xref: /openbsd/gnu/llvm/lld/ELF/Symbols.h (revision d415bd75)
1 //===- Symbols.h ------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines various types of Symbols.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLD_ELF_SYMBOLS_H
14 #define LLD_ELF_SYMBOLS_H
15 
16 #include "InputFiles.h"
17 #include "InputSection.h"
18 #include "lld/Common/LLVM.h"
19 #include "lld/Common/Strings.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/Object/Archive.h"
22 #include "llvm/Object/ELF.h"
23 
24 namespace lld {
25 // Returns a string representation for a symbol for diagnostics.
26 std::string toString(const elf::Symbol &);
27 
28 // There are two different ways to convert an Archive::Symbol to a string:
29 // One for Microsoft name mangling and one for Itanium name mangling.
30 // Call the functions toCOFFString and toELFString, not just toString.
31 std::string toELFString(const llvm::object::Archive::Symbol &);
32 
33 namespace elf {
34 class CommonSymbol;
35 class Defined;
36 class InputFile;
37 class LazyArchive;
38 class LazyObject;
39 class SharedSymbol;
40 class Symbol;
41 class Undefined;
42 
43 // This is a StringRef-like container that doesn't run strlen().
44 //
45 // ELF string tables contain a lot of null-terminated strings. Most of them
46 // are not necessary for the linker because they are names of local symbols,
47 // and the linker doesn't use local symbol names for name resolution. So, we
48 // use this class to represents strings read from string tables.
49 struct StringRefZ {
50   StringRefZ(const char *s) : data(s), size(-1) {}
51   StringRefZ(StringRef s) : data(s.data()), size(s.size()) {}
52 
53   const char *data;
54   const uint32_t size;
55 };
56 
57 // The base class for real symbol classes.
58 class Symbol {
59 public:
60   enum Kind {
61     PlaceholderKind,
62     DefinedKind,
63     CommonKind,
64     SharedKind,
65     UndefinedKind,
66     LazyArchiveKind,
67     LazyObjectKind,
68   };
69 
70   Kind kind() const { return static_cast<Kind>(symbolKind); }
71 
72   // The file from which this symbol was created.
73   InputFile *file;
74 
75 protected:
76   const char *nameData;
77   mutable uint32_t nameSize;
78 
79 public:
80   uint32_t dynsymIndex = 0;
81   uint32_t gotIndex = -1;
82   uint32_t pltIndex = -1;
83 
84   uint32_t globalDynIndex = -1;
85 
86   // This field is a index to the symbol's version definition.
87   uint32_t verdefIndex = -1;
88 
89   // Version definition index.
90   uint16_t versionId;
91 
92   // Symbol binding. This is not overwritten by replace() to track
93   // changes during resolution. In particular:
94   //  - An undefined weak is still weak when it resolves to a shared library.
95   //  - An undefined weak will not fetch archive members, but we have to
96   //    remember it is weak.
97   uint8_t binding;
98 
99   // The following fields have the same meaning as the ELF symbol attributes.
100   uint8_t type;    // symbol type
101   uint8_t stOther; // st_other field value
102 
103   uint8_t symbolKind;
104 
105   // Symbol visibility. This is the computed minimum visibility of all
106   // observed non-DSO symbols.
107   uint8_t visibility : 2;
108 
109   // True if the symbol was used for linking and thus need to be added to the
110   // output file's symbol table. This is true for all symbols except for
111   // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that
112   // are unreferenced except by other bitcode objects.
113   uint8_t isUsedInRegularObj : 1;
114 
115   // Used by a Defined symbol with protected or default visibility, to record
116   // whether it is required to be exported into .dynsym. This is set when any of
117   // the following conditions hold:
118   //
119   // - If there is an interposable symbol from a DSO.
120   // - If -shared or --export-dynamic is specified, any symbol in an object
121   //   file/bitcode sets this property, unless suppressed by LTO
122   //   canBeOmittedFromSymbolTable().
123   uint8_t exportDynamic : 1;
124 
125   // True if the symbol is in the --dynamic-list file. A Defined symbol with
126   // protected or default visibility with this property is required to be
127   // exported into .dynsym.
128   uint8_t inDynamicList : 1;
129 
130   // False if LTO shouldn't inline whatever this symbol points to. If a symbol
131   // is overwritten after LTO, LTO shouldn't inline the symbol because it
132   // doesn't know the final contents of the symbol.
133   uint8_t canInline : 1;
134 
135   // Used to track if there has been at least one undefined reference to the
136   // symbol. For Undefined and SharedSymbol, the binding may change to STB_WEAK
137   // if the first undefined reference from a non-shared object is weak.
138   //
139   // This is also used to retain __wrap_foo when foo is referenced.
140   uint8_t referenced : 1;
141 
142   // True if this symbol is specified by --trace-symbol option.
143   uint8_t traced : 1;
144 
145   // True if the .gnu.warning.SYMBOL is set for the symbol
146   uint8_t gwarn : 1;
147 
148   inline void replace(const Symbol &newSym);
149 
150   bool includeInDynsym() const;
151   uint8_t computeBinding() const;
152   bool isWeak() const { return binding == llvm::ELF::STB_WEAK; }
153 
154   bool isUndefined() const { return symbolKind == UndefinedKind; }
155   bool isCommon() const { return symbolKind == CommonKind; }
156   bool isDefined() const { return symbolKind == DefinedKind; }
157   bool isShared() const { return symbolKind == SharedKind; }
158   bool isPlaceholder() const { return symbolKind == PlaceholderKind; }
159 
160   bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; }
161 
162   bool isLazy() const {
163     return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind;
164   }
165 
166   // True if this is an undefined weak symbol. This only works once
167   // all input files have been added.
168   bool isUndefWeak() const {
169     // See comment on lazy symbols for details.
170     return isWeak() && (isUndefined() || isLazy());
171   }
172 
173   StringRef getName() const {
174     if (nameSize == (uint32_t)-1)
175       nameSize = strlen(nameData);
176     return {nameData, nameSize};
177   }
178 
179   void setName(StringRef s) {
180     nameData = s.data();
181     nameSize = s.size();
182   }
183 
184   void parseSymbolVersion();
185 
186   // Get the NUL-terminated version suffix ("", "@...", or "@@...").
187   //
188   // For @@, the name has been truncated by insert(). For @, the name has been
189   // truncated by Symbol::parseSymbolVersion().
190   const char *getVersionSuffix() const {
191     (void)getName();
192     return nameData + nameSize;
193   }
194 
195   bool isInGot() const { return gotIndex != -1U; }
196   bool isInPlt() const { return pltIndex != -1U; }
197 
198   uint64_t getVA(int64_t addend = 0) const;
199 
200   uint64_t getGotOffset() const;
201   uint64_t getGotVA() const;
202   uint64_t getGotPltOffset() const;
203   uint64_t getGotPltVA() const;
204   uint64_t getPltVA() const;
205   uint64_t getSize() const;
206   OutputSection *getOutputSection() const;
207 
208   // The following two functions are used for symbol resolution.
209   //
210   // You are expected to call mergeProperties for all symbols in input
211   // files so that attributes that are attached to names rather than
212   // indivisual symbol (such as visibility) are merged together.
213   //
214   // Every time you read a new symbol from an input, you are supposed
215   // to call resolve() with the new symbol. That function replaces
216   // "this" object as a result of name resolution if the new symbol is
217   // more appropriate to be included in the output.
218   //
219   // For example, if "this" is an undefined symbol and a new symbol is
220   // a defined symbol, "this" is replaced with the new symbol.
221   void mergeProperties(const Symbol &other);
222   void resolve(const Symbol &other);
223 
224   // If this is a lazy symbol, fetch an input file and add the symbol
225   // in the file to the symbol table. Calling this function on
226   // non-lazy object causes a runtime error.
227   void fetch() const;
228 
229   static bool isExportDynamic(Kind k, uint8_t visibility) {
230     if (k == SharedKind)
231       return visibility == llvm::ELF::STV_DEFAULT;
232     return config->shared || config->exportDynamic;
233   }
234 
235 private:
236   void resolveUndefined(const Undefined &other);
237   void resolveCommon(const CommonSymbol &other);
238   void resolveDefined(const Defined &other);
239   template <class LazyT> void resolveLazy(const LazyT &other);
240   void resolveShared(const SharedSymbol &other);
241 
242   int compare(const Symbol *other) const;
243 
244   inline size_t getSymbolSize() const;
245 
246 protected:
247   Symbol(Kind k, InputFile *file, StringRefZ name, uint8_t binding,
248          uint8_t stOther, uint8_t type)
249       : file(file), nameData(name.data), nameSize(name.size), binding(binding),
250         type(type), stOther(stOther), symbolKind(k), visibility(stOther & 3),
251         isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind),
252         exportDynamic(isExportDynamic(k, visibility)), inDynamicList(false),
253         canInline(false), referenced(false), traced(false), gwarn(false), needsPltAddr(false),
254         isInIplt(false), gotInIgot(false), isPreemptible(false),
255         used(!config->gcSections), needsTocRestore(false),
256         scriptDefined(false) {}
257 
258 public:
259   // True the symbol should point to its PLT entry.
260   // For SharedSymbol only.
261   uint8_t needsPltAddr : 1;
262 
263   // True if this symbol is in the Iplt sub-section of the Plt and the Igot
264   // sub-section of the .got.plt or .got.
265   uint8_t isInIplt : 1;
266 
267   // True if this symbol needs a GOT entry and its GOT entry is actually in
268   // Igot. This will be true only for certain non-preemptible ifuncs.
269   uint8_t gotInIgot : 1;
270 
271   // True if this symbol is preemptible at load time.
272   uint8_t isPreemptible : 1;
273 
274   // True if an undefined or shared symbol is used from a live section.
275   //
276   // NOTE: In Writer.cpp the field is used to mark local defined symbols
277   // which are referenced by relocations when -r or --emit-relocs is given.
278   uint8_t used : 1;
279 
280   // True if a call to this symbol needs to be followed by a restore of the
281   // PPC64 toc pointer.
282   uint8_t needsTocRestore : 1;
283 
284   // True if this symbol is defined by a linker script.
285   uint8_t scriptDefined : 1;
286 
287   // The partition whose dynamic symbol table contains this symbol's definition.
288   uint8_t partition = 1;
289 
290   bool isSection() const { return type == llvm::ELF::STT_SECTION; }
291   bool isTls() const { return type == llvm::ELF::STT_TLS; }
292   bool isFunc() const { return type == llvm::ELF::STT_FUNC; }
293   bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; }
294   bool isObject() const { return type == llvm::ELF::STT_OBJECT; }
295   bool isFile() const { return type == llvm::ELF::STT_FILE; }
296 };
297 
298 // Represents a symbol that is defined in the current output file.
299 class Defined : public Symbol {
300 public:
301   Defined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
302           uint8_t type, uint64_t value, uint64_t size, SectionBase *section)
303       : Symbol(DefinedKind, file, name, binding, stOther, type), value(value),
304         size(size), section(section) {}
305 
306   static bool classof(const Symbol *s) { return s->isDefined(); }
307 
308   uint64_t value;
309   uint64_t size;
310   SectionBase *section;
311 };
312 
313 // Represents a common symbol.
314 //
315 // On Unix, it is traditionally allowed to write variable definitions
316 // without initialization expressions (such as "int foo;") to header
317 // files. Such definition is called "tentative definition".
318 //
319 // Using tentative definition is usually considered a bad practice
320 // because you should write only declarations (such as "extern int
321 // foo;") to header files. Nevertheless, the linker and the compiler
322 // have to do something to support bad code by allowing duplicate
323 // definitions for this particular case.
324 //
325 // Common symbols represent variable definitions without initializations.
326 // The compiler creates common symbols when it sees variable definitions
327 // without initialization (you can suppress this behavior and let the
328 // compiler create a regular defined symbol by -fno-common).
329 //
330 // The linker allows common symbols to be replaced by regular defined
331 // symbols. If there are remaining common symbols after name resolution is
332 // complete, they are converted to regular defined symbols in a .bss
333 // section. (Therefore, the later passes don't see any CommonSymbols.)
334 class CommonSymbol : public Symbol {
335 public:
336   CommonSymbol(InputFile *file, StringRefZ name, uint8_t binding,
337                uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size)
338       : Symbol(CommonKind, file, name, binding, stOther, type),
339         alignment(alignment), size(size) {}
340 
341   static bool classof(const Symbol *s) { return s->isCommon(); }
342 
343   uint32_t alignment;
344   uint64_t size;
345 };
346 
347 class Undefined : public Symbol {
348 public:
349   Undefined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
350             uint8_t type, uint32_t discardedSecIdx = 0)
351       : Symbol(UndefinedKind, file, name, binding, stOther, type),
352         discardedSecIdx(discardedSecIdx) {}
353 
354   static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
355 
356   // The section index if in a discarded section, 0 otherwise.
357   uint32_t discardedSecIdx;
358 };
359 
360 class SharedSymbol : public Symbol {
361 public:
362   static bool classof(const Symbol *s) { return s->kind() == SharedKind; }
363 
364   SharedSymbol(InputFile &file, StringRef name, uint8_t binding,
365                uint8_t stOther, uint8_t type, uint64_t value, uint64_t size,
366                uint32_t alignment, uint32_t verdefIndex)
367       : Symbol(SharedKind, &file, name, binding, stOther, type), value(value),
368         size(size), alignment(alignment) {
369     this->verdefIndex = verdefIndex;
370     // GNU ifunc is a mechanism to allow user-supplied functions to
371     // resolve PLT slot values at load-time. This is contrary to the
372     // regular symbol resolution scheme in which symbols are resolved just
373     // by name. Using this hook, you can program how symbols are solved
374     // for you program. For example, you can make "memcpy" to be resolved
375     // to a SSE-enabled version of memcpy only when a machine running the
376     // program supports the SSE instruction set.
377     //
378     // Naturally, such symbols should always be called through their PLT
379     // slots. What GNU ifunc symbols point to are resolver functions, and
380     // calling them directly doesn't make sense (unless you are writing a
381     // loader).
382     //
383     // For DSO symbols, we always call them through PLT slots anyway.
384     // So there's no difference between GNU ifunc and regular function
385     // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
386     if (this->type == llvm::ELF::STT_GNU_IFUNC)
387       this->type = llvm::ELF::STT_FUNC;
388   }
389 
390   SharedFile &getFile() const { return *cast<SharedFile>(file); }
391 
392   uint64_t value; // st_value
393   uint64_t size;  // st_size
394   uint32_t alignment;
395 };
396 
397 // LazyArchive and LazyObject represent a symbols that is not yet in the link,
398 // but we know where to find it if needed. If the resolver finds both Undefined
399 // and Lazy for the same name, it will ask the Lazy to load a file.
400 //
401 // A special complication is the handling of weak undefined symbols. They should
402 // not load a file, but we have to remember we have seen both the weak undefined
403 // and the lazy. We represent that with a lazy symbol with a weak binding. This
404 // means that code looking for undefined symbols normally also has to take lazy
405 // symbols into consideration.
406 
407 // This class represents a symbol defined in an archive file. It is
408 // created from an archive file header, and it knows how to load an
409 // object file from an archive to replace itself with a defined
410 // symbol.
411 class LazyArchive : public Symbol {
412 public:
413   LazyArchive(InputFile &file, const llvm::object::Archive::Symbol s)
414       : Symbol(LazyArchiveKind, &file, s.getName(), llvm::ELF::STB_GLOBAL,
415                llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE),
416         sym(s) {}
417 
418   static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; }
419 
420   MemoryBufferRef getMemberBuffer();
421 
422   const llvm::object::Archive::Symbol sym;
423 };
424 
425 // LazyObject symbols represents symbols in object files between
426 // --start-lib and --end-lib options.
427 class LazyObject : public Symbol {
428 public:
429   LazyObject(InputFile &file, StringRef name)
430       : Symbol(LazyObjectKind, &file, name, llvm::ELF::STB_GLOBAL,
431                llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {}
432 
433   static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
434 };
435 
436 // Some linker-generated symbols need to be created as
437 // Defined symbols.
438 struct ElfSym {
439   // __bss_start
440   static Defined *bss;
441 
442   // __data_start
443   static Defined *data;
444 
445   // etext and _etext
446   static Defined *etext1;
447   static Defined *etext2;
448 
449   // edata and _edata
450   static Defined *edata1;
451   static Defined *edata2;
452 
453   // end and _end
454   static Defined *end1;
455   static Defined *end2;
456 
457   // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
458   // be at some offset from the base of the .got section, usually 0 or
459   // the end of the .got.
460   static Defined *globalOffsetTable;
461 
462   // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
463   static Defined *mipsGp;
464   static Defined *mipsGpDisp;
465   static Defined *mipsLocalGp;
466 
467   // __rel{,a}_iplt_{start,end} symbols.
468   static Defined *relaIpltStart;
469   static Defined *relaIpltEnd;
470 
471   // __global_pointer$ for RISC-V.
472   static Defined *riscvGlobalPointer;
473 
474   // _TLS_MODULE_BASE_ on targets that support TLSDESC.
475   static Defined *tlsModuleBase;
476 };
477 
478 // A buffer class that is large enough to hold any Symbol-derived
479 // object. We allocate memory using this class and instantiate a symbol
480 // using the placement new.
481 union SymbolUnion {
482   alignas(Defined) char a[sizeof(Defined)];
483   alignas(CommonSymbol) char b[sizeof(CommonSymbol)];
484   alignas(Undefined) char c[sizeof(Undefined)];
485   alignas(SharedSymbol) char d[sizeof(SharedSymbol)];
486   alignas(LazyArchive) char e[sizeof(LazyArchive)];
487   alignas(LazyObject) char f[sizeof(LazyObject)];
488 };
489 
490 // It is important to keep the size of SymbolUnion small for performance and
491 // memory usage reasons. 80 bytes is a soft limit based on the size of Defined
492 // on a 64-bit system.
493 static_assert(sizeof(SymbolUnion) <= 80, "SymbolUnion too large");
494 
495 template <typename T> struct AssertSymbol {
496   static_assert(std::is_trivially_destructible<T>(),
497                 "Symbol types must be trivially destructible");
498   static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
499   static_assert(alignof(T) <= alignof(SymbolUnion),
500                 "SymbolUnion not aligned enough");
501 };
502 
503 static inline void assertSymbols() {
504   AssertSymbol<Defined>();
505   AssertSymbol<CommonSymbol>();
506   AssertSymbol<Undefined>();
507   AssertSymbol<SharedSymbol>();
508   AssertSymbol<LazyArchive>();
509   AssertSymbol<LazyObject>();
510 }
511 
512 void printTraceSymbol(const Symbol *sym);
513 
514 size_t Symbol::getSymbolSize() const {
515   switch (kind()) {
516   case CommonKind:
517     return sizeof(CommonSymbol);
518   case DefinedKind:
519     return sizeof(Defined);
520   case LazyArchiveKind:
521     return sizeof(LazyArchive);
522   case LazyObjectKind:
523     return sizeof(LazyObject);
524   case SharedKind:
525     return sizeof(SharedSymbol);
526   case UndefinedKind:
527     return sizeof(Undefined);
528   case PlaceholderKind:
529     return sizeof(Symbol);
530   }
531   llvm_unreachable("unknown symbol kind");
532 }
533 
534 // replace() replaces "this" object with a given symbol by memcpy'ing
535 // it over to "this". This function is called as a result of name
536 // resolution, e.g. to replace an undefind symbol with a defined symbol.
537 void Symbol::replace(const Symbol &newSym) {
538   using llvm::ELF::STT_TLS;
539 
540   // st_value of STT_TLS represents the assigned offset, not the actual address
541   // which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can only be
542   // referenced by special TLS relocations. It is usually an error if a STT_TLS
543   // symbol is replaced by a non-STT_TLS symbol, vice versa. There are two
544   // exceptions: (a) a STT_NOTYPE lazy/undefined symbol can be replaced by a
545   // STT_TLS symbol, (b) a STT_TLS undefined symbol can be replaced by a
546   // STT_NOTYPE lazy symbol.
547   if (symbolKind != PlaceholderKind && !newSym.isLazy() &&
548       (type == STT_TLS) != (newSym.type == STT_TLS) &&
549       type != llvm::ELF::STT_NOTYPE)
550     error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " +
551           toString(newSym.file) + "\n>>> defined in " + toString(file));
552 
553   Symbol old = *this;
554   memcpy(this, &newSym, newSym.getSymbolSize());
555 
556   // old may be a placeholder. The referenced fields must be initialized in
557   // SymbolTable::insert.
558   versionId = old.versionId;
559   visibility = old.visibility;
560   isUsedInRegularObj = old.isUsedInRegularObj;
561   exportDynamic = old.exportDynamic;
562   inDynamicList = old.inDynamicList;
563   canInline = old.canInline;
564   referenced = old.referenced;
565   traced = old.traced;
566   gwarn = old.gwarn;
567   isPreemptible = old.isPreemptible;
568   scriptDefined = old.scriptDefined;
569   partition = old.partition;
570 
571   // Symbol length is computed lazily. If we already know a symbol length,
572   // propagate it.
573   if (nameData == old.nameData && nameSize == 0 && old.nameSize != 0)
574     nameSize = old.nameSize;
575 
576   // Print out a log message if --trace-symbol was specified.
577   // This is for debugging.
578   if (traced)
579     printTraceSymbol(this);
580 }
581 
582 void maybeWarnUnorderableSymbol(const Symbol *sym);
583 bool computeIsPreemptible(const Symbol &sym);
584 void reportBackrefs();
585 
586 extern llvm::DenseMap<StringRef, StringRef> gnuWarnings;
587 
588 // A mapping from a symbol to an InputFile referencing it backward. Used by
589 // --warn-backrefs.
590 extern llvm::DenseMap<const Symbol *,
591                       std::pair<const InputFile *, const InputFile *>>
592     backwardReferences;
593 
594 } // namespace elf
595 } // namespace lld
596 
597 #endif
598