13cab2bb3Spatrick //===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
23cab2bb3Spatrick //
33cab2bb3Spatrick // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
43cab2bb3Spatrick // See https://llvm.org/LICENSE.txt for license information.
53cab2bb3Spatrick // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
63cab2bb3Spatrick //
73cab2bb3Spatrick //===----------------------------------------------------------------------===//
83cab2bb3Spatrick //
93cab2bb3Spatrick // Part of the Sanitizer Allocator.
103cab2bb3Spatrick //
113cab2bb3Spatrick //===----------------------------------------------------------------------===//
123cab2bb3Spatrick #ifndef SANITIZER_ALLOCATOR_H
133cab2bb3Spatrick #error This file must be included inside sanitizer_allocator.h
143cab2bb3Spatrick #endif
153cab2bb3Spatrick 
163cab2bb3Spatrick template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;
173cab2bb3Spatrick 
183cab2bb3Spatrick // SizeClassAllocator64 -- allocator for 64-bit address space.
193cab2bb3Spatrick // The template parameter Params is a class containing the actual parameters.
203cab2bb3Spatrick //
213cab2bb3Spatrick // Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
22d89ec533Spatrick // If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically by mmap.
233cab2bb3Spatrick // Otherwise SpaceBeg=kSpaceBeg (fixed address).
243cab2bb3Spatrick // kSpaceSize is a power of two.
253cab2bb3Spatrick // At the beginning the entire space is mprotect-ed, then small parts of it
263cab2bb3Spatrick // are mapped on demand.
273cab2bb3Spatrick //
283cab2bb3Spatrick // Region: a part of Space dedicated to a single size class.
293cab2bb3Spatrick // There are kNumClasses Regions of equal size.
303cab2bb3Spatrick //
313cab2bb3Spatrick // UserChunk: a piece of memory returned to user.
323cab2bb3Spatrick // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
333cab2bb3Spatrick 
343cab2bb3Spatrick // FreeArray is an array free-d chunks (stored as 4-byte offsets)
353cab2bb3Spatrick //
363cab2bb3Spatrick // A Region looks like this:
373cab2bb3Spatrick // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray
383cab2bb3Spatrick 
393cab2bb3Spatrick struct SizeClassAllocator64FlagMasks {  //  Bit masks.
403cab2bb3Spatrick   enum {
413cab2bb3Spatrick     kRandomShuffleChunks = 1,
423cab2bb3Spatrick   };
433cab2bb3Spatrick };
443cab2bb3Spatrick 
45d89ec533Spatrick template <typename Allocator>
46d89ec533Spatrick class MemoryMapper {
47d89ec533Spatrick  public:
48d89ec533Spatrick   typedef typename Allocator::CompactPtrT CompactPtrT;
49d89ec533Spatrick 
MemoryMapper(const Allocator & allocator)50d89ec533Spatrick   explicit MemoryMapper(const Allocator &allocator) : allocator_(allocator) {}
51d89ec533Spatrick 
GetAndResetStats(uptr & ranges,uptr & bytes)52d89ec533Spatrick   bool GetAndResetStats(uptr &ranges, uptr &bytes) {
53d89ec533Spatrick     ranges = released_ranges_count_;
54d89ec533Spatrick     released_ranges_count_ = 0;
55d89ec533Spatrick     bytes = released_bytes_;
56d89ec533Spatrick     released_bytes_ = 0;
57d89ec533Spatrick     return ranges != 0;
58d89ec533Spatrick   }
59d89ec533Spatrick 
MapPackedCounterArrayBuffer(uptr count)60d89ec533Spatrick   u64 *MapPackedCounterArrayBuffer(uptr count) {
61d89ec533Spatrick     buffer_.clear();
62d89ec533Spatrick     buffer_.resize(count);
63d89ec533Spatrick     return buffer_.data();
64d89ec533Spatrick   }
65d89ec533Spatrick 
66d89ec533Spatrick   // Releases [from, to) range of pages back to OS.
ReleasePageRangeToOS(uptr class_id,CompactPtrT from,CompactPtrT to)67d89ec533Spatrick   void ReleasePageRangeToOS(uptr class_id, CompactPtrT from, CompactPtrT to) {
68d89ec533Spatrick     const uptr region_base = allocator_.GetRegionBeginBySizeClass(class_id);
69d89ec533Spatrick     const uptr from_page = allocator_.CompactPtrToPointer(region_base, from);
70d89ec533Spatrick     const uptr to_page = allocator_.CompactPtrToPointer(region_base, to);
71d89ec533Spatrick     ReleaseMemoryPagesToOS(from_page, to_page);
72d89ec533Spatrick     released_ranges_count_++;
73d89ec533Spatrick     released_bytes_ += to_page - from_page;
74d89ec533Spatrick   }
75d89ec533Spatrick 
76d89ec533Spatrick  private:
77d89ec533Spatrick   const Allocator &allocator_;
78d89ec533Spatrick   uptr released_ranges_count_ = 0;
79d89ec533Spatrick   uptr released_bytes_ = 0;
80d89ec533Spatrick   InternalMmapVector<u64> buffer_;
81d89ec533Spatrick };
82d89ec533Spatrick 
833cab2bb3Spatrick template <class Params>
843cab2bb3Spatrick class SizeClassAllocator64 {
853cab2bb3Spatrick  public:
863cab2bb3Spatrick   using AddressSpaceView = typename Params::AddressSpaceView;
873cab2bb3Spatrick   static const uptr kSpaceBeg = Params::kSpaceBeg;
883cab2bb3Spatrick   static const uptr kSpaceSize = Params::kSpaceSize;
893cab2bb3Spatrick   static const uptr kMetadataSize = Params::kMetadataSize;
903cab2bb3Spatrick   typedef typename Params::SizeClassMap SizeClassMap;
913cab2bb3Spatrick   typedef typename Params::MapUnmapCallback MapUnmapCallback;
923cab2bb3Spatrick 
933cab2bb3Spatrick   static const bool kRandomShuffleChunks =
943cab2bb3Spatrick       Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
953cab2bb3Spatrick 
963cab2bb3Spatrick   typedef SizeClassAllocator64<Params> ThisT;
973cab2bb3Spatrick   typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;
98d89ec533Spatrick   typedef MemoryMapper<ThisT> MemoryMapperT;
993cab2bb3Spatrick 
1003cab2bb3Spatrick   // When we know the size class (the region base) we can represent a pointer
1013cab2bb3Spatrick   // as a 4-byte integer (offset from the region start shifted right by 4).
1023cab2bb3Spatrick   typedef u32 CompactPtrT;
1033cab2bb3Spatrick   static const uptr kCompactPtrScale = 4;
PointerToCompactPtr(uptr base,uptr ptr)1043cab2bb3Spatrick   CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) const {
1053cab2bb3Spatrick     return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
1063cab2bb3Spatrick   }
CompactPtrToPointer(uptr base,CompactPtrT ptr32)1073cab2bb3Spatrick   uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) const {
1083cab2bb3Spatrick     return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
1093cab2bb3Spatrick   }
1103cab2bb3Spatrick 
111d89ec533Spatrick   // If heap_start is nonzero, assumes kSpaceSize bytes are already mapped R/W
112d89ec533Spatrick   // at heap_start and places the heap there.  This mode requires kSpaceBeg ==
113d89ec533Spatrick   // ~(uptr)0.
114d89ec533Spatrick   void Init(s32 release_to_os_interval_ms, uptr heap_start = 0) {
1153cab2bb3Spatrick     uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
116d89ec533Spatrick     PremappedHeap = heap_start != 0;
117d89ec533Spatrick     if (PremappedHeap) {
118d89ec533Spatrick       CHECK(!kUsingConstantSpaceBeg);
119d89ec533Spatrick       NonConstSpaceBeg = heap_start;
120d89ec533Spatrick       uptr RegionInfoSize = AdditionalSize();
121d89ec533Spatrick       RegionInfoSpace =
122d89ec533Spatrick           address_range.Init(RegionInfoSize, PrimaryAllocatorName);
123d89ec533Spatrick       CHECK_NE(RegionInfoSpace, ~(uptr)0);
124d89ec533Spatrick       CHECK_EQ(RegionInfoSpace,
125d89ec533Spatrick                address_range.MapOrDie(RegionInfoSpace, RegionInfoSize,
126d89ec533Spatrick                                       "SizeClassAllocator: region info"));
127d89ec533Spatrick       MapUnmapCallback().OnMap(RegionInfoSpace, RegionInfoSize);
128d89ec533Spatrick     } else {
1293cab2bb3Spatrick       if (kUsingConstantSpaceBeg) {
1301f9cb04fSpatrick         CHECK(IsAligned(kSpaceBeg, SizeClassMap::kMaxSize));
131d89ec533Spatrick         CHECK_EQ(kSpaceBeg,
132d89ec533Spatrick                  address_range.Init(TotalSpaceSize, PrimaryAllocatorName,
133d89ec533Spatrick                                     kSpaceBeg));
1343cab2bb3Spatrick       } else {
135d89ec533Spatrick         // Combined allocator expects that an 2^N allocation is always aligned
136d89ec533Spatrick         // to 2^N. For this to work, the start of the space needs to be aligned
137d89ec533Spatrick         // as high as the largest size class (which also needs to be a power of
138d89ec533Spatrick         // 2).
1391f9cb04fSpatrick         NonConstSpaceBeg = address_range.InitAligned(
1401f9cb04fSpatrick             TotalSpaceSize, SizeClassMap::kMaxSize, PrimaryAllocatorName);
1413cab2bb3Spatrick         CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
1423cab2bb3Spatrick       }
143d89ec533Spatrick       RegionInfoSpace = SpaceEnd();
144d89ec533Spatrick       MapWithCallbackOrDie(RegionInfoSpace, AdditionalSize(),
1453cab2bb3Spatrick                            "SizeClassAllocator: region info");
146d89ec533Spatrick     }
147d89ec533Spatrick     SetReleaseToOSIntervalMs(release_to_os_interval_ms);
1483cab2bb3Spatrick     // Check that the RegionInfo array is aligned on the CacheLine size.
149d89ec533Spatrick     DCHECK_EQ(RegionInfoSpace % kCacheLineSize, 0);
1503cab2bb3Spatrick   }
1513cab2bb3Spatrick 
ReleaseToOSIntervalMs()1523cab2bb3Spatrick   s32 ReleaseToOSIntervalMs() const {
1533cab2bb3Spatrick     return atomic_load(&release_to_os_interval_ms_, memory_order_relaxed);
1543cab2bb3Spatrick   }
1553cab2bb3Spatrick 
SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms)1563cab2bb3Spatrick   void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
1573cab2bb3Spatrick     atomic_store(&release_to_os_interval_ms_, release_to_os_interval_ms,
1583cab2bb3Spatrick                  memory_order_relaxed);
1593cab2bb3Spatrick   }
1603cab2bb3Spatrick 
ForceReleaseToOS()1613cab2bb3Spatrick   void ForceReleaseToOS() {
162d89ec533Spatrick     MemoryMapperT memory_mapper(*this);
1633cab2bb3Spatrick     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
164*810390e3Srobert       Lock l(&GetRegionInfo(class_id)->mutex);
165d89ec533Spatrick       MaybeReleaseToOS(&memory_mapper, class_id, true /*force*/);
1663cab2bb3Spatrick     }
1673cab2bb3Spatrick   }
1683cab2bb3Spatrick 
CanAllocate(uptr size,uptr alignment)1693cab2bb3Spatrick   static bool CanAllocate(uptr size, uptr alignment) {
1703cab2bb3Spatrick     return size <= SizeClassMap::kMaxSize &&
1713cab2bb3Spatrick       alignment <= SizeClassMap::kMaxSize;
1723cab2bb3Spatrick   }
1733cab2bb3Spatrick 
ReturnToAllocator(MemoryMapperT * memory_mapper,AllocatorStats * stat,uptr class_id,const CompactPtrT * chunks,uptr n_chunks)174d89ec533Spatrick   NOINLINE void ReturnToAllocator(MemoryMapperT *memory_mapper,
175d89ec533Spatrick                                   AllocatorStats *stat, uptr class_id,
1763cab2bb3Spatrick                                   const CompactPtrT *chunks, uptr n_chunks) {
1773cab2bb3Spatrick     RegionInfo *region = GetRegionInfo(class_id);
1783cab2bb3Spatrick     uptr region_beg = GetRegionBeginBySizeClass(class_id);
1793cab2bb3Spatrick     CompactPtrT *free_array = GetFreeArray(region_beg);
1803cab2bb3Spatrick 
181*810390e3Srobert     Lock l(&region->mutex);
1823cab2bb3Spatrick     uptr old_num_chunks = region->num_freed_chunks;
1833cab2bb3Spatrick     uptr new_num_freed_chunks = old_num_chunks + n_chunks;
1843cab2bb3Spatrick     // Failure to allocate free array space while releasing memory is non
1853cab2bb3Spatrick     // recoverable.
1863cab2bb3Spatrick     if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg,
1873cab2bb3Spatrick                                        new_num_freed_chunks))) {
1883cab2bb3Spatrick       Report("FATAL: Internal error: %s's allocator exhausted the free list "
1893cab2bb3Spatrick              "space for size class %zd (%zd bytes).\n", SanitizerToolName,
1903cab2bb3Spatrick              class_id, ClassIdToSize(class_id));
1913cab2bb3Spatrick       Die();
1923cab2bb3Spatrick     }
1933cab2bb3Spatrick     for (uptr i = 0; i < n_chunks; i++)
1943cab2bb3Spatrick       free_array[old_num_chunks + i] = chunks[i];
1953cab2bb3Spatrick     region->num_freed_chunks = new_num_freed_chunks;
1963cab2bb3Spatrick     region->stats.n_freed += n_chunks;
1973cab2bb3Spatrick 
198d89ec533Spatrick     MaybeReleaseToOS(memory_mapper, class_id, false /*force*/);
1993cab2bb3Spatrick   }
2003cab2bb3Spatrick 
GetFromAllocator(AllocatorStats * stat,uptr class_id,CompactPtrT * chunks,uptr n_chunks)2013cab2bb3Spatrick   NOINLINE bool GetFromAllocator(AllocatorStats *stat, uptr class_id,
2023cab2bb3Spatrick                                  CompactPtrT *chunks, uptr n_chunks) {
2033cab2bb3Spatrick     RegionInfo *region = GetRegionInfo(class_id);
2043cab2bb3Spatrick     uptr region_beg = GetRegionBeginBySizeClass(class_id);
2053cab2bb3Spatrick     CompactPtrT *free_array = GetFreeArray(region_beg);
2063cab2bb3Spatrick 
207*810390e3Srobert     Lock l(&region->mutex);
208d89ec533Spatrick #if SANITIZER_WINDOWS
209d89ec533Spatrick     /* On Windows unmapping of memory during __sanitizer_purge_allocator is
210d89ec533Spatrick     explicit and immediate, so unmapped regions must be explicitly mapped back
211d89ec533Spatrick     in when they are accessed again. */
212d89ec533Spatrick     if (region->rtoi.last_released_bytes > 0) {
213d89ec533Spatrick       MmapFixedOrDie(region_beg, region->mapped_user,
214d89ec533Spatrick                                       "SizeClassAllocator: region data");
215d89ec533Spatrick       region->rtoi.n_freed_at_last_release = 0;
216d89ec533Spatrick       region->rtoi.last_released_bytes = 0;
217d89ec533Spatrick     }
218d89ec533Spatrick #endif
2193cab2bb3Spatrick     if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
2203cab2bb3Spatrick       if (UNLIKELY(!PopulateFreeArray(stat, class_id, region,
2213cab2bb3Spatrick                                       n_chunks - region->num_freed_chunks)))
2223cab2bb3Spatrick         return false;
2233cab2bb3Spatrick       CHECK_GE(region->num_freed_chunks, n_chunks);
2243cab2bb3Spatrick     }
2253cab2bb3Spatrick     region->num_freed_chunks -= n_chunks;
2263cab2bb3Spatrick     uptr base_idx = region->num_freed_chunks;
2273cab2bb3Spatrick     for (uptr i = 0; i < n_chunks; i++)
2283cab2bb3Spatrick       chunks[i] = free_array[base_idx + i];
2293cab2bb3Spatrick     region->stats.n_allocated += n_chunks;
2303cab2bb3Spatrick     return true;
2313cab2bb3Spatrick   }
2323cab2bb3Spatrick 
PointerIsMine(const void * p)2333cab2bb3Spatrick   bool PointerIsMine(const void *p) const {
2343cab2bb3Spatrick     uptr P = reinterpret_cast<uptr>(p);
2353cab2bb3Spatrick     if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
2363cab2bb3Spatrick       return P / kSpaceSize == kSpaceBeg / kSpaceSize;
2373cab2bb3Spatrick     return P >= SpaceBeg() && P < SpaceEnd();
2383cab2bb3Spatrick   }
2393cab2bb3Spatrick 
GetRegionBegin(const void * p)2403cab2bb3Spatrick   uptr GetRegionBegin(const void *p) {
2413cab2bb3Spatrick     if (kUsingConstantSpaceBeg)
2423cab2bb3Spatrick       return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
2433cab2bb3Spatrick     uptr space_beg = SpaceBeg();
2443cab2bb3Spatrick     return ((reinterpret_cast<uptr>(p)  - space_beg) & ~(kRegionSize - 1)) +
2453cab2bb3Spatrick         space_beg;
2463cab2bb3Spatrick   }
2473cab2bb3Spatrick 
GetRegionBeginBySizeClass(uptr class_id)2483cab2bb3Spatrick   uptr GetRegionBeginBySizeClass(uptr class_id) const {
2493cab2bb3Spatrick     return SpaceBeg() + kRegionSize * class_id;
2503cab2bb3Spatrick   }
2513cab2bb3Spatrick 
GetSizeClass(const void * p)2523cab2bb3Spatrick   uptr GetSizeClass(const void *p) {
2533cab2bb3Spatrick     if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
2543cab2bb3Spatrick       return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
2553cab2bb3Spatrick     return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
2563cab2bb3Spatrick            kNumClassesRounded;
2573cab2bb3Spatrick   }
2583cab2bb3Spatrick 
GetBlockBegin(const void * p)2593cab2bb3Spatrick   void *GetBlockBegin(const void *p) {
2603cab2bb3Spatrick     uptr class_id = GetSizeClass(p);
261d89ec533Spatrick     if (class_id >= kNumClasses) return nullptr;
2623cab2bb3Spatrick     uptr size = ClassIdToSize(class_id);
2633cab2bb3Spatrick     if (!size) return nullptr;
2643cab2bb3Spatrick     uptr chunk_idx = GetChunkIdx((uptr)p, size);
2653cab2bb3Spatrick     uptr reg_beg = GetRegionBegin(p);
2663cab2bb3Spatrick     uptr beg = chunk_idx * size;
2673cab2bb3Spatrick     uptr next_beg = beg + size;
2683cab2bb3Spatrick     const RegionInfo *region = AddressSpaceView::Load(GetRegionInfo(class_id));
2693cab2bb3Spatrick     if (region->mapped_user >= next_beg)
2703cab2bb3Spatrick       return reinterpret_cast<void*>(reg_beg + beg);
2713cab2bb3Spatrick     return nullptr;
2723cab2bb3Spatrick   }
2733cab2bb3Spatrick 
GetActuallyAllocatedSize(void * p)2743cab2bb3Spatrick   uptr GetActuallyAllocatedSize(void *p) {
2753cab2bb3Spatrick     CHECK(PointerIsMine(p));
2763cab2bb3Spatrick     return ClassIdToSize(GetSizeClass(p));
2773cab2bb3Spatrick   }
2783cab2bb3Spatrick 
ClassID(uptr size)2793cab2bb3Spatrick   static uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
2803cab2bb3Spatrick 
GetMetaData(const void * p)2813cab2bb3Spatrick   void *GetMetaData(const void *p) {
282d89ec533Spatrick     CHECK(kMetadataSize);
2833cab2bb3Spatrick     uptr class_id = GetSizeClass(p);
2843cab2bb3Spatrick     uptr size = ClassIdToSize(class_id);
285*810390e3Srobert     if (!size)
286*810390e3Srobert       return nullptr;
2873cab2bb3Spatrick     uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
2883cab2bb3Spatrick     uptr region_beg = GetRegionBeginBySizeClass(class_id);
2893cab2bb3Spatrick     return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
2903cab2bb3Spatrick                                     (1 + chunk_idx) * kMetadataSize);
2913cab2bb3Spatrick   }
2923cab2bb3Spatrick 
TotalMemoryUsed()2933cab2bb3Spatrick   uptr TotalMemoryUsed() {
2943cab2bb3Spatrick     uptr res = 0;
2953cab2bb3Spatrick     for (uptr i = 0; i < kNumClasses; i++)
2963cab2bb3Spatrick       res += GetRegionInfo(i)->allocated_user;
2973cab2bb3Spatrick     return res;
2983cab2bb3Spatrick   }
2993cab2bb3Spatrick 
3003cab2bb3Spatrick   // Test-only.
TestOnlyUnmap()3013cab2bb3Spatrick   void TestOnlyUnmap() {
3021f9cb04fSpatrick     UnmapWithCallbackOrDie((uptr)address_range.base(), address_range.size());
3033cab2bb3Spatrick   }
3043cab2bb3Spatrick 
FillMemoryProfile(uptr start,uptr rss,bool file,uptr * stats)305*810390e3Srobert   static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats) {
306*810390e3Srobert     for (uptr class_id = 0; class_id < kNumClasses; class_id++)
3073cab2bb3Spatrick       if (stats[class_id] == start)
3083cab2bb3Spatrick         stats[class_id] = rss;
3093cab2bb3Spatrick   }
3103cab2bb3Spatrick 
PrintStats(uptr class_id,uptr rss)3113cab2bb3Spatrick   void PrintStats(uptr class_id, uptr rss) {
3123cab2bb3Spatrick     RegionInfo *region = GetRegionInfo(class_id);
3133cab2bb3Spatrick     if (region->mapped_user == 0) return;
3143cab2bb3Spatrick     uptr in_use = region->stats.n_allocated - region->stats.n_freed;
3153cab2bb3Spatrick     uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
3163cab2bb3Spatrick     Printf(
3173cab2bb3Spatrick         "%s %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
3183cab2bb3Spatrick         "num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd "
319*810390e3Srobert         "last released: %6lldK region: 0x%zx\n",
3203cab2bb3Spatrick         region->exhausted ? "F" : " ", class_id, ClassIdToSize(class_id),
3213cab2bb3Spatrick         region->mapped_user >> 10, region->stats.n_allocated,
3223cab2bb3Spatrick         region->stats.n_freed, in_use, region->num_freed_chunks, avail_chunks,
3233cab2bb3Spatrick         rss >> 10, region->rtoi.num_releases,
3243cab2bb3Spatrick         region->rtoi.last_released_bytes >> 10,
3253cab2bb3Spatrick         SpaceBeg() + kRegionSize * class_id);
3263cab2bb3Spatrick   }
3273cab2bb3Spatrick 
PrintStats()3283cab2bb3Spatrick   void PrintStats() {
3293cab2bb3Spatrick     uptr rss_stats[kNumClasses];
3303cab2bb3Spatrick     for (uptr class_id = 0; class_id < kNumClasses; class_id++)
3313cab2bb3Spatrick       rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
332*810390e3Srobert     GetMemoryProfile(FillMemoryProfile, rss_stats);
3333cab2bb3Spatrick 
3343cab2bb3Spatrick     uptr total_mapped = 0;
3353cab2bb3Spatrick     uptr total_rss = 0;
3363cab2bb3Spatrick     uptr n_allocated = 0;
3373cab2bb3Spatrick     uptr n_freed = 0;
3383cab2bb3Spatrick     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
3393cab2bb3Spatrick       RegionInfo *region = GetRegionInfo(class_id);
3403cab2bb3Spatrick       if (region->mapped_user != 0) {
3413cab2bb3Spatrick         total_mapped += region->mapped_user;
3423cab2bb3Spatrick         total_rss += rss_stats[class_id];
3433cab2bb3Spatrick       }
3443cab2bb3Spatrick       n_allocated += region->stats.n_allocated;
3453cab2bb3Spatrick       n_freed += region->stats.n_freed;
3463cab2bb3Spatrick     }
3473cab2bb3Spatrick 
3483cab2bb3Spatrick     Printf("Stats: SizeClassAllocator64: %zdM mapped (%zdM rss) in "
3493cab2bb3Spatrick            "%zd allocations; remains %zd\n", total_mapped >> 20,
3503cab2bb3Spatrick            total_rss >> 20, n_allocated, n_allocated - n_freed);
3513cab2bb3Spatrick     for (uptr class_id = 1; class_id < kNumClasses; class_id++)
3523cab2bb3Spatrick       PrintStats(class_id, rss_stats[class_id]);
3533cab2bb3Spatrick   }
3543cab2bb3Spatrick 
3553cab2bb3Spatrick   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
3563cab2bb3Spatrick   // introspection API.
ForceLock()357*810390e3Srobert   void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
3583cab2bb3Spatrick     for (uptr i = 0; i < kNumClasses; i++) {
3593cab2bb3Spatrick       GetRegionInfo(i)->mutex.Lock();
3603cab2bb3Spatrick     }
3613cab2bb3Spatrick   }
3623cab2bb3Spatrick 
ForceUnlock()363*810390e3Srobert   void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
3643cab2bb3Spatrick     for (int i = (int)kNumClasses - 1; i >= 0; i--) {
3653cab2bb3Spatrick       GetRegionInfo(i)->mutex.Unlock();
3663cab2bb3Spatrick     }
3673cab2bb3Spatrick   }
3683cab2bb3Spatrick 
3693cab2bb3Spatrick   // Iterate over all existing chunks.
3703cab2bb3Spatrick   // The allocator must be locked when calling this function.
ForEachChunk(ForEachChunkCallback callback,void * arg)3713cab2bb3Spatrick   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
3723cab2bb3Spatrick     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
3733cab2bb3Spatrick       RegionInfo *region = GetRegionInfo(class_id);
3743cab2bb3Spatrick       uptr chunk_size = ClassIdToSize(class_id);
3753cab2bb3Spatrick       uptr region_beg = SpaceBeg() + class_id * kRegionSize;
3763cab2bb3Spatrick       uptr region_allocated_user_size =
3773cab2bb3Spatrick           AddressSpaceView::Load(region)->allocated_user;
3783cab2bb3Spatrick       for (uptr chunk = region_beg;
3793cab2bb3Spatrick            chunk < region_beg + region_allocated_user_size;
3803cab2bb3Spatrick            chunk += chunk_size) {
3813cab2bb3Spatrick         // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
3823cab2bb3Spatrick         callback(chunk, arg);
3833cab2bb3Spatrick       }
3843cab2bb3Spatrick     }
3853cab2bb3Spatrick   }
3863cab2bb3Spatrick 
ClassIdToSize(uptr class_id)3873cab2bb3Spatrick   static uptr ClassIdToSize(uptr class_id) {
3883cab2bb3Spatrick     return SizeClassMap::Size(class_id);
3893cab2bb3Spatrick   }
3903cab2bb3Spatrick 
AdditionalSize()3913cab2bb3Spatrick   static uptr AdditionalSize() {
3923cab2bb3Spatrick     return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
3933cab2bb3Spatrick                      GetPageSizeCached());
3943cab2bb3Spatrick   }
3953cab2bb3Spatrick 
3963cab2bb3Spatrick   typedef SizeClassMap SizeClassMapT;
3973cab2bb3Spatrick   static const uptr kNumClasses = SizeClassMap::kNumClasses;
3983cab2bb3Spatrick   static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
3993cab2bb3Spatrick 
4003cab2bb3Spatrick   // A packed array of counters. Each counter occupies 2^n bits, enough to store
4013cab2bb3Spatrick   // counter's max_value. Ctor will try to allocate the required buffer via
4023cab2bb3Spatrick   // mapper->MapPackedCounterArrayBuffer and the caller is expected to check
4033cab2bb3Spatrick   // whether the initialization was successful by checking IsAllocated() result.
4043cab2bb3Spatrick   // For the performance sake, none of the accessors check the validity of the
4053cab2bb3Spatrick   // arguments, it is assumed that index is always in [0, n) range and the value
4063cab2bb3Spatrick   // is not incremented past max_value.
4073cab2bb3Spatrick   class PackedCounterArray {
4083cab2bb3Spatrick    public:
409d89ec533Spatrick     template <typename MemoryMapper>
PackedCounterArray(u64 num_counters,u64 max_value,MemoryMapper * mapper)410d89ec533Spatrick     PackedCounterArray(u64 num_counters, u64 max_value, MemoryMapper *mapper)
411d89ec533Spatrick         : n(num_counters) {
4123cab2bb3Spatrick       CHECK_GT(num_counters, 0);
4133cab2bb3Spatrick       CHECK_GT(max_value, 0);
4143cab2bb3Spatrick       constexpr u64 kMaxCounterBits = sizeof(*buffer) * 8ULL;
4153cab2bb3Spatrick       // Rounding counter storage size up to the power of two allows for using
4163cab2bb3Spatrick       // bit shifts calculating particular counter's index and offset.
4173cab2bb3Spatrick       uptr counter_size_bits =
4183cab2bb3Spatrick           RoundUpToPowerOfTwo(MostSignificantSetBitIndex(max_value) + 1);
4193cab2bb3Spatrick       CHECK_LE(counter_size_bits, kMaxCounterBits);
4203cab2bb3Spatrick       counter_size_bits_log = Log2(counter_size_bits);
4213cab2bb3Spatrick       counter_mask = ~0ULL >> (kMaxCounterBits - counter_size_bits);
4223cab2bb3Spatrick 
4233cab2bb3Spatrick       uptr packing_ratio = kMaxCounterBits >> counter_size_bits_log;
4243cab2bb3Spatrick       CHECK_GT(packing_ratio, 0);
4253cab2bb3Spatrick       packing_ratio_log = Log2(packing_ratio);
4263cab2bb3Spatrick       bit_offset_mask = packing_ratio - 1;
4273cab2bb3Spatrick 
428d89ec533Spatrick       buffer = mapper->MapPackedCounterArrayBuffer(
429d89ec533Spatrick           RoundUpTo(n, 1ULL << packing_ratio_log) >> packing_ratio_log);
4303cab2bb3Spatrick     }
4313cab2bb3Spatrick 
IsAllocated()4323cab2bb3Spatrick     bool IsAllocated() const {
4333cab2bb3Spatrick       return !!buffer;
4343cab2bb3Spatrick     }
4353cab2bb3Spatrick 
GetCount()4363cab2bb3Spatrick     u64 GetCount() const {
4373cab2bb3Spatrick       return n;
4383cab2bb3Spatrick     }
4393cab2bb3Spatrick 
Get(uptr i)4403cab2bb3Spatrick     uptr Get(uptr i) const {
4413cab2bb3Spatrick       DCHECK_LT(i, n);
4423cab2bb3Spatrick       uptr index = i >> packing_ratio_log;
4433cab2bb3Spatrick       uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
4443cab2bb3Spatrick       return (buffer[index] >> bit_offset) & counter_mask;
4453cab2bb3Spatrick     }
4463cab2bb3Spatrick 
Inc(uptr i)4473cab2bb3Spatrick     void Inc(uptr i) const {
4483cab2bb3Spatrick       DCHECK_LT(Get(i), counter_mask);
4493cab2bb3Spatrick       uptr index = i >> packing_ratio_log;
4503cab2bb3Spatrick       uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
4513cab2bb3Spatrick       buffer[index] += 1ULL << bit_offset;
4523cab2bb3Spatrick     }
4533cab2bb3Spatrick 
IncRange(uptr from,uptr to)4543cab2bb3Spatrick     void IncRange(uptr from, uptr to) const {
4553cab2bb3Spatrick       DCHECK_LE(from, to);
4563cab2bb3Spatrick       for (uptr i = from; i <= to; i++)
4573cab2bb3Spatrick         Inc(i);
4583cab2bb3Spatrick     }
4593cab2bb3Spatrick 
4603cab2bb3Spatrick    private:
4613cab2bb3Spatrick     const u64 n;
4623cab2bb3Spatrick     u64 counter_size_bits_log;
4633cab2bb3Spatrick     u64 counter_mask;
4643cab2bb3Spatrick     u64 packing_ratio_log;
4653cab2bb3Spatrick     u64 bit_offset_mask;
4663cab2bb3Spatrick     u64* buffer;
4673cab2bb3Spatrick   };
4683cab2bb3Spatrick 
4693cab2bb3Spatrick   template <class MemoryMapperT>
4703cab2bb3Spatrick   class FreePagesRangeTracker {
4713cab2bb3Spatrick    public:
FreePagesRangeTracker(MemoryMapperT * mapper,uptr class_id)472d89ec533Spatrick     FreePagesRangeTracker(MemoryMapperT *mapper, uptr class_id)
4733cab2bb3Spatrick         : memory_mapper(mapper),
474d89ec533Spatrick           class_id(class_id),
475d89ec533Spatrick           page_size_scaled_log(Log2(GetPageSizeCached() >> kCompactPtrScale)) {}
4763cab2bb3Spatrick 
NextPage(bool freed)4773cab2bb3Spatrick     void NextPage(bool freed) {
4783cab2bb3Spatrick       if (freed) {
4793cab2bb3Spatrick         if (!in_the_range) {
4803cab2bb3Spatrick           current_range_start_page = current_page;
4813cab2bb3Spatrick           in_the_range = true;
4823cab2bb3Spatrick         }
4833cab2bb3Spatrick       } else {
4843cab2bb3Spatrick         CloseOpenedRange();
4853cab2bb3Spatrick       }
4863cab2bb3Spatrick       current_page++;
4873cab2bb3Spatrick     }
4883cab2bb3Spatrick 
Done()4893cab2bb3Spatrick     void Done() {
4903cab2bb3Spatrick       CloseOpenedRange();
4913cab2bb3Spatrick     }
4923cab2bb3Spatrick 
4933cab2bb3Spatrick    private:
CloseOpenedRange()4943cab2bb3Spatrick     void CloseOpenedRange() {
4953cab2bb3Spatrick       if (in_the_range) {
4963cab2bb3Spatrick         memory_mapper->ReleasePageRangeToOS(
497d89ec533Spatrick             class_id, current_range_start_page << page_size_scaled_log,
4983cab2bb3Spatrick             current_page << page_size_scaled_log);
4993cab2bb3Spatrick         in_the_range = false;
5003cab2bb3Spatrick       }
5013cab2bb3Spatrick     }
5023cab2bb3Spatrick 
503d89ec533Spatrick     MemoryMapperT *const memory_mapper = nullptr;
504d89ec533Spatrick     const uptr class_id = 0;
505d89ec533Spatrick     const uptr page_size_scaled_log = 0;
506d89ec533Spatrick     bool in_the_range = false;
507d89ec533Spatrick     uptr current_page = 0;
508d89ec533Spatrick     uptr current_range_start_page = 0;
5093cab2bb3Spatrick   };
5103cab2bb3Spatrick 
5113cab2bb3Spatrick   // Iterates over the free_array to identify memory pages containing freed
5123cab2bb3Spatrick   // chunks only and returns these pages back to OS.
5133cab2bb3Spatrick   // allocated_pages_count is the total number of pages allocated for the
5143cab2bb3Spatrick   // current bucket.
515d89ec533Spatrick   template <typename MemoryMapper>
ReleaseFreeMemoryToOS(CompactPtrT * free_array,uptr free_array_count,uptr chunk_size,uptr allocated_pages_count,MemoryMapper * memory_mapper,uptr class_id)5163cab2bb3Spatrick   static void ReleaseFreeMemoryToOS(CompactPtrT *free_array,
5173cab2bb3Spatrick                                     uptr free_array_count, uptr chunk_size,
5183cab2bb3Spatrick                                     uptr allocated_pages_count,
519d89ec533Spatrick                                     MemoryMapper *memory_mapper,
520d89ec533Spatrick                                     uptr class_id) {
5213cab2bb3Spatrick     const uptr page_size = GetPageSizeCached();
5223cab2bb3Spatrick 
5233cab2bb3Spatrick     // Figure out the number of chunks per page and whether we can take a fast
5243cab2bb3Spatrick     // path (the number of chunks per page is the same for all pages).
5253cab2bb3Spatrick     uptr full_pages_chunk_count_max;
5263cab2bb3Spatrick     bool same_chunk_count_per_page;
5273cab2bb3Spatrick     if (chunk_size <= page_size && page_size % chunk_size == 0) {
5283cab2bb3Spatrick       // Same number of chunks per page, no cross overs.
5293cab2bb3Spatrick       full_pages_chunk_count_max = page_size / chunk_size;
5303cab2bb3Spatrick       same_chunk_count_per_page = true;
5313cab2bb3Spatrick     } else if (chunk_size <= page_size && page_size % chunk_size != 0 &&
5323cab2bb3Spatrick         chunk_size % (page_size % chunk_size) == 0) {
5333cab2bb3Spatrick       // Some chunks are crossing page boundaries, which means that the page
5343cab2bb3Spatrick       // contains one or two partial chunks, but all pages contain the same
5353cab2bb3Spatrick       // number of chunks.
5363cab2bb3Spatrick       full_pages_chunk_count_max = page_size / chunk_size + 1;
5373cab2bb3Spatrick       same_chunk_count_per_page = true;
5383cab2bb3Spatrick     } else if (chunk_size <= page_size) {
5393cab2bb3Spatrick       // Some chunks are crossing page boundaries, which means that the page
5403cab2bb3Spatrick       // contains one or two partial chunks.
5413cab2bb3Spatrick       full_pages_chunk_count_max = page_size / chunk_size + 2;
5423cab2bb3Spatrick       same_chunk_count_per_page = false;
5433cab2bb3Spatrick     } else if (chunk_size > page_size && chunk_size % page_size == 0) {
5443cab2bb3Spatrick       // One chunk covers multiple pages, no cross overs.
5453cab2bb3Spatrick       full_pages_chunk_count_max = 1;
5463cab2bb3Spatrick       same_chunk_count_per_page = true;
5473cab2bb3Spatrick     } else if (chunk_size > page_size) {
5483cab2bb3Spatrick       // One chunk covers multiple pages, Some chunks are crossing page
5493cab2bb3Spatrick       // boundaries. Some pages contain one chunk, some contain two.
5503cab2bb3Spatrick       full_pages_chunk_count_max = 2;
5513cab2bb3Spatrick       same_chunk_count_per_page = false;
5523cab2bb3Spatrick     } else {
5533cab2bb3Spatrick       UNREACHABLE("All chunk_size/page_size ratios must be handled.");
5543cab2bb3Spatrick     }
5553cab2bb3Spatrick 
556d89ec533Spatrick     PackedCounterArray counters(allocated_pages_count,
557d89ec533Spatrick                                 full_pages_chunk_count_max, memory_mapper);
5583cab2bb3Spatrick     if (!counters.IsAllocated())
5593cab2bb3Spatrick       return;
5603cab2bb3Spatrick 
5613cab2bb3Spatrick     const uptr chunk_size_scaled = chunk_size >> kCompactPtrScale;
5623cab2bb3Spatrick     const uptr page_size_scaled = page_size >> kCompactPtrScale;
5633cab2bb3Spatrick     const uptr page_size_scaled_log = Log2(page_size_scaled);
5643cab2bb3Spatrick 
5653cab2bb3Spatrick     // Iterate over free chunks and count how many free chunks affect each
5663cab2bb3Spatrick     // allocated page.
5673cab2bb3Spatrick     if (chunk_size <= page_size && page_size % chunk_size == 0) {
5683cab2bb3Spatrick       // Each chunk affects one page only.
5693cab2bb3Spatrick       for (uptr i = 0; i < free_array_count; i++)
5703cab2bb3Spatrick         counters.Inc(free_array[i] >> page_size_scaled_log);
5713cab2bb3Spatrick     } else {
5723cab2bb3Spatrick       // In all other cases chunks might affect more than one page.
5733cab2bb3Spatrick       for (uptr i = 0; i < free_array_count; i++) {
5743cab2bb3Spatrick         counters.IncRange(
5753cab2bb3Spatrick             free_array[i] >> page_size_scaled_log,
5763cab2bb3Spatrick             (free_array[i] + chunk_size_scaled - 1) >> page_size_scaled_log);
5773cab2bb3Spatrick       }
5783cab2bb3Spatrick     }
5793cab2bb3Spatrick 
5803cab2bb3Spatrick     // Iterate over pages detecting ranges of pages with chunk counters equal
5813cab2bb3Spatrick     // to the expected number of chunks for the particular page.
582d89ec533Spatrick     FreePagesRangeTracker<MemoryMapper> range_tracker(memory_mapper, class_id);
5833cab2bb3Spatrick     if (same_chunk_count_per_page) {
5843cab2bb3Spatrick       // Fast path, every page has the same number of chunks affecting it.
5853cab2bb3Spatrick       for (uptr i = 0; i < counters.GetCount(); i++)
5863cab2bb3Spatrick         range_tracker.NextPage(counters.Get(i) == full_pages_chunk_count_max);
5873cab2bb3Spatrick     } else {
5883cab2bb3Spatrick       // Show path, go through the pages keeping count how many chunks affect
5893cab2bb3Spatrick       // each page.
5903cab2bb3Spatrick       const uptr pn =
5913cab2bb3Spatrick           chunk_size < page_size ? page_size_scaled / chunk_size_scaled : 1;
5923cab2bb3Spatrick       const uptr pnc = pn * chunk_size_scaled;
5933cab2bb3Spatrick       // The idea is to increment the current page pointer by the first chunk
5943cab2bb3Spatrick       // size, middle portion size (the portion of the page covered by chunks
5953cab2bb3Spatrick       // except the first and the last one) and then the last chunk size, adding
5963cab2bb3Spatrick       // up the number of chunks on the current page and checking on every step
5973cab2bb3Spatrick       // whether the page boundary was crossed.
5983cab2bb3Spatrick       uptr prev_page_boundary = 0;
5993cab2bb3Spatrick       uptr current_boundary = 0;
6003cab2bb3Spatrick       for (uptr i = 0; i < counters.GetCount(); i++) {
6013cab2bb3Spatrick         uptr page_boundary = prev_page_boundary + page_size_scaled;
6023cab2bb3Spatrick         uptr chunks_per_page = pn;
6033cab2bb3Spatrick         if (current_boundary < page_boundary) {
6043cab2bb3Spatrick           if (current_boundary > prev_page_boundary)
6053cab2bb3Spatrick             chunks_per_page++;
6063cab2bb3Spatrick           current_boundary += pnc;
6073cab2bb3Spatrick           if (current_boundary < page_boundary) {
6083cab2bb3Spatrick             chunks_per_page++;
6093cab2bb3Spatrick             current_boundary += chunk_size_scaled;
6103cab2bb3Spatrick           }
6113cab2bb3Spatrick         }
6123cab2bb3Spatrick         prev_page_boundary = page_boundary;
6133cab2bb3Spatrick 
6143cab2bb3Spatrick         range_tracker.NextPage(counters.Get(i) == chunks_per_page);
6153cab2bb3Spatrick       }
6163cab2bb3Spatrick     }
6173cab2bb3Spatrick     range_tracker.Done();
6183cab2bb3Spatrick   }
6193cab2bb3Spatrick 
6203cab2bb3Spatrick  private:
621d89ec533Spatrick   friend class MemoryMapper<ThisT>;
6223cab2bb3Spatrick 
6233cab2bb3Spatrick   ReservedAddressRange address_range;
6243cab2bb3Spatrick 
6253cab2bb3Spatrick   static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
6263cab2bb3Spatrick   // FreeArray is the array of free-d chunks (stored as 4-byte offsets).
627*810390e3Srobert   // In the worst case it may require kRegionSize/SizeClassMap::kMinSize
6283cab2bb3Spatrick   // elements, but in reality this will not happen. For simplicity we
6293cab2bb3Spatrick   // dedicate 1/8 of the region's virtual space to FreeArray.
6303cab2bb3Spatrick   static const uptr kFreeArraySize = kRegionSize / 8;
6313cab2bb3Spatrick 
6323cab2bb3Spatrick   static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
6333cab2bb3Spatrick   uptr NonConstSpaceBeg;
SpaceBeg()6343cab2bb3Spatrick   uptr SpaceBeg() const {
6353cab2bb3Spatrick     return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
6363cab2bb3Spatrick   }
SpaceEnd()6373cab2bb3Spatrick   uptr SpaceEnd() const { return  SpaceBeg() + kSpaceSize; }
6383cab2bb3Spatrick   // kRegionSize must be >= 2^32.
6393cab2bb3Spatrick   COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
6403cab2bb3Spatrick   // kRegionSize must be <= 2^36, see CompactPtrT.
6413cab2bb3Spatrick   COMPILER_CHECK((kRegionSize) <= (1ULL << (SANITIZER_WORDSIZE / 2 + 4)));
6423cab2bb3Spatrick   // Call mmap for user memory with at least this size.
6433cab2bb3Spatrick   static const uptr kUserMapSize = 1 << 16;
6443cab2bb3Spatrick   // Call mmap for metadata memory with at least this size.
6453cab2bb3Spatrick   static const uptr kMetaMapSize = 1 << 16;
6463cab2bb3Spatrick   // Call mmap for free array memory with at least this size.
6473cab2bb3Spatrick   static const uptr kFreeArrayMapSize = 1 << 16;
6483cab2bb3Spatrick 
6493cab2bb3Spatrick   atomic_sint32_t release_to_os_interval_ms_;
6503cab2bb3Spatrick 
651d89ec533Spatrick   uptr RegionInfoSpace;
652d89ec533Spatrick 
653d89ec533Spatrick   // True if the user has already mapped the entire heap R/W.
654d89ec533Spatrick   bool PremappedHeap;
655d89ec533Spatrick 
6563cab2bb3Spatrick   struct Stats {
6573cab2bb3Spatrick     uptr n_allocated;
6583cab2bb3Spatrick     uptr n_freed;
6593cab2bb3Spatrick   };
6603cab2bb3Spatrick 
6613cab2bb3Spatrick   struct ReleaseToOsInfo {
6623cab2bb3Spatrick     uptr n_freed_at_last_release;
6633cab2bb3Spatrick     uptr num_releases;
6643cab2bb3Spatrick     u64 last_release_at_ns;
6653cab2bb3Spatrick     u64 last_released_bytes;
6663cab2bb3Spatrick   };
6673cab2bb3Spatrick 
ALIGNED(SANITIZER_CACHE_LINE_SIZE)6683cab2bb3Spatrick   struct ALIGNED(SANITIZER_CACHE_LINE_SIZE) RegionInfo {
669*810390e3Srobert     Mutex mutex;
6703cab2bb3Spatrick     uptr num_freed_chunks;  // Number of elements in the freearray.
6713cab2bb3Spatrick     uptr mapped_free_array;  // Bytes mapped for freearray.
6723cab2bb3Spatrick     uptr allocated_user;  // Bytes allocated for user memory.
6733cab2bb3Spatrick     uptr allocated_meta;  // Bytes allocated for metadata.
6743cab2bb3Spatrick     uptr mapped_user;  // Bytes mapped for user memory.
6753cab2bb3Spatrick     uptr mapped_meta;  // Bytes mapped for metadata.
6763cab2bb3Spatrick     u32 rand_state;  // Seed for random shuffle, used if kRandomShuffleChunks.
6773cab2bb3Spatrick     bool exhausted;  // Whether region is out of space for new chunks.
6783cab2bb3Spatrick     Stats stats;
6793cab2bb3Spatrick     ReleaseToOsInfo rtoi;
6803cab2bb3Spatrick   };
6813cab2bb3Spatrick   COMPILER_CHECK(sizeof(RegionInfo) % kCacheLineSize == 0);
6823cab2bb3Spatrick 
GetRegionInfo(uptr class_id)6833cab2bb3Spatrick   RegionInfo *GetRegionInfo(uptr class_id) const {
6843cab2bb3Spatrick     DCHECK_LT(class_id, kNumClasses);
685d89ec533Spatrick     RegionInfo *regions = reinterpret_cast<RegionInfo *>(RegionInfoSpace);
6863cab2bb3Spatrick     return &regions[class_id];
6873cab2bb3Spatrick   }
6883cab2bb3Spatrick 
GetMetadataEnd(uptr region_beg)6893cab2bb3Spatrick   uptr GetMetadataEnd(uptr region_beg) const {
6903cab2bb3Spatrick     return region_beg + kRegionSize - kFreeArraySize;
6913cab2bb3Spatrick   }
6923cab2bb3Spatrick 
GetChunkIdx(uptr chunk,uptr size)6933cab2bb3Spatrick   uptr GetChunkIdx(uptr chunk, uptr size) const {
6943cab2bb3Spatrick     if (!kUsingConstantSpaceBeg)
6953cab2bb3Spatrick       chunk -= SpaceBeg();
6963cab2bb3Spatrick 
6973cab2bb3Spatrick     uptr offset = chunk % kRegionSize;
6983cab2bb3Spatrick     // Here we divide by a non-constant. This is costly.
6993cab2bb3Spatrick     // size always fits into 32-bits. If the offset fits too, use 32-bit div.
7003cab2bb3Spatrick     if (offset >> (SANITIZER_WORDSIZE / 2))
7013cab2bb3Spatrick       return offset / size;
7023cab2bb3Spatrick     return (u32)offset / (u32)size;
7033cab2bb3Spatrick   }
7043cab2bb3Spatrick 
GetFreeArray(uptr region_beg)7053cab2bb3Spatrick   CompactPtrT *GetFreeArray(uptr region_beg) const {
7063cab2bb3Spatrick     return reinterpret_cast<CompactPtrT *>(GetMetadataEnd(region_beg));
7073cab2bb3Spatrick   }
7083cab2bb3Spatrick 
MapWithCallback(uptr beg,uptr size,const char * name)7093cab2bb3Spatrick   bool MapWithCallback(uptr beg, uptr size, const char *name) {
710d89ec533Spatrick     if (PremappedHeap)
711d89ec533Spatrick       return beg >= NonConstSpaceBeg &&
712d89ec533Spatrick              beg + size <= NonConstSpaceBeg + kSpaceSize;
7133cab2bb3Spatrick     uptr mapped = address_range.Map(beg, size, name);
7143cab2bb3Spatrick     if (UNLIKELY(!mapped))
7153cab2bb3Spatrick       return false;
7163cab2bb3Spatrick     CHECK_EQ(beg, mapped);
7173cab2bb3Spatrick     MapUnmapCallback().OnMap(beg, size);
7183cab2bb3Spatrick     return true;
7193cab2bb3Spatrick   }
7203cab2bb3Spatrick 
MapWithCallbackOrDie(uptr beg,uptr size,const char * name)7213cab2bb3Spatrick   void MapWithCallbackOrDie(uptr beg, uptr size, const char *name) {
722d89ec533Spatrick     if (PremappedHeap) {
723d89ec533Spatrick       CHECK_GE(beg, NonConstSpaceBeg);
724d89ec533Spatrick       CHECK_LE(beg + size, NonConstSpaceBeg + kSpaceSize);
725d89ec533Spatrick       return;
726d89ec533Spatrick     }
7273cab2bb3Spatrick     CHECK_EQ(beg, address_range.MapOrDie(beg, size, name));
7283cab2bb3Spatrick     MapUnmapCallback().OnMap(beg, size);
7293cab2bb3Spatrick   }
7303cab2bb3Spatrick 
UnmapWithCallbackOrDie(uptr beg,uptr size)7313cab2bb3Spatrick   void UnmapWithCallbackOrDie(uptr beg, uptr size) {
732d89ec533Spatrick     if (PremappedHeap)
733d89ec533Spatrick       return;
7343cab2bb3Spatrick     MapUnmapCallback().OnUnmap(beg, size);
7353cab2bb3Spatrick     address_range.Unmap(beg, size);
7363cab2bb3Spatrick   }
7373cab2bb3Spatrick 
EnsureFreeArraySpace(RegionInfo * region,uptr region_beg,uptr num_freed_chunks)7383cab2bb3Spatrick   bool EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
7393cab2bb3Spatrick                             uptr num_freed_chunks) {
7403cab2bb3Spatrick     uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
7413cab2bb3Spatrick     if (region->mapped_free_array < needed_space) {
7423cab2bb3Spatrick       uptr new_mapped_free_array = RoundUpTo(needed_space, kFreeArrayMapSize);
7433cab2bb3Spatrick       CHECK_LE(new_mapped_free_array, kFreeArraySize);
7443cab2bb3Spatrick       uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
7453cab2bb3Spatrick                              region->mapped_free_array;
7463cab2bb3Spatrick       uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
7473cab2bb3Spatrick       if (UNLIKELY(!MapWithCallback(current_map_end, new_map_size,
7483cab2bb3Spatrick                                     "SizeClassAllocator: freearray")))
7493cab2bb3Spatrick         return false;
7503cab2bb3Spatrick       region->mapped_free_array = new_mapped_free_array;
7513cab2bb3Spatrick     }
7523cab2bb3Spatrick     return true;
7533cab2bb3Spatrick   }
7543cab2bb3Spatrick 
7553cab2bb3Spatrick   // Check whether this size class is exhausted.
IsRegionExhausted(RegionInfo * region,uptr class_id,uptr additional_map_size)7563cab2bb3Spatrick   bool IsRegionExhausted(RegionInfo *region, uptr class_id,
7573cab2bb3Spatrick                          uptr additional_map_size) {
7583cab2bb3Spatrick     if (LIKELY(region->mapped_user + region->mapped_meta +
7593cab2bb3Spatrick                additional_map_size <= kRegionSize - kFreeArraySize))
7603cab2bb3Spatrick       return false;
7613cab2bb3Spatrick     if (!region->exhausted) {
7623cab2bb3Spatrick       region->exhausted = true;
7633cab2bb3Spatrick       Printf("%s: Out of memory. ", SanitizerToolName);
7643cab2bb3Spatrick       Printf("The process has exhausted %zuMB for size class %zu.\n",
7653cab2bb3Spatrick              kRegionSize >> 20, ClassIdToSize(class_id));
7663cab2bb3Spatrick     }
7673cab2bb3Spatrick     return true;
7683cab2bb3Spatrick   }
7693cab2bb3Spatrick 
PopulateFreeArray(AllocatorStats * stat,uptr class_id,RegionInfo * region,uptr requested_count)7703cab2bb3Spatrick   NOINLINE bool PopulateFreeArray(AllocatorStats *stat, uptr class_id,
7713cab2bb3Spatrick                                   RegionInfo *region, uptr requested_count) {
7723cab2bb3Spatrick     // region->mutex is held.
7733cab2bb3Spatrick     const uptr region_beg = GetRegionBeginBySizeClass(class_id);
7743cab2bb3Spatrick     const uptr size = ClassIdToSize(class_id);
7753cab2bb3Spatrick 
7763cab2bb3Spatrick     const uptr total_user_bytes =
7773cab2bb3Spatrick         region->allocated_user + requested_count * size;
7783cab2bb3Spatrick     // Map more space for chunks, if necessary.
7793cab2bb3Spatrick     if (LIKELY(total_user_bytes > region->mapped_user)) {
7803cab2bb3Spatrick       if (UNLIKELY(region->mapped_user == 0)) {
7813cab2bb3Spatrick         if (!kUsingConstantSpaceBeg && kRandomShuffleChunks)
7823cab2bb3Spatrick           // The random state is initialized from ASLR.
7833cab2bb3Spatrick           region->rand_state = static_cast<u32>(region_beg >> 12);
7843cab2bb3Spatrick         // Postpone the first release to OS attempt for ReleaseToOSIntervalMs,
7853cab2bb3Spatrick         // preventing just allocated memory from being released sooner than
7863cab2bb3Spatrick         // necessary and also preventing extraneous ReleaseMemoryPagesToOS calls
7873cab2bb3Spatrick         // for short lived processes.
7883cab2bb3Spatrick         // Do it only when the feature is turned on, to avoid a potentially
7893cab2bb3Spatrick         // extraneous syscall.
7903cab2bb3Spatrick         if (ReleaseToOSIntervalMs() >= 0)
7913cab2bb3Spatrick           region->rtoi.last_release_at_ns = MonotonicNanoTime();
7923cab2bb3Spatrick       }
7933cab2bb3Spatrick       // Do the mmap for the user memory.
7943cab2bb3Spatrick       const uptr user_map_size =
7953cab2bb3Spatrick           RoundUpTo(total_user_bytes - region->mapped_user, kUserMapSize);
7963cab2bb3Spatrick       if (UNLIKELY(IsRegionExhausted(region, class_id, user_map_size)))
7973cab2bb3Spatrick         return false;
7983cab2bb3Spatrick       if (UNLIKELY(!MapWithCallback(region_beg + region->mapped_user,
7993cab2bb3Spatrick                                     user_map_size,
8003cab2bb3Spatrick                                     "SizeClassAllocator: region data")))
8013cab2bb3Spatrick         return false;
8023cab2bb3Spatrick       stat->Add(AllocatorStatMapped, user_map_size);
8033cab2bb3Spatrick       region->mapped_user += user_map_size;
8043cab2bb3Spatrick     }
8053cab2bb3Spatrick     const uptr new_chunks_count =
8063cab2bb3Spatrick         (region->mapped_user - region->allocated_user) / size;
8073cab2bb3Spatrick 
8083cab2bb3Spatrick     if (kMetadataSize) {
8093cab2bb3Spatrick       // Calculate the required space for metadata.
8103cab2bb3Spatrick       const uptr total_meta_bytes =
8113cab2bb3Spatrick           region->allocated_meta + new_chunks_count * kMetadataSize;
8123cab2bb3Spatrick       const uptr meta_map_size = (total_meta_bytes > region->mapped_meta) ?
8133cab2bb3Spatrick           RoundUpTo(total_meta_bytes - region->mapped_meta, kMetaMapSize) : 0;
8143cab2bb3Spatrick       // Map more space for metadata, if necessary.
8153cab2bb3Spatrick       if (meta_map_size) {
8163cab2bb3Spatrick         if (UNLIKELY(IsRegionExhausted(region, class_id, meta_map_size)))
8173cab2bb3Spatrick           return false;
8183cab2bb3Spatrick         if (UNLIKELY(!MapWithCallback(
8193cab2bb3Spatrick             GetMetadataEnd(region_beg) - region->mapped_meta - meta_map_size,
8203cab2bb3Spatrick             meta_map_size, "SizeClassAllocator: region metadata")))
8213cab2bb3Spatrick           return false;
8223cab2bb3Spatrick         region->mapped_meta += meta_map_size;
8233cab2bb3Spatrick       }
8243cab2bb3Spatrick     }
8253cab2bb3Spatrick 
8263cab2bb3Spatrick     // If necessary, allocate more space for the free array and populate it with
8273cab2bb3Spatrick     // newly allocated chunks.
8283cab2bb3Spatrick     const uptr total_freed_chunks = region->num_freed_chunks + new_chunks_count;
8293cab2bb3Spatrick     if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg, total_freed_chunks)))
8303cab2bb3Spatrick       return false;
8313cab2bb3Spatrick     CompactPtrT *free_array = GetFreeArray(region_beg);
8323cab2bb3Spatrick     for (uptr i = 0, chunk = region->allocated_user; i < new_chunks_count;
8333cab2bb3Spatrick          i++, chunk += size)
8343cab2bb3Spatrick       free_array[total_freed_chunks - 1 - i] = PointerToCompactPtr(0, chunk);
8353cab2bb3Spatrick     if (kRandomShuffleChunks)
8363cab2bb3Spatrick       RandomShuffle(&free_array[region->num_freed_chunks], new_chunks_count,
8373cab2bb3Spatrick                     &region->rand_state);
8383cab2bb3Spatrick 
8393cab2bb3Spatrick     // All necessary memory is mapped and now it is safe to advance all
8403cab2bb3Spatrick     // 'allocated_*' counters.
8413cab2bb3Spatrick     region->num_freed_chunks += new_chunks_count;
8423cab2bb3Spatrick     region->allocated_user += new_chunks_count * size;
8433cab2bb3Spatrick     CHECK_LE(region->allocated_user, region->mapped_user);
8443cab2bb3Spatrick     region->allocated_meta += new_chunks_count * kMetadataSize;
8453cab2bb3Spatrick     CHECK_LE(region->allocated_meta, region->mapped_meta);
8463cab2bb3Spatrick     region->exhausted = false;
8473cab2bb3Spatrick 
8483cab2bb3Spatrick     // TODO(alekseyshl): Consider bumping last_release_at_ns here to prevent
8493cab2bb3Spatrick     // MaybeReleaseToOS from releasing just allocated pages or protect these
8503cab2bb3Spatrick     // not yet used chunks some other way.
8513cab2bb3Spatrick 
8523cab2bb3Spatrick     return true;
8533cab2bb3Spatrick   }
8543cab2bb3Spatrick 
8553cab2bb3Spatrick   // Attempts to release RAM occupied by freed chunks back to OS. The region is
8563cab2bb3Spatrick   // expected to be locked.
857d89ec533Spatrick   //
858d89ec533Spatrick   // TODO(morehouse): Support a callback on memory release so HWASan can release
859d89ec533Spatrick   // aliases as well.
MaybeReleaseToOS(MemoryMapperT * memory_mapper,uptr class_id,bool force)860d89ec533Spatrick   void MaybeReleaseToOS(MemoryMapperT *memory_mapper, uptr class_id,
861d89ec533Spatrick                         bool force) {
8623cab2bb3Spatrick     RegionInfo *region = GetRegionInfo(class_id);
8633cab2bb3Spatrick     const uptr chunk_size = ClassIdToSize(class_id);
8643cab2bb3Spatrick     const uptr page_size = GetPageSizeCached();
8653cab2bb3Spatrick 
8663cab2bb3Spatrick     uptr n = region->num_freed_chunks;
8673cab2bb3Spatrick     if (n * chunk_size < page_size)
8683cab2bb3Spatrick       return;  // No chance to release anything.
8693cab2bb3Spatrick     if ((region->stats.n_freed -
8703cab2bb3Spatrick          region->rtoi.n_freed_at_last_release) * chunk_size < page_size) {
8713cab2bb3Spatrick       return;  // Nothing new to release.
8723cab2bb3Spatrick     }
8733cab2bb3Spatrick 
8743cab2bb3Spatrick     if (!force) {
8753cab2bb3Spatrick       s32 interval_ms = ReleaseToOSIntervalMs();
8763cab2bb3Spatrick       if (interval_ms < 0)
8773cab2bb3Spatrick         return;
8783cab2bb3Spatrick 
8793cab2bb3Spatrick       if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL >
8803cab2bb3Spatrick           MonotonicNanoTime()) {
8813cab2bb3Spatrick         return;  // Memory was returned recently.
8823cab2bb3Spatrick       }
8833cab2bb3Spatrick     }
8843cab2bb3Spatrick 
885d89ec533Spatrick     ReleaseFreeMemoryToOS(
8863cab2bb3Spatrick         GetFreeArray(GetRegionBeginBySizeClass(class_id)), n, chunk_size,
887d89ec533Spatrick         RoundUpTo(region->allocated_user, page_size) / page_size, memory_mapper,
888d89ec533Spatrick         class_id);
8893cab2bb3Spatrick 
890d89ec533Spatrick     uptr ranges, bytes;
891d89ec533Spatrick     if (memory_mapper->GetAndResetStats(ranges, bytes)) {
8923cab2bb3Spatrick       region->rtoi.n_freed_at_last_release = region->stats.n_freed;
893d89ec533Spatrick       region->rtoi.num_releases += ranges;
894d89ec533Spatrick       region->rtoi.last_released_bytes = bytes;
8953cab2bb3Spatrick     }
8963cab2bb3Spatrick     region->rtoi.last_release_at_ns = MonotonicNanoTime();
8973cab2bb3Spatrick   }
8983cab2bb3Spatrick };
899