1 //===-- sanitizer_common_test.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of ThreadSanitizer/AddressSanitizer runtime. 10 // 11 //===----------------------------------------------------------------------===// 12 #include <algorithm> 13 14 #include "sanitizer_common/sanitizer_allocator_internal.h" 15 #include "sanitizer_common/sanitizer_common.h" 16 #include "sanitizer_common/sanitizer_file.h" 17 #include "sanitizer_common/sanitizer_flags.h" 18 #include "sanitizer_common/sanitizer_libc.h" 19 #include "sanitizer_common/sanitizer_platform.h" 20 21 #include "sanitizer_pthread_wrappers.h" 22 23 #include "gtest/gtest.h" 24 25 namespace __sanitizer { 26 27 static bool IsSorted(const uptr *array, uptr n) { 28 for (uptr i = 1; i < n; i++) { 29 if (array[i] < array[i - 1]) return false; 30 } 31 return true; 32 } 33 34 TEST(SanitizerCommon, SortTest) { 35 uptr array[100]; 36 uptr n = 100; 37 // Already sorted. 38 for (uptr i = 0; i < n; i++) { 39 array[i] = i; 40 } 41 Sort(array, n); 42 EXPECT_TRUE(IsSorted(array, n)); 43 // Reverse order. 44 for (uptr i = 0; i < n; i++) { 45 array[i] = n - 1 - i; 46 } 47 Sort(array, n); 48 EXPECT_TRUE(IsSorted(array, n)); 49 // Mixed order. 50 for (uptr i = 0; i < n; i++) { 51 array[i] = (i % 2 == 0) ? i : n - 1 - i; 52 } 53 Sort(array, n); 54 EXPECT_TRUE(IsSorted(array, n)); 55 // All equal. 56 for (uptr i = 0; i < n; i++) { 57 array[i] = 42; 58 } 59 Sort(array, n); 60 EXPECT_TRUE(IsSorted(array, n)); 61 // All but one sorted. 62 for (uptr i = 0; i < n - 1; i++) { 63 array[i] = i; 64 } 65 array[n - 1] = 42; 66 Sort(array, n); 67 EXPECT_TRUE(IsSorted(array, n)); 68 // Minimal case - sort three elements. 69 array[0] = 1; 70 array[1] = 0; 71 Sort(array, 2); 72 EXPECT_TRUE(IsSorted(array, 2)); 73 } 74 75 TEST(SanitizerCommon, MmapAlignedOrDieOnFatalError) { 76 uptr PageSize = GetPageSizeCached(); 77 for (uptr size = 1; size <= 32; size *= 2) { 78 for (uptr alignment = 1; alignment <= 32; alignment *= 2) { 79 for (int iter = 0; iter < 100; iter++) { 80 uptr res = (uptr)MmapAlignedOrDieOnFatalError( 81 size * PageSize, alignment * PageSize, "MmapAlignedOrDieTest"); 82 EXPECT_EQ(0U, res % (alignment * PageSize)); 83 internal_memset((void*)res, 1, size * PageSize); 84 UnmapOrDie((void*)res, size * PageSize); 85 } 86 } 87 } 88 } 89 90 TEST(SanitizerCommon, InternalMmapVectorRoundUpCapacity) { 91 InternalMmapVector<uptr> v; 92 v.reserve(1); 93 CHECK_EQ(v.capacity(), GetPageSizeCached() / sizeof(uptr)); 94 } 95 96 TEST(SanitizerCommon, InternalMmapVectorReize) { 97 InternalMmapVector<uptr> v; 98 CHECK_EQ(0U, v.size()); 99 CHECK_GE(v.capacity(), v.size()); 100 101 v.reserve(1000); 102 CHECK_EQ(0U, v.size()); 103 CHECK_GE(v.capacity(), 1000U); 104 105 v.resize(10000); 106 CHECK_EQ(10000U, v.size()); 107 CHECK_GE(v.capacity(), v.size()); 108 uptr cap = v.capacity(); 109 110 v.resize(100); 111 CHECK_EQ(100U, v.size()); 112 CHECK_EQ(v.capacity(), cap); 113 114 v.reserve(10); 115 CHECK_EQ(100U, v.size()); 116 CHECK_EQ(v.capacity(), cap); 117 } 118 119 TEST(SanitizerCommon, InternalMmapVector) { 120 InternalMmapVector<uptr> vector; 121 for (uptr i = 0; i < 100; i++) { 122 EXPECT_EQ(i, vector.size()); 123 vector.push_back(i); 124 } 125 for (uptr i = 0; i < 100; i++) { 126 EXPECT_EQ(i, vector[i]); 127 } 128 for (int i = 99; i >= 0; i--) { 129 EXPECT_EQ((uptr)i, vector.back()); 130 vector.pop_back(); 131 EXPECT_EQ((uptr)i, vector.size()); 132 } 133 InternalMmapVector<uptr> empty_vector; 134 CHECK_EQ(empty_vector.capacity(), 0U); 135 CHECK_EQ(0U, empty_vector.size()); 136 } 137 138 TEST(SanitizerCommon, InternalMmapVectorEq) { 139 InternalMmapVector<uptr> vector1; 140 InternalMmapVector<uptr> vector2; 141 for (uptr i = 0; i < 100; i++) { 142 vector1.push_back(i); 143 vector2.push_back(i); 144 } 145 EXPECT_TRUE(vector1 == vector2); 146 EXPECT_FALSE(vector1 != vector2); 147 148 vector1.push_back(1); 149 EXPECT_FALSE(vector1 == vector2); 150 EXPECT_TRUE(vector1 != vector2); 151 152 vector2.push_back(1); 153 EXPECT_TRUE(vector1 == vector2); 154 EXPECT_FALSE(vector1 != vector2); 155 156 vector1[55] = 1; 157 EXPECT_FALSE(vector1 == vector2); 158 EXPECT_TRUE(vector1 != vector2); 159 } 160 161 TEST(SanitizerCommon, InternalMmapVectorSwap) { 162 InternalMmapVector<uptr> vector1; 163 InternalMmapVector<uptr> vector2; 164 InternalMmapVector<uptr> vector3; 165 InternalMmapVector<uptr> vector4; 166 for (uptr i = 0; i < 100; i++) { 167 vector1.push_back(i); 168 vector2.push_back(i); 169 vector3.push_back(-i); 170 vector4.push_back(-i); 171 } 172 EXPECT_NE(vector2, vector3); 173 EXPECT_NE(vector1, vector4); 174 vector1.swap(vector3); 175 EXPECT_EQ(vector2, vector3); 176 EXPECT_EQ(vector1, vector4); 177 } 178 179 void TestThreadInfo(bool main) { 180 uptr stk_addr = 0; 181 uptr stk_size = 0; 182 uptr tls_addr = 0; 183 uptr tls_size = 0; 184 GetThreadStackAndTls(main, &stk_addr, &stk_size, &tls_addr, &tls_size); 185 186 int stack_var; 187 EXPECT_NE(stk_addr, (uptr)0); 188 EXPECT_NE(stk_size, (uptr)0); 189 EXPECT_GT((uptr)&stack_var, stk_addr); 190 EXPECT_LT((uptr)&stack_var, stk_addr + stk_size); 191 192 #if SANITIZER_LINUX && defined(__x86_64__) 193 static __thread int thread_var; 194 EXPECT_NE(tls_addr, (uptr)0); 195 EXPECT_NE(tls_size, (uptr)0); 196 EXPECT_GT((uptr)&thread_var, tls_addr); 197 EXPECT_LT((uptr)&thread_var, tls_addr + tls_size); 198 199 // Ensure that tls and stack do not intersect. 200 uptr tls_end = tls_addr + tls_size; 201 EXPECT_TRUE(tls_addr < stk_addr || tls_addr >= stk_addr + stk_size); 202 EXPECT_TRUE(tls_end < stk_addr || tls_end >= stk_addr + stk_size); 203 EXPECT_TRUE((tls_addr < stk_addr) == (tls_end < stk_addr)); 204 #endif 205 } 206 207 static void *WorkerThread(void *arg) { 208 TestThreadInfo(false); 209 return 0; 210 } 211 212 TEST(SanitizerCommon, ThreadStackTlsMain) { 213 InitTlsSize(); 214 TestThreadInfo(true); 215 } 216 217 TEST(SanitizerCommon, ThreadStackTlsWorker) { 218 InitTlsSize(); 219 pthread_t t; 220 PTHREAD_CREATE(&t, 0, WorkerThread, 0); 221 PTHREAD_JOIN(t, 0); 222 } 223 224 bool UptrLess(uptr a, uptr b) { 225 return a < b; 226 } 227 228 TEST(SanitizerCommon, InternalLowerBound) { 229 std::vector<int> arr = {1, 3, 5, 7, 11}; 230 231 EXPECT_EQ(0u, InternalLowerBound(arr, 0)); 232 EXPECT_EQ(0u, InternalLowerBound(arr, 1)); 233 EXPECT_EQ(1u, InternalLowerBound(arr, 2)); 234 EXPECT_EQ(1u, InternalLowerBound(arr, 3)); 235 EXPECT_EQ(2u, InternalLowerBound(arr, 4)); 236 EXPECT_EQ(2u, InternalLowerBound(arr, 5)); 237 EXPECT_EQ(3u, InternalLowerBound(arr, 6)); 238 EXPECT_EQ(3u, InternalLowerBound(arr, 7)); 239 EXPECT_EQ(4u, InternalLowerBound(arr, 8)); 240 EXPECT_EQ(4u, InternalLowerBound(arr, 9)); 241 EXPECT_EQ(4u, InternalLowerBound(arr, 10)); 242 EXPECT_EQ(4u, InternalLowerBound(arr, 11)); 243 EXPECT_EQ(5u, InternalLowerBound(arr, 12)); 244 } 245 246 TEST(SanitizerCommon, InternalLowerBoundVsStdLowerBound) { 247 std::vector<int> data; 248 auto create_item = [] (size_t i, size_t j) { 249 auto v = i * 10000 + j; 250 return ((v << 6) + (v >> 6) + 0x9e3779b9) % 100; 251 }; 252 for (size_t i = 0; i < 1000; ++i) { 253 data.resize(i); 254 for (size_t j = 0; j < i; ++j) { 255 data[j] = create_item(i, j); 256 } 257 258 std::sort(data.begin(), data.end()); 259 260 for (size_t j = 0; j < i; ++j) { 261 int val = create_item(i, j); 262 for (auto to_find : {val - 1, val, val + 1}) { 263 uptr expected = 264 std::lower_bound(data.begin(), data.end(), to_find) - data.begin(); 265 EXPECT_EQ(expected, 266 InternalLowerBound(data, to_find, std::less<int>())); 267 } 268 } 269 } 270 } 271 272 class SortAndDedupTest : public ::testing::TestWithParam<std::vector<int>> {}; 273 274 TEST_P(SortAndDedupTest, SortAndDedup) { 275 std::vector<int> v_std = GetParam(); 276 std::sort(v_std.begin(), v_std.end()); 277 v_std.erase(std::unique(v_std.begin(), v_std.end()), v_std.end()); 278 279 std::vector<int> v = GetParam(); 280 SortAndDedup(v); 281 282 EXPECT_EQ(v_std, v); 283 } 284 285 const std::vector<int> kSortAndDedupTests[] = { 286 {}, 287 {1}, 288 {1, 1}, 289 {1, 1, 1}, 290 {1, 2, 3}, 291 {3, 2, 1}, 292 {1, 2, 2, 3}, 293 {3, 3, 2, 1, 2}, 294 {3, 3, 2, 1, 2}, 295 {1, 2, 1, 1, 2, 1, 1, 1, 2, 2}, 296 {1, 3, 3, 2, 3, 1, 3, 1, 4, 4, 2, 1, 4, 1, 1, 2, 2}, 297 }; 298 INSTANTIATE_TEST_SUITE_P(SortAndDedupTest, SortAndDedupTest, 299 ::testing::ValuesIn(kSortAndDedupTests)); 300 301 #if SANITIZER_LINUX && !SANITIZER_ANDROID 302 TEST(SanitizerCommon, FindPathToBinary) { 303 char *true_path = FindPathToBinary("true"); 304 EXPECT_NE((char*)0, internal_strstr(true_path, "/bin/true")); 305 InternalFree(true_path); 306 EXPECT_EQ(0, FindPathToBinary("unexisting_binary.ergjeorj")); 307 } 308 #elif SANITIZER_WINDOWS 309 TEST(SanitizerCommon, FindPathToBinary) { 310 // ntdll.dll should be on PATH in all supported test environments on all 311 // supported Windows versions. 312 char *ntdll_path = FindPathToBinary("ntdll.dll"); 313 EXPECT_NE((char*)0, internal_strstr(ntdll_path, "ntdll.dll")); 314 InternalFree(ntdll_path); 315 EXPECT_EQ(0, FindPathToBinary("unexisting_binary.ergjeorj")); 316 } 317 #endif 318 319 TEST(SanitizerCommon, StripPathPrefix) { 320 EXPECT_EQ(0, StripPathPrefix(0, "prefix")); 321 EXPECT_STREQ("foo", StripPathPrefix("foo", 0)); 322 EXPECT_STREQ("dir/file.cc", 323 StripPathPrefix("/usr/lib/dir/file.cc", "/usr/lib/")); 324 EXPECT_STREQ("/file.cc", StripPathPrefix("/usr/myroot/file.cc", "/myroot")); 325 EXPECT_STREQ("file.h", StripPathPrefix("/usr/lib/./file.h", "/usr/lib/")); 326 } 327 328 TEST(SanitizerCommon, RemoveANSIEscapeSequencesFromString) { 329 RemoveANSIEscapeSequencesFromString(nullptr); 330 const char *buffs[22] = { 331 "Default", "Default", 332 "\033[95mLight magenta", "Light magenta", 333 "\033[30mBlack\033[32mGreen\033[90mGray", "BlackGreenGray", 334 "\033[106mLight cyan \033[107mWhite ", "Light cyan White ", 335 "\033[31mHello\033[0m World", "Hello World", 336 "\033[38;5;82mHello \033[38;5;198mWorld", "Hello World", 337 "123[653456789012", "123[653456789012", 338 "Normal \033[5mBlink \033[25mNormal", "Normal Blink Normal", 339 "\033[106m\033[107m", "", 340 "", "", 341 " ", " ", 342 }; 343 344 for (size_t i = 0; i < ARRAY_SIZE(buffs); i+=2) { 345 char *buffer_copy = internal_strdup(buffs[i]); 346 RemoveANSIEscapeSequencesFromString(buffer_copy); 347 EXPECT_STREQ(buffer_copy, buffs[i+1]); 348 InternalFree(buffer_copy); 349 } 350 } 351 352 TEST(SanitizerCommon, InternalScopedString) { 353 InternalScopedString str; 354 EXPECT_EQ(0U, str.length()); 355 EXPECT_STREQ("", str.data()); 356 357 str.append("foo"); 358 EXPECT_EQ(3U, str.length()); 359 EXPECT_STREQ("foo", str.data()); 360 361 int x = 1234; 362 str.append("%d", x); 363 EXPECT_EQ(7U, str.length()); 364 EXPECT_STREQ("foo1234", str.data()); 365 366 str.append("%d", x); 367 EXPECT_EQ(11U, str.length()); 368 EXPECT_STREQ("foo12341234", str.data()); 369 370 str.clear(); 371 EXPECT_EQ(0U, str.length()); 372 EXPECT_STREQ("", str.data()); 373 } 374 375 TEST(SanitizerCommon, InternalScopedStringLarge) { 376 InternalScopedString str; 377 std::string expected; 378 for (int i = 0; i < 1000; ++i) { 379 std::string append(i, 'a' + i % 26); 380 expected += append; 381 str.append(append.c_str()); 382 EXPECT_EQ(expected, str.data()); 383 } 384 } 385 386 TEST(SanitizerCommon, InternalScopedStringLargeFormat) { 387 InternalScopedString str; 388 std::string expected; 389 for (int i = 0; i < 1000; ++i) { 390 std::string append(i, 'a' + i % 26); 391 expected += append; 392 str.append("%s", append.c_str()); 393 EXPECT_EQ(expected, str.data()); 394 } 395 } 396 397 #if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_IOS 398 TEST(SanitizerCommon, GetRandom) { 399 u8 buffer_1[32], buffer_2[32]; 400 for (bool blocking : { false, true }) { 401 EXPECT_FALSE(GetRandom(nullptr, 32, blocking)); 402 EXPECT_FALSE(GetRandom(buffer_1, 0, blocking)); 403 EXPECT_FALSE(GetRandom(buffer_1, 512, blocking)); 404 EXPECT_EQ(ARRAY_SIZE(buffer_1), ARRAY_SIZE(buffer_2)); 405 for (uptr size = 4; size <= ARRAY_SIZE(buffer_1); size += 4) { 406 for (uptr i = 0; i < 100; i++) { 407 EXPECT_TRUE(GetRandom(buffer_1, size, blocking)); 408 EXPECT_TRUE(GetRandom(buffer_2, size, blocking)); 409 EXPECT_NE(internal_memcmp(buffer_1, buffer_2, size), 0); 410 } 411 } 412 } 413 } 414 #endif 415 416 TEST(SanitizerCommon, ReservedAddressRangeInit) { 417 uptr init_size = 0xffff; 418 ReservedAddressRange address_range; 419 uptr res = address_range.Init(init_size); 420 CHECK_NE(res, (void*)-1); 421 UnmapOrDie((void*)res, init_size); 422 // Should be able to map into the same space now. 423 ReservedAddressRange address_range2; 424 uptr res2 = address_range2.Init(init_size, nullptr, res); 425 CHECK_EQ(res, res2); 426 427 // TODO(flowerhack): Once this is switched to the "real" implementation 428 // (rather than passing through to MmapNoAccess*), enforce and test "no 429 // double initializations allowed" 430 } 431 432 TEST(SanitizerCommon, ReservedAddressRangeMap) { 433 constexpr uptr init_size = 0xffff; 434 ReservedAddressRange address_range; 435 uptr res = address_range.Init(init_size); 436 CHECK_NE(res, (void*) -1); 437 438 // Valid mappings should succeed. 439 CHECK_EQ(res, address_range.Map(res, init_size)); 440 441 // Valid mappings should be readable. 442 unsigned char buffer[init_size]; 443 memcpy(buffer, reinterpret_cast<void *>(res), init_size); 444 445 // TODO(flowerhack): Once this is switched to the "real" implementation, make 446 // sure you can only mmap into offsets in the Init range. 447 } 448 449 TEST(SanitizerCommon, ReservedAddressRangeUnmap) { 450 uptr PageSize = GetPageSizeCached(); 451 uptr init_size = PageSize * 8; 452 ReservedAddressRange address_range; 453 uptr base_addr = address_range.Init(init_size); 454 CHECK_NE(base_addr, (void*)-1); 455 CHECK_EQ(base_addr, address_range.Map(base_addr, init_size)); 456 457 // Unmapping the entire range should succeed. 458 address_range.Unmap(base_addr, init_size); 459 460 // Map a new range. 461 base_addr = address_range.Init(init_size); 462 CHECK_EQ(base_addr, address_range.Map(base_addr, init_size)); 463 464 // Windows doesn't allow partial unmappings. 465 #if !SANITIZER_WINDOWS 466 467 // Unmapping at the beginning should succeed. 468 address_range.Unmap(base_addr, PageSize); 469 470 // Unmapping at the end should succeed. 471 uptr new_start = reinterpret_cast<uptr>(address_range.base()) + 472 address_range.size() - PageSize; 473 address_range.Unmap(new_start, PageSize); 474 475 #endif 476 477 // Unmapping in the middle of the ReservedAddressRange should fail. 478 EXPECT_DEATH(address_range.Unmap(base_addr + (PageSize * 2), PageSize), ".*"); 479 } 480 481 TEST(SanitizerCommon, ReadBinaryNameCached) { 482 char buf[256]; 483 EXPECT_NE((uptr)0, ReadBinaryNameCached(buf, sizeof(buf))); 484 } 485 486 } // namespace __sanitizer 487