1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines ExprEngine's support for C expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ExprCXX.h" 14 #include "clang/AST/DeclCXX.h" 15 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 17 #include <optional> 18 19 using namespace clang; 20 using namespace ento; 21 using llvm::APSInt; 22 23 /// Optionally conjure and return a symbol for offset when processing 24 /// an expression \p Expression. 25 /// If \p Other is a location, conjure a symbol for \p Symbol 26 /// (offset) if it is unknown so that memory arithmetic always 27 /// results in an ElementRegion. 28 /// \p Count The number of times the current basic block was visited. 29 static SVal conjureOffsetSymbolOnLocation( 30 SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder, 31 unsigned Count, const LocationContext *LCtx) { 32 QualType Ty = Expression->getType(); 33 if (isa<Loc>(Other) && Ty->isIntegralOrEnumerationType() && 34 Symbol.isUnknown()) { 35 return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count); 36 } 37 return Symbol; 38 } 39 40 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, 41 ExplodedNode *Pred, 42 ExplodedNodeSet &Dst) { 43 44 Expr *LHS = B->getLHS()->IgnoreParens(); 45 Expr *RHS = B->getRHS()->IgnoreParens(); 46 47 // FIXME: Prechecks eventually go in ::Visit(). 48 ExplodedNodeSet CheckedSet; 49 ExplodedNodeSet Tmp2; 50 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this); 51 52 // With both the LHS and RHS evaluated, process the operation itself. 53 for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end(); 54 it != ei; ++it) { 55 56 ProgramStateRef state = (*it)->getState(); 57 const LocationContext *LCtx = (*it)->getLocationContext(); 58 SVal LeftV = state->getSVal(LHS, LCtx); 59 SVal RightV = state->getSVal(RHS, LCtx); 60 61 BinaryOperator::Opcode Op = B->getOpcode(); 62 63 if (Op == BO_Assign) { 64 // EXPERIMENTAL: "Conjured" symbols. 65 // FIXME: Handle structs. 66 if (RightV.isUnknown()) { 67 unsigned Count = currBldrCtx->blockCount(); 68 RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, 69 Count); 70 } 71 // Simulate the effects of a "store": bind the value of the RHS 72 // to the L-Value represented by the LHS. 73 SVal ExprVal = B->isGLValue() ? LeftV : RightV; 74 evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal), 75 LeftV, RightV); 76 continue; 77 } 78 79 if (!B->isAssignmentOp()) { 80 StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx); 81 82 if (B->isAdditiveOp()) { 83 // TODO: This can be removed after we enable history tracking with 84 // SymSymExpr. 85 unsigned Count = currBldrCtx->blockCount(); 86 RightV = conjureOffsetSymbolOnLocation( 87 RightV, LeftV, RHS, svalBuilder, Count, LCtx); 88 LeftV = conjureOffsetSymbolOnLocation( 89 LeftV, RightV, LHS, svalBuilder, Count, LCtx); 90 } 91 92 // Although we don't yet model pointers-to-members, we do need to make 93 // sure that the members of temporaries have a valid 'this' pointer for 94 // other checks. 95 if (B->getOpcode() == BO_PtrMemD) 96 state = createTemporaryRegionIfNeeded(state, LCtx, LHS); 97 98 // Process non-assignments except commas or short-circuited 99 // logical expressions (LAnd and LOr). 100 SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); 101 if (!Result.isUnknown()) { 102 state = state->BindExpr(B, LCtx, Result); 103 } else { 104 // If we cannot evaluate the operation escape the operands. 105 state = escapeValues(state, LeftV, PSK_EscapeOther); 106 state = escapeValues(state, RightV, PSK_EscapeOther); 107 } 108 109 Bldr.generateNode(B, *it, state); 110 continue; 111 } 112 113 assert (B->isCompoundAssignmentOp()); 114 115 switch (Op) { 116 default: 117 llvm_unreachable("Invalid opcode for compound assignment."); 118 case BO_MulAssign: Op = BO_Mul; break; 119 case BO_DivAssign: Op = BO_Div; break; 120 case BO_RemAssign: Op = BO_Rem; break; 121 case BO_AddAssign: Op = BO_Add; break; 122 case BO_SubAssign: Op = BO_Sub; break; 123 case BO_ShlAssign: Op = BO_Shl; break; 124 case BO_ShrAssign: Op = BO_Shr; break; 125 case BO_AndAssign: Op = BO_And; break; 126 case BO_XorAssign: Op = BO_Xor; break; 127 case BO_OrAssign: Op = BO_Or; break; 128 } 129 130 // Perform a load (the LHS). This performs the checks for 131 // null dereferences, and so on. 132 ExplodedNodeSet Tmp; 133 SVal location = LeftV; 134 evalLoad(Tmp, B, LHS, *it, state, location); 135 136 for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; 137 ++I) { 138 139 state = (*I)->getState(); 140 const LocationContext *LCtx = (*I)->getLocationContext(); 141 SVal V = state->getSVal(LHS, LCtx); 142 143 // Get the computation type. 144 QualType CTy = 145 cast<CompoundAssignOperator>(B)->getComputationResultType(); 146 CTy = getContext().getCanonicalType(CTy); 147 148 QualType CLHSTy = 149 cast<CompoundAssignOperator>(B)->getComputationLHSType(); 150 CLHSTy = getContext().getCanonicalType(CLHSTy); 151 152 QualType LTy = getContext().getCanonicalType(LHS->getType()); 153 154 // Promote LHS. 155 V = svalBuilder.evalCast(V, CLHSTy, LTy); 156 157 // Compute the result of the operation. 158 SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), 159 B->getType(), CTy); 160 161 // EXPERIMENTAL: "Conjured" symbols. 162 // FIXME: Handle structs. 163 164 SVal LHSVal; 165 166 if (Result.isUnknown()) { 167 // The symbolic value is actually for the type of the left-hand side 168 // expression, not the computation type, as this is the value the 169 // LValue on the LHS will bind to. 170 LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy, 171 currBldrCtx->blockCount()); 172 // However, we need to convert the symbol to the computation type. 173 Result = svalBuilder.evalCast(LHSVal, CTy, LTy); 174 } 175 else { 176 // The left-hand side may bind to a different value then the 177 // computation type. 178 LHSVal = svalBuilder.evalCast(Result, LTy, CTy); 179 } 180 181 // In C++, assignment and compound assignment operators return an 182 // lvalue. 183 if (B->isGLValue()) 184 state = state->BindExpr(B, LCtx, location); 185 else 186 state = state->BindExpr(B, LCtx, Result); 187 188 evalStore(Tmp2, B, LHS, *I, state, location, LHSVal); 189 } 190 } 191 192 // FIXME: postvisits eventually go in ::Visit() 193 getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this); 194 } 195 196 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, 197 ExplodedNodeSet &Dst) { 198 199 CanQualType T = getContext().getCanonicalType(BE->getType()); 200 201 const BlockDecl *BD = BE->getBlockDecl(); 202 // Get the value of the block itself. 203 SVal V = svalBuilder.getBlockPointer(BD, T, 204 Pred->getLocationContext(), 205 currBldrCtx->blockCount()); 206 207 ProgramStateRef State = Pred->getState(); 208 209 // If we created a new MemRegion for the block, we should explicitly bind 210 // the captured variables. 211 if (const BlockDataRegion *BDR = 212 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { 213 214 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 215 E = BDR->referenced_vars_end(); 216 217 auto CI = BD->capture_begin(); 218 auto CE = BD->capture_end(); 219 for (; I != E; ++I) { 220 const VarRegion *capturedR = I.getCapturedRegion(); 221 const TypedValueRegion *originalR = I.getOriginalRegion(); 222 223 // If the capture had a copy expression, use the result of evaluating 224 // that expression, otherwise use the original value. 225 // We rely on the invariant that the block declaration's capture variables 226 // are a prefix of the BlockDataRegion's referenced vars (which may include 227 // referenced globals, etc.) to enable fast lookup of the capture for a 228 // given referenced var. 229 const Expr *copyExpr = nullptr; 230 if (CI != CE) { 231 assert(CI->getVariable() == capturedR->getDecl()); 232 copyExpr = CI->getCopyExpr(); 233 CI++; 234 } 235 236 if (capturedR != originalR) { 237 SVal originalV; 238 const LocationContext *LCtx = Pred->getLocationContext(); 239 if (copyExpr) { 240 originalV = State->getSVal(copyExpr, LCtx); 241 } else { 242 originalV = State->getSVal(loc::MemRegionVal(originalR)); 243 } 244 State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx); 245 } 246 } 247 } 248 249 ExplodedNodeSet Tmp; 250 StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx); 251 Bldr.generateNode(BE, Pred, 252 State->BindExpr(BE, Pred->getLocationContext(), V), 253 nullptr, ProgramPoint::PostLValueKind); 254 255 // FIXME: Move all post/pre visits to ::Visit(). 256 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this); 257 } 258 259 ProgramStateRef ExprEngine::handleLValueBitCast( 260 ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx, 261 QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr, 262 ExplodedNode* Pred) { 263 if (T->isLValueReferenceType()) { 264 assert(!CastE->getType()->isLValueReferenceType()); 265 ExTy = getContext().getLValueReferenceType(ExTy); 266 } else if (T->isRValueReferenceType()) { 267 assert(!CastE->getType()->isRValueReferenceType()); 268 ExTy = getContext().getRValueReferenceType(ExTy); 269 } 270 // Delegate to SValBuilder to process. 271 SVal OrigV = state->getSVal(Ex, LCtx); 272 SVal V = svalBuilder.evalCast(OrigV, T, ExTy); 273 // Negate the result if we're treating the boolean as a signed i1 274 if (CastE->getCastKind() == CK_BooleanToSignedIntegral && V.isValid()) 275 V = svalBuilder.evalMinus(V.castAs<NonLoc>()); 276 277 state = state->BindExpr(CastE, LCtx, V); 278 if (V.isUnknown() && !OrigV.isUnknown()) { 279 state = escapeValues(state, OrigV, PSK_EscapeOther); 280 } 281 Bldr.generateNode(CastE, Pred, state); 282 283 return state; 284 } 285 286 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, 287 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 288 289 ExplodedNodeSet dstPreStmt; 290 getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this); 291 292 if (CastE->getCastKind() == CK_LValueToRValue || 293 CastE->getCastKind() == CK_LValueToRValueBitCast) { 294 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 295 I!=E; ++I) { 296 ExplodedNode *subExprNode = *I; 297 ProgramStateRef state = subExprNode->getState(); 298 const LocationContext *LCtx = subExprNode->getLocationContext(); 299 evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx)); 300 } 301 return; 302 } 303 304 // All other casts. 305 QualType T = CastE->getType(); 306 QualType ExTy = Ex->getType(); 307 308 if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) 309 T = ExCast->getTypeAsWritten(); 310 311 StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx); 312 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 313 I != E; ++I) { 314 315 Pred = *I; 316 ProgramStateRef state = Pred->getState(); 317 const LocationContext *LCtx = Pred->getLocationContext(); 318 319 switch (CastE->getCastKind()) { 320 case CK_LValueToRValue: 321 case CK_LValueToRValueBitCast: 322 llvm_unreachable("LValueToRValue casts handled earlier."); 323 case CK_ToVoid: 324 continue; 325 // The analyzer doesn't do anything special with these casts, 326 // since it understands retain/release semantics already. 327 case CK_ARCProduceObject: 328 case CK_ARCConsumeObject: 329 case CK_ARCReclaimReturnedObject: 330 case CK_ARCExtendBlockObject: // Fall-through. 331 case CK_CopyAndAutoreleaseBlockObject: 332 // The analyser can ignore atomic casts for now, although some future 333 // checkers may want to make certain that you're not modifying the same 334 // value through atomic and nonatomic pointers. 335 case CK_AtomicToNonAtomic: 336 case CK_NonAtomicToAtomic: 337 // True no-ops. 338 case CK_NoOp: 339 case CK_ConstructorConversion: 340 case CK_UserDefinedConversion: 341 case CK_FunctionToPointerDecay: 342 case CK_BuiltinFnToFnPtr: { 343 // Copy the SVal of Ex to CastE. 344 ProgramStateRef state = Pred->getState(); 345 const LocationContext *LCtx = Pred->getLocationContext(); 346 SVal V = state->getSVal(Ex, LCtx); 347 state = state->BindExpr(CastE, LCtx, V); 348 Bldr.generateNode(CastE, Pred, state); 349 continue; 350 } 351 case CK_MemberPointerToBoolean: 352 case CK_PointerToBoolean: { 353 SVal V = state->getSVal(Ex, LCtx); 354 auto PTMSV = V.getAs<nonloc::PointerToMember>(); 355 if (PTMSV) 356 V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy); 357 if (V.isUndef() || PTMSV) { 358 state = state->BindExpr(CastE, LCtx, V); 359 Bldr.generateNode(CastE, Pred, state); 360 continue; 361 } 362 // Explicitly proceed with default handler for this case cascade. 363 state = 364 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 365 continue; 366 } 367 case CK_Dependent: 368 case CK_ArrayToPointerDecay: 369 case CK_BitCast: 370 case CK_AddressSpaceConversion: 371 case CK_BooleanToSignedIntegral: 372 case CK_IntegralToPointer: 373 case CK_PointerToIntegral: { 374 SVal V = state->getSVal(Ex, LCtx); 375 if (isa<nonloc::PointerToMember>(V)) { 376 state = state->BindExpr(CastE, LCtx, UnknownVal()); 377 Bldr.generateNode(CastE, Pred, state); 378 continue; 379 } 380 // Explicitly proceed with default handler for this case cascade. 381 state = 382 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 383 continue; 384 } 385 case CK_IntegralToBoolean: 386 case CK_IntegralToFloating: 387 case CK_FloatingToIntegral: 388 case CK_FloatingToBoolean: 389 case CK_FloatingCast: 390 case CK_FloatingRealToComplex: 391 case CK_FloatingComplexToReal: 392 case CK_FloatingComplexToBoolean: 393 case CK_FloatingComplexCast: 394 case CK_FloatingComplexToIntegralComplex: 395 case CK_IntegralRealToComplex: 396 case CK_IntegralComplexToReal: 397 case CK_IntegralComplexToBoolean: 398 case CK_IntegralComplexCast: 399 case CK_IntegralComplexToFloatingComplex: 400 case CK_CPointerToObjCPointerCast: 401 case CK_BlockPointerToObjCPointerCast: 402 case CK_AnyPointerToBlockPointerCast: 403 case CK_ObjCObjectLValueCast: 404 case CK_ZeroToOCLOpaqueType: 405 case CK_IntToOCLSampler: 406 case CK_LValueBitCast: 407 case CK_FloatingToFixedPoint: 408 case CK_FixedPointToFloating: 409 case CK_FixedPointCast: 410 case CK_FixedPointToBoolean: 411 case CK_FixedPointToIntegral: 412 case CK_IntegralToFixedPoint: { 413 state = 414 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); 415 continue; 416 } 417 case CK_IntegralCast: { 418 // Delegate to SValBuilder to process. 419 SVal V = state->getSVal(Ex, LCtx); 420 if (AMgr.options.ShouldSupportSymbolicIntegerCasts) 421 V = svalBuilder.evalCast(V, T, ExTy); 422 else 423 V = svalBuilder.evalIntegralCast(state, V, T, ExTy); 424 state = state->BindExpr(CastE, LCtx, V); 425 Bldr.generateNode(CastE, Pred, state); 426 continue; 427 } 428 case CK_DerivedToBase: 429 case CK_UncheckedDerivedToBase: { 430 // For DerivedToBase cast, delegate to the store manager. 431 SVal val = state->getSVal(Ex, LCtx); 432 val = getStoreManager().evalDerivedToBase(val, CastE); 433 state = state->BindExpr(CastE, LCtx, val); 434 Bldr.generateNode(CastE, Pred, state); 435 continue; 436 } 437 // Handle C++ dyn_cast. 438 case CK_Dynamic: { 439 SVal val = state->getSVal(Ex, LCtx); 440 441 // Compute the type of the result. 442 QualType resultType = CastE->getType(); 443 if (CastE->isGLValue()) 444 resultType = getContext().getPointerType(resultType); 445 446 bool Failed = true; 447 448 // Check if the value being cast does not evaluates to 0. 449 if (!val.isZeroConstant()) 450 if (std::optional<SVal> V = 451 StateMgr.getStoreManager().evalBaseToDerived(val, T)) { 452 val = *V; 453 Failed = false; 454 } 455 456 if (Failed) { 457 if (T->isReferenceType()) { 458 // A bad_cast exception is thrown if input value is a reference. 459 // Currently, we model this, by generating a sink. 460 Bldr.generateSink(CastE, Pred, state); 461 continue; 462 } else { 463 // If the cast fails on a pointer, bind to 0. 464 state = state->BindExpr(CastE, LCtx, 465 svalBuilder.makeNullWithType(resultType)); 466 } 467 } else { 468 // If we don't know if the cast succeeded, conjure a new symbol. 469 if (val.isUnknown()) { 470 DefinedOrUnknownSVal NewSym = 471 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 472 currBldrCtx->blockCount()); 473 state = state->BindExpr(CastE, LCtx, NewSym); 474 } else 475 // Else, bind to the derived region value. 476 state = state->BindExpr(CastE, LCtx, val); 477 } 478 Bldr.generateNode(CastE, Pred, state); 479 continue; 480 } 481 case CK_BaseToDerived: { 482 SVal val = state->getSVal(Ex, LCtx); 483 QualType resultType = CastE->getType(); 484 if (CastE->isGLValue()) 485 resultType = getContext().getPointerType(resultType); 486 487 if (!val.isConstant()) { 488 std::optional<SVal> V = getStoreManager().evalBaseToDerived(val, T); 489 val = V ? *V : UnknownVal(); 490 } 491 492 // Failed to cast or the result is unknown, fall back to conservative. 493 if (val.isUnknown()) { 494 val = 495 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 496 currBldrCtx->blockCount()); 497 } 498 state = state->BindExpr(CastE, LCtx, val); 499 Bldr.generateNode(CastE, Pred, state); 500 continue; 501 } 502 case CK_NullToPointer: { 503 SVal V = svalBuilder.makeNullWithType(CastE->getType()); 504 state = state->BindExpr(CastE, LCtx, V); 505 Bldr.generateNode(CastE, Pred, state); 506 continue; 507 } 508 case CK_NullToMemberPointer: { 509 SVal V = svalBuilder.getMemberPointer(nullptr); 510 state = state->BindExpr(CastE, LCtx, V); 511 Bldr.generateNode(CastE, Pred, state); 512 continue; 513 } 514 case CK_DerivedToBaseMemberPointer: 515 case CK_BaseToDerivedMemberPointer: 516 case CK_ReinterpretMemberPointer: { 517 SVal V = state->getSVal(Ex, LCtx); 518 if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) { 519 SVal CastedPTMSV = 520 svalBuilder.makePointerToMember(getBasicVals().accumCXXBase( 521 CastE->path(), *PTMSV, CastE->getCastKind())); 522 state = state->BindExpr(CastE, LCtx, CastedPTMSV); 523 Bldr.generateNode(CastE, Pred, state); 524 continue; 525 } 526 // Explicitly proceed with default handler for this case cascade. 527 } 528 [[fallthrough]]; 529 // Various C++ casts that are not handled yet. 530 case CK_ToUnion: 531 case CK_MatrixCast: 532 case CK_VectorSplat: { 533 QualType resultType = CastE->getType(); 534 if (CastE->isGLValue()) 535 resultType = getContext().getPointerType(resultType); 536 SVal result = svalBuilder.conjureSymbolVal( 537 /*symbolTag=*/nullptr, CastE, LCtx, resultType, 538 currBldrCtx->blockCount()); 539 state = state->BindExpr(CastE, LCtx, result); 540 Bldr.generateNode(CastE, Pred, state); 541 continue; 542 } 543 } 544 } 545 } 546 547 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL, 548 ExplodedNode *Pred, 549 ExplodedNodeSet &Dst) { 550 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 551 552 ProgramStateRef State = Pred->getState(); 553 const LocationContext *LCtx = Pred->getLocationContext(); 554 555 const Expr *Init = CL->getInitializer(); 556 SVal V = State->getSVal(CL->getInitializer(), LCtx); 557 558 if (isa<CXXConstructExpr, CXXStdInitializerListExpr>(Init)) { 559 // No work needed. Just pass the value up to this expression. 560 } else { 561 assert(isa<InitListExpr>(Init)); 562 Loc CLLoc = State->getLValue(CL, LCtx); 563 State = State->bindLoc(CLLoc, V, LCtx); 564 565 if (CL->isGLValue()) 566 V = CLLoc; 567 } 568 569 B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V)); 570 } 571 572 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, 573 ExplodedNodeSet &Dst) { 574 if (isa<TypedefNameDecl>(*DS->decl_begin())) { 575 // C99 6.7.7 "Any array size expressions associated with variable length 576 // array declarators are evaluated each time the declaration of the typedef 577 // name is reached in the order of execution." 578 // The checkers should know about typedef to be able to handle VLA size 579 // expressions. 580 ExplodedNodeSet DstPre; 581 getCheckerManager().runCheckersForPreStmt(DstPre, Pred, DS, *this); 582 getCheckerManager().runCheckersForPostStmt(Dst, DstPre, DS, *this); 583 return; 584 } 585 586 // Assumption: The CFG has one DeclStmt per Decl. 587 const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin()); 588 589 if (!VD) { 590 //TODO:AZ: remove explicit insertion after refactoring is done. 591 Dst.insert(Pred); 592 return; 593 } 594 595 // FIXME: all pre/post visits should eventually be handled by ::Visit(). 596 ExplodedNodeSet dstPreVisit; 597 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this); 598 599 ExplodedNodeSet dstEvaluated; 600 StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx); 601 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end(); 602 I!=E; ++I) { 603 ExplodedNode *N = *I; 604 ProgramStateRef state = N->getState(); 605 const LocationContext *LC = N->getLocationContext(); 606 607 // Decls without InitExpr are not initialized explicitly. 608 if (const Expr *InitEx = VD->getInit()) { 609 610 // Note in the state that the initialization has occurred. 611 ExplodedNode *UpdatedN = N; 612 SVal InitVal = state->getSVal(InitEx, LC); 613 614 assert(DS->isSingleDecl()); 615 if (getObjectUnderConstruction(state, DS, LC)) { 616 state = finishObjectConstruction(state, DS, LC); 617 // We constructed the object directly in the variable. 618 // No need to bind anything. 619 B.generateNode(DS, UpdatedN, state); 620 } else { 621 // Recover some path-sensitivity if a scalar value evaluated to 622 // UnknownVal. 623 if (InitVal.isUnknown()) { 624 QualType Ty = InitEx->getType(); 625 if (InitEx->isGLValue()) { 626 Ty = getContext().getPointerType(Ty); 627 } 628 629 InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty, 630 currBldrCtx->blockCount()); 631 } 632 633 634 B.takeNodes(UpdatedN); 635 ExplodedNodeSet Dst2; 636 evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true); 637 B.addNodes(Dst2); 638 } 639 } 640 else { 641 B.generateNode(DS, N, state); 642 } 643 } 644 645 getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this); 646 } 647 648 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred, 649 ExplodedNodeSet &Dst) { 650 // This method acts upon CFG elements for logical operators && and || 651 // and attaches the value (true or false) to them as expressions. 652 // It doesn't produce any state splits. 653 // If we made it that far, we're past the point when we modeled the short 654 // circuit. It means that we should have precise knowledge about whether 655 // we've short-circuited. If we did, we already know the value we need to 656 // bind. If we didn't, the value of the RHS (casted to the boolean type) 657 // is the answer. 658 // Currently this method tries to figure out whether we've short-circuited 659 // by looking at the ExplodedGraph. This method is imperfect because there 660 // could inevitably have been merges that would have resulted in multiple 661 // potential path traversal histories. We bail out when we fail. 662 // Due to this ambiguity, a more reliable solution would have been to 663 // track the short circuit operation history path-sensitively until 664 // we evaluate the respective logical operator. 665 assert(B->getOpcode() == BO_LAnd || 666 B->getOpcode() == BO_LOr); 667 668 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); 669 ProgramStateRef state = Pred->getState(); 670 671 if (B->getType()->isVectorType()) { 672 // FIXME: We do not model vector arithmetic yet. When adding support for 673 // that, note that the CFG-based reasoning below does not apply, because 674 // logical operators on vectors are not short-circuit. Currently they are 675 // modeled as short-circuit in Clang CFG but this is incorrect. 676 // Do not set the value for the expression. It'd be UnknownVal by default. 677 Bldr.generateNode(B, Pred, state); 678 return; 679 } 680 681 ExplodedNode *N = Pred; 682 while (!N->getLocation().getAs<BlockEntrance>()) { 683 ProgramPoint P = N->getLocation(); 684 assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>()); 685 (void) P; 686 if (N->pred_size() != 1) { 687 // We failed to track back where we came from. 688 Bldr.generateNode(B, Pred, state); 689 return; 690 } 691 N = *N->pred_begin(); 692 } 693 694 if (N->pred_size() != 1) { 695 // We failed to track back where we came from. 696 Bldr.generateNode(B, Pred, state); 697 return; 698 } 699 700 N = *N->pred_begin(); 701 BlockEdge BE = N->getLocation().castAs<BlockEdge>(); 702 SVal X; 703 704 // Determine the value of the expression by introspecting how we 705 // got this location in the CFG. This requires looking at the previous 706 // block we were in and what kind of control-flow transfer was involved. 707 const CFGBlock *SrcBlock = BE.getSrc(); 708 // The only terminator (if there is one) that makes sense is a logical op. 709 CFGTerminator T = SrcBlock->getTerminator(); 710 if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) { 711 (void) Term; 712 assert(Term->isLogicalOp()); 713 assert(SrcBlock->succ_size() == 2); 714 // Did we take the true or false branch? 715 unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0; 716 X = svalBuilder.makeIntVal(constant, B->getType()); 717 } 718 else { 719 // If there is no terminator, by construction the last statement 720 // in SrcBlock is the value of the enclosing expression. 721 // However, we still need to constrain that value to be 0 or 1. 722 assert(!SrcBlock->empty()); 723 CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>(); 724 const Expr *RHS = cast<Expr>(Elem.getStmt()); 725 SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext()); 726 727 if (RHSVal.isUndef()) { 728 X = RHSVal; 729 } else { 730 // We evaluate "RHSVal != 0" expression which result in 0 if the value is 731 // known to be false, 1 if the value is known to be true and a new symbol 732 // when the assumption is unknown. 733 nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType())); 734 X = evalBinOp(N->getState(), BO_NE, 735 svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()), 736 Zero, B->getType()); 737 } 738 } 739 Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X)); 740 } 741 742 void ExprEngine::VisitInitListExpr(const InitListExpr *IE, 743 ExplodedNode *Pred, 744 ExplodedNodeSet &Dst) { 745 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 746 747 ProgramStateRef state = Pred->getState(); 748 const LocationContext *LCtx = Pred->getLocationContext(); 749 QualType T = getContext().getCanonicalType(IE->getType()); 750 unsigned NumInitElements = IE->getNumInits(); 751 752 if (!IE->isGLValue() && !IE->isTransparent() && 753 (T->isArrayType() || T->isRecordType() || T->isVectorType() || 754 T->isAnyComplexType())) { 755 llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList(); 756 757 // Handle base case where the initializer has no elements. 758 // e.g: static int* myArray[] = {}; 759 if (NumInitElements == 0) { 760 SVal V = svalBuilder.makeCompoundVal(T, vals); 761 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 762 return; 763 } 764 765 for (const Stmt *S : llvm::reverse(*IE)) { 766 SVal V = state->getSVal(cast<Expr>(S), LCtx); 767 vals = getBasicVals().prependSVal(V, vals); 768 } 769 770 B.generateNode(IE, Pred, 771 state->BindExpr(IE, LCtx, 772 svalBuilder.makeCompoundVal(T, vals))); 773 return; 774 } 775 776 // Handle scalars: int{5} and int{} and GLvalues. 777 // Note, if the InitListExpr is a GLvalue, it means that there is an address 778 // representing it, so it must have a single init element. 779 assert(NumInitElements <= 1); 780 781 SVal V; 782 if (NumInitElements == 0) 783 V = getSValBuilder().makeZeroVal(T); 784 else 785 V = state->getSVal(IE->getInit(0), LCtx); 786 787 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 788 } 789 790 void ExprEngine::VisitGuardedExpr(const Expr *Ex, 791 const Expr *L, 792 const Expr *R, 793 ExplodedNode *Pred, 794 ExplodedNodeSet &Dst) { 795 assert(L && R); 796 797 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 798 ProgramStateRef state = Pred->getState(); 799 const LocationContext *LCtx = Pred->getLocationContext(); 800 const CFGBlock *SrcBlock = nullptr; 801 802 // Find the predecessor block. 803 ProgramStateRef SrcState = state; 804 for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) { 805 ProgramPoint PP = N->getLocation(); 806 if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) { 807 // If the state N has multiple predecessors P, it means that successors 808 // of P are all equivalent. 809 // In turn, that means that all nodes at P are equivalent in terms 810 // of observable behavior at N, and we can follow any of them. 811 // FIXME: a more robust solution which does not walk up the tree. 812 continue; 813 } 814 SrcBlock = PP.castAs<BlockEdge>().getSrc(); 815 SrcState = N->getState(); 816 break; 817 } 818 819 assert(SrcBlock && "missing function entry"); 820 821 // Find the last expression in the predecessor block. That is the 822 // expression that is used for the value of the ternary expression. 823 bool hasValue = false; 824 SVal V; 825 826 for (CFGElement CE : llvm::reverse(*SrcBlock)) { 827 if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { 828 const Expr *ValEx = cast<Expr>(CS->getStmt()); 829 ValEx = ValEx->IgnoreParens(); 830 831 // For GNU extension '?:' operator, the left hand side will be an 832 // OpaqueValueExpr, so get the underlying expression. 833 if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L)) 834 L = OpaqueEx->getSourceExpr(); 835 836 // If the last expression in the predecessor block matches true or false 837 // subexpression, get its the value. 838 if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) { 839 hasValue = true; 840 V = SrcState->getSVal(ValEx, LCtx); 841 } 842 break; 843 } 844 } 845 846 if (!hasValue) 847 V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 848 currBldrCtx->blockCount()); 849 850 // Generate a new node with the binding from the appropriate path. 851 B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true)); 852 } 853 854 void ExprEngine:: 855 VisitOffsetOfExpr(const OffsetOfExpr *OOE, 856 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 857 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 858 Expr::EvalResult Result; 859 if (OOE->EvaluateAsInt(Result, getContext())) { 860 APSInt IV = Result.Val.getInt(); 861 assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); 862 assert(OOE->getType()->castAs<BuiltinType>()->isInteger()); 863 assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); 864 SVal X = svalBuilder.makeIntVal(IV); 865 B.generateNode(OOE, Pred, 866 Pred->getState()->BindExpr(OOE, Pred->getLocationContext(), 867 X)); 868 } 869 // FIXME: Handle the case where __builtin_offsetof is not a constant. 870 } 871 872 873 void ExprEngine:: 874 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex, 875 ExplodedNode *Pred, 876 ExplodedNodeSet &Dst) { 877 // FIXME: Prechecks eventually go in ::Visit(). 878 ExplodedNodeSet CheckedSet; 879 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this); 880 881 ExplodedNodeSet EvalSet; 882 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 883 884 QualType T = Ex->getTypeOfArgument(); 885 886 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 887 I != E; ++I) { 888 if (Ex->getKind() == UETT_SizeOf) { 889 if (!T->isIncompleteType() && !T->isConstantSizeType()) { 890 assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); 891 892 // FIXME: Add support for VLA type arguments and VLA expressions. 893 // When that happens, we should probably refactor VLASizeChecker's code. 894 continue; 895 } else if (T->getAs<ObjCObjectType>()) { 896 // Some code tries to take the sizeof an ObjCObjectType, relying that 897 // the compiler has laid out its representation. Just report Unknown 898 // for these. 899 continue; 900 } 901 } 902 903 APSInt Value = Ex->EvaluateKnownConstInt(getContext()); 904 CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue()); 905 906 ProgramStateRef state = (*I)->getState(); 907 state = state->BindExpr(Ex, (*I)->getLocationContext(), 908 svalBuilder.makeIntVal(amt.getQuantity(), 909 Ex->getType())); 910 Bldr.generateNode(Ex, *I, state); 911 } 912 913 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this); 914 } 915 916 void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I, 917 const UnaryOperator *U, 918 StmtNodeBuilder &Bldr) { 919 // FIXME: We can probably just have some magic in Environment::getSVal() 920 // that propagates values, instead of creating a new node here. 921 // 922 // Unary "+" is a no-op, similar to a parentheses. We still have places 923 // where it may be a block-level expression, so we need to 924 // generate an extra node that just propagates the value of the 925 // subexpression. 926 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 927 ProgramStateRef state = (*I)->getState(); 928 const LocationContext *LCtx = (*I)->getLocationContext(); 929 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 930 state->getSVal(Ex, LCtx))); 931 } 932 933 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred, 934 ExplodedNodeSet &Dst) { 935 // FIXME: Prechecks eventually go in ::Visit(). 936 ExplodedNodeSet CheckedSet; 937 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this); 938 939 ExplodedNodeSet EvalSet; 940 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 941 942 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 943 I != E; ++I) { 944 switch (U->getOpcode()) { 945 default: { 946 Bldr.takeNodes(*I); 947 ExplodedNodeSet Tmp; 948 VisitIncrementDecrementOperator(U, *I, Tmp); 949 Bldr.addNodes(Tmp); 950 break; 951 } 952 case UO_Real: { 953 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 954 955 // FIXME: We don't have complex SValues yet. 956 if (Ex->getType()->isAnyComplexType()) { 957 // Just report "Unknown." 958 break; 959 } 960 961 // For all other types, UO_Real is an identity operation. 962 assert (U->getType() == Ex->getType()); 963 ProgramStateRef state = (*I)->getState(); 964 const LocationContext *LCtx = (*I)->getLocationContext(); 965 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 966 state->getSVal(Ex, LCtx))); 967 break; 968 } 969 970 case UO_Imag: { 971 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 972 // FIXME: We don't have complex SValues yet. 973 if (Ex->getType()->isAnyComplexType()) { 974 // Just report "Unknown." 975 break; 976 } 977 // For all other types, UO_Imag returns 0. 978 ProgramStateRef state = (*I)->getState(); 979 const LocationContext *LCtx = (*I)->getLocationContext(); 980 SVal X = svalBuilder.makeZeroVal(Ex->getType()); 981 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X)); 982 break; 983 } 984 985 case UO_AddrOf: { 986 // Process pointer-to-member address operation. 987 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 988 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) { 989 const ValueDecl *VD = DRE->getDecl(); 990 991 if (isa<CXXMethodDecl, FieldDecl, IndirectFieldDecl>(VD)) { 992 ProgramStateRef State = (*I)->getState(); 993 const LocationContext *LCtx = (*I)->getLocationContext(); 994 SVal SV = svalBuilder.getMemberPointer(cast<NamedDecl>(VD)); 995 Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV)); 996 break; 997 } 998 } 999 // Explicitly proceed with default handler for this case cascade. 1000 handleUOExtension(I, U, Bldr); 1001 break; 1002 } 1003 case UO_Plus: 1004 assert(!U->isGLValue()); 1005 [[fallthrough]]; 1006 case UO_Deref: 1007 case UO_Extension: { 1008 handleUOExtension(I, U, Bldr); 1009 break; 1010 } 1011 1012 case UO_LNot: 1013 case UO_Minus: 1014 case UO_Not: { 1015 assert (!U->isGLValue()); 1016 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 1017 ProgramStateRef state = (*I)->getState(); 1018 const LocationContext *LCtx = (*I)->getLocationContext(); 1019 1020 // Get the value of the subexpression. 1021 SVal V = state->getSVal(Ex, LCtx); 1022 1023 if (V.isUnknownOrUndef()) { 1024 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V)); 1025 break; 1026 } 1027 1028 switch (U->getOpcode()) { 1029 default: 1030 llvm_unreachable("Invalid Opcode."); 1031 case UO_Not: 1032 // FIXME: Do we need to handle promotions? 1033 state = state->BindExpr( 1034 U, LCtx, svalBuilder.evalComplement(V.castAs<NonLoc>())); 1035 break; 1036 case UO_Minus: 1037 // FIXME: Do we need to handle promotions? 1038 state = state->BindExpr(U, LCtx, 1039 svalBuilder.evalMinus(V.castAs<NonLoc>())); 1040 break; 1041 case UO_LNot: 1042 // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." 1043 // 1044 // Note: technically we do "E == 0", but this is the same in the 1045 // transfer functions as "0 == E". 1046 SVal Result; 1047 if (std::optional<Loc> LV = V.getAs<Loc>()) { 1048 Loc X = svalBuilder.makeNullWithType(Ex->getType()); 1049 Result = evalBinOp(state, BO_EQ, *LV, X, U->getType()); 1050 } else if (Ex->getType()->isFloatingType()) { 1051 // FIXME: handle floating point types. 1052 Result = UnknownVal(); 1053 } else { 1054 nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); 1055 Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X, U->getType()); 1056 } 1057 1058 state = state->BindExpr(U, LCtx, Result); 1059 break; 1060 } 1061 Bldr.generateNode(U, *I, state); 1062 break; 1063 } 1064 } 1065 } 1066 1067 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this); 1068 } 1069 1070 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U, 1071 ExplodedNode *Pred, 1072 ExplodedNodeSet &Dst) { 1073 // Handle ++ and -- (both pre- and post-increment). 1074 assert (U->isIncrementDecrementOp()); 1075 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 1076 1077 const LocationContext *LCtx = Pred->getLocationContext(); 1078 ProgramStateRef state = Pred->getState(); 1079 SVal loc = state->getSVal(Ex, LCtx); 1080 1081 // Perform a load. 1082 ExplodedNodeSet Tmp; 1083 evalLoad(Tmp, U, Ex, Pred, state, loc); 1084 1085 ExplodedNodeSet Dst2; 1086 StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx); 1087 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) { 1088 1089 state = (*I)->getState(); 1090 assert(LCtx == (*I)->getLocationContext()); 1091 SVal V2_untested = state->getSVal(Ex, LCtx); 1092 1093 // Propagate unknown and undefined values. 1094 if (V2_untested.isUnknownOrUndef()) { 1095 state = state->BindExpr(U, LCtx, V2_untested); 1096 1097 // Perform the store, so that the uninitialized value detection happens. 1098 Bldr.takeNodes(*I); 1099 ExplodedNodeSet Dst3; 1100 evalStore(Dst3, U, Ex, *I, state, loc, V2_untested); 1101 Bldr.addNodes(Dst3); 1102 1103 continue; 1104 } 1105 DefinedSVal V2 = V2_untested.castAs<DefinedSVal>(); 1106 1107 // Handle all other values. 1108 BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub; 1109 1110 // If the UnaryOperator has non-location type, use its type to create the 1111 // constant value. If the UnaryOperator has location type, create the 1112 // constant with int type and pointer width. 1113 SVal RHS; 1114 SVal Result; 1115 1116 if (U->getType()->isAnyPointerType()) 1117 RHS = svalBuilder.makeArrayIndex(1); 1118 else if (U->getType()->isIntegralOrEnumerationType()) 1119 RHS = svalBuilder.makeIntVal(1, U->getType()); 1120 else 1121 RHS = UnknownVal(); 1122 1123 // The use of an operand of type bool with the ++ operators is deprecated 1124 // but valid until C++17. And if the operand of the ++ operator is of type 1125 // bool, it is set to true until C++17. Note that for '_Bool', it is also 1126 // set to true when it encounters ++ operator. 1127 if (U->getType()->isBooleanType() && U->isIncrementOp()) 1128 Result = svalBuilder.makeTruthVal(true, U->getType()); 1129 else 1130 Result = evalBinOp(state, Op, V2, RHS, U->getType()); 1131 1132 // Conjure a new symbol if necessary to recover precision. 1133 if (Result.isUnknown()){ 1134 DefinedOrUnknownSVal SymVal = 1135 svalBuilder.conjureSymbolVal(nullptr, U, LCtx, 1136 currBldrCtx->blockCount()); 1137 Result = SymVal; 1138 1139 // If the value is a location, ++/-- should always preserve 1140 // non-nullness. Check if the original value was non-null, and if so 1141 // propagate that constraint. 1142 if (Loc::isLocType(U->getType())) { 1143 DefinedOrUnknownSVal Constraint = 1144 svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); 1145 1146 if (!state->assume(Constraint, true)) { 1147 // It isn't feasible for the original value to be null. 1148 // Propagate this constraint. 1149 Constraint = svalBuilder.evalEQ(state, SymVal, 1150 svalBuilder.makeZeroVal(U->getType())); 1151 1152 state = state->assume(Constraint, false); 1153 assert(state); 1154 } 1155 } 1156 } 1157 1158 // Since the lvalue-to-rvalue conversion is explicit in the AST, 1159 // we bind an l-value if the operator is prefix and an lvalue (in C++). 1160 if (U->isGLValue()) 1161 state = state->BindExpr(U, LCtx, loc); 1162 else 1163 state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result); 1164 1165 // Perform the store. 1166 Bldr.takeNodes(*I); 1167 ExplodedNodeSet Dst3; 1168 evalStore(Dst3, U, Ex, *I, state, loc, Result); 1169 Bldr.addNodes(Dst3); 1170 } 1171 Dst.insert(Dst2); 1172 } 1173