xref: /openbsd/gnu/llvm/lld/ELF/InputSection.cpp (revision 73471bf0)
1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputSection.h"
10 #include "Config.h"
11 #include "EhFrame.h"
12 #include "InputFiles.h"
13 #include "LinkerScript.h"
14 #include "OutputSections.h"
15 #include "Relocations.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 #include "SyntheticSections.h"
19 #include "Target.h"
20 #include "Thunks.h"
21 #include "lld/Common/ErrorHandler.h"
22 #include "lld/Common/Memory.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Compression.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/Threading.h"
27 #include "llvm/Support/xxhash.h"
28 #include <algorithm>
29 #include <mutex>
30 #include <set>
31 #include <vector>
32 
33 using namespace llvm;
34 using namespace llvm::ELF;
35 using namespace llvm::object;
36 using namespace llvm::support;
37 using namespace llvm::support::endian;
38 using namespace llvm::sys;
39 using namespace lld;
40 using namespace lld::elf;
41 
42 std::vector<InputSectionBase *> elf::inputSections;
43 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax;
44 
45 // Returns a string to construct an error message.
46 std::string lld::toString(const InputSectionBase *sec) {
47   return (toString(sec->file) + ":(" + sec->name + ")").str();
48 }
49 
50 template <class ELFT>
51 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
52                                             const typename ELFT::Shdr &hdr) {
53   if (hdr.sh_type == SHT_NOBITS)
54     return makeArrayRef<uint8_t>(nullptr, hdr.sh_size);
55   return check(file.getObj().getSectionContents(&hdr));
56 }
57 
58 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
59                                    uint32_t type, uint64_t entsize,
60                                    uint32_t link, uint32_t info,
61                                    uint32_t alignment, ArrayRef<uint8_t> data,
62                                    StringRef name, Kind sectionKind)
63     : SectionBase(sectionKind, name, flags, entsize, alignment, type, info,
64                   link),
65       file(file), rawData(data) {
66   // In order to reduce memory allocation, we assume that mergeable
67   // sections are smaller than 4 GiB, which is not an unreasonable
68   // assumption as of 2017.
69   if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX)
70     error(toString(this) + ": section too large");
71 
72   numRelocations = 0;
73   areRelocsRela = false;
74 
75   // The ELF spec states that a value of 0 means the section has
76   // no alignment constraints.
77   uint32_t v = std::max<uint32_t>(alignment, 1);
78   if (!isPowerOf2_64(v))
79     fatal(toString(this) + ": sh_addralign is not a power of 2");
80   this->alignment = v;
81 
82   // In ELF, each section can be compressed by zlib, and if compressed,
83   // section name may be mangled by appending "z" (e.g. ".zdebug_info").
84   // If that's the case, demangle section name so that we can handle a
85   // section as if it weren't compressed.
86   if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) {
87     if (!zlib::isAvailable())
88       error(toString(file) + ": contains a compressed section, " +
89             "but zlib is not available");
90     parseCompressedHeader();
91   }
92 }
93 
94 // Drop SHF_GROUP bit unless we are producing a re-linkable object file.
95 // SHF_GROUP is a marker that a section belongs to some comdat group.
96 // That flag doesn't make sense in an executable.
97 static uint64_t getFlags(uint64_t flags) {
98   flags &= ~(uint64_t)SHF_INFO_LINK;
99   if (!config->relocatable)
100     flags &= ~(uint64_t)SHF_GROUP;
101   return flags;
102 }
103 
104 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
105 // March 2017) fail to infer section types for sections starting with
106 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
107 // SHF_INIT_ARRAY. As a result, the following assembler directive
108 // creates ".init_array.100" with SHT_PROGBITS, for example.
109 //
110 //   .section .init_array.100, "aw"
111 //
112 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
113 // incorrect inputs as if they were correct from the beginning.
114 static uint64_t getType(uint64_t type, StringRef name) {
115   if (type == SHT_PROGBITS && name.startswith(".init_array."))
116     return SHT_INIT_ARRAY;
117   if (type == SHT_PROGBITS && name.startswith(".fini_array."))
118     return SHT_FINI_ARRAY;
119   return type;
120 }
121 
122 template <class ELFT>
123 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
124                                    const typename ELFT::Shdr &hdr,
125                                    StringRef name, Kind sectionKind)
126     : InputSectionBase(&file, getFlags(hdr.sh_flags),
127                        getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link,
128                        hdr.sh_info, hdr.sh_addralign,
129                        getSectionContents(file, hdr), name, sectionKind) {
130   // We reject object files having insanely large alignments even though
131   // they are allowed by the spec. I think 4GB is a reasonable limitation.
132   // We might want to relax this in the future.
133   if (hdr.sh_addralign > UINT32_MAX)
134     fatal(toString(&file) + ": section sh_addralign is too large");
135 }
136 
137 size_t InputSectionBase::getSize() const {
138   if (auto *s = dyn_cast<SyntheticSection>(this))
139     return s->getSize();
140   if (uncompressedSize >= 0)
141     return uncompressedSize;
142   return rawData.size() - bytesDropped;
143 }
144 
145 void InputSectionBase::uncompress() const {
146   size_t size = uncompressedSize;
147   char *uncompressedBuf;
148   {
149     static std::mutex mu;
150     std::lock_guard<std::mutex> lock(mu);
151     uncompressedBuf = bAlloc.Allocate<char>(size);
152   }
153 
154   if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size))
155     fatal(toString(this) +
156           ": uncompress failed: " + llvm::toString(std::move(e)));
157   rawData = makeArrayRef((uint8_t *)uncompressedBuf, size);
158   uncompressedSize = -1;
159 }
160 
161 uint64_t InputSectionBase::getOffsetInFile() const {
162   const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart();
163   const uint8_t *secStart = data().begin();
164   return secStart - fileStart;
165 }
166 
167 uint64_t SectionBase::getOffset(uint64_t offset) const {
168   switch (kind()) {
169   case Output: {
170     auto *os = cast<OutputSection>(this);
171     // For output sections we treat offset -1 as the end of the section.
172     return offset == uint64_t(-1) ? os->size : offset;
173   }
174   case Regular:
175   case Synthetic:
176     return cast<InputSection>(this)->getOffset(offset);
177   case EHFrame:
178     // The file crtbeginT.o has relocations pointing to the start of an empty
179     // .eh_frame that is known to be the first in the link. It does that to
180     // identify the start of the output .eh_frame.
181     return offset;
182   case Merge:
183     const MergeInputSection *ms = cast<MergeInputSection>(this);
184     if (InputSection *isec = ms->getParent())
185       return isec->getOffset(ms->getParentOffset(offset));
186     return ms->getParentOffset(offset);
187   }
188   llvm_unreachable("invalid section kind");
189 }
190 
191 uint64_t SectionBase::getVA(uint64_t offset) const {
192   const OutputSection *out = getOutputSection();
193   return (out ? out->addr : 0) + getOffset(offset);
194 }
195 
196 OutputSection *SectionBase::getOutputSection() {
197   InputSection *sec;
198   if (auto *isec = dyn_cast<InputSection>(this))
199     sec = isec;
200   else if (auto *ms = dyn_cast<MergeInputSection>(this))
201     sec = ms->getParent();
202   else if (auto *eh = dyn_cast<EhInputSection>(this))
203     sec = eh->getParent();
204   else
205     return cast<OutputSection>(this);
206   return sec ? sec->getParent() : nullptr;
207 }
208 
209 // When a section is compressed, `rawData` consists with a header followed
210 // by zlib-compressed data. This function parses a header to initialize
211 // `uncompressedSize` member and remove the header from `rawData`.
212 void InputSectionBase::parseCompressedHeader() {
213   using Chdr64 = typename ELF64LE::Chdr;
214   using Chdr32 = typename ELF32LE::Chdr;
215 
216   // Old-style header
217   if (name.startswith(".zdebug")) {
218     if (!toStringRef(rawData).startswith("ZLIB")) {
219       error(toString(this) + ": corrupted compressed section header");
220       return;
221     }
222     rawData = rawData.slice(4);
223 
224     if (rawData.size() < 8) {
225       error(toString(this) + ": corrupted compressed section header");
226       return;
227     }
228 
229     uncompressedSize = read64be(rawData.data());
230     rawData = rawData.slice(8);
231 
232     // Restore the original section name.
233     // (e.g. ".zdebug_info" -> ".debug_info")
234     name = saver.save("." + name.substr(2));
235     return;
236   }
237 
238   assert(flags & SHF_COMPRESSED);
239   flags &= ~(uint64_t)SHF_COMPRESSED;
240 
241   // New-style 64-bit header
242   if (config->is64) {
243     if (rawData.size() < sizeof(Chdr64)) {
244       error(toString(this) + ": corrupted compressed section");
245       return;
246     }
247 
248     auto *hdr = reinterpret_cast<const Chdr64 *>(rawData.data());
249     if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
250       error(toString(this) + ": unsupported compression type");
251       return;
252     }
253 
254     uncompressedSize = hdr->ch_size;
255     alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
256     rawData = rawData.slice(sizeof(*hdr));
257     return;
258   }
259 
260   // New-style 32-bit header
261   if (rawData.size() < sizeof(Chdr32)) {
262     error(toString(this) + ": corrupted compressed section");
263     return;
264   }
265 
266   auto *hdr = reinterpret_cast<const Chdr32 *>(rawData.data());
267   if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
268     error(toString(this) + ": unsupported compression type");
269     return;
270   }
271 
272   uncompressedSize = hdr->ch_size;
273   alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
274   rawData = rawData.slice(sizeof(*hdr));
275 }
276 
277 InputSection *InputSectionBase::getLinkOrderDep() const {
278   assert(link);
279   assert(flags & SHF_LINK_ORDER);
280   return cast<InputSection>(file->getSections()[link]);
281 }
282 
283 // Find a function symbol that encloses a given location.
284 template <class ELFT>
285 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) {
286   for (Symbol *b : file->getSymbols())
287     if (Defined *d = dyn_cast<Defined>(b))
288       if (d->section == this && d->type == STT_FUNC && d->value <= offset &&
289           offset < d->value + d->size)
290         return d;
291   return nullptr;
292 }
293 
294 // Returns a source location string. Used to construct an error message.
295 template <class ELFT>
296 std::string InputSectionBase::getLocation(uint64_t offset) {
297   std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str();
298 
299   // We don't have file for synthetic sections.
300   if (getFile<ELFT>() == nullptr)
301     return (config->outputFile + ":(" + secAndOffset + ")")
302         .str();
303 
304   // First check if we can get desired values from debugging information.
305   if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset))
306     return info->FileName + ":" + std::to_string(info->Line) + ":(" +
307            secAndOffset + ")";
308 
309   // File->sourceFile contains STT_FILE symbol that contains a
310   // source file name. If it's missing, we use an object file name.
311   std::string srcFile = std::string(getFile<ELFT>()->sourceFile);
312   if (srcFile.empty())
313     srcFile = toString(file);
314 
315   if (Defined *d = getEnclosingFunction<ELFT>(offset))
316     return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")";
317 
318   // If there's no symbol, print out the offset in the section.
319   return (srcFile + ":(" + secAndOffset + ")");
320 }
321 
322 // This function is intended to be used for constructing an error message.
323 // The returned message looks like this:
324 //
325 //   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
326 //
327 //  Returns an empty string if there's no way to get line info.
328 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) {
329   return file->getSrcMsg(sym, *this, offset);
330 }
331 
332 // Returns a filename string along with an optional section name. This
333 // function is intended to be used for constructing an error
334 // message. The returned message looks like this:
335 //
336 //   path/to/foo.o:(function bar)
337 //
338 // or
339 //
340 //   path/to/foo.o:(function bar) in archive path/to/bar.a
341 std::string InputSectionBase::getObjMsg(uint64_t off) {
342   std::string filename = std::string(file->getName());
343 
344   std::string archive;
345   if (!file->archiveName.empty())
346     archive = " in archive " + file->archiveName;
347 
348   // Find a symbol that encloses a given location.
349   for (Symbol *b : file->getSymbols())
350     if (auto *d = dyn_cast<Defined>(b))
351       if (d->section == this && d->value <= off && off < d->value + d->size)
352         return filename + ":(" + toString(*d) + ")" + archive;
353 
354   // If there's no symbol, print out the offset in the section.
355   return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive)
356       .str();
357 }
358 
359 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
360 
361 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
362                            uint32_t alignment, ArrayRef<uint8_t> data,
363                            StringRef name, Kind k)
364     : InputSectionBase(f, flags, type,
365                        /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data,
366                        name, k) {}
367 
368 template <class ELFT>
369 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
370                            StringRef name)
371     : InputSectionBase(f, header, name, InputSectionBase::Regular) {}
372 
373 bool InputSection::classof(const SectionBase *s) {
374   return s->kind() == SectionBase::Regular ||
375          s->kind() == SectionBase::Synthetic;
376 }
377 
378 OutputSection *InputSection::getParent() const {
379   return cast_or_null<OutputSection>(parent);
380 }
381 
382 // Copy SHT_GROUP section contents. Used only for the -r option.
383 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
384   // ELFT::Word is the 32-bit integral type in the target endianness.
385   using u32 = typename ELFT::Word;
386   ArrayRef<u32> from = getDataAs<u32>();
387   auto *to = reinterpret_cast<u32 *>(buf);
388 
389   // The first entry is not a section number but a flag.
390   *to++ = from[0];
391 
392   // Adjust section numbers because section numbers in an input object
393   // files are different in the output.
394   ArrayRef<InputSectionBase *> sections = file->getSections();
395   for (uint32_t idx : from.slice(1))
396     *to++ = sections[idx]->getOutputSection()->sectionIndex;
397 }
398 
399 InputSectionBase *InputSection::getRelocatedSection() const {
400   if (!file || (type != SHT_RELA && type != SHT_REL))
401     return nullptr;
402   ArrayRef<InputSectionBase *> sections = file->getSections();
403   return sections[info];
404 }
405 
406 // This is used for -r and --emit-relocs. We can't use memcpy to copy
407 // relocations because we need to update symbol table offset and section index
408 // for each relocation. So we copy relocations one by one.
409 template <class ELFT, class RelTy>
410 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) {
411   InputSectionBase *sec = getRelocatedSection();
412 
413   for (const RelTy &rel : rels) {
414     RelType type = rel.getType(config->isMips64EL);
415     const ObjFile<ELFT> *file = getFile<ELFT>();
416     Symbol &sym = file->getRelocTargetSym(rel);
417 
418     auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
419     buf += sizeof(RelTy);
420 
421     if (RelTy::IsRela)
422       p->r_addend = getAddend<ELFT>(rel);
423 
424     // Output section VA is zero for -r, so r_offset is an offset within the
425     // section, but for --emit-relocs it is a virtual address.
426     p->r_offset = sec->getVA(rel.r_offset);
427     p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type,
428                         config->isMips64EL);
429 
430     if (sym.type == STT_SECTION) {
431       // We combine multiple section symbols into only one per
432       // section. This means we have to update the addend. That is
433       // trivial for Elf_Rela, but for Elf_Rel we have to write to the
434       // section data. We do that by adding to the Relocation vector.
435 
436       // .eh_frame is horribly special and can reference discarded sections. To
437       // avoid having to parse and recreate .eh_frame, we just replace any
438       // relocation in it pointing to discarded sections with R_*_NONE, which
439       // hopefully creates a frame that is ignored at runtime. Also, don't warn
440       // on .gcc_except_table and debug sections.
441       //
442       // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
443       auto *d = dyn_cast<Defined>(&sym);
444       if (!d) {
445         if (!isDebugSection(*sec) && sec->name != ".eh_frame" &&
446             sec->name != ".gcc_except_table" && sec->name != ".got2" &&
447             sec->name != ".toc") {
448           uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
449           Elf_Shdr_Impl<ELFT> sec =
450               CHECK(file->getObj().sections(), file)[secIdx];
451           warn("relocation refers to a discarded section: " +
452                CHECK(file->getObj().getSectionName(&sec), file) +
453                "\n>>> referenced by " + getObjMsg(p->r_offset));
454         }
455         p->setSymbolAndType(0, 0, false);
456         continue;
457       }
458       SectionBase *section = d->section->repl;
459       if (!section->isLive()) {
460         p->setSymbolAndType(0, 0, false);
461         continue;
462       }
463 
464       int64_t addend = getAddend<ELFT>(rel);
465       const uint8_t *bufLoc = sec->data().begin() + rel.r_offset;
466       if (!RelTy::IsRela)
467         addend = target->getImplicitAddend(bufLoc, type);
468 
469       if (config->emachine == EM_MIPS &&
470           target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
471         // Some MIPS relocations depend on "gp" value. By default,
472         // this value has 0x7ff0 offset from a .got section. But
473         // relocatable files produced by a compiler or a linker
474         // might redefine this default value and we must use it
475         // for a calculation of the relocation result. When we
476         // generate EXE or DSO it's trivial. Generating a relocatable
477         // output is more difficult case because the linker does
478         // not calculate relocations in this mode and loses
479         // individual "gp" values used by each input object file.
480         // As a workaround we add the "gp" value to the relocation
481         // addend and save it back to the file.
482         addend += sec->getFile<ELFT>()->mipsGp0;
483       }
484 
485       if (RelTy::IsRela)
486         p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
487       else if (config->relocatable && type != target->noneRel)
488         sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym});
489     } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 &&
490                p->r_addend >= 0x8000) {
491       // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
492       // indicates that r30 is relative to the input section .got2
493       // (r_addend>=0x8000), after linking, r30 should be relative to the output
494       // section .got2 . To compensate for the shift, adjust r_addend by
495       // ppc32Got2OutSecOff.
496       p->r_addend += sec->file->ppc32Got2OutSecOff;
497     }
498   }
499 }
500 
501 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
502 // references specially. The general rule is that the value of the symbol in
503 // this context is the address of the place P. A further special case is that
504 // branch relocations to an undefined weak reference resolve to the next
505 // instruction.
506 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
507                                               uint32_t p) {
508   switch (type) {
509   // Unresolved branch relocations to weak references resolve to next
510   // instruction, this will be either 2 or 4 bytes on from P.
511   case R_ARM_THM_JUMP11:
512     return p + 2 + a;
513   case R_ARM_CALL:
514   case R_ARM_JUMP24:
515   case R_ARM_PC24:
516   case R_ARM_PLT32:
517   case R_ARM_PREL31:
518   case R_ARM_THM_JUMP19:
519   case R_ARM_THM_JUMP24:
520     return p + 4 + a;
521   case R_ARM_THM_CALL:
522     // We don't want an interworking BLX to ARM
523     return p + 5 + a;
524   // Unresolved non branch pc-relative relocations
525   // R_ARM_TARGET2 which can be resolved relatively is not present as it never
526   // targets a weak-reference.
527   case R_ARM_MOVW_PREL_NC:
528   case R_ARM_MOVT_PREL:
529   case R_ARM_REL32:
530   case R_ARM_THM_ALU_PREL_11_0:
531   case R_ARM_THM_MOVW_PREL_NC:
532   case R_ARM_THM_MOVT_PREL:
533   case R_ARM_THM_PC12:
534     return p + a;
535   // p + a is unrepresentable as negative immediates can't be encoded.
536   case R_ARM_THM_PC8:
537     return p;
538   }
539   llvm_unreachable("ARM pc-relative relocation expected\n");
540 }
541 
542 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
543 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t a,
544                                                   uint64_t p) {
545   switch (type) {
546   // Unresolved branch relocations to weak references resolve to next
547   // instruction, this is 4 bytes on from P.
548   case R_AARCH64_CALL26:
549   case R_AARCH64_CONDBR19:
550   case R_AARCH64_JUMP26:
551   case R_AARCH64_TSTBR14:
552     return p + 4 + a;
553   // Unresolved non branch pc-relative relocations
554   case R_AARCH64_PREL16:
555   case R_AARCH64_PREL32:
556   case R_AARCH64_PREL64:
557   case R_AARCH64_ADR_PREL_LO21:
558   case R_AARCH64_LD_PREL_LO19:
559   case R_AARCH64_PLT32:
560     return p + a;
561   }
562   llvm_unreachable("AArch64 pc-relative relocation expected\n");
563 }
564 
565 // ARM SBREL relocations are of the form S + A - B where B is the static base
566 // The ARM ABI defines base to be "addressing origin of the output segment
567 // defining the symbol S". We defined the "addressing origin"/static base to be
568 // the base of the PT_LOAD segment containing the Sym.
569 // The procedure call standard only defines a Read Write Position Independent
570 // RWPI variant so in practice we should expect the static base to be the base
571 // of the RW segment.
572 static uint64_t getARMStaticBase(const Symbol &sym) {
573   OutputSection *os = sym.getOutputSection();
574   if (!os || !os->ptLoad || !os->ptLoad->firstSec)
575     fatal("SBREL relocation to " + sym.getName() + " without static base");
576   return os->ptLoad->firstSec->addr;
577 }
578 
579 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
580 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
581 // is calculated using PCREL_HI20's symbol.
582 //
583 // This function returns the R_RISCV_PCREL_HI20 relocation from
584 // R_RISCV_PCREL_LO12's symbol and addend.
585 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
586   const Defined *d = cast<Defined>(sym);
587   if (!d->section) {
588     error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
589           sym->getName());
590     return nullptr;
591   }
592   InputSection *isec = cast<InputSection>(d->section);
593 
594   if (addend != 0)
595     warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
596          isec->getObjMsg(d->value) + " is ignored");
597 
598   // Relocations are sorted by offset, so we can use std::equal_range to do
599   // binary search.
600   Relocation r;
601   r.offset = d->value;
602   auto range =
603       std::equal_range(isec->relocations.begin(), isec->relocations.end(), r,
604                        [](const Relocation &lhs, const Relocation &rhs) {
605                          return lhs.offset < rhs.offset;
606                        });
607 
608   for (auto it = range.first; it != range.second; ++it)
609     if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
610         it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
611       return &*it;
612 
613   error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) +
614         " without an associated R_RISCV_PCREL_HI20 relocation");
615   return nullptr;
616 }
617 
618 // A TLS symbol's virtual address is relative to the TLS segment. Add a
619 // target-specific adjustment to produce a thread-pointer-relative offset.
620 static int64_t getTlsTpOffset(const Symbol &s) {
621   // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
622   if (&s == ElfSym::tlsModuleBase)
623     return 0;
624 
625   // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
626   // while most others use Variant 1. At run time TP will be aligned to p_align.
627 
628   // Variant 1. TP will be followed by an optional gap (which is the size of 2
629   // pointers on ARM/AArch64, 0 on other targets), followed by alignment
630   // padding, then the static TLS blocks. The alignment padding is added so that
631   // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
632   //
633   // Variant 2. Static TLS blocks, followed by alignment padding are placed
634   // before TP. The alignment padding is added so that (TP - padding -
635   // p_memsz) is congruent to p_vaddr modulo p_align.
636   PhdrEntry *tls = Out::tlsPhdr;
637   switch (config->emachine) {
638     // Variant 1.
639   case EM_ARM:
640   case EM_AARCH64:
641     return s.getVA(0) + config->wordsize * 2 +
642            ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
643   case EM_MIPS:
644   case EM_PPC:
645   case EM_PPC64:
646     // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
647     // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
648     // data and 0xf000 of the program's TLS segment.
649     return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
650   case EM_RISCV:
651     return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1));
652 
653     // Variant 2.
654   case EM_HEXAGON:
655   case EM_SPARCV9:
656   case EM_386:
657   case EM_X86_64:
658     return s.getVA(0) - tls->p_memsz -
659            ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
660   default:
661     llvm_unreachable("unhandled Config->EMachine");
662   }
663 }
664 
665 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type,
666                                             int64_t a, uint64_t p,
667                                             const Symbol &sym, RelExpr expr) {
668   switch (expr) {
669   case R_ABS:
670   case R_DTPREL:
671   case R_RELAX_TLS_LD_TO_LE_ABS:
672   case R_RELAX_GOT_PC_NOPIC:
673   case R_RISCV_ADD:
674     return sym.getVA(a);
675   case R_ADDEND:
676     return a;
677   case R_ARM_SBREL:
678     return sym.getVA(a) - getARMStaticBase(sym);
679   case R_GOT:
680   case R_RELAX_TLS_GD_TO_IE_ABS:
681     return sym.getGotVA() + a;
682   case R_GOTONLY_PC:
683     return in.got->getVA() + a - p;
684   case R_GOTPLTONLY_PC:
685     return in.gotPlt->getVA() + a - p;
686   case R_GOTREL:
687   case R_PPC64_RELAX_TOC:
688     return sym.getVA(a) - in.got->getVA();
689   case R_GOTPLTREL:
690     return sym.getVA(a) - in.gotPlt->getVA();
691   case R_GOTPLT:
692   case R_RELAX_TLS_GD_TO_IE_GOTPLT:
693     return sym.getGotVA() + a - in.gotPlt->getVA();
694   case R_TLSLD_GOT_OFF:
695   case R_GOT_OFF:
696   case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
697     return sym.getGotOffset() + a;
698   case R_AARCH64_GOT_PAGE_PC:
699   case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
700     return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p);
701   case R_GOT_PC:
702   case R_RELAX_TLS_GD_TO_IE:
703     return sym.getGotVA() + a - p;
704   case R_MIPS_GOTREL:
705     return sym.getVA(a) - in.mipsGot->getGp(file);
706   case R_MIPS_GOT_GP:
707     return in.mipsGot->getGp(file) + a;
708   case R_MIPS_GOT_GP_PC: {
709     // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
710     // is _gp_disp symbol. In that case we should use the following
711     // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
712     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
713     // microMIPS variants of these relocations use slightly different
714     // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
715     // to correctly handle less-significant bit of the microMIPS symbol.
716     uint64_t v = in.mipsGot->getGp(file) + a - p;
717     if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
718       v += 4;
719     if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
720       v -= 1;
721     return v;
722   }
723   case R_MIPS_GOT_LOCAL_PAGE:
724     // If relocation against MIPS local symbol requires GOT entry, this entry
725     // should be initialized by 'page address'. This address is high 16-bits
726     // of sum the symbol's value and the addend.
727     return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) -
728            in.mipsGot->getGp(file);
729   case R_MIPS_GOT_OFF:
730   case R_MIPS_GOT_OFF32:
731     // In case of MIPS if a GOT relocation has non-zero addend this addend
732     // should be applied to the GOT entry content not to the GOT entry offset.
733     // That is why we use separate expression type.
734     return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) -
735            in.mipsGot->getGp(file);
736   case R_MIPS_TLSGD:
737     return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) -
738            in.mipsGot->getGp(file);
739   case R_MIPS_TLSLD:
740     return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) -
741            in.mipsGot->getGp(file);
742   case R_AARCH64_PAGE_PC: {
743     uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a);
744     return getAArch64Page(val) - getAArch64Page(p);
745   }
746   case R_RISCV_PC_INDIRECT: {
747     if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a))
748       return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(),
749                               *hiRel->sym, hiRel->expr);
750     return 0;
751   }
752   case R_PC:
753   case R_ARM_PCA: {
754     uint64_t dest;
755     if (expr == R_ARM_PCA)
756       // Some PC relative ARM (Thumb) relocations align down the place.
757       p = p & 0xfffffffc;
758     if (sym.isUndefWeak()) {
759       // On ARM and AArch64 a branch to an undefined weak resolves to the
760       // next instruction, otherwise the place.
761       if (config->emachine == EM_ARM)
762         dest = getARMUndefinedRelativeWeakVA(type, a, p);
763       else if (config->emachine == EM_AARCH64)
764         dest = getAArch64UndefinedRelativeWeakVA(type, a, p);
765       else if (config->emachine == EM_PPC)
766         dest = p;
767       else
768         dest = sym.getVA(a);
769     } else {
770       dest = sym.getVA(a);
771     }
772     return dest - p;
773   }
774   case R_PLT:
775     return sym.getPltVA() + a;
776   case R_PLT_PC:
777   case R_PPC64_CALL_PLT:
778     return sym.getPltVA() + a - p;
779   case R_PPC32_PLTREL:
780     // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
781     // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
782     // target VA computation.
783     return sym.getPltVA() - p;
784   case R_PPC64_CALL: {
785     uint64_t symVA = sym.getVA(a);
786     // If we have an undefined weak symbol, we might get here with a symbol
787     // address of zero. That could overflow, but the code must be unreachable,
788     // so don't bother doing anything at all.
789     if (!symVA)
790       return 0;
791 
792     // PPC64 V2 ABI describes two entry points to a function. The global entry
793     // point is used for calls where the caller and callee (may) have different
794     // TOC base pointers and r2 needs to be modified to hold the TOC base for
795     // the callee. For local calls the caller and callee share the same
796     // TOC base and so the TOC pointer initialization code should be skipped by
797     // branching to the local entry point.
798     return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther);
799   }
800   case R_PPC64_TOCBASE:
801     return getPPC64TocBase() + a;
802   case R_RELAX_GOT_PC:
803     return sym.getVA(a) - p;
804   case R_RELAX_TLS_GD_TO_LE:
805   case R_RELAX_TLS_IE_TO_LE:
806   case R_RELAX_TLS_LD_TO_LE:
807   case R_TLS:
808     // It is not very clear what to return if the symbol is undefined. With
809     // --noinhibit-exec, even a non-weak undefined reference may reach here.
810     // Just return A, which matches R_ABS, and the behavior of some dynamic
811     // loaders.
812     if (sym.isUndefined() || sym.isLazy())
813       return a;
814     return getTlsTpOffset(sym) + a;
815   case R_RELAX_TLS_GD_TO_LE_NEG:
816   case R_NEG_TLS:
817     if (sym.isUndefined())
818       return a;
819     return -getTlsTpOffset(sym) + a;
820   case R_SIZE:
821     return sym.getSize() + a;
822   case R_TLSDESC:
823     return in.got->getGlobalDynAddr(sym) + a;
824   case R_TLSDESC_PC:
825     return in.got->getGlobalDynAddr(sym) + a - p;
826   case R_AARCH64_TLSDESC_PAGE:
827     return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) -
828            getAArch64Page(p);
829   case R_TLSGD_GOT:
830     return in.got->getGlobalDynOffset(sym) + a;
831   case R_TLSGD_GOTPLT:
832     return in.got->getVA() + in.got->getGlobalDynOffset(sym) + a - in.gotPlt->getVA();
833   case R_TLSGD_PC:
834     return in.got->getGlobalDynAddr(sym) + a - p;
835   case R_TLSLD_GOTPLT:
836     return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
837   case R_TLSLD_GOT:
838     return in.got->getTlsIndexOff() + a;
839   case R_TLSLD_PC:
840     return in.got->getTlsIndexVA() + a - p;
841   default:
842     llvm_unreachable("invalid expression");
843   }
844 }
845 
846 // This function applies relocations to sections without SHF_ALLOC bit.
847 // Such sections are never mapped to memory at runtime. Debug sections are
848 // an example. Relocations in non-alloc sections are much easier to
849 // handle than in allocated sections because it will never need complex
850 // treatment such as GOT or PLT (because at runtime no one refers them).
851 // So, we handle relocations for non-alloc sections directly in this
852 // function as a performance optimization.
853 template <class ELFT, class RelTy>
854 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) {
855   const unsigned bits = sizeof(typename ELFT::uint) * 8;
856   const bool isDebug = isDebugSection(*this);
857   const bool isDebugLocOrRanges =
858       isDebug && (name == ".debug_loc" || name == ".debug_ranges");
859   const bool isDebugLine = isDebug && name == ".debug_line";
860   Optional<uint64_t> tombstone;
861   for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc))
862     if (patAndValue.first.match(this->name)) {
863       tombstone = patAndValue.second;
864       break;
865     }
866 
867   for (const RelTy &rel : rels) {
868     RelType type = rel.getType(config->isMips64EL);
869 
870     // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
871     // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
872     // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
873     // need to keep this bug-compatible code for a while.
874     if (config->emachine == EM_386 && type == R_386_GOTPC)
875       continue;
876 
877     uint64_t offset = getOffset(rel.r_offset);
878     uint8_t *bufLoc = buf + offset;
879     int64_t addend = getAddend<ELFT>(rel);
880     if (!RelTy::IsRela)
881       addend += target->getImplicitAddend(bufLoc, type);
882 
883     Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel);
884     RelExpr expr = target->getRelExpr(type, sym, bufLoc);
885     if (expr == R_NONE)
886       continue;
887 
888     if (expr == R_SIZE) {
889       target->relocateNoSym(bufLoc, type,
890                             SignExtend64<bits>(sym.getSize() + addend));
891       continue;
892     }
893 
894     // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
895     // sections.
896     if (expr != R_ABS && expr != R_DTPREL && expr != R_GOTPLTREL &&
897         expr != R_RISCV_ADD) {
898       std::string msg = getLocation<ELFT>(offset) +
899                         ": has non-ABS relocation " + toString(type) +
900                         " against symbol '" + toString(sym) + "'";
901       if (expr != R_PC && expr != R_ARM_PCA) {
902         error(msg);
903         return;
904       }
905 
906       // If the control reaches here, we found a PC-relative relocation in a
907       // non-ALLOC section. Since non-ALLOC section is not loaded into memory
908       // at runtime, the notion of PC-relative doesn't make sense here. So,
909       // this is a usage error. However, GNU linkers historically accept such
910       // relocations without any errors and relocate them as if they were at
911       // address 0. For bug-compatibilty, we accept them with warnings. We
912       // know Steel Bank Common Lisp as of 2018 have this bug.
913       warn(msg);
914       target->relocateNoSym(bufLoc, type,
915                             SignExtend64<bits>(sym.getVA(addend - offset)));
916       continue;
917     }
918 
919     if (tombstone ||
920         (isDebug && (type == target->symbolicRel || expr == R_DTPREL))) {
921       // Resolve relocations in .debug_* referencing (discarded symbols or ICF
922       // folded section symbols) to a tombstone value. Resolving to addend is
923       // unsatisfactory because the result address range may collide with a
924       // valid range of low address, or leave multiple CUs claiming ownership of
925       // the same range of code, which may confuse consumers.
926       //
927       // To address the problems, we use -1 as a tombstone value for most
928       // .debug_* sections. We have to ignore the addend because we don't want
929       // to resolve an address attribute (which may have a non-zero addend) to
930       // -1+addend (wrap around to a low address).
931       //
932       // R_DTPREL type relocations represent an offset into the dynamic thread
933       // vector. The computed value is st_value plus a non-negative offset.
934       // Negative values are invalid, so -1 can be used as the tombstone value.
935       //
936       // If the referenced symbol is discarded (made Undefined), or the
937       // section defining the referenced symbol is garbage collected,
938       // sym.getOutputSection() is nullptr. `ds->section->repl != ds->section`
939       // catches the ICF folded case. However, resolving a relocation in
940       // .debug_line to -1 would stop debugger users from setting breakpoints on
941       // the folded-in function, so exclude .debug_line.
942       //
943       // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
944       // (base address selection entry), use 1 (which is used by GNU ld for
945       // .debug_ranges).
946       //
947       // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
948       // value. Enable -1 in a future release.
949       auto *ds = dyn_cast<Defined>(&sym);
950       if (!sym.getOutputSection() ||
951           (ds && ds->section->repl != ds->section && !isDebugLine)) {
952         // If -z dead-reloc-in-nonalloc= is specified, respect it.
953         const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone)
954                                          : (isDebugLocOrRanges ? 1 : 0);
955         target->relocateNoSym(bufLoc, type, value);
956         continue;
957       }
958     }
959     target->relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend)));
960   }
961 }
962 
963 // This is used when '-r' is given.
964 // For REL targets, InputSection::copyRelocations() may store artificial
965 // relocations aimed to update addends. They are handled in relocateAlloc()
966 // for allocatable sections, and this function does the same for
967 // non-allocatable sections, such as sections with debug information.
968 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) {
969   const unsigned bits = config->is64 ? 64 : 32;
970 
971   for (const Relocation &rel : sec->relocations) {
972     // InputSection::copyRelocations() adds only R_ABS relocations.
973     assert(rel.expr == R_ABS);
974     uint8_t *bufLoc = buf + rel.offset + sec->outSecOff;
975     uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits);
976     target->relocate(bufLoc, rel, targetVA);
977   }
978 }
979 
980 template <class ELFT>
981 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
982   if (flags & SHF_EXECINSTR)
983     adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);
984 
985   if (flags & SHF_ALLOC) {
986     relocateAlloc(buf, bufEnd);
987     return;
988   }
989 
990   auto *sec = cast<InputSection>(this);
991   if (config->relocatable)
992     relocateNonAllocForRelocatable(sec, buf);
993   else if (sec->areRelocsRela)
994     sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>());
995   else
996     sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>());
997 }
998 
999 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) {
1000   assert(flags & SHF_ALLOC);
1001   const unsigned bits = config->wordsize * 8;
1002 
1003   for (const Relocation &rel : relocations) {
1004     if (rel.expr == R_NONE)
1005       continue;
1006     uint64_t offset = rel.offset;
1007     if (auto *sec = dyn_cast<InputSection>(this))
1008       offset += sec->outSecOff;
1009     uint8_t *bufLoc = buf + offset;
1010     RelType type = rel.type;
1011 
1012     uint64_t addrLoc = getOutputSection()->addr + offset;
1013     RelExpr expr = rel.expr;
1014     uint64_t targetVA = SignExtend64(
1015         getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr),
1016         bits);
1017 
1018     switch (expr) {
1019     case R_RELAX_GOT_PC:
1020     case R_RELAX_GOT_PC_NOPIC:
1021       target->relaxGot(bufLoc, rel, targetVA);
1022       break;
1023     case R_PPC64_RELAX_TOC:
1024       // rel.sym refers to the STT_SECTION symbol associated to the .toc input
1025       // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
1026       // entry, there may be R_PPC64_TOC16_HA not paired with
1027       // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
1028       // opportunities but is safe.
1029       if (ppc64noTocRelax.count({rel.sym, rel.addend}) ||
1030           !tryRelaxPPC64TocIndirection(rel, bufLoc))
1031         target->relocate(bufLoc, rel, targetVA);
1032       break;
1033     case R_RELAX_TLS_IE_TO_LE:
1034       target->relaxTlsIeToLe(bufLoc, rel, targetVA);
1035       break;
1036     case R_RELAX_TLS_LD_TO_LE:
1037     case R_RELAX_TLS_LD_TO_LE_ABS:
1038       target->relaxTlsLdToLe(bufLoc, rel, targetVA);
1039       break;
1040     case R_RELAX_TLS_GD_TO_LE:
1041     case R_RELAX_TLS_GD_TO_LE_NEG:
1042       target->relaxTlsGdToLe(bufLoc, rel, targetVA);
1043       break;
1044     case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
1045     case R_RELAX_TLS_GD_TO_IE:
1046     case R_RELAX_TLS_GD_TO_IE_ABS:
1047     case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
1048     case R_RELAX_TLS_GD_TO_IE_GOTPLT:
1049       target->relaxTlsGdToIe(bufLoc, rel, targetVA);
1050       break;
1051     case R_PPC64_CALL:
1052       // If this is a call to __tls_get_addr, it may be part of a TLS
1053       // sequence that has been relaxed and turned into a nop. In this
1054       // case, we don't want to handle it as a call.
1055       if (read32(bufLoc) == 0x60000000) // nop
1056         break;
1057 
1058       // Patch a nop (0x60000000) to a ld.
1059       if (rel.sym->needsTocRestore) {
1060         // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
1061         // recursive calls even if the function is preemptible. This is not
1062         // wrong in the common case where the function is not preempted at
1063         // runtime. Just ignore.
1064         if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) &&
1065             rel.sym->file != file) {
1066           // Use substr(6) to remove the "__plt_" prefix.
1067           errorOrWarn(getErrorLocation(bufLoc) + "call to " +
1068                       lld::toString(*rel.sym).substr(6) +
1069                       " lacks nop, can't restore toc");
1070           break;
1071         }
1072         write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
1073       }
1074       target->relocate(bufLoc, rel, targetVA);
1075       break;
1076     default:
1077       target->relocate(bufLoc, rel, targetVA);
1078       break;
1079     }
1080   }
1081 
1082   // Apply jumpInstrMods.  jumpInstrMods are created when the opcode of
1083   // a jmp insn must be modified to shrink the jmp insn or to flip the jmp
1084   // insn.  This is primarily used to relax and optimize jumps created with
1085   // basic block sections.
1086   if (auto *sec = dyn_cast<InputSection>(this)) {
1087     for (const JumpInstrMod &jumpMod : jumpInstrMods) {
1088       uint64_t offset = jumpMod.offset + sec->outSecOff;
1089       uint8_t *bufLoc = buf + offset;
1090       target->applyJumpInstrMod(bufLoc, jumpMod.original, jumpMod.size);
1091     }
1092   }
1093 }
1094 
1095 // For each function-defining prologue, find any calls to __morestack,
1096 // and replace them with calls to __morestack_non_split.
1097 static void switchMorestackCallsToMorestackNonSplit(
1098     DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) {
1099 
1100   // If the target adjusted a function's prologue, all calls to
1101   // __morestack inside that function should be switched to
1102   // __morestack_non_split.
1103   Symbol *moreStackNonSplit = symtab->find("__morestack_non_split");
1104   if (!moreStackNonSplit) {
1105     error("Mixing split-stack objects requires a definition of "
1106           "__morestack_non_split");
1107     return;
1108   }
1109 
1110   // Sort both collections to compare addresses efficiently.
1111   llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
1112     return l->offset < r->offset;
1113   });
1114   std::vector<Defined *> functions(prologues.begin(), prologues.end());
1115   llvm::sort(functions, [](const Defined *l, const Defined *r) {
1116     return l->value < r->value;
1117   });
1118 
1119   auto it = morestackCalls.begin();
1120   for (Defined *f : functions) {
1121     // Find the first call to __morestack within the function.
1122     while (it != morestackCalls.end() && (*it)->offset < f->value)
1123       ++it;
1124     // Adjust all calls inside the function.
1125     while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
1126       (*it)->sym = moreStackNonSplit;
1127       ++it;
1128     }
1129   }
1130 }
1131 
1132 static bool enclosingPrologueAttempted(uint64_t offset,
1133                                        const DenseSet<Defined *> &prologues) {
1134   for (Defined *f : prologues)
1135     if (f->value <= offset && offset < f->value + f->size)
1136       return true;
1137   return false;
1138 }
1139 
1140 // If a function compiled for split stack calls a function not
1141 // compiled for split stack, then the caller needs its prologue
1142 // adjusted to ensure that the called function will have enough stack
1143 // available. Find those functions, and adjust their prologues.
1144 template <class ELFT>
1145 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
1146                                                          uint8_t *end) {
1147   if (!getFile<ELFT>()->splitStack)
1148     return;
1149   DenseSet<Defined *> prologues;
1150   std::vector<Relocation *> morestackCalls;
1151 
1152   for (Relocation &rel : relocations) {
1153     // Local symbols can't possibly be cross-calls, and should have been
1154     // resolved long before this line.
1155     if (rel.sym->isLocal())
1156       continue;
1157 
1158     // Ignore calls into the split-stack api.
1159     if (rel.sym->getName().startswith("__morestack")) {
1160       if (rel.sym->getName().equals("__morestack"))
1161         morestackCalls.push_back(&rel);
1162       continue;
1163     }
1164 
1165     // A relocation to non-function isn't relevant. Sometimes
1166     // __morestack is not marked as a function, so this check comes
1167     // after the name check.
1168     if (rel.sym->type != STT_FUNC)
1169       continue;
1170 
1171     // If the callee's-file was compiled with split stack, nothing to do.  In
1172     // this context, a "Defined" symbol is one "defined by the binary currently
1173     // being produced". So an "undefined" symbol might be provided by a shared
1174     // library. It is not possible to tell how such symbols were compiled, so be
1175     // conservative.
1176     if (Defined *d = dyn_cast<Defined>(rel.sym))
1177       if (InputSection *isec = cast_or_null<InputSection>(d->section))
1178         if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
1179           continue;
1180 
1181     if (enclosingPrologueAttempted(rel.offset, prologues))
1182       continue;
1183 
1184     if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) {
1185       prologues.insert(f);
1186       if (target->adjustPrologueForCrossSplitStack(buf + getOffset(f->value),
1187                                                    end, f->stOther))
1188         continue;
1189       if (!getFile<ELFT>()->someNoSplitStack)
1190         error(lld::toString(this) + ": " + f->getName() +
1191               " (with -fsplit-stack) calls " + rel.sym->getName() +
1192               " (without -fsplit-stack), but couldn't adjust its prologue");
1193     }
1194   }
1195 
1196   if (target->needsMoreStackNonSplit)
1197     switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
1198 }
1199 
1200 template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
1201   if (type == SHT_NOBITS)
1202     return;
1203 
1204   if (auto *s = dyn_cast<SyntheticSection>(this)) {
1205     s->writeTo(buf + outSecOff);
1206     return;
1207   }
1208 
1209   // If -r or --emit-relocs is given, then an InputSection
1210   // may be a relocation section.
1211   if (type == SHT_RELA) {
1212     copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>());
1213     return;
1214   }
1215   if (type == SHT_REL) {
1216     copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>());
1217     return;
1218   }
1219 
1220   // If -r is given, we may have a SHT_GROUP section.
1221   if (type == SHT_GROUP) {
1222     copyShtGroup<ELFT>(buf + outSecOff);
1223     return;
1224   }
1225 
1226   // If this is a compressed section, uncompress section contents directly
1227   // to the buffer.
1228   if (uncompressedSize >= 0) {
1229     size_t size = uncompressedSize;
1230     if (Error e = zlib::uncompress(toStringRef(rawData),
1231                                    (char *)(buf + outSecOff), size))
1232       fatal(toString(this) +
1233             ": uncompress failed: " + llvm::toString(std::move(e)));
1234     uint8_t *bufEnd = buf + outSecOff + size;
1235     relocate<ELFT>(buf, bufEnd);
1236     return;
1237   }
1238 
1239   // Copy section contents from source object file to output file
1240   // and then apply relocations.
1241   memcpy(buf + outSecOff, data().data(), data().size());
1242   uint8_t *bufEnd = buf + outSecOff + data().size();
1243   relocate<ELFT>(buf, bufEnd);
1244 }
1245 
1246 void InputSection::replace(InputSection *other) {
1247   alignment = std::max(alignment, other->alignment);
1248 
1249   // When a section is replaced with another section that was allocated to
1250   // another partition, the replacement section (and its associated sections)
1251   // need to be placed in the main partition so that both partitions will be
1252   // able to access it.
1253   if (partition != other->partition) {
1254     partition = 1;
1255     for (InputSection *isec : dependentSections)
1256       isec->partition = 1;
1257   }
1258 
1259   other->repl = repl;
1260   other->markDead();
1261 }
1262 
1263 template <class ELFT>
1264 EhInputSection::EhInputSection(ObjFile<ELFT> &f,
1265                                const typename ELFT::Shdr &header,
1266                                StringRef name)
1267     : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
1268 
1269 SyntheticSection *EhInputSection::getParent() const {
1270   return cast_or_null<SyntheticSection>(parent);
1271 }
1272 
1273 // Returns the index of the first relocation that points to a region between
1274 // Begin and Begin+Size.
1275 template <class IntTy, class RelTy>
1276 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels,
1277                          unsigned &relocI) {
1278   // Start search from RelocI for fast access. That works because the
1279   // relocations are sorted in .eh_frame.
1280   for (unsigned n = rels.size(); relocI < n; ++relocI) {
1281     const RelTy &rel = rels[relocI];
1282     if (rel.r_offset < begin)
1283       continue;
1284 
1285     if (rel.r_offset < begin + size)
1286       return relocI;
1287     return -1;
1288   }
1289   return -1;
1290 }
1291 
1292 // .eh_frame is a sequence of CIE or FDE records.
1293 // This function splits an input section into records and returns them.
1294 template <class ELFT> void EhInputSection::split() {
1295   if (areRelocsRela)
1296     split<ELFT>(relas<ELFT>());
1297   else
1298     split<ELFT>(rels<ELFT>());
1299 }
1300 
1301 template <class ELFT, class RelTy>
1302 void EhInputSection::split(ArrayRef<RelTy> rels) {
1303   unsigned relI = 0;
1304   for (size_t off = 0, end = data().size(); off != end;) {
1305     size_t size = readEhRecordSize(this, off);
1306     pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI));
1307     // The empty record is the end marker.
1308     if (size == 4)
1309       break;
1310     off += size;
1311   }
1312 }
1313 
1314 static size_t findNull(StringRef s, size_t entSize) {
1315   // Optimize the common case.
1316   if (entSize == 1)
1317     return s.find(0);
1318 
1319   for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
1320     const char *b = s.begin() + i;
1321     if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
1322       return i;
1323   }
1324   return StringRef::npos;
1325 }
1326 
1327 SyntheticSection *MergeInputSection::getParent() const {
1328   return cast_or_null<SyntheticSection>(parent);
1329 }
1330 
1331 // Split SHF_STRINGS section. Such section is a sequence of
1332 // null-terminated strings.
1333 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) {
1334   size_t off = 0;
1335   bool isAlloc = flags & SHF_ALLOC;
1336   StringRef s = toStringRef(data);
1337 
1338   while (!s.empty()) {
1339     size_t end = findNull(s, entSize);
1340     if (end == StringRef::npos)
1341       fatal(toString(this) + ": string is not null terminated");
1342     size_t size = end + entSize;
1343 
1344     pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc);
1345     s = s.substr(size);
1346     off += size;
1347   }
1348 }
1349 
1350 // Split non-SHF_STRINGS section. Such section is a sequence of
1351 // fixed size records.
1352 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
1353                                         size_t entSize) {
1354   size_t size = data.size();
1355   assert((size % entSize) == 0);
1356   bool isAlloc = flags & SHF_ALLOC;
1357 
1358   for (size_t i = 0; i != size; i += entSize)
1359     pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc);
1360 }
1361 
1362 template <class ELFT>
1363 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
1364                                      const typename ELFT::Shdr &header,
1365                                      StringRef name)
1366     : InputSectionBase(f, header, name, InputSectionBase::Merge) {}
1367 
1368 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
1369                                      uint64_t entsize, ArrayRef<uint8_t> data,
1370                                      StringRef name)
1371     : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
1372                        /*Alignment*/ entsize, data, name, SectionBase::Merge) {}
1373 
1374 // This function is called after we obtain a complete list of input sections
1375 // that need to be linked. This is responsible to split section contents
1376 // into small chunks for further processing.
1377 //
1378 // Note that this function is called from parallelForEach. This must be
1379 // thread-safe (i.e. no memory allocation from the pools).
1380 void MergeInputSection::splitIntoPieces() {
1381   assert(pieces.empty());
1382 
1383   if (flags & SHF_STRINGS)
1384     splitStrings(data(), entsize);
1385   else
1386     splitNonStrings(data(), entsize);
1387 }
1388 
1389 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) {
1390   if (this->data().size() <= offset)
1391     fatal(toString(this) + ": offset is outside the section");
1392 
1393   // If Offset is not at beginning of a section piece, it is not in the map.
1394   // In that case we need to  do a binary search of the original section piece vector.
1395   auto it = partition_point(
1396       pieces, [=](SectionPiece p) { return p.inputOff <= offset; });
1397   return &it[-1];
1398 }
1399 
1400 // Returns the offset in an output section for a given input offset.
1401 // Because contents of a mergeable section is not contiguous in output,
1402 // it is not just an addition to a base output offset.
1403 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
1404   // If Offset is not at beginning of a section piece, it is not in the map.
1405   // In that case we need to search from the original section piece vector.
1406   const SectionPiece &piece =
1407       *(const_cast<MergeInputSection *>(this)->getSectionPiece (offset));
1408   uint64_t addend = offset - piece.inputOff;
1409   return piece.outputOff + addend;
1410 }
1411 
1412 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1413                                     StringRef);
1414 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1415                                     StringRef);
1416 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1417                                     StringRef);
1418 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1419                                     StringRef);
1420 
1421 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1422 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1423 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1424 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1425 
1426 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1427 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1428 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1429 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1430 
1431 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1432                                               const ELF32LE::Shdr &, StringRef);
1433 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1434                                               const ELF32BE::Shdr &, StringRef);
1435 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1436                                               const ELF64LE::Shdr &, StringRef);
1437 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1438                                               const ELF64BE::Shdr &, StringRef);
1439 
1440 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1441                                         const ELF32LE::Shdr &, StringRef);
1442 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1443                                         const ELF32BE::Shdr &, StringRef);
1444 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1445                                         const ELF64LE::Shdr &, StringRef);
1446 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1447                                         const ELF64BE::Shdr &, StringRef);
1448 
1449 template void EhInputSection::split<ELF32LE>();
1450 template void EhInputSection::split<ELF32BE>();
1451 template void EhInputSection::split<ELF64LE>();
1452 template void EhInputSection::split<ELF64BE>();
1453