, Replacement;
6406   if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
6407       !S.checkStringLiteralArgumentAttr(AL, 0, Str))
6408     return;
6409 
6410   // Only support a single optional message for Declspec and CXX11.
6411   if (AL.isDeclspecAttribute() || AL.isCXX11Attribute())
6412     checkAttributeAtMostNumArgs(S, AL, 1);
6413   else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
6414            !S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
6415     return;
6416 
6417   if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope())
6418     S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL;
6419 
6420   D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement));
6421 }
6422 
6423 static bool isGlobalVar(const Decl *D) {
6424   if (const auto *S = dyn_cast<VarDecl>(D))
6425     return S->hasGlobalStorage();
6426   return false;
6427 }
6428 
6429 static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6430   if (!checkAttributeAtLeastNumArgs(S, AL, 1))
6431     return;
6432 
6433   std::vector<StringRef> Sanitizers;
6434 
6435   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
6436     StringRef SanitizerName;
6437     SourceLocation LiteralLoc;
6438 
6439     if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
6440       return;
6441 
6442     if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) ==
6443         SanitizerMask())
6444       S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
6445     else if (isGlobalVar(D) && SanitizerName != "address")
6446       S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
6447           << AL << ExpectedFunctionOrMethod;
6448     Sanitizers.push_back(SanitizerName);
6449   }
6450 
6451   D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(),
6452                                               Sanitizers.size()));
6453 }
6454 
6455 static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
6456                                          const ParsedAttr &AL) {
6457   StringRef AttrName = AL.getAttrName()->getName();
6458   normalizeName(AttrName);
6459   StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName)
6460                                 .Case("no_address_safety_analysis", "address")
6461                                 .Case("no_sanitize_address", "address")
6462                                 .Case("no_sanitize_thread", "thread")
6463                                 .Case("no_sanitize_memory", "memory");
6464   if (isGlobalVar(D) && SanitizerName != "address")
6465     S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
6466         << AL << ExpectedFunction;
6467 
6468   // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a
6469   // NoSanitizeAttr object; but we need to calculate the correct spelling list
6470   // index rather than incorrectly assume the index for NoSanitizeSpecificAttr
6471   // has the same spellings as the index for NoSanitizeAttr. We don't have a
6472   // general way to "translate" between the two, so this hack attempts to work
6473   // around the issue with hard-coded indicies. This is critical for calling
6474   // getSpelling() or prettyPrint() on the resulting semantic attribute object
6475   // without failing assertions.
6476   unsigned TranslatedSpellingIndex = 0;
6477   if (AL.isC2xAttribute() || AL.isCXX11Attribute())
6478     TranslatedSpellingIndex = 1;
6479 
6480   AttributeCommonInfo Info = AL;
6481   Info.setAttributeSpellingListIndex(TranslatedSpellingIndex);
6482   D->addAttr(::new (S.Context)
6483                  NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
6484 }
6485 
6486 static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6487   if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL))
6488     D->addAttr(Internal);
6489 }
6490 
6491 static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6492   if (S.LangOpts.OpenCLVersion != 200)
6493     S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version)
6494         << AL << "2.0" << 0;
6495   else
6496     S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored) << AL
6497                                                                    << "2.0";
6498 }
6499 
6500 /// Handles semantic checking for features that are common to all attributes,
6501 /// such as checking whether a parameter was properly specified, or the correct
6502 /// number of arguments were passed, etc.
6503 static bool handleCommonAttributeFeatures(Sema &S, Decl *D,
6504                                           const ParsedAttr &AL) {
6505   // Several attributes carry different semantics than the parsing requires, so
6506   // those are opted out of the common argument checks.
6507   //
6508   // We also bail on unknown and ignored attributes because those are handled
6509   // as part of the target-specific handling logic.
6510   if (AL.getKind() == ParsedAttr::UnknownAttribute)
6511     return false;
6512   // Check whether the attribute requires specific language extensions to be
6513   // enabled.
6514   if (!AL.diagnoseLangOpts(S))
6515     return true;
6516   // Check whether the attribute appertains to the given subject.
6517   if (!AL.diagnoseAppertainsTo(S, D))
6518     return true;
6519   if (AL.hasCustomParsing())
6520     return false;
6521 
6522   if (AL.getMinArgs() == AL.getMaxArgs()) {
6523     // If there are no optional arguments, then checking for the argument count
6524     // is trivial.
6525     if (!checkAttributeNumArgs(S, AL, AL.getMinArgs()))
6526       return true;
6527   } else {
6528     // There are optional arguments, so checking is slightly more involved.
6529     if (AL.getMinArgs() &&
6530         !checkAttributeAtLeastNumArgs(S, AL, AL.getMinArgs()))
6531       return true;
6532     else if (!AL.hasVariadicArg() && AL.getMaxArgs() &&
6533              !checkAttributeAtMostNumArgs(S, AL, AL.getMaxArgs()))
6534       return true;
6535   }
6536 
6537   if (S.CheckAttrTarget(AL))
6538     return true;
6539 
6540   return false;
6541 }
6542 
6543 static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6544   if (D->isInvalidDecl())
6545     return;
6546 
6547   // Check if there is only one access qualifier.
6548   if (D->hasAttr<OpenCLAccessAttr>()) {
6549     if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() ==
6550         AL.getSemanticSpelling()) {
6551       S.Diag(AL.getLoc(), diag::warn_duplicate_declspec)
6552           << AL.getAttrName()->getName() << AL.getRange();
6553     } else {
6554       S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers)
6555           << D->getSourceRange();
6556       D->setInvalidDecl(true);
6557       return;
6558     }
6559   }
6560 
6561   // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that an
6562   // image object can be read and written.
6563   // OpenCL v2.0 s6.13.6 - A kernel cannot read from and write to the same pipe
6564   // object. Using the read_write (or __read_write) qualifier with the pipe
6565   // qualifier is a compilation error.
6566   if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) {
6567     const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
6568     if (AL.getAttrName()->getName().find("read_write") != StringRef::npos) {
6569       if ((!S.getLangOpts().OpenCLCPlusPlus &&
6570            S.getLangOpts().OpenCLVersion < 200) ||
6571           DeclTy->isPipeType()) {
6572         S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write)
6573             << AL << PDecl->getType() << DeclTy->isImageType();
6574         D->setInvalidDecl(true);
6575         return;
6576       }
6577     }
6578   }
6579 
6580   D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL));
6581 }
6582 
6583 static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6584   // The 'sycl_kernel' attribute applies only to function templates.
6585   const auto *FD = cast<FunctionDecl>(D);
6586   const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate();
6587   assert(FT && "Function template is expected");
6588 
6589   // Function template must have at least two template parameters.
6590   const TemplateParameterList *TL = FT->getTemplateParameters();
6591   if (TL->size() < 2) {
6592     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params);
6593     return;
6594   }
6595 
6596   // Template parameters must be typenames.
6597   for (unsigned I = 0; I < 2; ++I) {
6598     const NamedDecl *TParam = TL->getParam(I);
6599     if (isa<NonTypeTemplateParmDecl>(TParam)) {
6600       S.Diag(FT->getLocation(),
6601              diag::warn_sycl_kernel_invalid_template_param_type);
6602       return;
6603     }
6604   }
6605 
6606   // Function must have at least one argument.
6607   if (getFunctionOrMethodNumParams(D) != 1) {
6608     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params);
6609     return;
6610   }
6611 
6612   // Function must return void.
6613   QualType RetTy = getFunctionOrMethodResultType(D);
6614   if (!RetTy->isVoidType()) {
6615     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type);
6616     return;
6617   }
6618 
6619   handleSimpleAttribute<SYCLKernelAttr>(S, D, AL);
6620 }
6621 
6622 static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) {
6623   if (!cast<VarDecl>(D)->hasGlobalStorage()) {
6624     S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var)
6625         << (A.getKind() == ParsedAttr::AT_AlwaysDestroy);
6626     return;
6627   }
6628 
6629   if (A.getKind() == ParsedAttr::AT_AlwaysDestroy)
6630     handleSimpleAttributeWithExclusions<AlwaysDestroyAttr, NoDestroyAttr>(S, D, A);
6631   else
6632     handleSimpleAttributeWithExclusions<NoDestroyAttr, AlwaysDestroyAttr>(S, D, A);
6633 }
6634 
6635 static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6636   assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic &&
6637          "uninitialized is only valid on automatic duration variables");
6638   D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL));
6639 }
6640 
6641 static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD,
6642                                         bool DiagnoseFailure) {
6643   QualType Ty = VD->getType();
6644   if (!Ty->isObjCRetainableType()) {
6645     if (DiagnoseFailure) {
6646       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
6647           << 0;
6648     }
6649     return false;
6650   }
6651 
6652   Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime();
6653 
6654   // Sema::inferObjCARCLifetime must run after processing decl attributes
6655   // (because __block lowers to an attribute), so if the lifetime hasn't been
6656   // explicitly specified, infer it locally now.
6657   if (LifetimeQual == Qualifiers::OCL_None)
6658     LifetimeQual = Ty->getObjCARCImplicitLifetime();
6659 
6660   // The attributes only really makes sense for __strong variables; ignore any
6661   // attempts to annotate a parameter with any other lifetime qualifier.
6662   if (LifetimeQual != Qualifiers::OCL_Strong) {
6663     if (DiagnoseFailure) {
6664       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
6665           << 1;
6666     }
6667     return false;
6668   }
6669 
6670   // Tampering with the type of a VarDecl here is a bit of a hack, but we need
6671   // to ensure that the variable is 'const' so that we can error on
6672   // modification, which can otherwise over-release.
6673   VD->setType(Ty.withConst());
6674   VD->setARCPseudoStrong(true);
6675   return true;
6676 }
6677 
6678 static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D,
6679                                              const ParsedAttr &AL) {
6680   if (auto *VD = dyn_cast<VarDecl>(D)) {
6681     assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically");
6682     if (!VD->hasLocalStorage()) {
6683       S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
6684           << 0;
6685       return;
6686     }
6687 
6688     if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true))
6689       return;
6690 
6691     handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
6692     return;
6693   }
6694 
6695   // If D is a function-like declaration (method, block, or function), then we
6696   // make every parameter psuedo-strong.
6697   unsigned NumParams =
6698       hasFunctionProto(D) ? getFunctionOrMethodNumParams(D) : 0;
6699   for (unsigned I = 0; I != NumParams; ++I) {
6700     auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I));
6701     QualType Ty = PVD->getType();
6702 
6703     // If a user wrote a parameter with __strong explicitly, then assume they
6704     // want "real" strong semantics for that parameter. This works because if
6705     // the parameter was written with __strong, then the strong qualifier will
6706     // be non-local.
6707     if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() ==
6708         Qualifiers::OCL_Strong)
6709       continue;
6710 
6711     tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false);
6712   }
6713   handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
6714 }
6715 
6716 static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6717   // Check that the return type is a `typedef int kern_return_t` or a typedef
6718   // around it, because otherwise MIG convention checks make no sense.
6719   // BlockDecl doesn't store a return type, so it's annoying to check,
6720   // so let's skip it for now.
6721   if (!isa<BlockDecl>(D)) {
6722     QualType T = getFunctionOrMethodResultType(D);
6723     bool IsKernReturnT = false;
6724     while (const auto *TT = T->getAs<TypedefType>()) {
6725       IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t");
6726       T = TT->desugar();
6727     }
6728     if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) {
6729       S.Diag(D->getBeginLoc(),
6730              diag::warn_mig_server_routine_does_not_return_kern_return_t);
6731       return;
6732     }
6733   }
6734 
6735   handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL);
6736 }
6737 
6738 static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6739   // Warn if the return type is not a pointer or reference type.
6740   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
6741     QualType RetTy = FD->getReturnType();
6742     if (!RetTy->isPointerType() && !RetTy->isReferenceType()) {
6743       S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer)
6744           << AL.getRange() << RetTy;
6745       return;
6746     }
6747   }
6748 
6749   handleSimpleAttribute<MSAllocatorAttr>(S, D, AL);
6750 }
6751 
6752 static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6753   if (AL.isUsedAsTypeAttr())
6754     return;
6755   // Warn if the parameter is definitely not an output parameter.
6756   if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
6757     if (PVD->getType()->isIntegerType()) {
6758       S.Diag(AL.getLoc(), diag::err_attribute_output_parameter)
6759           << AL.getRange();
6760       return;
6761     }
6762   }
6763   StringRef Argument;
6764   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
6765     return;
6766   D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL));
6767 }
6768 
6769 template<typename Attr>
6770 static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6771   StringRef Argument;
6772   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
6773     return;
6774   D->addAttr(Attr::Create(S.Context, Argument, AL));
6775 }
6776 
6777 static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6778   // The guard attribute takes a single identifier argument.
6779 
6780   if (!AL.isArgIdent(0)) {
6781     S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6782         << AL << AANT_ArgumentIdentifier;
6783     return;
6784   }
6785 
6786   CFGuardAttr::GuardArg Arg;
6787   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6788   if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) {
6789     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
6790     return;
6791   }
6792 
6793   D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg));
6794 }
6795 
6796 //===----------------------------------------------------------------------===//
6797 // Top Level Sema Entry Points
6798 //===----------------------------------------------------------------------===//
6799 
6800 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
6801 /// the attribute applies to decls.  If the attribute is a type attribute, just
6802 /// silently ignore it if a GNU attribute.
6803 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
6804                                  const ParsedAttr &AL,
6805                                  bool IncludeCXX11Attributes) {
6806   if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
6807     return;
6808 
6809   // Ignore C++11 attributes on declarator chunks: they appertain to the type
6810   // instead.
6811   if (AL.isCXX11Attribute() && !IncludeCXX11Attributes)
6812     return;
6813 
6814   // Unknown attributes are automatically warned on. Target-specific attributes
6815   // which do not apply to the current target architecture are treated as
6816   // though they were unknown attributes.
6817   if (AL.getKind() == ParsedAttr::UnknownAttribute ||
6818       !AL.existsInTarget(S.Context.getTargetInfo())) {
6819     S.Diag(AL.getLoc(),
6820            AL.isDeclspecAttribute()
6821                ? (unsigned)diag::warn_unhandled_ms_attribute_ignored
6822                : (unsigned)diag::warn_unknown_attribute_ignored)
6823         << AL;
6824     return;
6825   }
6826 
6827   if (handleCommonAttributeFeatures(S, D, AL))
6828     return;
6829 
6830   switch (AL.getKind()) {
6831   default:
6832     if (AL.getInfo().handleDeclAttribute(S, D, AL) != ParsedAttrInfo::NotHandled)
6833       break;
6834     if (!AL.isStmtAttr()) {
6835       // Type attributes are handled elsewhere; silently move on.
6836       assert(AL.isTypeAttr() && "Non-type attribute not handled");
6837       break;
6838     }
6839     S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl)
6840         << AL << D->getLocation();
6841     break;
6842   case ParsedAttr::AT_Interrupt:
6843     handleInterruptAttr(S, D, AL);
6844     break;
6845   case ParsedAttr::AT_X86ForceAlignArgPointer:
6846     handleX86ForceAlignArgPointerAttr(S, D, AL);
6847     break;
6848   case ParsedAttr::AT_DLLExport:
6849   case ParsedAttr::AT_DLLImport:
6850     handleDLLAttr(S, D, AL);
6851     break;
6852   case ParsedAttr::AT_Mips16:
6853     handleSimpleAttributeWithExclusions<Mips16Attr, MicroMipsAttr,
6854                                         MipsInterruptAttr>(S, D, AL);
6855     break;
6856   case ParsedAttr::AT_MicroMips:
6857     handleSimpleAttributeWithExclusions<MicroMipsAttr, Mips16Attr>(S, D, AL);
6858     break;
6859   case ParsedAttr::AT_MipsLongCall:
6860     handleSimpleAttributeWithExclusions<MipsLongCallAttr, MipsShortCallAttr>(
6861         S, D, AL);
6862     break;
6863   case ParsedAttr::AT_MipsShortCall:
6864     handleSimpleAttributeWithExclusions<MipsShortCallAttr, MipsLongCallAttr>(
6865         S, D, AL);
6866     break;
6867   case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
6868     handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL);
6869     break;
6870   case ParsedAttr::AT_AMDGPUWavesPerEU:
6871     handleAMDGPUWavesPerEUAttr(S, D, AL);
6872     break;
6873   case ParsedAttr::AT_AMDGPUNumSGPR:
6874     handleAMDGPUNumSGPRAttr(S, D, AL);
6875     break;
6876   case ParsedAttr::AT_AMDGPUNumVGPR:
6877     handleAMDGPUNumVGPRAttr(S, D, AL);
6878     break;
6879   case ParsedAttr::AT_AVRSignal:
6880     handleAVRSignalAttr(S, D, AL);
6881     break;
6882   case ParsedAttr::AT_BPFPreserveAccessIndex:
6883     handleBPFPreserveAccessIndexAttr(S, D, AL);
6884     break;
6885   case ParsedAttr::AT_WebAssemblyExportName:
6886     handleWebAssemblyExportNameAttr(S, D, AL);
6887     break;
6888   case ParsedAttr::AT_WebAssemblyImportModule:
6889     handleWebAssemblyImportModuleAttr(S, D, AL);
6890     break;
6891   case ParsedAttr::AT_WebAssemblyImportName:
6892     handleWebAssemblyImportNameAttr(S, D, AL);
6893     break;
6894   case ParsedAttr::AT_IBOutlet:
6895     handleIBOutlet(S, D, AL);
6896     break;
6897   case ParsedAttr::AT_IBOutletCollection:
6898     handleIBOutletCollection(S, D, AL);
6899     break;
6900   case ParsedAttr::AT_IFunc:
6901     handleIFuncAttr(S, D, AL);
6902     break;
6903   case ParsedAttr::AT_Alias:
6904     handleAliasAttr(S, D, AL);
6905     break;
6906   case ParsedAttr::AT_Aligned:
6907     handleAlignedAttr(S, D, AL);
6908     break;
6909   case ParsedAttr::AT_AlignValue:
6910     handleAlignValueAttr(S, D, AL);
6911     break;
6912   case ParsedAttr::AT_AllocSize:
6913     handleAllocSizeAttr(S, D, AL);
6914     break;
6915   case ParsedAttr::AT_AlwaysInline:
6916     handleAlwaysInlineAttr(S, D, AL);
6917     break;
6918   case ParsedAttr::AT_AnalyzerNoReturn:
6919     handleAnalyzerNoReturnAttr(S, D, AL);
6920     break;
6921   case ParsedAttr::AT_TLSModel:
6922     handleTLSModelAttr(S, D, AL);
6923     break;
6924   case ParsedAttr::AT_Annotate:
6925     handleAnnotateAttr(S, D, AL);
6926     break;
6927   case ParsedAttr::AT_Availability:
6928     handleAvailabilityAttr(S, D, AL);
6929     break;
6930   case ParsedAttr::AT_CarriesDependency:
6931     handleDependencyAttr(S, scope, D, AL);
6932     break;
6933   case ParsedAttr::AT_CPUDispatch:
6934   case ParsedAttr::AT_CPUSpecific:
6935     handleCPUSpecificAttr(S, D, AL);
6936     break;
6937   case ParsedAttr::AT_Common:
6938     handleCommonAttr(S, D, AL);
6939     break;
6940   case ParsedAttr::AT_CUDAConstant:
6941     handleConstantAttr(S, D, AL);
6942     break;
6943   case ParsedAttr::AT_PassObjectSize:
6944     handlePassObjectSizeAttr(S, D, AL);
6945     break;
6946   case ParsedAttr::AT_Constructor:
6947     if (S.Context.getTargetInfo().getTriple().isOSAIX())
6948       llvm::report_fatal_error(
6949           "'constructor' attribute is not yet supported on AIX");
6950     else
6951       handleConstructorAttr(S, D, AL);
6952     break;
6953   case ParsedAttr::AT_Deprecated:
6954     handleDeprecatedAttr(S, D, AL);
6955     break;
6956   case ParsedAttr::AT_Destructor:
6957     if (S.Context.getTargetInfo().getTriple().isOSAIX())
6958       llvm::report_fatal_error("'destructor' attribute is not yet supported on AIX");
6959     else
6960       handleDestructorAttr(S, D, AL);
6961     break;
6962   case ParsedAttr::AT_EnableIf:
6963     handleEnableIfAttr(S, D, AL);
6964     break;
6965   case ParsedAttr::AT_DiagnoseIf:
6966     handleDiagnoseIfAttr(S, D, AL);
6967     break;
6968   case ParsedAttr::AT_NoBuiltin:
6969     handleNoBuiltinAttr(S, D, AL);
6970     break;
6971   case ParsedAttr::AT_ExtVectorType:
6972     handleExtVectorTypeAttr(S, D, AL);
6973     break;
6974   case ParsedAttr::AT_ExternalSourceSymbol:
6975     handleExternalSourceSymbolAttr(S, D, AL);
6976     break;
6977   case ParsedAttr::AT_MinSize:
6978     handleMinSizeAttr(S, D, AL);
6979     break;
6980   case ParsedAttr::AT_OptimizeNone:
6981     handleOptimizeNoneAttr(S, D, AL);
6982     break;
6983   case ParsedAttr::AT_EnumExtensibility:
6984     handleEnumExtensibilityAttr(S, D, AL);
6985     break;
6986   case ParsedAttr::AT_SYCLKernel:
6987     handleSYCLKernelAttr(S, D, AL);
6988     break;
6989   case ParsedAttr::AT_Format:
6990     handleFormatAttr(S, D, AL);
6991     break;
6992   case ParsedAttr::AT_FormatArg:
6993     handleFormatArgAttr(S, D, AL);
6994     break;
6995   case ParsedAttr::AT_Callback:
6996     handleCallbackAttr(S, D, AL);
6997     break;
6998   case ParsedAttr::AT_CUDAGlobal:
6999     handleGlobalAttr(S, D, AL);
7000     break;
7001   case ParsedAttr::AT_CUDADevice:
7002     handleSimpleAttributeWithExclusions<CUDADeviceAttr, CUDAGlobalAttr>(S, D,
7003                                                                         AL);
7004     break;
7005   case ParsedAttr::AT_CUDAHost:
7006     handleSimpleAttributeWithExclusions<CUDAHostAttr, CUDAGlobalAttr>(S, D, AL);
7007     break;
7008   case ParsedAttr::AT_CUDADeviceBuiltinSurfaceType:
7009     handleSimpleAttributeWithExclusions<CUDADeviceBuiltinSurfaceTypeAttr,
7010                                         CUDADeviceBuiltinTextureTypeAttr>(S, D,
7011                                                                           AL);
7012     break;
7013   case ParsedAttr::AT_CUDADeviceBuiltinTextureType:
7014     handleSimpleAttributeWithExclusions<CUDADeviceBuiltinTextureTypeAttr,
7015                                         CUDADeviceBuiltinSurfaceTypeAttr>(S, D,
7016                                                                           AL);
7017     break;
7018   case ParsedAttr::AT_GNUInline:
7019     handleGNUInlineAttr(S, D, AL);
7020     break;
7021   case ParsedAttr::AT_CUDALaunchBounds:
7022     handleLaunchBoundsAttr(S, D, AL);
7023     break;
7024   case ParsedAttr::AT_Restrict:
7025     handleRestrictAttr(S, D, AL);
7026     break;
7027   case ParsedAttr::AT_Mode:
7028     handleModeAttr(S, D, AL);
7029     break;
7030   case ParsedAttr::AT_NonNull:
7031     if (auto *PVD = dyn_cast<ParmVarDecl>(D))
7032       handleNonNullAttrParameter(S, PVD, AL);
7033     else
7034       handleNonNullAttr(S, D, AL);
7035     break;
7036   case ParsedAttr::AT_ReturnsNonNull:
7037     handleReturnsNonNullAttr(S, D, AL);
7038     break;
7039   case ParsedAttr::AT_NoEscape:
7040     handleNoEscapeAttr(S, D, AL);
7041     break;
7042   case ParsedAttr::AT_AssumeAligned:
7043     handleAssumeAlignedAttr(S, D, AL);
7044     break;
7045   case ParsedAttr::AT_AllocAlign:
7046     handleAllocAlignAttr(S, D, AL);
7047     break;
7048   case ParsedAttr::AT_Ownership:
7049     handleOwnershipAttr(S, D, AL);
7050     break;
7051   case ParsedAttr::AT_Cold:
7052     handleSimpleAttributeWithExclusions<ColdAttr, HotAttr>(S, D, AL);
7053     break;
7054   case ParsedAttr::AT_Hot:
7055     handleSimpleAttributeWithExclusions<HotAttr, ColdAttr>(S, D, AL);
7056     break;
7057   case ParsedAttr::AT_Naked:
7058     handleNakedAttr(S, D, AL);
7059     break;
7060   case ParsedAttr::AT_NoReturn:
7061     handleNoReturnAttr(S, D, AL);
7062     break;
7063   case ParsedAttr::AT_AnyX86NoCfCheck:
7064     handleNoCfCheckAttr(S, D, AL);
7065     break;
7066   case ParsedAttr::AT_NoThrow:
7067     if (!AL.isUsedAsTypeAttr())
7068       handleSimpleAttribute<NoThrowAttr>(S, D, AL);
7069     break;
7070   case ParsedAttr::AT_CUDAShared:
7071     handleSharedAttr(S, D, AL);
7072     break;
7073   case ParsedAttr::AT_VecReturn:
7074     handleVecReturnAttr(S, D, AL);
7075     break;
7076   case ParsedAttr::AT_ObjCOwnership:
7077     handleObjCOwnershipAttr(S, D, AL);
7078     break;
7079   case ParsedAttr::AT_ObjCPreciseLifetime:
7080     handleObjCPreciseLifetimeAttr(S, D, AL);
7081     break;
7082   case ParsedAttr::AT_ObjCReturnsInnerPointer:
7083     handleObjCReturnsInnerPointerAttr(S, D, AL);
7084     break;
7085   case ParsedAttr::AT_ObjCRequiresSuper:
7086     handleObjCRequiresSuperAttr(S, D, AL);
7087     break;
7088   case ParsedAttr::AT_ObjCBridge:
7089     handleObjCBridgeAttr(S, D, AL);
7090     break;
7091   case ParsedAttr::AT_ObjCBridgeMutable:
7092     handleObjCBridgeMutableAttr(S, D, AL);
7093     break;
7094   case ParsedAttr::AT_ObjCBridgeRelated:
7095     handleObjCBridgeRelatedAttr(S, D, AL);
7096     break;
7097   case ParsedAttr::AT_ObjCDesignatedInitializer:
7098     handleObjCDesignatedInitializer(S, D, AL);
7099     break;
7100   case ParsedAttr::AT_ObjCRuntimeName:
7101     handleObjCRuntimeName(S, D, AL);
7102     break;
7103   case ParsedAttr::AT_ObjCBoxable:
7104     handleObjCBoxable(S, D, AL);
7105     break;
7106   case ParsedAttr::AT_CFAuditedTransfer:
7107     handleSimpleAttributeWithExclusions<CFAuditedTransferAttr,
7108                                         CFUnknownTransferAttr>(S, D, AL);
7109     break;
7110   case ParsedAttr::AT_CFUnknownTransfer:
7111     handleSimpleAttributeWithExclusions<CFUnknownTransferAttr,
7112                                         CFAuditedTransferAttr>(S, D, AL);
7113     break;
7114   case ParsedAttr::AT_CFConsumed:
7115   case ParsedAttr::AT_NSConsumed:
7116   case ParsedAttr::AT_OSConsumed:
7117     S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL),
7118                        /*IsTemplateInstantiation=*/false);
7119     break;
7120   case ParsedAttr::AT_OSReturnsRetainedOnZero:
7121     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>(
7122         S, D, AL, isValidOSObjectOutParameter(D),
7123         diag::warn_ns_attribute_wrong_parameter_type,
7124         /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange());
7125     break;
7126   case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
7127     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>(
7128         S, D, AL, isValidOSObjectOutParameter(D),
7129         diag::warn_ns_attribute_wrong_parameter_type,
7130         /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange());
7131     break;
7132   case ParsedAttr::AT_NSReturnsAutoreleased:
7133   case ParsedAttr::AT_NSReturnsNotRetained:
7134   case ParsedAttr::AT_NSReturnsRetained:
7135   case ParsedAttr::AT_CFReturnsNotRetained:
7136   case ParsedAttr::AT_CFReturnsRetained:
7137   case ParsedAttr::AT_OSReturnsNotRetained:
7138   case ParsedAttr::AT_OSReturnsRetained:
7139     handleXReturnsXRetainedAttr(S, D, AL);
7140     break;
7141   case ParsedAttr::AT_WorkGroupSizeHint:
7142     handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL);
7143     break;
7144   case ParsedAttr::AT_ReqdWorkGroupSize:
7145     handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL);
7146     break;
7147   case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize:
7148     handleSubGroupSize(S, D, AL);
7149     break;
7150   case ParsedAttr::AT_VecTypeHint:
7151     handleVecTypeHint(S, D, AL);
7152     break;
7153   case ParsedAttr::AT_InitPriority:
7154     if (S.Context.getTargetInfo().getTriple().isOSAIX())
7155       llvm::report_fatal_error(
7156           "'init_priority' attribute is not yet supported on AIX");
7157     else
7158       handleInitPriorityAttr(S, D, AL);
7159     break;
7160   case ParsedAttr::AT_Packed:
7161     handlePackedAttr(S, D, AL);
7162     break;
7163   case ParsedAttr::AT_Section:
7164     handleSectionAttr(S, D, AL);
7165     break;
7166   case ParsedAttr::AT_SpeculativeLoadHardening:
7167     handleSimpleAttributeWithExclusions<SpeculativeLoadHardeningAttr,
7168                                         NoSpeculativeLoadHardeningAttr>(S, D,
7169                                                                         AL);
7170     break;
7171   case ParsedAttr::AT_NoSpeculativeLoadHardening:
7172     handleSimpleAttributeWithExclusions<NoSpeculativeLoadHardeningAttr,
7173                                         SpeculativeLoadHardeningAttr>(S, D, AL);
7174     break;
7175   case ParsedAttr::AT_CodeSeg:
7176     handleCodeSegAttr(S, D, AL);
7177     break;
7178   case ParsedAttr::AT_Target:
7179     handleTargetAttr(S, D, AL);
7180     break;
7181   case ParsedAttr::AT_MinVectorWidth:
7182     handleMinVectorWidthAttr(S, D, AL);
7183     break;
7184   case ParsedAttr::AT_Unavailable:
7185     handleAttrWithMessage<UnavailableAttr>(S, D, AL);
7186     break;
7187   case ParsedAttr::AT_ObjCDirect:
7188     handleObjCDirectAttr(S, D, AL);
7189     break;
7190   case ParsedAttr::AT_ObjCDirectMembers:
7191     handleObjCDirectMembersAttr(S, D, AL);
7192     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
7193     break;
7194   case ParsedAttr::AT_ObjCExplicitProtocolImpl:
7195     handleObjCSuppresProtocolAttr(S, D, AL);
7196     break;
7197   case ParsedAttr::AT_Unused:
7198     handleUnusedAttr(S, D, AL);
7199     break;
7200   case ParsedAttr::AT_NotTailCalled:
7201     handleSimpleAttributeWithExclusions<NotTailCalledAttr, AlwaysInlineAttr>(
7202         S, D, AL);
7203     break;
7204   case ParsedAttr::AT_DisableTailCalls:
7205     handleSimpleAttributeWithExclusions<DisableTailCallsAttr, NakedAttr>(S, D,
7206                                                                          AL);
7207     break;
7208   case ParsedAttr::AT_Visibility:
7209     handleVisibilityAttr(S, D, AL, false);
7210     break;
7211   case ParsedAttr::AT_TypeVisibility:
7212     handleVisibilityAttr(S, D, AL, true);
7213     break;
7214   case ParsedAttr::AT_WarnUnusedResult:
7215     handleWarnUnusedResult(S, D, AL);
7216     break;
7217   case ParsedAttr::AT_WeakRef:
7218     handleWeakRefAttr(S, D, AL);
7219     break;
7220   case ParsedAttr::AT_WeakImport:
7221     handleWeakImportAttr(S, D, AL);
7222     break;
7223   case ParsedAttr::AT_TransparentUnion:
7224     handleTransparentUnionAttr(S, D, AL);
7225     break;
7226   case ParsedAttr::AT_ObjCMethodFamily:
7227     handleObjCMethodFamilyAttr(S, D, AL);
7228     break;
7229   case ParsedAttr::AT_ObjCNSObject:
7230     handleObjCNSObject(S, D, AL);
7231     break;
7232   case ParsedAttr::AT_ObjCIndependentClass:
7233     handleObjCIndependentClass(S, D, AL);
7234     break;
7235   case ParsedAttr::AT_Blocks:
7236     handleBlocksAttr(S, D, AL);
7237     break;
7238   case ParsedAttr::AT_Sentinel:
7239     handleSentinelAttr(S, D, AL);
7240     break;
7241   case ParsedAttr::AT_Cleanup:
7242     handleCleanupAttr(S, D, AL);
7243     break;
7244   case ParsedAttr::AT_NoDebug:
7245     handleNoDebugAttr(S, D, AL);
7246     break;
7247   case ParsedAttr::AT_CmseNSEntry:
7248     handleCmseNSEntryAttr(S, D, AL);
7249     break;
7250   case ParsedAttr::AT_StdCall:
7251   case ParsedAttr::AT_CDecl:
7252   case ParsedAttr::AT_FastCall:
7253   case ParsedAttr::AT_ThisCall:
7254   case ParsedAttr::AT_Pascal:
7255   case ParsedAttr::AT_RegCall:
7256   case ParsedAttr::AT_SwiftCall:
7257   case ParsedAttr::AT_VectorCall:
7258   case ParsedAttr::AT_MSABI:
7259   case ParsedAttr::AT_SysVABI:
7260   case ParsedAttr::AT_Pcs:
7261   case ParsedAttr::AT_IntelOclBicc:
7262   case ParsedAttr::AT_PreserveMost:
7263   case ParsedAttr::AT_PreserveAll:
7264   case ParsedAttr::AT_AArch64VectorPcs:
7265     handleCallConvAttr(S, D, AL);
7266     break;
7267   case ParsedAttr::AT_Suppress:
7268     handleSuppressAttr(S, D, AL);
7269     break;
7270   case ParsedAttr::AT_Owner:
7271   case ParsedAttr::AT_Pointer:
7272     handleLifetimeCategoryAttr(S, D, AL);
7273     break;
7274   case ParsedAttr::AT_OpenCLAccess:
7275     handleOpenCLAccessAttr(S, D, AL);
7276     break;
7277   case ParsedAttr::AT_OpenCLNoSVM:
7278     handleOpenCLNoSVMAttr(S, D, AL);
7279     break;
7280   case ParsedAttr::AT_SwiftContext:
7281     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext);
7282     break;
7283   case ParsedAttr::AT_SwiftErrorResult:
7284     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult);
7285     break;
7286   case ParsedAttr::AT_SwiftIndirectResult:
7287     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult);
7288     break;
7289   case ParsedAttr::AT_InternalLinkage:
7290     handleInternalLinkageAttr(S, D, AL);
7291     break;
7292 
7293   // Microsoft attributes:
7294   case ParsedAttr::AT_LayoutVersion:
7295     handleLayoutVersion(S, D, AL);
7296     break;
7297   case ParsedAttr::AT_Uuid:
7298     handleUuidAttr(S, D, AL);
7299     break;
7300   case ParsedAttr::AT_MSInheritance:
7301     handleMSInheritanceAttr(S, D, AL);
7302     break;
7303   case ParsedAttr::AT_Thread:
7304     handleDeclspecThreadAttr(S, D, AL);
7305     break;
7306 
7307   case ParsedAttr::AT_AbiTag:
7308     handleAbiTagAttr(S, D, AL);
7309     break;
7310   case ParsedAttr::AT_CFGuard:
7311     handleCFGuardAttr(S, D, AL);
7312     break;
7313 
7314   // Thread safety attributes:
7315   case ParsedAttr::AT_AssertExclusiveLock:
7316     handleAssertExclusiveLockAttr(S, D, AL);
7317     break;
7318   case ParsedAttr::AT_AssertSharedLock:
7319     handleAssertSharedLockAttr(S, D, AL);
7320     break;
7321   case ParsedAttr::AT_PtGuardedVar:
7322     handlePtGuardedVarAttr(S, D, AL);
7323     break;
7324   case ParsedAttr::AT_NoSanitize:
7325     handleNoSanitizeAttr(S, D, AL);
7326     break;
7327   case ParsedAttr::AT_NoSanitizeSpecific:
7328     handleNoSanitizeSpecificAttr(S, D, AL);
7329     break;
7330   case ParsedAttr::AT_GuardedBy:
7331     handleGuardedByAttr(S, D, AL);
7332     break;
7333   case ParsedAttr::AT_PtGuardedBy:
7334     handlePtGuardedByAttr(S, D, AL);
7335     break;
7336   case ParsedAttr::AT_ExclusiveTrylockFunction:
7337     handleExclusiveTrylockFunctionAttr(S, D, AL);
7338     break;
7339   case ParsedAttr::AT_LockReturned:
7340     handleLockReturnedAttr(S, D, AL);
7341     break;
7342   case ParsedAttr::AT_LocksExcluded:
7343     handleLocksExcludedAttr(S, D, AL);
7344     break;
7345   case ParsedAttr::AT_SharedTrylockFunction:
7346     handleSharedTrylockFunctionAttr(S, D, AL);
7347     break;
7348   case ParsedAttr::AT_AcquiredBefore:
7349     handleAcquiredBeforeAttr(S, D, AL);
7350     break;
7351   case ParsedAttr::AT_AcquiredAfter:
7352     handleAcquiredAfterAttr(S, D, AL);
7353     break;
7354 
7355   // Capability analysis attributes.
7356   case ParsedAttr::AT_Capability:
7357   case ParsedAttr::AT_Lockable:
7358     handleCapabilityAttr(S, D, AL);
7359     break;
7360   case ParsedAttr::AT_RequiresCapability:
7361     handleRequiresCapabilityAttr(S, D, AL);
7362     break;
7363 
7364   case ParsedAttr::AT_AssertCapability:
7365     handleAssertCapabilityAttr(S, D, AL);
7366     break;
7367   case ParsedAttr::AT_AcquireCapability:
7368     handleAcquireCapabilityAttr(S, D, AL);
7369     break;
7370   case ParsedAttr::AT_ReleaseCapability:
7371     handleReleaseCapabilityAttr(S, D, AL);
7372     break;
7373   case ParsedAttr::AT_TryAcquireCapability:
7374     handleTryAcquireCapabilityAttr(S, D, AL);
7375     break;
7376 
7377   // Consumed analysis attributes.
7378   case ParsedAttr::AT_Consumable:
7379     handleConsumableAttr(S, D, AL);
7380     break;
7381   case ParsedAttr::AT_CallableWhen:
7382     handleCallableWhenAttr(S, D, AL);
7383     break;
7384   case ParsedAttr::AT_ParamTypestate:
7385     handleParamTypestateAttr(S, D, AL);
7386     break;
7387   case ParsedAttr::AT_ReturnTypestate:
7388     handleReturnTypestateAttr(S, D, AL);
7389     break;
7390   case ParsedAttr::AT_SetTypestate:
7391     handleSetTypestateAttr(S, D, AL);
7392     break;
7393   case ParsedAttr::AT_TestTypestate:
7394     handleTestTypestateAttr(S, D, AL);
7395     break;
7396 
7397   // Type safety attributes.
7398   case ParsedAttr::AT_ArgumentWithTypeTag:
7399     handleArgumentWithTypeTagAttr(S, D, AL);
7400     break;
7401   case ParsedAttr::AT_TypeTagForDatatype:
7402     handleTypeTagForDatatypeAttr(S, D, AL);
7403     break;
7404 
7405   // XRay attributes.
7406   case ParsedAttr::AT_XRayLogArgs:
7407     handleXRayLogArgsAttr(S, D, AL);
7408     break;
7409 
7410   case ParsedAttr::AT_PatchableFunctionEntry:
7411     handlePatchableFunctionEntryAttr(S, D, AL);
7412     break;
7413 
7414   case ParsedAttr::AT_AlwaysDestroy:
7415   case ParsedAttr::AT_NoDestroy:
7416     handleDestroyAttr(S, D, AL);
7417     break;
7418 
7419   case ParsedAttr::AT_Uninitialized:
7420     handleUninitializedAttr(S, D, AL);
7421     break;
7422 
7423   case ParsedAttr::AT_LoaderUninitialized:
7424     handleSimpleAttribute<LoaderUninitializedAttr>(S, D, AL);
7425     break;
7426 
7427   case ParsedAttr::AT_ObjCExternallyRetained:
7428     handleObjCExternallyRetainedAttr(S, D, AL);
7429     break;
7430 
7431   case ParsedAttr::AT_MIGServerRoutine:
7432     handleMIGServerRoutineAttr(S, D, AL);
7433     break;
7434 
7435   case ParsedAttr::AT_MSAllocator:
7436     handleMSAllocatorAttr(S, D, AL);
7437     break;
7438 
7439   case ParsedAttr::AT_ArmBuiltinAlias:
7440     handleArmBuiltinAliasAttr(S, D, AL);
7441     break;
7442 
7443   case ParsedAttr::AT_AcquireHandle:
7444     handleAcquireHandleAttr(S, D, AL);
7445     break;
7446 
7447   case ParsedAttr::AT_ReleaseHandle:
7448     handleHandleAttr<ReleaseHandleAttr>(S, D, AL);
7449     break;
7450 
7451   case ParsedAttr::AT_UseHandle:
7452     handleHandleAttr<UseHandleAttr>(S, D, AL);
7453     break;
7454   }
7455 }
7456 
7457 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
7458 /// attribute list to the specified decl, ignoring any type attributes.
7459 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
7460                                     const ParsedAttributesView &AttrList,
7461                                     bool IncludeCXX11Attributes) {
7462   if (AttrList.empty())
7463     return;
7464 
7465   for (const ParsedAttr &AL : AttrList)
7466     ProcessDeclAttribute(*this, S, D, AL, IncludeCXX11Attributes);
7467 
7468   // FIXME: We should be able to handle these cases in TableGen.
7469   // GCC accepts
7470   // static int a9 __attribute__((weakref));
7471   // but that looks really pointless. We reject it.
7472   if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
7473     Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias)
7474         << cast<NamedDecl>(D);
7475     D->dropAttr<WeakRefAttr>();
7476     return;
7477   }
7478 
7479   // FIXME: We should be able to handle this in TableGen as well. It would be
7480   // good to have a way to specify "these attributes must appear as a group",
7481   // for these. Additionally, it would be good to have a way to specify "these
7482   // attribute must never appear as a group" for attributes like cold and hot.
7483   if (!D->hasAttr<OpenCLKernelAttr>()) {
7484     // These attributes cannot be applied to a non-kernel function.
7485     if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
7486       // FIXME: This emits a different error message than
7487       // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
7488       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7489       D->setInvalidDecl();
7490     } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
7491       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7492       D->setInvalidDecl();
7493     } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
7494       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7495       D->setInvalidDecl();
7496     } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
7497       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7498       D->setInvalidDecl();
7499     } else if (!D->hasAttr<CUDAGlobalAttr>()) {
7500       if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
7501         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7502             << A << ExpectedKernelFunction;
7503         D->setInvalidDecl();
7504       } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
7505         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7506             << A << ExpectedKernelFunction;
7507         D->setInvalidDecl();
7508       } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
7509         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7510             << A << ExpectedKernelFunction;
7511         D->setInvalidDecl();
7512       } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
7513         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7514             << A << ExpectedKernelFunction;
7515         D->setInvalidDecl();
7516       }
7517     }
7518   }
7519 
7520   // Do this check after processing D's attributes because the attribute
7521   // objc_method_family can change whether the given method is in the init
7522   // family, and it can be applied after objc_designated_initializer. This is a
7523   // bit of a hack, but we need it to be compatible with versions of clang that
7524   // processed the attribute list in the wrong order.
7525   if (D->hasAttr<ObjCDesignatedInitializerAttr>() &&
7526       cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) {
7527     Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
7528     D->dropAttr<ObjCDesignatedInitializerAttr>();
7529   }
7530 }
7531 
7532 // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr
7533 // attribute.
7534 void Sema::ProcessDeclAttributeDelayed(Decl *D,
7535                                        const ParsedAttributesView &AttrList) {
7536   for (const ParsedAttr &AL : AttrList)
7537     if (AL.getKind() == ParsedAttr::AT_TransparentUnion) {
7538       handleTransparentUnionAttr(*this, D, AL);
7539       break;
7540     }
7541 
7542   // For BPFPreserveAccessIndexAttr, we want to populate the attributes
7543   // to fields and inner records as well.
7544   if (D && D->hasAttr<BPFPreserveAccessIndexAttr>())
7545     handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D));
7546 }
7547 
7548 // Annotation attributes are the only attributes allowed after an access
7549 // specifier.
7550 bool Sema::ProcessAccessDeclAttributeList(
7551     AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) {
7552   for (const ParsedAttr &AL : AttrList) {
7553     if (AL.getKind() == ParsedAttr::AT_Annotate) {
7554       ProcessDeclAttribute(*this, nullptr, ASDecl, AL, AL.isCXX11Attribute());
7555     } else {
7556       Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec);
7557       return true;
7558     }
7559   }
7560   return false;
7561 }
7562 
7563 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
7564 /// contains any decl attributes that we should warn about.
7565 static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) {
7566   for (const ParsedAttr &AL : A) {
7567     // Only warn if the attribute is an unignored, non-type attribute.
7568     if (AL.isUsedAsTypeAttr() || AL.isInvalid())
7569       continue;
7570     if (AL.getKind() == ParsedAttr::IgnoredAttribute)
7571       continue;
7572 
7573     if (AL.getKind() == ParsedAttr::UnknownAttribute) {
7574       S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
7575           << AL << AL.getRange();
7576     } else {
7577       S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL
7578                                                             << AL.getRange();
7579     }
7580   }
7581 }
7582 
7583 /// checkUnusedDeclAttributes - Given a declarator which is not being
7584 /// used to build a declaration, complain about any decl attributes
7585 /// which might be lying around on it.
7586 void Sema::checkUnusedDeclAttributes(Declarator &D) {
7587   ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes());
7588   ::checkUnusedDeclAttributes(*this, D.getAttributes());
7589   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
7590     ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
7591 }
7592 
7593 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
7594 /// \#pragma weak needs a non-definition decl and source may not have one.
7595 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
7596                                       SourceLocation Loc) {
7597   assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
7598   NamedDecl *NewD = nullptr;
7599   if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
7600     FunctionDecl *NewFD;
7601     // FIXME: Missing call to CheckFunctionDeclaration().
7602     // FIXME: Mangling?
7603     // FIXME: Is the qualifier info correct?
7604     // FIXME: Is the DeclContext correct?
7605     NewFD = FunctionDecl::Create(
7606         FD->getASTContext(), FD->getDeclContext(), Loc, Loc,
7607         DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None,
7608         false /*isInlineSpecified*/, FD->hasPrototype(), CSK_unspecified,
7609         FD->getTrailingRequiresClause());
7610     NewD = NewFD;
7611 
7612     if (FD->getQualifier())
7613       NewFD->setQualifierInfo(FD->getQualifierLoc());
7614 
7615     // Fake up parameter variables; they are declared as if this were
7616     // a typedef.
7617     QualType FDTy = FD->getType();
7618     if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
7619       SmallVector<ParmVarDecl*, 16> Params;
7620       for (const auto &AI : FT->param_types()) {
7621         ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
7622         Param->setScopeInfo(0, Params.size());
7623         Params.push_back(Param);
7624       }
7625       NewFD->setParams(Params);
7626     }
7627   } else if (auto *VD = dyn_cast<VarDecl>(ND)) {
7628     NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
7629                            VD->getInnerLocStart(), VD->getLocation(), II,
7630                            VD->getType(), VD->getTypeSourceInfo(),
7631                            VD->getStorageClass());
7632     if (VD->getQualifier())
7633       cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
7634   }
7635   return NewD;
7636 }
7637 
7638 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
7639 /// applied to it, possibly with an alias.
7640 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
7641   if (W.getUsed()) return; // only do this once
7642   W.setUsed(true);
7643   if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
7644     IdentifierInfo *NDId = ND->getIdentifier();
7645     NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
7646     NewD->addAttr(
7647         AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation()));
7648     NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
7649                                            AttributeCommonInfo::AS_Pragma));
7650     WeakTopLevelDecl.push_back(NewD);
7651     // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
7652     // to insert Decl at TU scope, sorry.
7653     DeclContext *SavedContext = CurContext;
7654     CurContext = Context.getTranslationUnitDecl();
7655     NewD->setDeclContext(CurContext);
7656     NewD->setLexicalDeclContext(CurContext);
7657     PushOnScopeChains(NewD, S);
7658     CurContext = SavedContext;
7659   } else { // just add weak to existing
7660     ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
7661                                          AttributeCommonInfo::AS_Pragma));
7662   }
7663 }
7664 
7665 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
7666   // It's valid to "forward-declare" #pragma weak, in which case we
7667   // have to do this.
7668   LoadExternalWeakUndeclaredIdentifiers();
7669   if (!WeakUndeclaredIdentifiers.empty()) {
7670     NamedDecl *ND = nullptr;
7671     if (auto *VD = dyn_cast<VarDecl>(D))
7672       if (VD->isExternC())
7673         ND = VD;
7674     if (auto *FD = dyn_cast<FunctionDecl>(D))
7675       if (FD->isExternC())
7676         ND = FD;
7677     if (ND) {
7678       if (IdentifierInfo *Id = ND->getIdentifier()) {
7679         auto I = WeakUndeclaredIdentifiers.find(Id);
7680         if (I != WeakUndeclaredIdentifiers.end()) {
7681           WeakInfo W = I->second;
7682           DeclApplyPragmaWeak(S, ND, W);
7683           WeakUndeclaredIdentifiers[Id] = W;
7684         }
7685       }
7686     }
7687   }
7688 }
7689 
7690 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
7691 /// it, apply them to D.  This is a bit tricky because PD can have attributes
7692 /// specified in many different places, and we need to find and apply them all.
7693 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
7694   // Apply decl attributes from the DeclSpec if present.
7695   if (!PD.getDeclSpec().getAttributes().empty())
7696     ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes());
7697 
7698   // Walk the declarator structure, applying decl attributes that were in a type
7699   // position to the decl itself.  This handles cases like:
7700   //   int *__attr__(x)** D;
7701   // when X is a decl attribute.
7702   for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
7703     ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(),
7704                              /*IncludeCXX11Attributes=*/false);
7705 
7706   // Finally, apply any attributes on the decl itself.
7707   ProcessDeclAttributeList(S, D, PD.getAttributes());
7708 
7709   // Apply additional attributes specified by '#pragma clang attribute'.
7710   AddPragmaAttributes(S, D);
7711 }
7712 
7713 /// Is the given declaration allowed to use a forbidden type?
7714 /// If so, it'll still be annotated with an attribute that makes it
7715 /// illegal to actually use.
7716 static bool isForbiddenTypeAllowed(Sema &S, Decl *D,
7717                                    const DelayedDiagnostic &diag,
7718                                    UnavailableAttr::ImplicitReason &reason) {
7719   // Private ivars are always okay.  Unfortunately, people don't
7720   // always properly make their ivars private, even in system headers.
7721   // Plus we need to make fields okay, too.
7722   if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
7723       !isa<FunctionDecl>(D))
7724     return false;
7725 
7726   // Silently accept unsupported uses of __weak in both user and system
7727   // declarations when it's been disabled, for ease of integration with
7728   // -fno-objc-arc files.  We do have to take some care against attempts
7729   // to define such things;  for now, we've only done that for ivars
7730   // and properties.
7731   if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) {
7732     if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
7733         diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
7734       reason = UnavailableAttr::IR_ForbiddenWeak;
7735       return true;
7736     }
7737   }
7738 
7739   // Allow all sorts of things in system headers.
7740   if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) {
7741     // Currently, all the failures dealt with this way are due to ARC
7742     // restrictions.
7743     reason = UnavailableAttr::IR_ARCForbiddenType;
7744     return true;
7745   }
7746 
7747   return false;
7748 }
7749 
7750 /// Handle a delayed forbidden-type diagnostic.
7751 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD,
7752                                        Decl *D) {
7753   auto Reason = UnavailableAttr::IR_None;
7754   if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
7755     assert(Reason && "didn't set reason?");
7756     D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
7757     return;
7758   }
7759   if (S.getLangOpts().ObjCAutoRefCount)
7760     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
7761       // FIXME: we may want to suppress diagnostics for all
7762       // kind of forbidden type messages on unavailable functions.
7763       if (FD->hasAttr<UnavailableAttr>() &&
7764           DD.getForbiddenTypeDiagnostic() ==
7765               diag::err_arc_array_param_no_ownership) {
7766         DD.Triggered = true;
7767         return;
7768       }
7769     }
7770 
7771   S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic())
7772       << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument();
7773   DD.Triggered = true;
7774 }
7775 
7776 
7777 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
7778   assert(DelayedDiagnostics.getCurrentPool());
7779   DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
7780   DelayedDiagnostics.popWithoutEmitting(state);
7781 
7782   // When delaying diagnostics to run in the context of a parsed
7783   // declaration, we only want to actually emit anything if parsing
7784   // succeeds.
7785   if (!decl) return;
7786 
7787   // We emit all the active diagnostics in this pool or any of its
7788   // parents.  In general, we'll get one pool for the decl spec
7789   // and a child pool for each declarator; in a decl group like:
7790   //   deprecated_typedef foo, *bar, baz();
7791   // only the declarator pops will be passed decls.  This is correct;
7792   // we really do need to consider delayed diagnostics from the decl spec
7793   // for each of the different declarations.
7794   const DelayedDiagnosticPool *pool = &poppedPool;
7795   do {
7796     bool AnyAccessFailures = false;
7797     for (DelayedDiagnosticPool::pool_iterator
7798            i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
7799       // This const_cast is a bit lame.  Really, Triggered should be mutable.
7800       DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
7801       if (diag.Triggered)
7802         continue;
7803 
7804       switch (diag.Kind) {
7805       case DelayedDiagnostic::Availability:
7806         // Don't bother giving deprecation/unavailable diagnostics if
7807         // the decl is invalid.
7808         if (!decl->isInvalidDecl())
7809           handleDelayedAvailabilityCheck(diag, decl);
7810         break;
7811 
7812       case DelayedDiagnostic::Access:
7813         // Only produce one access control diagnostic for a structured binding
7814         // declaration: we don't need to tell the user that all the fields are
7815         // inaccessible one at a time.
7816         if (AnyAccessFailures && isa<DecompositionDecl>(decl))
7817           continue;
7818         HandleDelayedAccessCheck(diag, decl);
7819         if (diag.Triggered)
7820           AnyAccessFailures = true;
7821         break;
7822 
7823       case DelayedDiagnostic::ForbiddenType:
7824         handleDelayedForbiddenType(*this, diag, decl);
7825         break;
7826       }
7827     }
7828   } while ((pool = pool->getParent()));
7829 }
7830 
7831 /// Given a set of delayed diagnostics, re-emit them as if they had
7832 /// been delayed in the current context instead of in the given pool.
7833 /// Essentially, this just moves them to the current pool.
7834 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
7835   DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
7836   assert(curPool && "re-emitting in undelayed context not supported");
7837   curPool->steal(pool);
7838 }
7839