1 //===- Symbols.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Symbols.h" 10 #include "InputFiles.h" 11 #include "InputSection.h" 12 #include "OutputSections.h" 13 #include "SyntheticSections.h" 14 #include "Target.h" 15 #include "Writer.h" 16 #include "lld/Common/ErrorHandler.h" 17 #include "lld/Common/Strings.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/Support/FileSystem.h" 20 #include "llvm/Support/Path.h" 21 #include <cstring> 22 23 using namespace llvm; 24 using namespace llvm::object; 25 using namespace llvm::ELF; 26 using namespace lld; 27 using namespace lld::elf; 28 29 // Returns a symbol for an error message. 30 static std::string demangle(StringRef symName) { 31 if (elf::config->demangle) 32 return demangleItanium(symName); 33 return std::string(symName); 34 } 35 36 std::string lld::toString(const elf::Symbol &sym) { 37 StringRef name = sym.getName(); 38 std::string ret = demangle(name); 39 40 // If sym has a non-default version, its name may have been truncated at '@' 41 // by Symbol::parseSymbolVersion(). Add the trailing part. This check is safe 42 // because every symbol name ends with '\0'. 43 if (name.data()[name.size()] == '@') 44 ret += name.data() + name.size(); 45 return ret; 46 } 47 48 std::string lld::toELFString(const Archive::Symbol &b) { 49 return demangle(b.getName()); 50 } 51 52 Defined *ElfSym::bss; 53 Defined *ElfSym::data; 54 Defined *ElfSym::etext1; 55 Defined *ElfSym::etext2; 56 Defined *ElfSym::edata1; 57 Defined *ElfSym::edata2; 58 Defined *ElfSym::end1; 59 Defined *ElfSym::end2; 60 Defined *ElfSym::globalOffsetTable; 61 Defined *ElfSym::mipsGp; 62 Defined *ElfSym::mipsGpDisp; 63 Defined *ElfSym::mipsLocalGp; 64 Defined *ElfSym::relaIpltStart; 65 Defined *ElfSym::relaIpltEnd; 66 Defined *ElfSym::riscvGlobalPointer; 67 Defined *ElfSym::tlsModuleBase; 68 DenseMap<const Symbol *, const InputFile *> elf::backwardReferences; 69 70 static uint64_t getSymVA(const Symbol &sym, int64_t &addend) { 71 switch (sym.kind()) { 72 case Symbol::DefinedKind: { 73 auto &d = cast<Defined>(sym); 74 SectionBase *isec = d.section; 75 76 // This is an absolute symbol. 77 if (!isec) 78 return d.value; 79 80 assert(isec != &InputSection::discarded); 81 isec = isec->repl; 82 83 uint64_t offset = d.value; 84 85 // An object in an SHF_MERGE section might be referenced via a 86 // section symbol (as a hack for reducing the number of local 87 // symbols). 88 // Depending on the addend, the reference via a section symbol 89 // refers to a different object in the merge section. 90 // Since the objects in the merge section are not necessarily 91 // contiguous in the output, the addend can thus affect the final 92 // VA in a non-linear way. 93 // To make this work, we incorporate the addend into the section 94 // offset (and zero out the addend for later processing) so that 95 // we find the right object in the section. 96 if (d.isSection()) { 97 offset += addend; 98 addend = 0; 99 } 100 101 // In the typical case, this is actually very simple and boils 102 // down to adding together 3 numbers: 103 // 1. The address of the output section. 104 // 2. The offset of the input section within the output section. 105 // 3. The offset within the input section (this addition happens 106 // inside InputSection::getOffset). 107 // 108 // If you understand the data structures involved with this next 109 // line (and how they get built), then you have a pretty good 110 // understanding of the linker. 111 uint64_t va = isec->getVA(offset); 112 113 // MIPS relocatable files can mix regular and microMIPS code. 114 // Linker needs to distinguish such code. To do so microMIPS 115 // symbols has the `STO_MIPS_MICROMIPS` flag in the `st_other` 116 // field. Unfortunately, the `MIPS::relocate()` method has 117 // a symbol value only. To pass type of the symbol (regular/microMIPS) 118 // to that routine as well as other places where we write 119 // a symbol value as-is (.dynamic section, `Elf_Ehdr::e_entry` 120 // field etc) do the same trick as compiler uses to mark microMIPS 121 // for CPU - set the less-significant bit. 122 if (config->emachine == EM_MIPS && isMicroMips() && 123 ((sym.stOther & STO_MIPS_MICROMIPS) || sym.needsPltAddr)) 124 va |= 1; 125 126 if (d.isTls() && !config->relocatable) { 127 // Use the address of the TLS segment's first section rather than the 128 // segment's address, because segment addresses aren't initialized until 129 // after sections are finalized. (e.g. Measuring the size of .rela.dyn 130 // for Android relocation packing requires knowing TLS symbol addresses 131 // during section finalization.) 132 if (!Out::tlsPhdr || !Out::tlsPhdr->firstSec) 133 fatal(toString(d.file) + 134 " has an STT_TLS symbol but doesn't have an SHF_TLS section"); 135 return va - Out::tlsPhdr->firstSec->addr; 136 } 137 return va; 138 } 139 case Symbol::SharedKind: 140 case Symbol::UndefinedKind: 141 return 0; 142 case Symbol::LazyArchiveKind: 143 case Symbol::LazyObjectKind: 144 assert(sym.isUsedInRegularObj && "lazy symbol reached writer"); 145 return 0; 146 case Symbol::CommonKind: 147 llvm_unreachable("common symbol reached writer"); 148 case Symbol::PlaceholderKind: 149 llvm_unreachable("placeholder symbol reached writer"); 150 } 151 llvm_unreachable("invalid symbol kind"); 152 } 153 154 uint64_t Symbol::getVA(int64_t addend) const { 155 uint64_t outVA = getSymVA(*this, addend); 156 return outVA + addend; 157 } 158 159 uint64_t Symbol::getGotVA() const { 160 if (gotInIgot) 161 return in.igotPlt->getVA() + getGotPltOffset(); 162 return in.got->getVA() + getGotOffset(); 163 } 164 165 uint64_t Symbol::getGotOffset() const { return gotIndex * config->wordsize; } 166 167 uint64_t Symbol::getGotPltVA() const { 168 if (isInIplt) 169 return in.igotPlt->getVA() + getGotPltOffset(); 170 return in.gotPlt->getVA() + getGotPltOffset(); 171 } 172 173 uint64_t Symbol::getGotPltOffset() const { 174 if (isInIplt) 175 return pltIndex * config->wordsize; 176 return (pltIndex + target->gotPltHeaderEntriesNum) * config->wordsize; 177 } 178 179 uint64_t Symbol::getPltVA() const { 180 uint64_t outVA = isInIplt 181 ? in.iplt->getVA() + pltIndex * target->ipltEntrySize 182 : in.plt->getVA() + in.plt->headerSize + 183 pltIndex * target->pltEntrySize; 184 185 // While linking microMIPS code PLT code are always microMIPS 186 // code. Set the less-significant bit to track that fact. 187 // See detailed comment in the `getSymVA` function. 188 if (config->emachine == EM_MIPS && isMicroMips()) 189 outVA |= 1; 190 return outVA; 191 } 192 193 uint64_t Symbol::getSize() const { 194 if (const auto *dr = dyn_cast<Defined>(this)) 195 return dr->size; 196 return cast<SharedSymbol>(this)->size; 197 } 198 199 OutputSection *Symbol::getOutputSection() const { 200 if (auto *s = dyn_cast<Defined>(this)) { 201 if (auto *sec = s->section) 202 return sec->repl->getOutputSection(); 203 return nullptr; 204 } 205 return nullptr; 206 } 207 208 // If a symbol name contains '@', the characters after that is 209 // a symbol version name. This function parses that. 210 void Symbol::parseSymbolVersion() { 211 StringRef s = getName(); 212 size_t pos = s.find('@'); 213 if (pos == 0 || pos == StringRef::npos) 214 return; 215 StringRef verstr = s.substr(pos + 1); 216 if (verstr.empty()) 217 return; 218 219 // Truncate the symbol name so that it doesn't include the version string. 220 nameSize = pos; 221 222 // If this is not in this DSO, it is not a definition. 223 if (!isDefined()) 224 return; 225 226 // '@@' in a symbol name means the default version. 227 // It is usually the most recent one. 228 bool isDefault = (verstr[0] == '@'); 229 if (isDefault) 230 verstr = verstr.substr(1); 231 232 for (const VersionDefinition &ver : namedVersionDefs()) { 233 if (ver.name != verstr) 234 continue; 235 236 if (isDefault) 237 versionId = ver.id; 238 else 239 versionId = ver.id | VERSYM_HIDDEN; 240 return; 241 } 242 243 // It is an error if the specified version is not defined. 244 // Usually version script is not provided when linking executable, 245 // but we may still want to override a versioned symbol from DSO, 246 // so we do not report error in this case. We also do not error 247 // if the symbol has a local version as it won't be in the dynamic 248 // symbol table. 249 if (config->shared && versionId != VER_NDX_LOCAL) 250 error(toString(file) + ": symbol " + s + " has undefined version " + 251 verstr); 252 } 253 254 void Symbol::fetch() const { 255 if (auto *sym = dyn_cast<LazyArchive>(this)) { 256 cast<ArchiveFile>(sym->file)->fetch(sym->sym); 257 return; 258 } 259 260 if (auto *sym = dyn_cast<LazyObject>(this)) { 261 dyn_cast<LazyObjFile>(sym->file)->fetch(); 262 return; 263 } 264 265 llvm_unreachable("Symbol::fetch() is called on a non-lazy symbol"); 266 } 267 268 MemoryBufferRef LazyArchive::getMemberBuffer() { 269 Archive::Child c = 270 CHECK(sym.getMember(), 271 "could not get the member for symbol " + toELFString(sym)); 272 273 return CHECK(c.getMemoryBufferRef(), 274 "could not get the buffer for the member defining symbol " + 275 toELFString(sym)); 276 } 277 278 uint8_t Symbol::computeBinding() const { 279 if (config->relocatable) 280 return binding; 281 if ((visibility != STV_DEFAULT && visibility != STV_PROTECTED) || 282 (versionId == VER_NDX_LOCAL && isDefined())) 283 return STB_LOCAL; 284 if (!config->gnuUnique && binding == STB_GNU_UNIQUE) 285 return STB_GLOBAL; 286 return binding; 287 } 288 289 bool Symbol::includeInDynsym() const { 290 if (!config->hasDynSymTab) 291 return false; 292 if (computeBinding() == STB_LOCAL) 293 return false; 294 if (!isDefined() && !isCommon()) 295 // This should unconditionally return true, unfortunately glibc -static-pie 296 // expects undefined weak symbols not to exist in .dynsym, e.g. 297 // __pthread_mutex_lock reference in _dl_add_to_namespace_list, 298 // __pthread_initialize_minimal reference in csu/libc-start.c. 299 return !(config->noDynamicLinker && isUndefWeak()); 300 301 return exportDynamic || inDynamicList; 302 } 303 304 // Print out a log message for --trace-symbol. 305 void elf::printTraceSymbol(const Symbol *sym) { 306 std::string s; 307 if (sym->isUndefined()) 308 s = ": reference to "; 309 else if (sym->isLazy()) 310 s = ": lazy definition of "; 311 else if (sym->isShared()) 312 s = ": shared definition of "; 313 else if (sym->isCommon()) 314 s = ": common definition of "; 315 else 316 s = ": definition of "; 317 318 message(toString(sym->file) + s + sym->getName()); 319 } 320 321 void elf::maybeWarnUnorderableSymbol(const Symbol *sym) { 322 if (!config->warnSymbolOrdering) 323 return; 324 325 // If UnresolvedPolicy::Ignore is used, no "undefined symbol" error/warning 326 // is emitted. It makes sense to not warn on undefined symbols. 327 // 328 // Note, ld.bfd --symbol-ordering-file= does not warn on undefined symbols, 329 // but we don't have to be compatible here. 330 if (sym->isUndefined() && 331 config->unresolvedSymbols == UnresolvedPolicy::Ignore) 332 return; 333 334 const InputFile *file = sym->file; 335 auto *d = dyn_cast<Defined>(sym); 336 337 auto report = [&](StringRef s) { warn(toString(file) + s + sym->getName()); }; 338 339 if (sym->isUndefined()) 340 report(": unable to order undefined symbol: "); 341 else if (sym->isShared()) 342 report(": unable to order shared symbol: "); 343 else if (d && !d->section) 344 report(": unable to order absolute symbol: "); 345 else if (d && isa<OutputSection>(d->section)) 346 report(": unable to order synthetic symbol: "); 347 else if (d && !d->section->repl->isLive()) 348 report(": unable to order discarded symbol: "); 349 } 350 351 // Returns true if a symbol can be replaced at load-time by a symbol 352 // with the same name defined in other ELF executable or DSO. 353 bool elf::computeIsPreemptible(const Symbol &sym) { 354 assert(!sym.isLocal()); 355 356 // Only symbols with default visibility that appear in dynsym can be 357 // preempted. Symbols with protected visibility cannot be preempted. 358 if (!sym.includeInDynsym() || sym.visibility != STV_DEFAULT) 359 return false; 360 361 // At this point copy relocations have not been created yet, so any 362 // symbol that is not defined locally is preemptible. 363 if (!sym.isDefined()) 364 return true; 365 366 if (!config->shared) 367 return false; 368 369 // If -Bsymbolic or --dynamic-list is specified, or -Bsymbolic-functions is 370 // specified and the symbol is STT_FUNC, the symbol is preemptible iff it is 371 // in the dynamic list. 372 if (config->symbolic || (config->bsymbolicFunctions && sym.isFunc())) 373 return sym.inDynamicList; 374 return true; 375 } 376 377 void elf::reportBackrefs() { 378 for (auto &it : backwardReferences) { 379 const Symbol &sym = *it.first; 380 warn("backward reference detected: " + sym.getName() + " in " + 381 toString(it.second) + " refers to " + toString(sym.file)); 382 } 383 } 384 385 static uint8_t getMinVisibility(uint8_t va, uint8_t vb) { 386 if (va == STV_DEFAULT) 387 return vb; 388 if (vb == STV_DEFAULT) 389 return va; 390 return std::min(va, vb); 391 } 392 393 // Merge symbol properties. 394 // 395 // When we have many symbols of the same name, we choose one of them, 396 // and that's the result of symbol resolution. However, symbols that 397 // were not chosen still affect some symbol properties. 398 void Symbol::mergeProperties(const Symbol &other) { 399 if (other.exportDynamic) 400 exportDynamic = true; 401 if (other.isUsedInRegularObj) 402 isUsedInRegularObj = true; 403 404 // DSO symbols do not affect visibility in the output. 405 if (!other.isShared()) 406 visibility = getMinVisibility(visibility, other.visibility); 407 } 408 409 void Symbol::resolve(const Symbol &other) { 410 mergeProperties(other); 411 412 if (isPlaceholder()) { 413 replace(other); 414 return; 415 } 416 417 switch (other.kind()) { 418 case Symbol::UndefinedKind: 419 resolveUndefined(cast<Undefined>(other)); 420 break; 421 case Symbol::CommonKind: 422 resolveCommon(cast<CommonSymbol>(other)); 423 break; 424 case Symbol::DefinedKind: 425 resolveDefined(cast<Defined>(other)); 426 break; 427 case Symbol::LazyArchiveKind: 428 resolveLazy(cast<LazyArchive>(other)); 429 break; 430 case Symbol::LazyObjectKind: 431 resolveLazy(cast<LazyObject>(other)); 432 break; 433 case Symbol::SharedKind: 434 resolveShared(cast<SharedSymbol>(other)); 435 break; 436 case Symbol::PlaceholderKind: 437 llvm_unreachable("bad symbol kind"); 438 } 439 } 440 441 void Symbol::resolveUndefined(const Undefined &other) { 442 // An undefined symbol with non default visibility must be satisfied 443 // in the same DSO. 444 // 445 // If this is a non-weak defined symbol in a discarded section, override the 446 // existing undefined symbol for better error message later. 447 if ((isShared() && other.visibility != STV_DEFAULT) || 448 (isUndefined() && other.binding != STB_WEAK && other.discardedSecIdx)) { 449 replace(other); 450 return; 451 } 452 453 if (traced) 454 printTraceSymbol(&other); 455 456 if (isLazy()) { 457 // An undefined weak will not fetch archive members. See comment on Lazy in 458 // Symbols.h for the details. 459 if (other.binding == STB_WEAK) { 460 binding = STB_WEAK; 461 type = other.type; 462 return; 463 } 464 465 // Do extra check for --warn-backrefs. 466 // 467 // --warn-backrefs is an option to prevent an undefined reference from 468 // fetching an archive member written earlier in the command line. It can be 469 // used to keep compatibility with GNU linkers to some degree. 470 // I'll explain the feature and why you may find it useful in this comment. 471 // 472 // lld's symbol resolution semantics is more relaxed than traditional Unix 473 // linkers. For example, 474 // 475 // ld.lld foo.a bar.o 476 // 477 // succeeds even if bar.o contains an undefined symbol that has to be 478 // resolved by some object file in foo.a. Traditional Unix linkers don't 479 // allow this kind of backward reference, as they visit each file only once 480 // from left to right in the command line while resolving all undefined 481 // symbols at the moment of visiting. 482 // 483 // In the above case, since there's no undefined symbol when a linker visits 484 // foo.a, no files are pulled out from foo.a, and because the linker forgets 485 // about foo.a after visiting, it can't resolve undefined symbols in bar.o 486 // that could have been resolved otherwise. 487 // 488 // That lld accepts more relaxed form means that (besides it'd make more 489 // sense) you can accidentally write a command line or a build file that 490 // works only with lld, even if you have a plan to distribute it to wider 491 // users who may be using GNU linkers. With --warn-backrefs, you can detect 492 // a library order that doesn't work with other Unix linkers. 493 // 494 // The option is also useful to detect cyclic dependencies between static 495 // archives. Again, lld accepts 496 // 497 // ld.lld foo.a bar.a 498 // 499 // even if foo.a and bar.a depend on each other. With --warn-backrefs, it is 500 // handled as an error. 501 // 502 // Here is how the option works. We assign a group ID to each file. A file 503 // with a smaller group ID can pull out object files from an archive file 504 // with an equal or greater group ID. Otherwise, it is a reverse dependency 505 // and an error. 506 // 507 // A file outside --{start,end}-group gets a fresh ID when instantiated. All 508 // files within the same --{start,end}-group get the same group ID. E.g. 509 // 510 // ld.lld A B --start-group C D --end-group E 511 // 512 // A forms group 0. B form group 1. C and D (including their member object 513 // files) form group 2. E forms group 3. I think that you can see how this 514 // group assignment rule simulates the traditional linker's semantics. 515 bool backref = config->warnBackrefs && other.file && 516 file->groupId < other.file->groupId; 517 if (backref) { 518 // Some libraries have known problems and can cause noise. Filter them out 519 // with --warn-backrefs-exclude=. 520 StringRef name = 521 !file->archiveName.empty() ? file->archiveName : file->getName(); 522 for (const llvm::GlobPattern &pat : config->warnBackrefsExclude) 523 if (pat.match(name)) { 524 backref = false; 525 break; 526 } 527 } 528 fetch(); 529 530 // We don't report backward references to weak symbols as they can be 531 // overridden later. 532 // 533 // A traditional linker does not error for -ldef1 -lref -ldef2 (linking 534 // sandwich), where def2 may or may not be the same as def1. We don't want 535 // to warn for this case, so dismiss the warning if we see a subsequent lazy 536 // definition. 537 if (backref && !isWeak()) 538 backwardReferences.try_emplace(this, other.file); 539 return; 540 } 541 542 // Undefined symbols in a SharedFile do not change the binding. 543 if (dyn_cast_or_null<SharedFile>(other.file)) 544 return; 545 546 if (isUndefined() || isShared()) { 547 // The binding will be weak if there is at least one reference and all are 548 // weak. The binding has one opportunity to change to weak: if the first 549 // reference is weak. 550 if (other.binding != STB_WEAK || !referenced) 551 binding = other.binding; 552 } 553 } 554 555 // Using .symver foo,foo@@VER unfortunately creates two symbols: foo and 556 // foo@@VER. We want to effectively ignore foo, so give precedence to 557 // foo@@VER. 558 // FIXME: If users can transition to using 559 // .symver foo,foo@@@VER 560 // we can delete this hack. 561 static int compareVersion(StringRef a, StringRef b) { 562 bool x = a.contains("@@"); 563 bool y = b.contains("@@"); 564 if (!x && y) 565 return 1; 566 if (x && !y) 567 return -1; 568 return 0; 569 } 570 571 // Compare two symbols. Return 1 if the new symbol should win, -1 if 572 // the new symbol should lose, or 0 if there is a conflict. 573 int Symbol::compare(const Symbol *other) const { 574 assert(other->isDefined() || other->isCommon()); 575 576 if (!isDefined() && !isCommon()) 577 return 1; 578 579 if (int cmp = compareVersion(getName(), other->getName())) 580 return cmp; 581 582 if (other->isWeak()) 583 return -1; 584 585 if (isWeak()) 586 return 1; 587 588 if (isCommon() && other->isCommon()) { 589 if (config->warnCommon) 590 warn("multiple common of " + getName()); 591 return 0; 592 } 593 594 if (isCommon()) { 595 if (config->warnCommon) 596 warn("common " + getName() + " is overridden"); 597 return 1; 598 } 599 600 if (other->isCommon()) { 601 if (config->warnCommon) 602 warn("common " + getName() + " is overridden"); 603 return -1; 604 } 605 606 auto *oldSym = cast<Defined>(this); 607 auto *newSym = cast<Defined>(other); 608 609 if (dyn_cast_or_null<BitcodeFile>(other->file)) 610 return 0; 611 612 if (!oldSym->section && !newSym->section && oldSym->value == newSym->value && 613 newSym->binding == STB_GLOBAL) 614 return -1; 615 616 return 0; 617 } 618 619 static void reportDuplicate(Symbol *sym, InputFile *newFile, 620 InputSectionBase *errSec, uint64_t errOffset) { 621 if (config->allowMultipleDefinition) 622 return; 623 624 Defined *d = cast<Defined>(sym); 625 if (!d->section || !errSec) { 626 error("duplicate symbol: " + toString(*sym) + "\n>>> defined in " + 627 toString(sym->file) + "\n>>> defined in " + toString(newFile)); 628 return; 629 } 630 631 // Construct and print an error message in the form of: 632 // 633 // ld.lld: error: duplicate symbol: foo 634 // >>> defined at bar.c:30 635 // >>> bar.o (/home/alice/src/bar.o) 636 // >>> defined at baz.c:563 637 // >>> baz.o in archive libbaz.a 638 auto *sec1 = cast<InputSectionBase>(d->section); 639 std::string src1 = sec1->getSrcMsg(*sym, d->value); 640 std::string obj1 = sec1->getObjMsg(d->value); 641 std::string src2 = errSec->getSrcMsg(*sym, errOffset); 642 std::string obj2 = errSec->getObjMsg(errOffset); 643 644 std::string msg = "duplicate symbol: " + toString(*sym) + "\n>>> defined at "; 645 if (!src1.empty()) 646 msg += src1 + "\n>>> "; 647 msg += obj1 + "\n>>> defined at "; 648 if (!src2.empty()) 649 msg += src2 + "\n>>> "; 650 msg += obj2; 651 error(msg); 652 } 653 654 void Symbol::resolveCommon(const CommonSymbol &other) { 655 int cmp = compare(&other); 656 if (cmp < 0) 657 return; 658 659 if (cmp > 0) { 660 if (auto *s = dyn_cast<SharedSymbol>(this)) { 661 // Increase st_size if the shared symbol has a larger st_size. The shared 662 // symbol may be created from common symbols. The fact that some object 663 // files were linked into a shared object first should not change the 664 // regular rule that picks the largest st_size. 665 uint64_t size = s->size; 666 replace(other); 667 if (size > cast<CommonSymbol>(this)->size) 668 cast<CommonSymbol>(this)->size = size; 669 } else { 670 replace(other); 671 } 672 return; 673 } 674 675 CommonSymbol *oldSym = cast<CommonSymbol>(this); 676 677 oldSym->alignment = std::max(oldSym->alignment, other.alignment); 678 if (oldSym->size < other.size) { 679 oldSym->file = other.file; 680 oldSym->size = other.size; 681 } 682 } 683 684 void Symbol::resolveDefined(const Defined &other) { 685 int cmp = compare(&other); 686 if (cmp > 0) 687 replace(other); 688 else if (cmp == 0) 689 reportDuplicate(this, other.file, 690 dyn_cast_or_null<InputSectionBase>(other.section), 691 other.value); 692 } 693 694 template <class LazyT> void Symbol::resolveLazy(const LazyT &other) { 695 if (!isUndefined()) { 696 // See the comment in resolveUndefined(). 697 if (isDefined()) 698 backwardReferences.erase(this); 699 return; 700 } 701 702 // An undefined weak will not fetch archive members. See comment on Lazy in 703 // Symbols.h for the details. 704 if (isWeak()) { 705 uint8_t ty = type; 706 replace(other); 707 type = ty; 708 binding = STB_WEAK; 709 return; 710 } 711 712 other.fetch(); 713 } 714 715 void Symbol::resolveShared(const SharedSymbol &other) { 716 if (isCommon()) { 717 // See the comment in resolveCommon() above. 718 if (other.size > cast<CommonSymbol>(this)->size) 719 cast<CommonSymbol>(this)->size = other.size; 720 return; 721 } 722 if (visibility == STV_DEFAULT && (isUndefined() || isLazy())) { 723 // An undefined symbol with non default visibility must be satisfied 724 // in the same DSO. 725 uint8_t bind = binding; 726 replace(other); 727 binding = bind; 728 } else if (traced) 729 printTraceSymbol(&other); 730 } 731