1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--= 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements ProgramState and ProgramStateManager. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 14 #include "clang/Analysis/CFG.h" 15 #include "clang/Basic/JsonSupport.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 21 #include "llvm/Support/raw_ostream.h" 22 23 using namespace clang; 24 using namespace ento; 25 26 namespace clang { namespace ento { 27 /// Increments the number of times this state is referenced. 28 29 void ProgramStateRetain(const ProgramState *state) { 30 ++const_cast<ProgramState*>(state)->refCount; 31 } 32 33 /// Decrement the number of times this state is referenced. 34 void ProgramStateRelease(const ProgramState *state) { 35 assert(state->refCount > 0); 36 ProgramState *s = const_cast<ProgramState*>(state); 37 if (--s->refCount == 0) { 38 ProgramStateManager &Mgr = s->getStateManager(); 39 Mgr.StateSet.RemoveNode(s); 40 s->~ProgramState(); 41 Mgr.freeStates.push_back(s); 42 } 43 } 44 }} 45 46 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env, 47 StoreRef st, GenericDataMap gdm) 48 : stateMgr(mgr), 49 Env(env), 50 store(st.getStore()), 51 GDM(gdm), 52 refCount(0) { 53 stateMgr->getStoreManager().incrementReferenceCount(store); 54 } 55 56 ProgramState::ProgramState(const ProgramState &RHS) 57 : llvm::FoldingSetNode(), 58 stateMgr(RHS.stateMgr), 59 Env(RHS.Env), 60 store(RHS.store), 61 GDM(RHS.GDM), 62 refCount(0) { 63 stateMgr->getStoreManager().incrementReferenceCount(store); 64 } 65 66 ProgramState::~ProgramState() { 67 if (store) 68 stateMgr->getStoreManager().decrementReferenceCount(store); 69 } 70 71 int64_t ProgramState::getID() const { 72 return getStateManager().Alloc.identifyKnownAlignedObject<ProgramState>(this); 73 } 74 75 ProgramStateManager::ProgramStateManager(ASTContext &Ctx, 76 StoreManagerCreator CreateSMgr, 77 ConstraintManagerCreator CreateCMgr, 78 llvm::BumpPtrAllocator &alloc, 79 ExprEngine *ExprEng) 80 : Eng(ExprEng), EnvMgr(alloc), GDMFactory(alloc), 81 svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)), 82 CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) { 83 StoreMgr = (*CreateSMgr)(*this); 84 ConstraintMgr = (*CreateCMgr)(*this, ExprEng); 85 } 86 87 88 ProgramStateManager::~ProgramStateManager() { 89 for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end(); 90 I!=E; ++I) 91 I->second.second(I->second.first); 92 } 93 94 ProgramStateRef ProgramStateManager::removeDeadBindingsFromEnvironmentAndStore( 95 ProgramStateRef state, const StackFrameContext *LCtx, 96 SymbolReaper &SymReaper) { 97 98 // This code essentially performs a "mark-and-sweep" of the VariableBindings. 99 // The roots are any Block-level exprs and Decls that our liveness algorithm 100 // tells us are live. We then see what Decls they may reference, and keep 101 // those around. This code more than likely can be made faster, and the 102 // frequency of which this method is called should be experimented with 103 // for optimum performance. 104 ProgramState NewState = *state; 105 106 NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state); 107 108 // Clean up the store. 109 StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx, 110 SymReaper); 111 NewState.setStore(newStore); 112 SymReaper.setReapedStore(newStore); 113 114 return getPersistentState(NewState); 115 } 116 117 ProgramStateRef ProgramState::bindLoc(Loc LV, 118 SVal V, 119 const LocationContext *LCtx, 120 bool notifyChanges) const { 121 ProgramStateManager &Mgr = getStateManager(); 122 ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(), 123 LV, V)); 124 const MemRegion *MR = LV.getAsRegion(); 125 if (MR && notifyChanges) 126 return Mgr.getOwningEngine().processRegionChange(newState, MR, LCtx); 127 128 return newState; 129 } 130 131 ProgramStateRef 132 ProgramState::bindDefaultInitial(SVal loc, SVal V, 133 const LocationContext *LCtx) const { 134 ProgramStateManager &Mgr = getStateManager(); 135 const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion(); 136 const StoreRef &newStore = Mgr.StoreMgr->BindDefaultInitial(getStore(), R, V); 137 ProgramStateRef new_state = makeWithStore(newStore); 138 return Mgr.getOwningEngine().processRegionChange(new_state, R, LCtx); 139 } 140 141 ProgramStateRef 142 ProgramState::bindDefaultZero(SVal loc, const LocationContext *LCtx) const { 143 ProgramStateManager &Mgr = getStateManager(); 144 const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion(); 145 const StoreRef &newStore = Mgr.StoreMgr->BindDefaultZero(getStore(), R); 146 ProgramStateRef new_state = makeWithStore(newStore); 147 return Mgr.getOwningEngine().processRegionChange(new_state, R, LCtx); 148 } 149 150 typedef ArrayRef<const MemRegion *> RegionList; 151 typedef ArrayRef<SVal> ValueList; 152 153 ProgramStateRef 154 ProgramState::invalidateRegions(RegionList Regions, 155 const Expr *E, unsigned Count, 156 const LocationContext *LCtx, 157 bool CausedByPointerEscape, 158 InvalidatedSymbols *IS, 159 const CallEvent *Call, 160 RegionAndSymbolInvalidationTraits *ITraits) const { 161 SmallVector<SVal, 8> Values; 162 for (RegionList::const_iterator I = Regions.begin(), 163 End = Regions.end(); I != End; ++I) 164 Values.push_back(loc::MemRegionVal(*I)); 165 166 return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape, 167 IS, ITraits, Call); 168 } 169 170 ProgramStateRef 171 ProgramState::invalidateRegions(ValueList Values, 172 const Expr *E, unsigned Count, 173 const LocationContext *LCtx, 174 bool CausedByPointerEscape, 175 InvalidatedSymbols *IS, 176 const CallEvent *Call, 177 RegionAndSymbolInvalidationTraits *ITraits) const { 178 179 return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape, 180 IS, ITraits, Call); 181 } 182 183 ProgramStateRef 184 ProgramState::invalidateRegionsImpl(ValueList Values, 185 const Expr *E, unsigned Count, 186 const LocationContext *LCtx, 187 bool CausedByPointerEscape, 188 InvalidatedSymbols *IS, 189 RegionAndSymbolInvalidationTraits *ITraits, 190 const CallEvent *Call) const { 191 ProgramStateManager &Mgr = getStateManager(); 192 ExprEngine &Eng = Mgr.getOwningEngine(); 193 194 InvalidatedSymbols InvalidatedSyms; 195 if (!IS) 196 IS = &InvalidatedSyms; 197 198 RegionAndSymbolInvalidationTraits ITraitsLocal; 199 if (!ITraits) 200 ITraits = &ITraitsLocal; 201 202 StoreManager::InvalidatedRegions TopLevelInvalidated; 203 StoreManager::InvalidatedRegions Invalidated; 204 const StoreRef &newStore 205 = Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call, 206 *IS, *ITraits, &TopLevelInvalidated, 207 &Invalidated); 208 209 ProgramStateRef newState = makeWithStore(newStore); 210 211 if (CausedByPointerEscape) { 212 newState = Eng.notifyCheckersOfPointerEscape(newState, IS, 213 TopLevelInvalidated, 214 Call, 215 *ITraits); 216 } 217 218 return Eng.processRegionChanges(newState, IS, TopLevelInvalidated, 219 Invalidated, LCtx, Call); 220 } 221 222 ProgramStateRef ProgramState::killBinding(Loc LV) const { 223 assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead."); 224 225 Store OldStore = getStore(); 226 const StoreRef &newStore = 227 getStateManager().StoreMgr->killBinding(OldStore, LV); 228 229 if (newStore.getStore() == OldStore) 230 return this; 231 232 return makeWithStore(newStore); 233 } 234 235 ProgramStateRef 236 ProgramState::enterStackFrame(const CallEvent &Call, 237 const StackFrameContext *CalleeCtx) const { 238 const StoreRef &NewStore = 239 getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx); 240 return makeWithStore(NewStore); 241 } 242 243 SVal ProgramState::getSelfSVal(const LocationContext *LCtx) const { 244 const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl(); 245 if (!SelfDecl) 246 return SVal(); 247 return getSVal(getRegion(SelfDecl, LCtx)); 248 } 249 250 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const { 251 // We only want to do fetches from regions that we can actually bind 252 // values. For example, SymbolicRegions of type 'id<...>' cannot 253 // have direct bindings (but their can be bindings on their subregions). 254 if (!R->isBoundable()) 255 return UnknownVal(); 256 257 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) { 258 QualType T = TR->getValueType(); 259 if (Loc::isLocType(T) || T->isIntegralOrEnumerationType()) 260 return getSVal(R); 261 } 262 263 return UnknownVal(); 264 } 265 266 SVal ProgramState::getSVal(Loc location, QualType T) const { 267 SVal V = getRawSVal(location, T); 268 269 // If 'V' is a symbolic value that is *perfectly* constrained to 270 // be a constant value, use that value instead to lessen the burden 271 // on later analysis stages (so we have less symbolic values to reason 272 // about). 273 // We only go into this branch if we can convert the APSInt value we have 274 // to the type of T, which is not always the case (e.g. for void). 275 if (!T.isNull() && (T->isIntegralOrEnumerationType() || Loc::isLocType(T))) { 276 if (SymbolRef sym = V.getAsSymbol()) { 277 if (const llvm::APSInt *Int = getStateManager() 278 .getConstraintManager() 279 .getSymVal(this, sym)) { 280 // FIXME: Because we don't correctly model (yet) sign-extension 281 // and truncation of symbolic values, we need to convert 282 // the integer value to the correct signedness and bitwidth. 283 // 284 // This shows up in the following: 285 // 286 // char foo(); 287 // unsigned x = foo(); 288 // if (x == 54) 289 // ... 290 // 291 // The symbolic value stored to 'x' is actually the conjured 292 // symbol for the call to foo(); the type of that symbol is 'char', 293 // not unsigned. 294 const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int); 295 296 if (V.getAs<Loc>()) 297 return loc::ConcreteInt(NewV); 298 else 299 return nonloc::ConcreteInt(NewV); 300 } 301 } 302 } 303 304 return V; 305 } 306 307 ProgramStateRef ProgramState::BindExpr(const Stmt *S, 308 const LocationContext *LCtx, 309 SVal V, bool Invalidate) const{ 310 Environment NewEnv = 311 getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V, 312 Invalidate); 313 if (NewEnv == Env) 314 return this; 315 316 ProgramState NewSt = *this; 317 NewSt.Env = NewEnv; 318 return getStateManager().getPersistentState(NewSt); 319 } 320 321 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx, 322 DefinedOrUnknownSVal UpperBound, 323 bool Assumption, 324 QualType indexTy) const { 325 if (Idx.isUnknown() || UpperBound.isUnknown()) 326 return this; 327 328 // Build an expression for 0 <= Idx < UpperBound. 329 // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed. 330 // FIXME: This should probably be part of SValBuilder. 331 ProgramStateManager &SM = getStateManager(); 332 SValBuilder &svalBuilder = SM.getSValBuilder(); 333 ASTContext &Ctx = svalBuilder.getContext(); 334 335 // Get the offset: the minimum value of the array index type. 336 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 337 if (indexTy.isNull()) 338 indexTy = svalBuilder.getArrayIndexType(); 339 nonloc::ConcreteInt Min(BVF.getMinValue(indexTy)); 340 341 // Adjust the index. 342 SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add, 343 Idx.castAs<NonLoc>(), Min, indexTy); 344 if (newIdx.isUnknownOrUndef()) 345 return this; 346 347 // Adjust the upper bound. 348 SVal newBound = 349 svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(), 350 Min, indexTy); 351 352 if (newBound.isUnknownOrUndef()) 353 return this; 354 355 // Build the actual comparison. 356 SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(), 357 newBound.castAs<NonLoc>(), Ctx.IntTy); 358 if (inBound.isUnknownOrUndef()) 359 return this; 360 361 // Finally, let the constraint manager take care of it. 362 ConstraintManager &CM = SM.getConstraintManager(); 363 return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption); 364 } 365 366 ConditionTruthVal ProgramState::isNonNull(SVal V) const { 367 ConditionTruthVal IsNull = isNull(V); 368 if (IsNull.isUnderconstrained()) 369 return IsNull; 370 return ConditionTruthVal(!IsNull.getValue()); 371 } 372 373 ConditionTruthVal ProgramState::areEqual(SVal Lhs, SVal Rhs) const { 374 return stateMgr->getSValBuilder().areEqual(this, Lhs, Rhs); 375 } 376 377 ConditionTruthVal ProgramState::isNull(SVal V) const { 378 if (V.isZeroConstant()) 379 return true; 380 381 if (V.isConstant()) 382 return false; 383 384 SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true); 385 if (!Sym) 386 return ConditionTruthVal(); 387 388 return getStateManager().ConstraintMgr->isNull(this, Sym); 389 } 390 391 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) { 392 ProgramState State(this, 393 EnvMgr.getInitialEnvironment(), 394 StoreMgr->getInitialStore(InitLoc), 395 GDMFactory.getEmptyMap()); 396 397 return getPersistentState(State); 398 } 399 400 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM( 401 ProgramStateRef FromState, 402 ProgramStateRef GDMState) { 403 ProgramState NewState(*FromState); 404 NewState.GDM = GDMState->GDM; 405 return getPersistentState(NewState); 406 } 407 408 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) { 409 410 llvm::FoldingSetNodeID ID; 411 State.Profile(ID); 412 void *InsertPos; 413 414 if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos)) 415 return I; 416 417 ProgramState *newState = nullptr; 418 if (!freeStates.empty()) { 419 newState = freeStates.back(); 420 freeStates.pop_back(); 421 } 422 else { 423 newState = (ProgramState*) Alloc.Allocate<ProgramState>(); 424 } 425 new (newState) ProgramState(State); 426 StateSet.InsertNode(newState, InsertPos); 427 return newState; 428 } 429 430 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const { 431 ProgramState NewSt(*this); 432 NewSt.setStore(store); 433 return getStateManager().getPersistentState(NewSt); 434 } 435 436 void ProgramState::setStore(const StoreRef &newStore) { 437 Store newStoreStore = newStore.getStore(); 438 if (newStoreStore) 439 stateMgr->getStoreManager().incrementReferenceCount(newStoreStore); 440 if (store) 441 stateMgr->getStoreManager().decrementReferenceCount(store); 442 store = newStoreStore; 443 } 444 445 //===----------------------------------------------------------------------===// 446 // State pretty-printing. 447 //===----------------------------------------------------------------------===// 448 449 void ProgramState::printJson(raw_ostream &Out, const LocationContext *LCtx, 450 const char *NL, unsigned int Space, 451 bool IsDot) const { 452 Indent(Out, Space, IsDot) << "\"program_state\": {" << NL; 453 ++Space; 454 455 ProgramStateManager &Mgr = getStateManager(); 456 457 // Print the store. 458 Mgr.getStoreManager().printJson(Out, getStore(), NL, Space, IsDot); 459 460 // Print out the environment. 461 Env.printJson(Out, Mgr.getContext(), LCtx, NL, Space, IsDot); 462 463 // Print out the constraints. 464 Mgr.getConstraintManager().printJson(Out, this, NL, Space, IsDot); 465 466 // Print out the tracked dynamic types. 467 printDynamicTypeInfoJson(Out, this, NL, Space, IsDot); 468 469 // Print checker-specific data. 470 Mgr.getOwningEngine().printJson(Out, this, LCtx, NL, Space, IsDot); 471 472 --Space; 473 Indent(Out, Space, IsDot) << '}'; 474 } 475 476 void ProgramState::printDOT(raw_ostream &Out, const LocationContext *LCtx, 477 unsigned int Space) const { 478 printJson(Out, LCtx, /*NL=*/"\\l", Space, /*IsDot=*/true); 479 } 480 481 LLVM_DUMP_METHOD void ProgramState::dump() const { 482 printJson(llvm::errs()); 483 } 484 485 AnalysisManager& ProgramState::getAnalysisManager() const { 486 return stateMgr->getOwningEngine().getAnalysisManager(); 487 } 488 489 //===----------------------------------------------------------------------===// 490 // Generic Data Map. 491 //===----------------------------------------------------------------------===// 492 493 void *const* ProgramState::FindGDM(void *K) const { 494 return GDM.lookup(K); 495 } 496 497 void* 498 ProgramStateManager::FindGDMContext(void *K, 499 void *(*CreateContext)(llvm::BumpPtrAllocator&), 500 void (*DeleteContext)(void*)) { 501 502 std::pair<void*, void (*)(void*)>& p = GDMContexts[K]; 503 if (!p.first) { 504 p.first = CreateContext(Alloc); 505 p.second = DeleteContext; 506 } 507 508 return p.first; 509 } 510 511 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){ 512 ProgramState::GenericDataMap M1 = St->getGDM(); 513 ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data); 514 515 if (M1 == M2) 516 return St; 517 518 ProgramState NewSt = *St; 519 NewSt.GDM = M2; 520 return getPersistentState(NewSt); 521 } 522 523 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) { 524 ProgramState::GenericDataMap OldM = state->getGDM(); 525 ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key); 526 527 if (NewM == OldM) 528 return state; 529 530 ProgramState NewState = *state; 531 NewState.GDM = NewM; 532 return getPersistentState(NewState); 533 } 534 535 bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) { 536 bool wasVisited = !visited.insert(val.getCVData()).second; 537 if (wasVisited) 538 return true; 539 540 StoreManager &StoreMgr = state->getStateManager().getStoreManager(); 541 // FIXME: We don't really want to use getBaseRegion() here because pointer 542 // arithmetic doesn't apply, but scanReachableSymbols only accepts base 543 // regions right now. 544 const MemRegion *R = val.getRegion()->getBaseRegion(); 545 return StoreMgr.scanReachableSymbols(val.getStore(), R, *this); 546 } 547 548 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) { 549 for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I) 550 if (!scan(*I)) 551 return false; 552 553 return true; 554 } 555 556 bool ScanReachableSymbols::scan(const SymExpr *sym) { 557 for (SymExpr::symbol_iterator SI = sym->symbol_begin(), 558 SE = sym->symbol_end(); 559 SI != SE; ++SI) { 560 bool wasVisited = !visited.insert(*SI).second; 561 if (wasVisited) 562 continue; 563 564 if (!visitor.VisitSymbol(*SI)) 565 return false; 566 } 567 568 return true; 569 } 570 571 bool ScanReachableSymbols::scan(SVal val) { 572 if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>()) 573 return scan(X->getRegion()); 574 575 if (Optional<nonloc::LazyCompoundVal> X = 576 val.getAs<nonloc::LazyCompoundVal>()) 577 return scan(*X); 578 579 if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>()) 580 return scan(X->getLoc()); 581 582 if (SymbolRef Sym = val.getAsSymbol()) 583 return scan(Sym); 584 585 if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>()) 586 return scan(*X); 587 588 return true; 589 } 590 591 bool ScanReachableSymbols::scan(const MemRegion *R) { 592 if (isa<MemSpaceRegion>(R)) 593 return true; 594 595 bool wasVisited = !visited.insert(R).second; 596 if (wasVisited) 597 return true; 598 599 if (!visitor.VisitMemRegion(R)) 600 return false; 601 602 // If this is a symbolic region, visit the symbol for the region. 603 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 604 if (!visitor.VisitSymbol(SR->getSymbol())) 605 return false; 606 607 // If this is a subregion, also visit the parent regions. 608 if (const SubRegion *SR = dyn_cast<SubRegion>(R)) { 609 const MemRegion *Super = SR->getSuperRegion(); 610 if (!scan(Super)) 611 return false; 612 613 // When we reach the topmost region, scan all symbols in it. 614 if (isa<MemSpaceRegion>(Super)) { 615 StoreManager &StoreMgr = state->getStateManager().getStoreManager(); 616 if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this)) 617 return false; 618 } 619 } 620 621 // Regions captured by a block are also implicitly reachable. 622 if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) { 623 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 624 E = BDR->referenced_vars_end(); 625 for ( ; I != E; ++I) { 626 if (!scan(I.getCapturedRegion())) 627 return false; 628 } 629 } 630 631 return true; 632 } 633 634 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const { 635 ScanReachableSymbols S(this, visitor); 636 return S.scan(val); 637 } 638 639 bool ProgramState::scanReachableSymbols( 640 llvm::iterator_range<region_iterator> Reachable, 641 SymbolVisitor &visitor) const { 642 ScanReachableSymbols S(this, visitor); 643 for (const MemRegion *R : Reachable) { 644 if (!S.scan(R)) 645 return false; 646 } 647 return true; 648 } 649