1 //===- SyntheticSections.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains linker-synthesized sections. Currently, 10 // synthetic sections are created either output sections or input sections, 11 // but we are rewriting code so that all synthetic sections are created as 12 // input sections. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SyntheticSections.h" 17 #include "Config.h" 18 #include "InputFiles.h" 19 #include "LinkerScript.h" 20 #include "OutputSections.h" 21 #include "SymbolTable.h" 22 #include "Symbols.h" 23 #include "Target.h" 24 #include "Writer.h" 25 #include "lld/Common/DWARF.h" 26 #include "lld/Common/ErrorHandler.h" 27 #include "lld/Common/Memory.h" 28 #include "lld/Common/Strings.h" 29 #include "lld/Common/Version.h" 30 #include "llvm/ADT/SetOperations.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/BinaryFormat/Dwarf.h" 34 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" 35 #include "llvm/Object/ELFObjectFile.h" 36 #include "llvm/Support/Compression.h" 37 #include "llvm/Support/Endian.h" 38 #include "llvm/Support/LEB128.h" 39 #include "llvm/Support/MD5.h" 40 #include "llvm/Support/Parallel.h" 41 #include "llvm/Support/TimeProfiler.h" 42 #include <cstdlib> 43 #include <thread> 44 45 using namespace llvm; 46 using namespace llvm::dwarf; 47 using namespace llvm::ELF; 48 using namespace llvm::object; 49 using namespace llvm::support; 50 using namespace lld; 51 using namespace lld::elf; 52 53 using llvm::support::endian::read32le; 54 using llvm::support::endian::write32le; 55 using llvm::support::endian::write64le; 56 57 constexpr size_t MergeNoTailSection::numShards; 58 59 static uint64_t readUint(uint8_t *buf) { 60 return config->is64 ? read64(buf) : read32(buf); 61 } 62 63 static void writeUint(uint8_t *buf, uint64_t val) { 64 if (config->is64) 65 write64(buf, val); 66 else 67 write32(buf, val); 68 } 69 70 // Returns an LLD version string. 71 static ArrayRef<uint8_t> getVersion() { 72 // Check LLD_VERSION first for ease of testing. 73 // You can get consistent output by using the environment variable. 74 // This is only for testing. 75 StringRef s = getenv("LLD_VERSION"); 76 if (s.empty()) 77 s = saver.save(Twine("Linker: ") + getLLDVersion()); 78 79 // +1 to include the terminating '\0'. 80 return {(const uint8_t *)s.data(), s.size() + 1}; 81 } 82 83 // Creates a .comment section containing LLD version info. 84 // With this feature, you can identify LLD-generated binaries easily 85 // by "readelf --string-dump .comment <file>". 86 // The returned object is a mergeable string section. 87 MergeInputSection *elf::createCommentSection() { 88 return make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1, 89 getVersion(), ".comment"); 90 } 91 92 // .MIPS.abiflags section. 93 template <class ELFT> 94 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags) 95 : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), 96 flags(flags) { 97 this->entsize = sizeof(Elf_Mips_ABIFlags); 98 } 99 100 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { 101 memcpy(buf, &flags, sizeof(flags)); 102 } 103 104 template <class ELFT> 105 MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() { 106 Elf_Mips_ABIFlags flags = {}; 107 bool create = false; 108 109 for (InputSectionBase *sec : inputSections) { 110 if (sec->type != SHT_MIPS_ABIFLAGS) 111 continue; 112 sec->markDead(); 113 create = true; 114 115 std::string filename = toString(sec->file); 116 const size_t size = sec->data().size(); 117 // Older version of BFD (such as the default FreeBSD linker) concatenate 118 // .MIPS.abiflags instead of merging. To allow for this case (or potential 119 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags 120 if (size < sizeof(Elf_Mips_ABIFlags)) { 121 error(filename + ": invalid size of .MIPS.abiflags section: got " + 122 Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); 123 return nullptr; 124 } 125 auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->data().data()); 126 if (s->version != 0) { 127 error(filename + ": unexpected .MIPS.abiflags version " + 128 Twine(s->version)); 129 return nullptr; 130 } 131 132 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just 133 // select the highest number of ISA/Rev/Ext. 134 flags.isa_level = std::max(flags.isa_level, s->isa_level); 135 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); 136 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); 137 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); 138 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); 139 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); 140 flags.ases |= s->ases; 141 flags.flags1 |= s->flags1; 142 flags.flags2 |= s->flags2; 143 flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename); 144 }; 145 146 if (create) 147 return make<MipsAbiFlagsSection<ELFT>>(flags); 148 return nullptr; 149 } 150 151 // .MIPS.options section. 152 template <class ELFT> 153 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo) 154 : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), 155 reginfo(reginfo) { 156 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 157 } 158 159 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { 160 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); 161 options->kind = ODK_REGINFO; 162 options->size = getSize(); 163 164 if (!config->relocatable) 165 reginfo.ri_gp_value = in.mipsGot->getGp(); 166 memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); 167 } 168 169 template <class ELFT> 170 MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() { 171 // N64 ABI only. 172 if (!ELFT::Is64Bits) 173 return nullptr; 174 175 std::vector<InputSectionBase *> sections; 176 for (InputSectionBase *sec : inputSections) 177 if (sec->type == SHT_MIPS_OPTIONS) 178 sections.push_back(sec); 179 180 if (sections.empty()) 181 return nullptr; 182 183 Elf_Mips_RegInfo reginfo = {}; 184 for (InputSectionBase *sec : sections) { 185 sec->markDead(); 186 187 std::string filename = toString(sec->file); 188 ArrayRef<uint8_t> d = sec->data(); 189 190 while (!d.empty()) { 191 if (d.size() < sizeof(Elf_Mips_Options)) { 192 error(filename + ": invalid size of .MIPS.options section"); 193 break; 194 } 195 196 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); 197 if (opt->kind == ODK_REGINFO) { 198 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; 199 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; 200 break; 201 } 202 203 if (!opt->size) 204 fatal(filename + ": zero option descriptor size"); 205 d = d.slice(opt->size); 206 } 207 }; 208 209 return make<MipsOptionsSection<ELFT>>(reginfo); 210 } 211 212 // MIPS .reginfo section. 213 template <class ELFT> 214 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo) 215 : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), 216 reginfo(reginfo) { 217 this->entsize = sizeof(Elf_Mips_RegInfo); 218 } 219 220 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { 221 if (!config->relocatable) 222 reginfo.ri_gp_value = in.mipsGot->getGp(); 223 memcpy(buf, ®info, sizeof(reginfo)); 224 } 225 226 template <class ELFT> 227 MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() { 228 // Section should be alive for O32 and N32 ABIs only. 229 if (ELFT::Is64Bits) 230 return nullptr; 231 232 std::vector<InputSectionBase *> sections; 233 for (InputSectionBase *sec : inputSections) 234 if (sec->type == SHT_MIPS_REGINFO) 235 sections.push_back(sec); 236 237 if (sections.empty()) 238 return nullptr; 239 240 Elf_Mips_RegInfo reginfo = {}; 241 for (InputSectionBase *sec : sections) { 242 sec->markDead(); 243 244 if (sec->data().size() != sizeof(Elf_Mips_RegInfo)) { 245 error(toString(sec->file) + ": invalid size of .reginfo section"); 246 return nullptr; 247 } 248 249 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->data().data()); 250 reginfo.ri_gprmask |= r->ri_gprmask; 251 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; 252 }; 253 254 return make<MipsReginfoSection<ELFT>>(reginfo); 255 } 256 257 InputSection *elf::createInterpSection() { 258 // StringSaver guarantees that the returned string ends with '\0'. 259 StringRef s = saver.save(config->dynamicLinker); 260 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; 261 262 return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents, 263 ".interp"); 264 } 265 266 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value, 267 uint64_t size, InputSectionBase §ion) { 268 auto *s = make<Defined>(section.file, name, STB_LOCAL, STV_DEFAULT, type, 269 value, size, §ion); 270 if (in.symTab) 271 in.symTab->addSymbol(s); 272 return s; 273 } 274 275 static size_t getHashSize() { 276 switch (config->buildId) { 277 case BuildIdKind::Fast: 278 return 8; 279 case BuildIdKind::Md5: 280 case BuildIdKind::Uuid: 281 return 16; 282 case BuildIdKind::Sha1: 283 return 20; 284 case BuildIdKind::Hexstring: 285 return config->buildIdVector.size(); 286 default: 287 llvm_unreachable("unknown BuildIdKind"); 288 } 289 } 290 291 // This class represents a linker-synthesized .note.gnu.property section. 292 // 293 // In x86 and AArch64, object files may contain feature flags indicating the 294 // features that they have used. The flags are stored in a .note.gnu.property 295 // section. 296 // 297 // lld reads the sections from input files and merges them by computing AND of 298 // the flags. The result is written as a new .note.gnu.property section. 299 // 300 // If the flag is zero (which indicates that the intersection of the feature 301 // sets is empty, or some input files didn't have .note.gnu.property sections), 302 // we don't create this section. 303 GnuPropertySection::GnuPropertySection() 304 : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE, 305 config->wordsize, ".note.gnu.property") {} 306 307 void GnuPropertySection::writeTo(uint8_t *buf) { 308 uint32_t featureAndType = config->emachine == EM_AARCH64 309 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 310 : GNU_PROPERTY_X86_FEATURE_1_AND; 311 312 write32(buf, 4); // Name size 313 write32(buf + 4, config->is64 ? 16 : 12); // Content size 314 write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type 315 memcpy(buf + 12, "GNU", 4); // Name string 316 write32(buf + 16, featureAndType); // Feature type 317 write32(buf + 20, 4); // Feature size 318 write32(buf + 24, config->andFeatures); // Feature flags 319 if (config->is64) 320 write32(buf + 28, 0); // Padding 321 } 322 323 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; } 324 325 BuildIdSection::BuildIdSection() 326 : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"), 327 hashSize(getHashSize()) {} 328 329 void BuildIdSection::writeTo(uint8_t *buf) { 330 write32(buf, 4); // Name size 331 write32(buf + 4, hashSize); // Content size 332 write32(buf + 8, NT_GNU_BUILD_ID); // Type 333 memcpy(buf + 12, "GNU", 4); // Name string 334 hashBuf = buf + 16; 335 } 336 337 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { 338 assert(buf.size() == hashSize); 339 memcpy(hashBuf, buf.data(), hashSize); 340 } 341 342 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment) 343 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) { 344 this->bss = true; 345 this->size = size; 346 } 347 348 EhFrameSection::EhFrameSection() 349 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} 350 351 // Search for an existing CIE record or create a new one. 352 // CIE records from input object files are uniquified by their contents 353 // and where their relocations point to. 354 template <class ELFT, class RelTy> 355 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { 356 Symbol *personality = nullptr; 357 unsigned firstRelI = cie.firstRelocation; 358 if (firstRelI != (unsigned)-1) 359 personality = 360 &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]); 361 362 // Search for an existing CIE by CIE contents/relocation target pair. 363 CieRecord *&rec = cieMap[{cie.data(), personality}]; 364 365 // If not found, create a new one. 366 if (!rec) { 367 rec = make<CieRecord>(); 368 rec->cie = &cie; 369 cieRecords.push_back(rec); 370 } 371 return rec; 372 } 373 374 // There is one FDE per function. Returns true if a given FDE 375 // points to a live function. 376 template <class ELFT, class RelTy> 377 bool EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { 378 auto *sec = cast<EhInputSection>(fde.sec); 379 unsigned firstRelI = fde.firstRelocation; 380 381 // An FDE should point to some function because FDEs are to describe 382 // functions. That's however not always the case due to an issue of 383 // ld.gold with -r. ld.gold may discard only functions and leave their 384 // corresponding FDEs, which results in creating bad .eh_frame sections. 385 // To deal with that, we ignore such FDEs. 386 if (firstRelI == (unsigned)-1) 387 return false; 388 389 const RelTy &rel = rels[firstRelI]; 390 Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel); 391 392 // FDEs for garbage-collected or merged-by-ICF sections, or sections in 393 // another partition, are dead. 394 if (auto *d = dyn_cast<Defined>(&b)) 395 if (SectionBase *sec = d->section) 396 return sec->partition == partition; 397 return false; 398 } 399 400 // .eh_frame is a sequence of CIE or FDE records. In general, there 401 // is one CIE record per input object file which is followed by 402 // a list of FDEs. This function searches an existing CIE or create a new 403 // one and associates FDEs to the CIE. 404 template <class ELFT, class RelTy> 405 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { 406 offsetToCie.clear(); 407 for (EhSectionPiece &piece : sec->pieces) { 408 // The empty record is the end marker. 409 if (piece.size == 4) 410 return; 411 412 size_t offset = piece.inputOff; 413 uint32_t id = read32(piece.data().data() + 4); 414 if (id == 0) { 415 offsetToCie[offset] = addCie<ELFT>(piece, rels); 416 continue; 417 } 418 419 uint32_t cieOffset = offset + 4 - id; 420 CieRecord *rec = offsetToCie[cieOffset]; 421 if (!rec) 422 fatal(toString(sec) + ": invalid CIE reference"); 423 424 if (!isFdeLive<ELFT>(piece, rels)) 425 continue; 426 rec->fdes.push_back(&piece); 427 numFdes++; 428 } 429 } 430 431 template <class ELFT> 432 void EhFrameSection::addSectionAux(EhInputSection *sec) { 433 if (!sec->isLive()) 434 return; 435 if (sec->areRelocsRela) 436 addRecords<ELFT>(sec, sec->template relas<ELFT>()); 437 else 438 addRecords<ELFT>(sec, sec->template rels<ELFT>()); 439 } 440 441 void EhFrameSection::addSection(EhInputSection *sec) { 442 sec->parent = this; 443 444 alignment = std::max(alignment, sec->alignment); 445 sections.push_back(sec); 446 447 for (auto *ds : sec->dependentSections) 448 dependentSections.push_back(ds); 449 } 450 451 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) { 452 memcpy(buf, d.data(), d.size()); 453 454 size_t aligned = alignTo(d.size(), config->wordsize); 455 456 // Zero-clear trailing padding if it exists. 457 memset(buf + d.size(), 0, aligned - d.size()); 458 459 // Fix the size field. -4 since size does not include the size field itself. 460 write32(buf, aligned - 4); 461 } 462 463 void EhFrameSection::finalizeContents() { 464 assert(!this->size); // Not finalized. 465 466 switch (config->ekind) { 467 case ELFNoneKind: 468 llvm_unreachable("invalid ekind"); 469 case ELF32LEKind: 470 for (EhInputSection *sec : sections) 471 addSectionAux<ELF32LE>(sec); 472 break; 473 case ELF32BEKind: 474 for (EhInputSection *sec : sections) 475 addSectionAux<ELF32BE>(sec); 476 break; 477 case ELF64LEKind: 478 for (EhInputSection *sec : sections) 479 addSectionAux<ELF64LE>(sec); 480 break; 481 case ELF64BEKind: 482 for (EhInputSection *sec : sections) 483 addSectionAux<ELF64BE>(sec); 484 break; 485 } 486 487 size_t off = 0; 488 for (CieRecord *rec : cieRecords) { 489 rec->cie->outputOff = off; 490 off += alignTo(rec->cie->size, config->wordsize); 491 492 for (EhSectionPiece *fde : rec->fdes) { 493 fde->outputOff = off; 494 off += alignTo(fde->size, config->wordsize); 495 } 496 } 497 498 // The LSB standard does not allow a .eh_frame section with zero 499 // Call Frame Information records. glibc unwind-dw2-fde.c 500 // classify_object_over_fdes expects there is a CIE record length 0 as a 501 // terminator. Thus we add one unconditionally. 502 off += 4; 503 504 this->size = off; 505 } 506 507 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table 508 // to get an FDE from an address to which FDE is applied. This function 509 // returns a list of such pairs. 510 std::vector<EhFrameSection::FdeData> EhFrameSection::getFdeData() const { 511 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 512 std::vector<FdeData> ret; 513 514 uint64_t va = getPartition().ehFrameHdr->getVA(); 515 for (CieRecord *rec : cieRecords) { 516 uint8_t enc = getFdeEncoding(rec->cie); 517 for (EhSectionPiece *fde : rec->fdes) { 518 uint64_t pc = getFdePc(buf, fde->outputOff, enc); 519 uint64_t fdeVA = getParent()->addr + fde->outputOff; 520 if (!isInt<32>(pc - va)) 521 fatal(toString(fde->sec) + ": PC offset is too large: 0x" + 522 Twine::utohexstr(pc - va)); 523 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)}); 524 } 525 } 526 527 // Sort the FDE list by their PC and uniqueify. Usually there is only 528 // one FDE for a PC (i.e. function), but if ICF merges two functions 529 // into one, there can be more than one FDEs pointing to the address. 530 auto less = [](const FdeData &a, const FdeData &b) { 531 return a.pcRel < b.pcRel; 532 }; 533 llvm::stable_sort(ret, less); 534 auto eq = [](const FdeData &a, const FdeData &b) { 535 return a.pcRel == b.pcRel; 536 }; 537 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end()); 538 539 return ret; 540 } 541 542 static uint64_t readFdeAddr(uint8_t *buf, int size) { 543 switch (size) { 544 case DW_EH_PE_udata2: 545 return read16(buf); 546 case DW_EH_PE_sdata2: 547 return (int16_t)read16(buf); 548 case DW_EH_PE_udata4: 549 return read32(buf); 550 case DW_EH_PE_sdata4: 551 return (int32_t)read32(buf); 552 case DW_EH_PE_udata8: 553 case DW_EH_PE_sdata8: 554 return read64(buf); 555 case DW_EH_PE_absptr: 556 return readUint(buf); 557 } 558 fatal("unknown FDE size encoding"); 559 } 560 561 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. 562 // We need it to create .eh_frame_hdr section. 563 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, 564 uint8_t enc) const { 565 // The starting address to which this FDE applies is 566 // stored at FDE + 8 byte. 567 size_t off = fdeOff + 8; 568 uint64_t addr = readFdeAddr(buf + off, enc & 0xf); 569 if ((enc & 0x70) == DW_EH_PE_absptr) 570 return addr; 571 if ((enc & 0x70) == DW_EH_PE_pcrel) 572 return addr + getParent()->addr + off; 573 fatal("unknown FDE size relative encoding"); 574 } 575 576 void EhFrameSection::writeTo(uint8_t *buf) { 577 // Write CIE and FDE records. 578 for (CieRecord *rec : cieRecords) { 579 size_t cieOffset = rec->cie->outputOff; 580 writeCieFde(buf + cieOffset, rec->cie->data()); 581 582 for (EhSectionPiece *fde : rec->fdes) { 583 size_t off = fde->outputOff; 584 writeCieFde(buf + off, fde->data()); 585 586 // FDE's second word should have the offset to an associated CIE. 587 // Write it. 588 write32(buf + off + 4, off + 4 - cieOffset); 589 } 590 } 591 592 // Apply relocations. .eh_frame section contents are not contiguous 593 // in the output buffer, but relocateAlloc() still works because 594 // getOffset() takes care of discontiguous section pieces. 595 for (EhInputSection *s : sections) 596 s->relocateAlloc(buf, nullptr); 597 598 if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent()) 599 getPartition().ehFrameHdr->write(); 600 } 601 602 GotSection::GotSection() 603 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 604 ".got") { 605 // If ElfSym::globalOffsetTable is relative to .got and is referenced, 606 // increase numEntries by the number of entries used to emit 607 // ElfSym::globalOffsetTable. 608 if (ElfSym::globalOffsetTable && !target->gotBaseSymInGotPlt) 609 numEntries += target->gotHeaderEntriesNum; 610 else if (config->emachine == EM_PPC && !config->relocatable) 611 numEntries += target->gotHeaderEntriesNum; 612 } 613 614 void GotSection::addEntry(Symbol &sym) { 615 sym.gotIndex = numEntries; 616 ++numEntries; 617 } 618 619 bool GotSection::addDynTlsEntry(Symbol &sym) { 620 if (sym.globalDynIndex != -1U) 621 return false; 622 sym.globalDynIndex = numEntries; 623 // Global Dynamic TLS entries take two GOT slots. 624 numEntries += 2; 625 return true; 626 } 627 628 // Reserves TLS entries for a TLS module ID and a TLS block offset. 629 // In total it takes two GOT slots. 630 bool GotSection::addTlsIndex() { 631 if (tlsIndexOff != uint32_t(-1)) 632 return false; 633 tlsIndexOff = numEntries * config->wordsize; 634 numEntries += 2; 635 return true; 636 } 637 638 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { 639 return this->getVA() + b.globalDynIndex * config->wordsize; 640 } 641 642 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { 643 return b.globalDynIndex * config->wordsize; 644 } 645 646 void GotSection::finalizeContents() { 647 size = numEntries * config->wordsize; 648 } 649 650 bool GotSection::isNeeded() const { 651 // We need to emit a GOT even if it's empty if there's a relocation that is 652 // relative to GOT(such as GOTOFFREL). 653 return numEntries || hasGotOffRel; 654 } 655 656 void GotSection::writeTo(uint8_t *buf) { 657 // Buf points to the start of this section's buffer, 658 // whereas InputSectionBase::relocateAlloc() expects its argument 659 // to point to the start of the output section. 660 target->writeGotHeader(buf); 661 relocateAlloc(buf - outSecOff, buf - outSecOff + size); 662 } 663 664 static uint64_t getMipsPageAddr(uint64_t addr) { 665 return (addr + 0x8000) & ~0xffff; 666 } 667 668 static uint64_t getMipsPageCount(uint64_t size) { 669 return (size + 0xfffe) / 0xffff + 1; 670 } 671 672 MipsGotSection::MipsGotSection() 673 : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, 674 ".got") {} 675 676 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, 677 RelExpr expr) { 678 FileGot &g = getGot(file); 679 if (expr == R_MIPS_GOT_LOCAL_PAGE) { 680 if (const OutputSection *os = sym.getOutputSection()) 681 g.pagesMap.insert({os, {}}); 682 else 683 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0}); 684 } else if (sym.isTls()) 685 g.tls.insert({&sym, 0}); 686 else if (sym.isPreemptible && expr == R_ABS) 687 g.relocs.insert({&sym, 0}); 688 else if (sym.isPreemptible) 689 g.global.insert({&sym, 0}); 690 else if (expr == R_MIPS_GOT_OFF32) 691 g.local32.insert({{&sym, addend}, 0}); 692 else 693 g.local16.insert({{&sym, addend}, 0}); 694 } 695 696 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { 697 getGot(file).dynTlsSymbols.insert({&sym, 0}); 698 } 699 700 void MipsGotSection::addTlsIndex(InputFile &file) { 701 getGot(file).dynTlsSymbols.insert({nullptr, 0}); 702 } 703 704 size_t MipsGotSection::FileGot::getEntriesNum() const { 705 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + 706 tls.size() + dynTlsSymbols.size() * 2; 707 } 708 709 size_t MipsGotSection::FileGot::getPageEntriesNum() const { 710 size_t num = 0; 711 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) 712 num += p.second.count; 713 return num; 714 } 715 716 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { 717 size_t count = getPageEntriesNum() + local16.size() + global.size(); 718 // If there are relocation-only entries in the GOT, TLS entries 719 // are allocated after them. TLS entries should be addressable 720 // by 16-bit index so count both reloc-only and TLS entries. 721 if (!tls.empty() || !dynTlsSymbols.empty()) 722 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; 723 return count; 724 } 725 726 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { 727 if (!f.mipsGotIndex.hasValue()) { 728 gots.emplace_back(); 729 gots.back().file = &f; 730 f.mipsGotIndex = gots.size() - 1; 731 } 732 return gots[*f.mipsGotIndex]; 733 } 734 735 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, 736 const Symbol &sym, 737 int64_t addend) const { 738 const FileGot &g = gots[*f->mipsGotIndex]; 739 uint64_t index = 0; 740 if (const OutputSection *outSec = sym.getOutputSection()) { 741 uint64_t secAddr = getMipsPageAddr(outSec->addr); 742 uint64_t symAddr = getMipsPageAddr(sym.getVA(addend)); 743 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff; 744 } else { 745 index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))}); 746 } 747 return index * config->wordsize; 748 } 749 750 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, 751 int64_t addend) const { 752 const FileGot &g = gots[*f->mipsGotIndex]; 753 Symbol *sym = const_cast<Symbol *>(&s); 754 if (sym->isTls()) 755 return g.tls.lookup(sym) * config->wordsize; 756 if (sym->isPreemptible) 757 return g.global.lookup(sym) * config->wordsize; 758 return g.local16.lookup({sym, addend}) * config->wordsize; 759 } 760 761 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { 762 const FileGot &g = gots[*f->mipsGotIndex]; 763 return g.dynTlsSymbols.lookup(nullptr) * config->wordsize; 764 } 765 766 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, 767 const Symbol &s) const { 768 const FileGot &g = gots[*f->mipsGotIndex]; 769 Symbol *sym = const_cast<Symbol *>(&s); 770 return g.dynTlsSymbols.lookup(sym) * config->wordsize; 771 } 772 773 const Symbol *MipsGotSection::getFirstGlobalEntry() const { 774 if (gots.empty()) 775 return nullptr; 776 const FileGot &primGot = gots.front(); 777 if (!primGot.global.empty()) 778 return primGot.global.front().first; 779 if (!primGot.relocs.empty()) 780 return primGot.relocs.front().first; 781 return nullptr; 782 } 783 784 unsigned MipsGotSection::getLocalEntriesNum() const { 785 if (gots.empty()) 786 return headerEntriesNum; 787 return headerEntriesNum + gots.front().getPageEntriesNum() + 788 gots.front().local16.size(); 789 } 790 791 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { 792 FileGot tmp = dst; 793 set_union(tmp.pagesMap, src.pagesMap); 794 set_union(tmp.local16, src.local16); 795 set_union(tmp.global, src.global); 796 set_union(tmp.relocs, src.relocs); 797 set_union(tmp.tls, src.tls); 798 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols); 799 800 size_t count = isPrimary ? headerEntriesNum : 0; 801 count += tmp.getIndexedEntriesNum(); 802 803 if (count * config->wordsize > config->mipsGotSize) 804 return false; 805 806 std::swap(tmp, dst); 807 return true; 808 } 809 810 void MipsGotSection::finalizeContents() { updateAllocSize(); } 811 812 bool MipsGotSection::updateAllocSize() { 813 size = headerEntriesNum * config->wordsize; 814 for (const FileGot &g : gots) 815 size += g.getEntriesNum() * config->wordsize; 816 return false; 817 } 818 819 void MipsGotSection::build() { 820 if (gots.empty()) 821 return; 822 823 std::vector<FileGot> mergedGots(1); 824 825 // For each GOT move non-preemptible symbols from the `Global` 826 // to `Local16` list. Preemptible symbol might become non-preemptible 827 // one if, for example, it gets a related copy relocation. 828 for (FileGot &got : gots) { 829 for (auto &p: got.global) 830 if (!p.first->isPreemptible) 831 got.local16.insert({{p.first, 0}, 0}); 832 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) { 833 return !p.first->isPreemptible; 834 }); 835 } 836 837 // For each GOT remove "reloc-only" entry if there is "global" 838 // entry for the same symbol. And add local entries which indexed 839 // using 32-bit value at the end of 16-bit entries. 840 for (FileGot &got : gots) { 841 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 842 return got.global.count(p.first); 843 }); 844 set_union(got.local16, got.local32); 845 got.local32.clear(); 846 } 847 848 // Evaluate number of "reloc-only" entries in the resulting GOT. 849 // To do that put all unique "reloc-only" and "global" entries 850 // from all GOTs to the future primary GOT. 851 FileGot *primGot = &mergedGots.front(); 852 for (FileGot &got : gots) { 853 set_union(primGot->relocs, got.global); 854 set_union(primGot->relocs, got.relocs); 855 got.relocs.clear(); 856 } 857 858 // Evaluate number of "page" entries in each GOT. 859 for (FileGot &got : gots) { 860 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 861 got.pagesMap) { 862 const OutputSection *os = p.first; 863 uint64_t secSize = 0; 864 for (BaseCommand *cmd : os->sectionCommands) { 865 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 866 for (InputSection *isec : isd->sections) { 867 uint64_t off = alignTo(secSize, isec->alignment); 868 secSize = off + isec->getSize(); 869 } 870 } 871 p.second.count = getMipsPageCount(secSize); 872 } 873 } 874 875 // Merge GOTs. Try to join as much as possible GOTs but do not exceed 876 // maximum GOT size. At first, try to fill the primary GOT because 877 // the primary GOT can be accessed in the most effective way. If it 878 // is not possible, try to fill the last GOT in the list, and finally 879 // create a new GOT if both attempts failed. 880 for (FileGot &srcGot : gots) { 881 InputFile *file = srcGot.file; 882 if (tryMergeGots(mergedGots.front(), srcGot, true)) { 883 file->mipsGotIndex = 0; 884 } else { 885 // If this is the first time we failed to merge with the primary GOT, 886 // MergedGots.back() will also be the primary GOT. We must make sure not 887 // to try to merge again with isPrimary=false, as otherwise, if the 888 // inputs are just right, we could allow the primary GOT to become 1 or 2 889 // words bigger due to ignoring the header size. 890 if (mergedGots.size() == 1 || 891 !tryMergeGots(mergedGots.back(), srcGot, false)) { 892 mergedGots.emplace_back(); 893 std::swap(mergedGots.back(), srcGot); 894 } 895 file->mipsGotIndex = mergedGots.size() - 1; 896 } 897 } 898 std::swap(gots, mergedGots); 899 900 // Reduce number of "reloc-only" entries in the primary GOT 901 // by subtracting "global" entries in the primary GOT. 902 primGot = &gots.front(); 903 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) { 904 return primGot->global.count(p.first); 905 }); 906 907 // Calculate indexes for each GOT entry. 908 size_t index = headerEntriesNum; 909 for (FileGot &got : gots) { 910 got.startIndex = &got == primGot ? 0 : index; 911 for (std::pair<const OutputSection *, FileGot::PageBlock> &p : 912 got.pagesMap) { 913 // For each output section referenced by GOT page relocations calculate 914 // and save into pagesMap an upper bound of MIPS GOT entries required 915 // to store page addresses of local symbols. We assume the worst case - 916 // each 64kb page of the output section has at least one GOT relocation 917 // against it. And take in account the case when the section intersects 918 // page boundaries. 919 p.second.firstIndex = index; 920 index += p.second.count; 921 } 922 for (auto &p: got.local16) 923 p.second = index++; 924 for (auto &p: got.global) 925 p.second = index++; 926 for (auto &p: got.relocs) 927 p.second = index++; 928 for (auto &p: got.tls) 929 p.second = index++; 930 for (auto &p: got.dynTlsSymbols) { 931 p.second = index; 932 index += 2; 933 } 934 } 935 936 // Update Symbol::gotIndex field to use this 937 // value later in the `sortMipsSymbols` function. 938 for (auto &p : primGot->global) 939 p.first->gotIndex = p.second; 940 for (auto &p : primGot->relocs) 941 p.first->gotIndex = p.second; 942 943 // Create dynamic relocations. 944 for (FileGot &got : gots) { 945 // Create dynamic relocations for TLS entries. 946 for (std::pair<Symbol *, size_t> &p : got.tls) { 947 Symbol *s = p.first; 948 uint64_t offset = p.second * config->wordsize; 949 if (s->isPreemptible) 950 mainPart->relaDyn->addReloc(target->tlsGotRel, this, offset, s); 951 } 952 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { 953 Symbol *s = p.first; 954 uint64_t offset = p.second * config->wordsize; 955 if (s == nullptr) { 956 if (!config->isPic) 957 continue; 958 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s); 959 } else { 960 // When building a shared library we still need a dynamic relocation 961 // for the module index. Therefore only checking for 962 // S->isPreemptible is not sufficient (this happens e.g. for 963 // thread-locals that have been marked as local through a linker script) 964 if (!s->isPreemptible && !config->isPic) 965 continue; 966 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s); 967 // However, we can skip writing the TLS offset reloc for non-preemptible 968 // symbols since it is known even in shared libraries 969 if (!s->isPreemptible) 970 continue; 971 offset += config->wordsize; 972 mainPart->relaDyn->addReloc(target->tlsOffsetRel, this, offset, s); 973 } 974 } 975 976 // Do not create dynamic relocations for non-TLS 977 // entries in the primary GOT. 978 if (&got == primGot) 979 continue; 980 981 // Dynamic relocations for "global" entries. 982 for (const std::pair<Symbol *, size_t> &p : got.global) { 983 uint64_t offset = p.second * config->wordsize; 984 mainPart->relaDyn->addReloc(target->relativeRel, this, offset, p.first); 985 } 986 if (!config->isPic) 987 continue; 988 // Dynamic relocations for "local" entries in case of PIC. 989 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 990 got.pagesMap) { 991 size_t pageCount = l.second.count; 992 for (size_t pi = 0; pi < pageCount; ++pi) { 993 uint64_t offset = (l.second.firstIndex + pi) * config->wordsize; 994 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first, 995 int64_t(pi * 0x10000)}); 996 } 997 } 998 for (const std::pair<GotEntry, size_t> &p : got.local16) { 999 uint64_t offset = p.second * config->wordsize; 1000 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, true, 1001 p.first.first, p.first.second}); 1002 } 1003 } 1004 } 1005 1006 bool MipsGotSection::isNeeded() const { 1007 // We add the .got section to the result for dynamic MIPS target because 1008 // its address and properties are mentioned in the .dynamic section. 1009 return !config->relocatable; 1010 } 1011 1012 uint64_t MipsGotSection::getGp(const InputFile *f) const { 1013 // For files without related GOT or files refer a primary GOT 1014 // returns "common" _gp value. For secondary GOTs calculate 1015 // individual _gp values. 1016 if (!f || !f->mipsGotIndex.hasValue() || *f->mipsGotIndex == 0) 1017 return ElfSym::mipsGp->getVA(0); 1018 return getVA() + gots[*f->mipsGotIndex].startIndex * config->wordsize + 1019 0x7ff0; 1020 } 1021 1022 void MipsGotSection::writeTo(uint8_t *buf) { 1023 // Set the MSB of the second GOT slot. This is not required by any 1024 // MIPS ABI documentation, though. 1025 // 1026 // There is a comment in glibc saying that "The MSB of got[1] of a 1027 // gnu object is set to identify gnu objects," and in GNU gold it 1028 // says "the second entry will be used by some runtime loaders". 1029 // But how this field is being used is unclear. 1030 // 1031 // We are not really willing to mimic other linkers behaviors 1032 // without understanding why they do that, but because all files 1033 // generated by GNU tools have this special GOT value, and because 1034 // we've been doing this for years, it is probably a safe bet to 1035 // keep doing this for now. We really need to revisit this to see 1036 // if we had to do this. 1037 writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1)); 1038 for (const FileGot &g : gots) { 1039 auto write = [&](size_t i, const Symbol *s, int64_t a) { 1040 uint64_t va = a; 1041 if (s) 1042 va = s->getVA(a); 1043 writeUint(buf + i * config->wordsize, va); 1044 }; 1045 // Write 'page address' entries to the local part of the GOT. 1046 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : 1047 g.pagesMap) { 1048 size_t pageCount = l.second.count; 1049 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr); 1050 for (size_t pi = 0; pi < pageCount; ++pi) 1051 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); 1052 } 1053 // Local, global, TLS, reloc-only entries. 1054 // If TLS entry has a corresponding dynamic relocations, leave it 1055 // initialized by zero. Write down adjusted TLS symbol's values otherwise. 1056 // To calculate the adjustments use offsets for thread-local storage. 1057 // https://www.linux-mips.org/wiki/NPTL 1058 for (const std::pair<GotEntry, size_t> &p : g.local16) 1059 write(p.second, p.first.first, p.first.second); 1060 // Write VA to the primary GOT only. For secondary GOTs that 1061 // will be done by REL32 dynamic relocations. 1062 if (&g == &gots.front()) 1063 for (const std::pair<Symbol *, size_t> &p : g.global) 1064 write(p.second, p.first, 0); 1065 for (const std::pair<Symbol *, size_t> &p : g.relocs) 1066 write(p.second, p.first, 0); 1067 for (const std::pair<Symbol *, size_t> &p : g.tls) 1068 write(p.second, p.first, p.first->isPreemptible ? 0 : -0x7000); 1069 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { 1070 if (p.first == nullptr && !config->isPic) 1071 write(p.second, nullptr, 1); 1072 else if (p.first && !p.first->isPreemptible) { 1073 // If we are emitting PIC code with relocations we mustn't write 1074 // anything to the GOT here. When using Elf_Rel relocations the value 1075 // one will be treated as an addend and will cause crashes at runtime 1076 if (!config->isPic) 1077 write(p.second, nullptr, 1); 1078 write(p.second + 1, p.first, -0x8000); 1079 } 1080 } 1081 } 1082 } 1083 1084 // On PowerPC the .plt section is used to hold the table of function addresses 1085 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss 1086 // section. I don't know why we have a BSS style type for the section but it is 1087 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. 1088 GotPltSection::GotPltSection() 1089 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 1090 ".got.plt") { 1091 if (config->emachine == EM_PPC) { 1092 name = ".plt"; 1093 } else if (config->emachine == EM_PPC64) { 1094 type = SHT_NOBITS; 1095 name = ".plt"; 1096 } 1097 } 1098 1099 void GotPltSection::addEntry(Symbol &sym) { 1100 assert(sym.pltIndex == entries.size()); 1101 entries.push_back(&sym); 1102 } 1103 1104 size_t GotPltSection::getSize() const { 1105 return (target->gotPltHeaderEntriesNum + entries.size()) * config->wordsize; 1106 } 1107 1108 void GotPltSection::writeTo(uint8_t *buf) { 1109 target->writeGotPltHeader(buf); 1110 buf += target->gotPltHeaderEntriesNum * config->wordsize; 1111 for (const Symbol *b : entries) { 1112 target->writeGotPlt(buf, *b); 1113 buf += config->wordsize; 1114 } 1115 } 1116 1117 bool GotPltSection::isNeeded() const { 1118 // We need to emit GOTPLT even if it's empty if there's a relocation relative 1119 // to it. 1120 return !entries.empty() || hasGotPltOffRel; 1121 } 1122 1123 static StringRef getIgotPltName() { 1124 // On ARM the IgotPltSection is part of the GotSection. 1125 if (config->emachine == EM_ARM) 1126 return ".got"; 1127 1128 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection 1129 // needs to be named the same. 1130 if (config->emachine == EM_PPC64) 1131 return ".plt"; 1132 1133 return ".got.plt"; 1134 } 1135 1136 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit 1137 // with the IgotPltSection. 1138 IgotPltSection::IgotPltSection() 1139 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 1140 config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, 1141 config->wordsize, getIgotPltName()) {} 1142 1143 void IgotPltSection::addEntry(Symbol &sym) { 1144 assert(sym.pltIndex == entries.size()); 1145 entries.push_back(&sym); 1146 } 1147 1148 size_t IgotPltSection::getSize() const { 1149 return entries.size() * config->wordsize; 1150 } 1151 1152 void IgotPltSection::writeTo(uint8_t *buf) { 1153 for (const Symbol *b : entries) { 1154 target->writeIgotPlt(buf, *b); 1155 buf += config->wordsize; 1156 } 1157 } 1158 1159 StringTableSection::StringTableSection(StringRef name, bool dynamic) 1160 : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name), 1161 dynamic(dynamic) { 1162 // ELF string tables start with a NUL byte. 1163 addString(""); 1164 } 1165 1166 // Adds a string to the string table. If `hashIt` is true we hash and check for 1167 // duplicates. It is optional because the name of global symbols are already 1168 // uniqued and hashing them again has a big cost for a small value: uniquing 1169 // them with some other string that happens to be the same. 1170 unsigned StringTableSection::addString(StringRef s, bool hashIt) { 1171 if (hashIt) { 1172 auto r = stringMap.insert(std::make_pair(s, this->size)); 1173 if (!r.second) 1174 return r.first->second; 1175 } 1176 unsigned ret = this->size; 1177 this->size = this->size + s.size() + 1; 1178 strings.push_back(s); 1179 return ret; 1180 } 1181 1182 void StringTableSection::writeTo(uint8_t *buf) { 1183 for (StringRef s : strings) { 1184 memcpy(buf, s.data(), s.size()); 1185 buf[s.size()] = '\0'; 1186 buf += s.size() + 1; 1187 } 1188 } 1189 1190 // Returns the number of entries in .gnu.version_d: the number of 1191 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. 1192 // Note that we don't support vd_cnt > 1 yet. 1193 static unsigned getVerDefNum() { 1194 return namedVersionDefs().size() + 1; 1195 } 1196 1197 template <class ELFT> 1198 DynamicSection<ELFT>::DynamicSection() 1199 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize, 1200 ".dynamic") { 1201 this->entsize = ELFT::Is64Bits ? 16 : 8; 1202 1203 // .dynamic section is not writable on MIPS and on Fuchsia OS 1204 // which passes -z rodynamic. 1205 // See "Special Section" in Chapter 4 in the following document: 1206 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1207 if (config->emachine == EM_MIPS || config->zRodynamic) 1208 this->flags = SHF_ALLOC; 1209 } 1210 1211 template <class ELFT> 1212 void DynamicSection<ELFT>::add(int32_t tag, std::function<uint64_t()> fn) { 1213 entries.push_back({tag, fn}); 1214 } 1215 1216 template <class ELFT> 1217 void DynamicSection<ELFT>::addInt(int32_t tag, uint64_t val) { 1218 entries.push_back({tag, [=] { return val; }}); 1219 } 1220 1221 template <class ELFT> 1222 void DynamicSection<ELFT>::addInSec(int32_t tag, InputSection *sec) { 1223 entries.push_back({tag, [=] { return sec->getVA(0); }}); 1224 } 1225 1226 template <class ELFT> 1227 void DynamicSection<ELFT>::addInSecRelative(int32_t tag, InputSection *sec) { 1228 size_t tagOffset = entries.size() * entsize; 1229 entries.push_back( 1230 {tag, [=] { return sec->getVA(0) - (getVA() + tagOffset); }}); 1231 } 1232 1233 template <class ELFT> 1234 void DynamicSection<ELFT>::addOutSec(int32_t tag, OutputSection *sec) { 1235 entries.push_back({tag, [=] { return sec->addr; }}); 1236 } 1237 1238 template <class ELFT> 1239 void DynamicSection<ELFT>::addSize(int32_t tag, OutputSection *sec) { 1240 entries.push_back({tag, [=] { return sec->size; }}); 1241 } 1242 1243 template <class ELFT> 1244 void DynamicSection<ELFT>::addSym(int32_t tag, Symbol *sym) { 1245 entries.push_back({tag, [=] { return sym->getVA(); }}); 1246 } 1247 1248 // The output section .rela.dyn may include these synthetic sections: 1249 // 1250 // - part.relaDyn 1251 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn 1252 // - in.relaPlt: this is included if a linker script places .rela.plt inside 1253 // .rela.dyn 1254 // 1255 // DT_RELASZ is the total size of the included sections. 1256 static std::function<uint64_t()> addRelaSz(RelocationBaseSection *relaDyn) { 1257 return [=]() { 1258 size_t size = relaDyn->getSize(); 1259 if (in.relaIplt->getParent() == relaDyn->getParent()) 1260 size += in.relaIplt->getSize(); 1261 if (in.relaPlt->getParent() == relaDyn->getParent()) 1262 size += in.relaPlt->getSize(); 1263 return size; 1264 }; 1265 } 1266 1267 // A Linker script may assign the RELA relocation sections to the same 1268 // output section. When this occurs we cannot just use the OutputSection 1269 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to 1270 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). 1271 static uint64_t addPltRelSz() { 1272 size_t size = in.relaPlt->getSize(); 1273 if (in.relaIplt->getParent() == in.relaPlt->getParent() && 1274 in.relaIplt->name == in.relaPlt->name) 1275 size += in.relaIplt->getSize(); 1276 return size; 1277 } 1278 1279 // Add remaining entries to complete .dynamic contents. 1280 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { 1281 elf::Partition &part = getPartition(); 1282 bool isMain = part.name.empty(); 1283 1284 for (StringRef s : config->filterList) 1285 addInt(DT_FILTER, part.dynStrTab->addString(s)); 1286 for (StringRef s : config->auxiliaryList) 1287 addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); 1288 1289 if (!config->rpath.empty()) 1290 addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH, 1291 part.dynStrTab->addString(config->rpath)); 1292 1293 for (SharedFile *file : sharedFiles) 1294 if (file->isNeeded) 1295 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName)); 1296 1297 if (isMain) { 1298 if (!config->soName.empty()) 1299 addInt(DT_SONAME, part.dynStrTab->addString(config->soName)); 1300 } else { 1301 if (!config->soName.empty()) 1302 addInt(DT_NEEDED, part.dynStrTab->addString(config->soName)); 1303 addInt(DT_SONAME, part.dynStrTab->addString(part.name)); 1304 } 1305 1306 // Set DT_FLAGS and DT_FLAGS_1. 1307 uint32_t dtFlags = 0; 1308 uint32_t dtFlags1 = 0; 1309 if (config->bsymbolic) 1310 dtFlags |= DF_SYMBOLIC; 1311 if (config->zGlobal) 1312 dtFlags1 |= DF_1_GLOBAL; 1313 if (config->zInitfirst) 1314 dtFlags1 |= DF_1_INITFIRST; 1315 if (config->zInterpose) 1316 dtFlags1 |= DF_1_INTERPOSE; 1317 if (config->zNodefaultlib) 1318 dtFlags1 |= DF_1_NODEFLIB; 1319 if (config->zNodelete) 1320 dtFlags1 |= DF_1_NODELETE; 1321 if (config->zNodlopen) 1322 dtFlags1 |= DF_1_NOOPEN; 1323 if (config->pie) 1324 dtFlags1 |= DF_1_PIE; 1325 if (config->zNow) { 1326 dtFlags |= DF_BIND_NOW; 1327 dtFlags1 |= DF_1_NOW; 1328 } 1329 if (config->zOrigin) { 1330 dtFlags |= DF_ORIGIN; 1331 dtFlags1 |= DF_1_ORIGIN; 1332 } 1333 if (!config->zText) 1334 dtFlags |= DF_TEXTREL; 1335 if (config->hasStaticTlsModel) 1336 dtFlags |= DF_STATIC_TLS; 1337 1338 if (dtFlags) 1339 addInt(DT_FLAGS, dtFlags); 1340 if (dtFlags1) 1341 addInt(DT_FLAGS_1, dtFlags1); 1342 1343 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We 1344 // need it for each process, so we don't write it for DSOs. The loader writes 1345 // the pointer into this entry. 1346 // 1347 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some 1348 // systems (currently only Fuchsia OS) provide other means to give the 1349 // debugger this information. Such systems may choose make .dynamic read-only. 1350 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. 1351 if (!config->shared && !config->relocatable && !config->zRodynamic) 1352 addInt(DT_DEBUG, 0); 1353 1354 if (OutputSection *sec = part.dynStrTab->getParent()) 1355 this->link = sec->sectionIndex; 1356 1357 if (part.relaDyn->isNeeded() || 1358 (in.relaIplt->isNeeded() && 1359 part.relaDyn->getParent() == in.relaIplt->getParent())) { 1360 addInSec(part.relaDyn->dynamicTag, part.relaDyn); 1361 entries.push_back({part.relaDyn->sizeDynamicTag, addRelaSz(part.relaDyn)}); 1362 1363 bool isRela = config->isRela; 1364 addInt(isRela ? DT_RELAENT : DT_RELENT, 1365 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); 1366 1367 // MIPS dynamic loader does not support RELCOUNT tag. 1368 // The problem is in the tight relation between dynamic 1369 // relocations and GOT. So do not emit this tag on MIPS. 1370 if (config->emachine != EM_MIPS) { 1371 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); 1372 if (config->zCombreloc && numRelativeRels) 1373 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); 1374 } 1375 } 1376 if (part.relrDyn && !part.relrDyn->relocs.empty()) { 1377 addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, 1378 part.relrDyn); 1379 addSize(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, 1380 part.relrDyn->getParent()); 1381 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, 1382 sizeof(Elf_Relr)); 1383 } 1384 // .rel[a].plt section usually consists of two parts, containing plt and 1385 // iplt relocations. It is possible to have only iplt relocations in the 1386 // output. In that case relaPlt is empty and have zero offset, the same offset 1387 // as relaIplt has. And we still want to emit proper dynamic tags for that 1388 // case, so here we always use relaPlt as marker for the beginning of 1389 // .rel[a].plt section. 1390 if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) { 1391 addInSec(DT_JMPREL, in.relaPlt); 1392 entries.push_back({DT_PLTRELSZ, addPltRelSz}); 1393 switch (config->emachine) { 1394 case EM_MIPS: 1395 addInSec(DT_MIPS_PLTGOT, in.gotPlt); 1396 break; 1397 case EM_SPARCV9: 1398 addInSec(DT_PLTGOT, in.plt); 1399 break; 1400 default: 1401 addInSec(DT_PLTGOT, in.gotPlt); 1402 break; 1403 } 1404 addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL); 1405 } 1406 1407 if (config->emachine == EM_AARCH64) { 1408 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 1409 addInt(DT_AARCH64_BTI_PLT, 0); 1410 if (config->zPacPlt) 1411 addInt(DT_AARCH64_PAC_PLT, 0); 1412 } 1413 1414 addInSec(DT_SYMTAB, part.dynSymTab); 1415 addInt(DT_SYMENT, sizeof(Elf_Sym)); 1416 addInSec(DT_STRTAB, part.dynStrTab); 1417 addInt(DT_STRSZ, part.dynStrTab->getSize()); 1418 if (!config->zText) 1419 addInt(DT_TEXTREL, 0); 1420 if (part.gnuHashTab) 1421 addInSec(DT_GNU_HASH, part.gnuHashTab); 1422 if (part.hashTab) 1423 addInSec(DT_HASH, part.hashTab); 1424 1425 if (isMain) { 1426 if (Out::preinitArray) { 1427 addOutSec(DT_PREINIT_ARRAY, Out::preinitArray); 1428 addSize(DT_PREINIT_ARRAYSZ, Out::preinitArray); 1429 } 1430 if (Out::initArray) { 1431 addOutSec(DT_INIT_ARRAY, Out::initArray); 1432 addSize(DT_INIT_ARRAYSZ, Out::initArray); 1433 } 1434 if (Out::finiArray) { 1435 addOutSec(DT_FINI_ARRAY, Out::finiArray); 1436 addSize(DT_FINI_ARRAYSZ, Out::finiArray); 1437 } 1438 1439 if (Symbol *b = symtab->find(config->init)) 1440 if (b->isDefined()) 1441 addSym(DT_INIT, b); 1442 if (Symbol *b = symtab->find(config->fini)) 1443 if (b->isDefined()) 1444 addSym(DT_FINI, b); 1445 } 1446 1447 if (part.verSym && part.verSym->isNeeded()) 1448 addInSec(DT_VERSYM, part.verSym); 1449 if (part.verDef && part.verDef->isLive()) { 1450 addInSec(DT_VERDEF, part.verDef); 1451 addInt(DT_VERDEFNUM, getVerDefNum()); 1452 } 1453 if (part.verNeed && part.verNeed->isNeeded()) { 1454 addInSec(DT_VERNEED, part.verNeed); 1455 unsigned needNum = 0; 1456 for (SharedFile *f : sharedFiles) 1457 if (!f->vernauxs.empty()) 1458 ++needNum; 1459 addInt(DT_VERNEEDNUM, needNum); 1460 } 1461 1462 if (config->emachine == EM_MIPS) { 1463 addInt(DT_MIPS_RLD_VERSION, 1); 1464 addInt(DT_MIPS_FLAGS, RHF_NOTPOT); 1465 addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase()); 1466 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); 1467 1468 add(DT_MIPS_LOCAL_GOTNO, [] { return in.mipsGot->getLocalEntriesNum(); }); 1469 1470 if (const Symbol *b = in.mipsGot->getFirstGlobalEntry()) 1471 addInt(DT_MIPS_GOTSYM, b->dynsymIndex); 1472 else 1473 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); 1474 addInSec(DT_PLTGOT, in.mipsGot); 1475 if (in.mipsRldMap) { 1476 if (!config->pie) 1477 addInSec(DT_MIPS_RLD_MAP, in.mipsRldMap); 1478 // Store the offset to the .rld_map section 1479 // relative to the address of the tag. 1480 addInSecRelative(DT_MIPS_RLD_MAP_REL, in.mipsRldMap); 1481 } 1482 } 1483 1484 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, 1485 // glibc assumes the old-style BSS PLT layout which we don't support. 1486 if (config->emachine == EM_PPC) 1487 add(DT_PPC_GOT, [] { return in.got->getVA(); }); 1488 1489 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. 1490 if (config->emachine == EM_PPC64 && in.plt->isNeeded()) { 1491 // The Glink tag points to 32 bytes before the first lazy symbol resolution 1492 // stub, which starts directly after the header. 1493 entries.push_back({DT_PPC64_GLINK, [=] { 1494 unsigned offset = target->pltHeaderSize - 32; 1495 return in.plt->getVA(0) + offset; 1496 }}); 1497 } 1498 1499 addInt(DT_NULL, 0); 1500 1501 getParent()->link = this->link; 1502 this->size = entries.size() * this->entsize; 1503 } 1504 1505 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { 1506 auto *p = reinterpret_cast<Elf_Dyn *>(buf); 1507 1508 for (std::pair<int32_t, std::function<uint64_t()>> &kv : entries) { 1509 p->d_tag = kv.first; 1510 p->d_un.d_val = kv.second(); 1511 ++p; 1512 } 1513 } 1514 1515 uint64_t DynamicReloc::getOffset() const { 1516 return inputSec->getVA(offsetInSec); 1517 } 1518 1519 int64_t DynamicReloc::computeAddend() const { 1520 if (useSymVA) 1521 return sym->getVA(addend); 1522 if (!outputSec) 1523 return addend; 1524 // See the comment in the DynamicReloc ctor. 1525 return getMipsPageAddr(outputSec->addr) + addend; 1526 } 1527 1528 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { 1529 if (sym && !useSymVA) 1530 return symTab->getSymbolIndex(sym); 1531 return 0; 1532 } 1533 1534 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type, 1535 int32_t dynamicTag, 1536 int32_t sizeDynamicTag) 1537 : SyntheticSection(SHF_ALLOC, type, config->wordsize, name), 1538 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag) {} 1539 1540 void RelocationBaseSection::addReloc(RelType dynType, InputSectionBase *isec, 1541 uint64_t offsetInSec, Symbol *sym) { 1542 addReloc({dynType, isec, offsetInSec, false, sym, 0}); 1543 } 1544 1545 void RelocationBaseSection::addReloc(RelType dynType, 1546 InputSectionBase *inputSec, 1547 uint64_t offsetInSec, Symbol *sym, 1548 int64_t addend, RelExpr expr, 1549 RelType type) { 1550 // Write the addends to the relocated address if required. We skip 1551 // it if the written value would be zero. 1552 if (config->writeAddends && (expr != R_ADDEND || addend != 0)) 1553 inputSec->relocations.push_back({expr, type, offsetInSec, addend, sym}); 1554 addReloc({dynType, inputSec, offsetInSec, expr != R_ADDEND, sym, addend}); 1555 } 1556 1557 void RelocationBaseSection::addReloc(const DynamicReloc &reloc) { 1558 if (reloc.type == target->relativeRel) 1559 ++numRelativeRelocs; 1560 relocs.push_back(reloc); 1561 } 1562 1563 void RelocationBaseSection::finalizeContents() { 1564 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 1565 1566 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE 1567 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that 1568 // case. 1569 if (symTab && symTab->getParent()) 1570 getParent()->link = symTab->getParent()->sectionIndex; 1571 else 1572 getParent()->link = 0; 1573 1574 if (in.relaPlt == this) 1575 getParent()->info = in.gotPlt->getParent()->sectionIndex; 1576 if (in.relaIplt == this) 1577 getParent()->info = in.igotPlt->getParent()->sectionIndex; 1578 } 1579 1580 RelrBaseSection::RelrBaseSection() 1581 : SyntheticSection(SHF_ALLOC, 1582 config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR, 1583 config->wordsize, ".relr.dyn") {} 1584 1585 template <class ELFT> 1586 static void encodeDynamicReloc(SymbolTableBaseSection *symTab, 1587 typename ELFT::Rela *p, 1588 const DynamicReloc &rel) { 1589 if (config->isRela) 1590 p->r_addend = rel.computeAddend(); 1591 p->r_offset = rel.getOffset(); 1592 p->setSymbolAndType(rel.getSymIndex(symTab), rel.type, config->isMips64EL); 1593 } 1594 1595 template <class ELFT> 1596 RelocationSection<ELFT>::RelocationSection(StringRef name, bool sort) 1597 : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL, 1598 config->isRela ? DT_RELA : DT_REL, 1599 config->isRela ? DT_RELASZ : DT_RELSZ), 1600 sort(sort) { 1601 this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1602 } 1603 1604 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { 1605 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 1606 1607 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to 1608 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset 1609 // is to make results easier to read. 1610 if (sort) 1611 llvm::stable_sort( 1612 relocs, [&](const DynamicReloc &a, const DynamicReloc &b) { 1613 return std::make_tuple(a.type != target->relativeRel, 1614 a.getSymIndex(symTab), a.getOffset()) < 1615 std::make_tuple(b.type != target->relativeRel, 1616 b.getSymIndex(symTab), b.getOffset()); 1617 }); 1618 1619 for (const DynamicReloc &rel : relocs) { 1620 encodeDynamicReloc<ELFT>(symTab, reinterpret_cast<Elf_Rela *>(buf), rel); 1621 buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 1622 } 1623 } 1624 1625 template <class ELFT> 1626 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( 1627 StringRef name) 1628 : RelocationBaseSection( 1629 name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, 1630 config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, 1631 config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ) { 1632 this->entsize = 1; 1633 } 1634 1635 template <class ELFT> 1636 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() { 1637 // This function computes the contents of an Android-format packed relocation 1638 // section. 1639 // 1640 // This format compresses relocations by using relocation groups to factor out 1641 // fields that are common between relocations and storing deltas from previous 1642 // relocations in SLEB128 format (which has a short representation for small 1643 // numbers). A good example of a relocation type with common fields is 1644 // R_*_RELATIVE, which is normally used to represent function pointers in 1645 // vtables. In the REL format, each relative relocation has the same r_info 1646 // field, and is only different from other relative relocations in terms of 1647 // the r_offset field. By sorting relocations by offset, grouping them by 1648 // r_info and representing each relocation with only the delta from the 1649 // previous offset, each 8-byte relocation can be compressed to as little as 1 1650 // byte (or less with run-length encoding). This relocation packer was able to 1651 // reduce the size of the relocation section in an Android Chromium DSO from 1652 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. 1653 // 1654 // A relocation section consists of a header containing the literal bytes 1655 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two 1656 // elements are the total number of relocations in the section and an initial 1657 // r_offset value. The remaining elements define a sequence of relocation 1658 // groups. Each relocation group starts with a header consisting of the 1659 // following elements: 1660 // 1661 // - the number of relocations in the relocation group 1662 // - flags for the relocation group 1663 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta 1664 // for each relocation in the group. 1665 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info 1666 // field for each relocation in the group. 1667 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and 1668 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for 1669 // each relocation in the group. 1670 // 1671 // Following the relocation group header are descriptions of each of the 1672 // relocations in the group. They consist of the following elements: 1673 // 1674 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset 1675 // delta for this relocation. 1676 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info 1677 // field for this relocation. 1678 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and 1679 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for 1680 // this relocation. 1681 1682 size_t oldSize = relocData.size(); 1683 1684 relocData = {'A', 'P', 'S', '2'}; 1685 raw_svector_ostream os(relocData); 1686 auto add = [&](int64_t v) { encodeSLEB128(v, os); }; 1687 1688 // The format header includes the number of relocations and the initial 1689 // offset (we set this to zero because the first relocation group will 1690 // perform the initial adjustment). 1691 add(relocs.size()); 1692 add(0); 1693 1694 std::vector<Elf_Rela> relatives, nonRelatives; 1695 1696 for (const DynamicReloc &rel : relocs) { 1697 Elf_Rela r; 1698 encodeDynamicReloc<ELFT>(getPartition().dynSymTab, &r, rel); 1699 1700 if (r.getType(config->isMips64EL) == target->relativeRel) 1701 relatives.push_back(r); 1702 else 1703 nonRelatives.push_back(r); 1704 } 1705 1706 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { 1707 return a.r_offset < b.r_offset; 1708 }); 1709 1710 // Try to find groups of relative relocations which are spaced one word 1711 // apart from one another. These generally correspond to vtable entries. The 1712 // format allows these groups to be encoded using a sort of run-length 1713 // encoding, but each group will cost 7 bytes in addition to the offset from 1714 // the previous group, so it is only profitable to do this for groups of 1715 // size 8 or larger. 1716 std::vector<Elf_Rela> ungroupedRelatives; 1717 std::vector<std::vector<Elf_Rela>> relativeGroups; 1718 for (auto i = relatives.begin(), e = relatives.end(); i != e;) { 1719 std::vector<Elf_Rela> group; 1720 do { 1721 group.push_back(*i++); 1722 } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset); 1723 1724 if (group.size() < 8) 1725 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), 1726 group.end()); 1727 else 1728 relativeGroups.emplace_back(std::move(group)); 1729 } 1730 1731 // For non-relative relocations, we would like to: 1732 // 1. Have relocations with the same symbol offset to be consecutive, so 1733 // that the runtime linker can speed-up symbol lookup by implementing an 1734 // 1-entry cache. 1735 // 2. Group relocations by r_info to reduce the size of the relocation 1736 // section. 1737 // Since the symbol offset is the high bits in r_info, sorting by r_info 1738 // allows us to do both. 1739 // 1740 // For Rela, we also want to sort by r_addend when r_info is the same. This 1741 // enables us to group by r_addend as well. 1742 llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1743 if (a.r_info != b.r_info) 1744 return a.r_info < b.r_info; 1745 if (config->isRela) 1746 return a.r_addend < b.r_addend; 1747 return false; 1748 }); 1749 1750 // Group relocations with the same r_info. Note that each group emits a group 1751 // header and that may make the relocation section larger. It is hard to 1752 // estimate the size of a group header as the encoded size of that varies 1753 // based on r_info. However, we can approximate this trade-off by the number 1754 // of values encoded. Each group header contains 3 values, and each relocation 1755 // in a group encodes one less value, as compared to when it is not grouped. 1756 // Therefore, we only group relocations if there are 3 or more of them with 1757 // the same r_info. 1758 // 1759 // For Rela, the addend for most non-relative relocations is zero, and thus we 1760 // can usually get a smaller relocation section if we group relocations with 0 1761 // addend as well. 1762 std::vector<Elf_Rela> ungroupedNonRelatives; 1763 std::vector<std::vector<Elf_Rela>> nonRelativeGroups; 1764 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { 1765 auto j = i + 1; 1766 while (j != e && i->r_info == j->r_info && 1767 (!config->isRela || i->r_addend == j->r_addend)) 1768 ++j; 1769 if (j - i < 3 || (config->isRela && i->r_addend != 0)) 1770 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); 1771 else 1772 nonRelativeGroups.emplace_back(i, j); 1773 i = j; 1774 } 1775 1776 // Sort ungrouped relocations by offset to minimize the encoded length. 1777 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { 1778 return a.r_offset < b.r_offset; 1779 }); 1780 1781 unsigned hasAddendIfRela = 1782 config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; 1783 1784 uint64_t offset = 0; 1785 uint64_t addend = 0; 1786 1787 // Emit the run-length encoding for the groups of adjacent relative 1788 // relocations. Each group is represented using two groups in the packed 1789 // format. The first is used to set the current offset to the start of the 1790 // group (and also encodes the first relocation), and the second encodes the 1791 // remaining relocations. 1792 for (std::vector<Elf_Rela> &g : relativeGroups) { 1793 // The first relocation in the group. 1794 add(1); 1795 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1796 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1797 add(g[0].r_offset - offset); 1798 add(target->relativeRel); 1799 if (config->isRela) { 1800 add(g[0].r_addend - addend); 1801 addend = g[0].r_addend; 1802 } 1803 1804 // The remaining relocations. 1805 add(g.size() - 1); 1806 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | 1807 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1808 add(config->wordsize); 1809 add(target->relativeRel); 1810 if (config->isRela) { 1811 for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) { 1812 add(i->r_addend - addend); 1813 addend = i->r_addend; 1814 } 1815 } 1816 1817 offset = g.back().r_offset; 1818 } 1819 1820 // Now the ungrouped relatives. 1821 if (!ungroupedRelatives.empty()) { 1822 add(ungroupedRelatives.size()); 1823 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); 1824 add(target->relativeRel); 1825 for (Elf_Rela &r : ungroupedRelatives) { 1826 add(r.r_offset - offset); 1827 offset = r.r_offset; 1828 if (config->isRela) { 1829 add(r.r_addend - addend); 1830 addend = r.r_addend; 1831 } 1832 } 1833 } 1834 1835 // Grouped non-relatives. 1836 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { 1837 add(g.size()); 1838 add(RELOCATION_GROUPED_BY_INFO_FLAG); 1839 add(g[0].r_info); 1840 for (const Elf_Rela &r : g) { 1841 add(r.r_offset - offset); 1842 offset = r.r_offset; 1843 } 1844 addend = 0; 1845 } 1846 1847 // Finally the ungrouped non-relative relocations. 1848 if (!ungroupedNonRelatives.empty()) { 1849 add(ungroupedNonRelatives.size()); 1850 add(hasAddendIfRela); 1851 for (Elf_Rela &r : ungroupedNonRelatives) { 1852 add(r.r_offset - offset); 1853 offset = r.r_offset; 1854 add(r.r_info); 1855 if (config->isRela) { 1856 add(r.r_addend - addend); 1857 addend = r.r_addend; 1858 } 1859 } 1860 } 1861 1862 // Don't allow the section to shrink; otherwise the size of the section can 1863 // oscillate infinitely. 1864 if (relocData.size() < oldSize) 1865 relocData.append(oldSize - relocData.size(), 0); 1866 1867 // Returns whether the section size changed. We need to keep recomputing both 1868 // section layout and the contents of this section until the size converges 1869 // because changing this section's size can affect section layout, which in 1870 // turn can affect the sizes of the LEB-encoded integers stored in this 1871 // section. 1872 return relocData.size() != oldSize; 1873 } 1874 1875 template <class ELFT> RelrSection<ELFT>::RelrSection() { 1876 this->entsize = config->wordsize; 1877 } 1878 1879 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() { 1880 // This function computes the contents of an SHT_RELR packed relocation 1881 // section. 1882 // 1883 // Proposal for adding SHT_RELR sections to generic-abi is here: 1884 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 1885 // 1886 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks 1887 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 1888 // 1889 // i.e. start with an address, followed by any number of bitmaps. The address 1890 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 1891 // relocations each, at subsequent offsets following the last address entry. 1892 // 1893 // The bitmap entries must have 1 in the least significant bit. The assumption 1894 // here is that an address cannot have 1 in lsb. Odd addresses are not 1895 // supported. 1896 // 1897 // Excluding the least significant bit in the bitmap, each non-zero bit in 1898 // the bitmap represents a relocation to be applied to a corresponding machine 1899 // word that follows the base address word. The second least significant bit 1900 // represents the machine word immediately following the initial address, and 1901 // each bit that follows represents the next word, in linear order. As such, 1902 // a single bitmap can encode up to 31 relocations in a 32-bit object, and 1903 // 63 relocations in a 64-bit object. 1904 // 1905 // This encoding has a couple of interesting properties: 1906 // 1. Looking at any entry, it is clear whether it's an address or a bitmap: 1907 // even means address, odd means bitmap. 1908 // 2. Just a simple list of addresses is a valid encoding. 1909 1910 size_t oldSize = relrRelocs.size(); 1911 relrRelocs.clear(); 1912 1913 // Same as Config->Wordsize but faster because this is a compile-time 1914 // constant. 1915 const size_t wordsize = sizeof(typename ELFT::uint); 1916 1917 // Number of bits to use for the relocation offsets bitmap. 1918 // Must be either 63 or 31. 1919 const size_t nBits = wordsize * 8 - 1; 1920 1921 // Get offsets for all relative relocations and sort them. 1922 std::vector<uint64_t> offsets; 1923 for (const RelativeReloc &rel : relocs) 1924 offsets.push_back(rel.getOffset()); 1925 llvm::sort(offsets); 1926 1927 // For each leading relocation, find following ones that can be folded 1928 // as a bitmap and fold them. 1929 for (size_t i = 0, e = offsets.size(); i < e;) { 1930 // Add a leading relocation. 1931 relrRelocs.push_back(Elf_Relr(offsets[i])); 1932 uint64_t base = offsets[i] + wordsize; 1933 ++i; 1934 1935 // Find foldable relocations to construct bitmaps. 1936 while (i < e) { 1937 uint64_t bitmap = 0; 1938 1939 while (i < e) { 1940 uint64_t delta = offsets[i] - base; 1941 1942 // If it is too far, it cannot be folded. 1943 if (delta >= nBits * wordsize) 1944 break; 1945 1946 // If it is not a multiple of wordsize away, it cannot be folded. 1947 if (delta % wordsize) 1948 break; 1949 1950 // Fold it. 1951 bitmap |= 1ULL << (delta / wordsize); 1952 ++i; 1953 } 1954 1955 if (!bitmap) 1956 break; 1957 1958 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); 1959 base += nBits * wordsize; 1960 } 1961 } 1962 1963 // Don't allow the section to shrink; otherwise the size of the section can 1964 // oscillate infinitely. Trailing 1s do not decode to more relocations. 1965 if (relrRelocs.size() < oldSize) { 1966 log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) + 1967 " padding word(s)"); 1968 relrRelocs.resize(oldSize, Elf_Relr(1)); 1969 } 1970 1971 return relrRelocs.size() != oldSize; 1972 } 1973 1974 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec) 1975 : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, 1976 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, 1977 config->wordsize, 1978 strTabSec.isDynamic() ? ".dynsym" : ".symtab"), 1979 strTabSec(strTabSec) {} 1980 1981 // Orders symbols according to their positions in the GOT, 1982 // in compliance with MIPS ABI rules. 1983 // See "Global Offset Table" in Chapter 5 in the following document 1984 // for detailed description: 1985 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1986 static bool sortMipsSymbols(const SymbolTableEntry &l, 1987 const SymbolTableEntry &r) { 1988 // Sort entries related to non-local preemptible symbols by GOT indexes. 1989 // All other entries go to the beginning of a dynsym in arbitrary order. 1990 if (l.sym->isInGot() && r.sym->isInGot()) 1991 return l.sym->gotIndex < r.sym->gotIndex; 1992 if (!l.sym->isInGot() && !r.sym->isInGot()) 1993 return false; 1994 return !l.sym->isInGot(); 1995 } 1996 1997 void SymbolTableBaseSection::finalizeContents() { 1998 if (OutputSection *sec = strTabSec.getParent()) 1999 getParent()->link = sec->sectionIndex; 2000 2001 if (this->type != SHT_DYNSYM) { 2002 sortSymTabSymbols(); 2003 return; 2004 } 2005 2006 // If it is a .dynsym, there should be no local symbols, but we need 2007 // to do a few things for the dynamic linker. 2008 2009 // Section's Info field has the index of the first non-local symbol. 2010 // Because the first symbol entry is a null entry, 1 is the first. 2011 getParent()->info = 1; 2012 2013 if (getPartition().gnuHashTab) { 2014 // NB: It also sorts Symbols to meet the GNU hash table requirements. 2015 getPartition().gnuHashTab->addSymbols(symbols); 2016 } else if (config->emachine == EM_MIPS) { 2017 llvm::stable_sort(symbols, sortMipsSymbols); 2018 } 2019 2020 // Only the main partition's dynsym indexes are stored in the symbols 2021 // themselves. All other partitions use a lookup table. 2022 if (this == mainPart->dynSymTab) { 2023 size_t i = 0; 2024 for (const SymbolTableEntry &s : symbols) 2025 s.sym->dynsymIndex = ++i; 2026 } 2027 } 2028 2029 // The ELF spec requires that all local symbols precede global symbols, so we 2030 // sort symbol entries in this function. (For .dynsym, we don't do that because 2031 // symbols for dynamic linking are inherently all globals.) 2032 // 2033 // Aside from above, we put local symbols in groups starting with the STT_FILE 2034 // symbol. That is convenient for purpose of identifying where are local symbols 2035 // coming from. 2036 void SymbolTableBaseSection::sortSymTabSymbols() { 2037 // Move all local symbols before global symbols. 2038 auto e = std::stable_partition( 2039 symbols.begin(), symbols.end(), [](const SymbolTableEntry &s) { 2040 return s.sym->isLocal() || s.sym->computeBinding() == STB_LOCAL; 2041 }); 2042 size_t numLocals = e - symbols.begin(); 2043 getParent()->info = numLocals + 1; 2044 2045 // We want to group the local symbols by file. For that we rebuild the local 2046 // part of the symbols vector. We do not need to care about the STT_FILE 2047 // symbols, they are already naturally placed first in each group. That 2048 // happens because STT_FILE is always the first symbol in the object and hence 2049 // precede all other local symbols we add for a file. 2050 MapVector<InputFile *, std::vector<SymbolTableEntry>> arr; 2051 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e)) 2052 arr[s.sym->file].push_back(s); 2053 2054 auto i = symbols.begin(); 2055 for (std::pair<InputFile *, std::vector<SymbolTableEntry>> &p : arr) 2056 for (SymbolTableEntry &entry : p.second) 2057 *i++ = entry; 2058 } 2059 2060 void SymbolTableBaseSection::addSymbol(Symbol *b) { 2061 // Adding a local symbol to a .dynsym is a bug. 2062 assert(this->type != SHT_DYNSYM || !b->isLocal()); 2063 2064 bool hashIt = b->isLocal(); 2065 symbols.push_back({b, strTabSec.addString(b->getName(), hashIt)}); 2066 } 2067 2068 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) { 2069 if (this == mainPart->dynSymTab) 2070 return sym->dynsymIndex; 2071 2072 // Initializes symbol lookup tables lazily. This is used only for -r, 2073 // -emit-relocs and dynsyms in partitions other than the main one. 2074 llvm::call_once(onceFlag, [&] { 2075 symbolIndexMap.reserve(symbols.size()); 2076 size_t i = 0; 2077 for (const SymbolTableEntry &e : symbols) { 2078 if (e.sym->type == STT_SECTION) 2079 sectionIndexMap[e.sym->getOutputSection()] = ++i; 2080 else 2081 symbolIndexMap[e.sym] = ++i; 2082 } 2083 }); 2084 2085 // Section symbols are mapped based on their output sections 2086 // to maintain their semantics. 2087 if (sym->type == STT_SECTION) 2088 return sectionIndexMap.lookup(sym->getOutputSection()); 2089 return symbolIndexMap.lookup(sym); 2090 } 2091 2092 template <class ELFT> 2093 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec) 2094 : SymbolTableBaseSection(strTabSec) { 2095 this->entsize = sizeof(Elf_Sym); 2096 } 2097 2098 static BssSection *getCommonSec(Symbol *sym) { 2099 if (!config->defineCommon) 2100 if (auto *d = dyn_cast<Defined>(sym)) 2101 return dyn_cast_or_null<BssSection>(d->section); 2102 return nullptr; 2103 } 2104 2105 static uint32_t getSymSectionIndex(Symbol *sym) { 2106 if (getCommonSec(sym)) 2107 return SHN_COMMON; 2108 if (!isa<Defined>(sym) || sym->needsPltAddr) 2109 return SHN_UNDEF; 2110 if (const OutputSection *os = sym->getOutputSection()) 2111 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX 2112 : os->sectionIndex; 2113 return SHN_ABS; 2114 } 2115 2116 // Write the internal symbol table contents to the output symbol table. 2117 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { 2118 // The first entry is a null entry as per the ELF spec. 2119 memset(buf, 0, sizeof(Elf_Sym)); 2120 buf += sizeof(Elf_Sym); 2121 2122 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2123 2124 for (SymbolTableEntry &ent : symbols) { 2125 Symbol *sym = ent.sym; 2126 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; 2127 2128 // Set st_info and st_other. 2129 eSym->st_other = 0; 2130 if (sym->isLocal()) { 2131 eSym->setBindingAndType(STB_LOCAL, sym->type); 2132 } else { 2133 eSym->setBindingAndType(sym->computeBinding(), sym->type); 2134 eSym->setVisibility(sym->visibility); 2135 } 2136 2137 // The 3 most significant bits of st_other are used by OpenPOWER ABI. 2138 // See getPPC64GlobalEntryToLocalEntryOffset() for more details. 2139 if (config->emachine == EM_PPC64) 2140 eSym->st_other |= sym->stOther & 0xe0; 2141 2142 eSym->st_name = ent.strTabOffset; 2143 if (isDefinedHere) 2144 eSym->st_shndx = getSymSectionIndex(ent.sym); 2145 else 2146 eSym->st_shndx = 0; 2147 2148 // Copy symbol size if it is a defined symbol. st_size is not significant 2149 // for undefined symbols, so whether copying it or not is up to us if that's 2150 // the case. We'll leave it as zero because by not setting a value, we can 2151 // get the exact same outputs for two sets of input files that differ only 2152 // in undefined symbol size in DSOs. 2153 if (eSym->st_shndx == SHN_UNDEF || !isDefinedHere) 2154 eSym->st_size = 0; 2155 else 2156 eSym->st_size = sym->getSize(); 2157 2158 // st_value is usually an address of a symbol, but that has a 2159 // special meaning for uninstantiated common symbols (this can 2160 // occur if -r is given). 2161 if (BssSection *commonSec = getCommonSec(ent.sym)) 2162 eSym->st_value = commonSec->alignment; 2163 else if (isDefinedHere) 2164 eSym->st_value = sym->getVA(); 2165 else 2166 eSym->st_value = 0; 2167 2168 ++eSym; 2169 } 2170 2171 // On MIPS we need to mark symbol which has a PLT entry and requires 2172 // pointer equality by STO_MIPS_PLT flag. That is necessary to help 2173 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. 2174 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt 2175 if (config->emachine == EM_MIPS) { 2176 auto *eSym = reinterpret_cast<Elf_Sym *>(buf); 2177 2178 for (SymbolTableEntry &ent : symbols) { 2179 Symbol *sym = ent.sym; 2180 if (sym->isInPlt() && sym->needsPltAddr) 2181 eSym->st_other |= STO_MIPS_PLT; 2182 if (isMicroMips()) { 2183 // We already set the less-significant bit for symbols 2184 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT 2185 // records. That allows us to distinguish such symbols in 2186 // the `MIPS<ELFT>::relocate()` routine. Now we should 2187 // clear that bit for non-dynamic symbol table, so tools 2188 // like `objdump` will be able to deal with a correct 2189 // symbol position. 2190 if (sym->isDefined() && 2191 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsPltAddr)) { 2192 if (!strTabSec.isDynamic()) 2193 eSym->st_value &= ~1; 2194 eSym->st_other |= STO_MIPS_MICROMIPS; 2195 } 2196 } 2197 if (config->relocatable) 2198 if (auto *d = dyn_cast<Defined>(sym)) 2199 if (isMipsPIC<ELFT>(d)) 2200 eSym->st_other |= STO_MIPS_PIC; 2201 ++eSym; 2202 } 2203 } 2204 } 2205 2206 SymtabShndxSection::SymtabShndxSection() 2207 : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") { 2208 this->entsize = 4; 2209 } 2210 2211 void SymtabShndxSection::writeTo(uint8_t *buf) { 2212 // We write an array of 32 bit values, where each value has 1:1 association 2213 // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX, 2214 // we need to write actual index, otherwise, we must write SHN_UNDEF(0). 2215 buf += 4; // Ignore .symtab[0] entry. 2216 for (const SymbolTableEntry &entry : in.symTab->getSymbols()) { 2217 if (getSymSectionIndex(entry.sym) == SHN_XINDEX) 2218 write32(buf, entry.sym->getOutputSection()->sectionIndex); 2219 buf += 4; 2220 } 2221 } 2222 2223 bool SymtabShndxSection::isNeeded() const { 2224 // SHT_SYMTAB can hold symbols with section indices values up to 2225 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX 2226 // section. Problem is that we reveal the final section indices a bit too 2227 // late, and we do not know them here. For simplicity, we just always create 2228 // a .symtab_shndx section when the amount of output sections is huge. 2229 size_t size = 0; 2230 for (BaseCommand *base : script->sectionCommands) 2231 if (isa<OutputSection>(base)) 2232 ++size; 2233 return size >= SHN_LORESERVE; 2234 } 2235 2236 void SymtabShndxSection::finalizeContents() { 2237 getParent()->link = in.symTab->getParent()->sectionIndex; 2238 } 2239 2240 size_t SymtabShndxSection::getSize() const { 2241 return in.symTab->getNumSymbols() * 4; 2242 } 2243 2244 // .hash and .gnu.hash sections contain on-disk hash tables that map 2245 // symbol names to their dynamic symbol table indices. Their purpose 2246 // is to help the dynamic linker resolve symbols quickly. If ELF files 2247 // don't have them, the dynamic linker has to do linear search on all 2248 // dynamic symbols, which makes programs slower. Therefore, a .hash 2249 // section is added to a DSO by default. A .gnu.hash is added if you 2250 // give the -hash-style=gnu or -hash-style=both option. 2251 // 2252 // The Unix semantics of resolving dynamic symbols is somewhat expensive. 2253 // Each ELF file has a list of DSOs that the ELF file depends on and a 2254 // list of dynamic symbols that need to be resolved from any of the 2255 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) 2256 // where m is the number of DSOs and n is the number of dynamic 2257 // symbols. For modern large programs, both m and n are large. So 2258 // making each step faster by using hash tables substantially 2259 // improves time to load programs. 2260 // 2261 // (Note that this is not the only way to design the shared library. 2262 // For instance, the Windows DLL takes a different approach. On 2263 // Windows, each dynamic symbol has a name of DLL from which the symbol 2264 // has to be resolved. That makes the cost of symbol resolution O(n). 2265 // This disables some hacky techniques you can use on Unix such as 2266 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) 2267 // 2268 // Due to historical reasons, we have two different hash tables, .hash 2269 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new 2270 // and better version of .hash. .hash is just an on-disk hash table, but 2271 // .gnu.hash has a bloom filter in addition to a hash table to skip 2272 // DSOs very quickly. If you are sure that your dynamic linker knows 2273 // about .gnu.hash, you want to specify -hash-style=gnu. Otherwise, a 2274 // safe bet is to specify -hash-style=both for backward compatibility. 2275 GnuHashTableSection::GnuHashTableSection() 2276 : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") { 2277 } 2278 2279 void GnuHashTableSection::finalizeContents() { 2280 if (OutputSection *sec = getPartition().dynSymTab->getParent()) 2281 getParent()->link = sec->sectionIndex; 2282 2283 // Computes bloom filter size in word size. We want to allocate 12 2284 // bits for each symbol. It must be a power of two. 2285 if (symbols.empty()) { 2286 maskWords = 1; 2287 } else { 2288 uint64_t numBits = symbols.size() * 12; 2289 maskWords = NextPowerOf2(numBits / (config->wordsize * 8)); 2290 } 2291 2292 size = 16; // Header 2293 size += config->wordsize * maskWords; // Bloom filter 2294 size += nBuckets * 4; // Hash buckets 2295 size += symbols.size() * 4; // Hash values 2296 } 2297 2298 void GnuHashTableSection::writeTo(uint8_t *buf) { 2299 // The output buffer is not guaranteed to be zero-cleared because we pre- 2300 // fill executable sections with trap instructions. This is a precaution 2301 // for that case, which happens only when -no-rosegment is given. 2302 memset(buf, 0, size); 2303 2304 // Write a header. 2305 write32(buf, nBuckets); 2306 write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size()); 2307 write32(buf + 8, maskWords); 2308 write32(buf + 12, Shift2); 2309 buf += 16; 2310 2311 // Write a bloom filter and a hash table. 2312 writeBloomFilter(buf); 2313 buf += config->wordsize * maskWords; 2314 writeHashTable(buf); 2315 } 2316 2317 // This function writes a 2-bit bloom filter. This bloom filter alone 2318 // usually filters out 80% or more of all symbol lookups [1]. 2319 // The dynamic linker uses the hash table only when a symbol is not 2320 // filtered out by a bloom filter. 2321 // 2322 // [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2), 2323 // p.9, https://www.akkadia.org/drepper/dsohowto.pdf 2324 void GnuHashTableSection::writeBloomFilter(uint8_t *buf) { 2325 unsigned c = config->is64 ? 64 : 32; 2326 for (const Entry &sym : symbols) { 2327 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in 2328 // the word using bits [0:5] and [26:31]. 2329 size_t i = (sym.hash / c) & (maskWords - 1); 2330 uint64_t val = readUint(buf + i * config->wordsize); 2331 val |= uint64_t(1) << (sym.hash % c); 2332 val |= uint64_t(1) << ((sym.hash >> Shift2) % c); 2333 writeUint(buf + i * config->wordsize, val); 2334 } 2335 } 2336 2337 void GnuHashTableSection::writeHashTable(uint8_t *buf) { 2338 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); 2339 uint32_t oldBucket = -1; 2340 uint32_t *values = buckets + nBuckets; 2341 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { 2342 // Write a hash value. It represents a sequence of chains that share the 2343 // same hash modulo value. The last element of each chain is terminated by 2344 // LSB 1. 2345 uint32_t hash = i->hash; 2346 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; 2347 hash = isLastInChain ? hash | 1 : hash & ~1; 2348 write32(values++, hash); 2349 2350 if (i->bucketIdx == oldBucket) 2351 continue; 2352 // Write a hash bucket. Hash buckets contain indices in the following hash 2353 // value table. 2354 write32(buckets + i->bucketIdx, 2355 getPartition().dynSymTab->getSymbolIndex(i->sym)); 2356 oldBucket = i->bucketIdx; 2357 } 2358 } 2359 2360 static uint32_t hashGnu(StringRef name) { 2361 uint32_t h = 5381; 2362 for (uint8_t c : name) 2363 h = (h << 5) + h + c; 2364 return h; 2365 } 2366 2367 // Add symbols to this symbol hash table. Note that this function 2368 // destructively sort a given vector -- which is needed because 2369 // GNU-style hash table places some sorting requirements. 2370 void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &v) { 2371 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce 2372 // its type correctly. 2373 std::vector<SymbolTableEntry>::iterator mid = 2374 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) { 2375 return !s.sym->isDefined() || s.sym->partition != partition; 2376 }); 2377 2378 // We chose load factor 4 for the on-disk hash table. For each hash 2379 // collision, the dynamic linker will compare a uint32_t hash value. 2380 // Since the integer comparison is quite fast, we believe we can 2381 // make the load factor even larger. 4 is just a conservative choice. 2382 // 2383 // Note that we don't want to create a zero-sized hash table because 2384 // Android loader as of 2018 doesn't like a .gnu.hash containing such 2385 // table. If that's the case, we create a hash table with one unused 2386 // dummy slot. 2387 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1); 2388 2389 if (mid == v.end()) 2390 return; 2391 2392 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) { 2393 Symbol *b = ent.sym; 2394 uint32_t hash = hashGnu(b->getName()); 2395 uint32_t bucketIdx = hash % nBuckets; 2396 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx}); 2397 } 2398 2399 llvm::stable_sort(symbols, [](const Entry &l, const Entry &r) { 2400 return l.bucketIdx < r.bucketIdx; 2401 }); 2402 2403 v.erase(mid, v.end()); 2404 for (const Entry &ent : symbols) 2405 v.push_back({ent.sym, ent.strTabOffset}); 2406 } 2407 2408 HashTableSection::HashTableSection() 2409 : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { 2410 this->entsize = 4; 2411 } 2412 2413 void HashTableSection::finalizeContents() { 2414 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 2415 2416 if (OutputSection *sec = symTab->getParent()) 2417 getParent()->link = sec->sectionIndex; 2418 2419 unsigned numEntries = 2; // nbucket and nchain. 2420 numEntries += symTab->getNumSymbols(); // The chain entries. 2421 2422 // Create as many buckets as there are symbols. 2423 numEntries += symTab->getNumSymbols(); 2424 this->size = numEntries * 4; 2425 } 2426 2427 void HashTableSection::writeTo(uint8_t *buf) { 2428 SymbolTableBaseSection *symTab = getPartition().dynSymTab; 2429 2430 // See comment in GnuHashTableSection::writeTo. 2431 memset(buf, 0, size); 2432 2433 unsigned numSymbols = symTab->getNumSymbols(); 2434 2435 uint32_t *p = reinterpret_cast<uint32_t *>(buf); 2436 write32(p++, numSymbols); // nbucket 2437 write32(p++, numSymbols); // nchain 2438 2439 uint32_t *buckets = p; 2440 uint32_t *chains = p + numSymbols; 2441 2442 for (const SymbolTableEntry &s : symTab->getSymbols()) { 2443 Symbol *sym = s.sym; 2444 StringRef name = sym->getName(); 2445 unsigned i = sym->dynsymIndex; 2446 uint32_t hash = hashSysV(name) % numSymbols; 2447 chains[i] = buckets[hash]; 2448 write32(buckets + hash, i); 2449 } 2450 } 2451 2452 PltSection::PltSection() 2453 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), 2454 headerSize(target->pltHeaderSize) { 2455 // On PowerPC, this section contains lazy symbol resolvers. 2456 if (config->emachine == EM_PPC64) { 2457 name = ".glink"; 2458 alignment = 4; 2459 } 2460 2461 // On x86 when IBT is enabled, this section contains the second PLT (lazy 2462 // symbol resolvers). 2463 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 2464 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) 2465 name = ".plt.sec"; 2466 2467 // The PLT needs to be writable on SPARC as the dynamic linker will 2468 // modify the instructions in the PLT entries. 2469 if (config->emachine == EM_SPARCV9) 2470 this->flags |= SHF_WRITE; 2471 } 2472 2473 void PltSection::writeTo(uint8_t *buf) { 2474 // At beginning of PLT, we have code to call the dynamic 2475 // linker to resolve dynsyms at runtime. Write such code. 2476 target->writePltHeader(buf); 2477 size_t off = headerSize; 2478 2479 for (const Symbol *sym : entries) { 2480 target->writePlt(buf + off, *sym, getVA() + off); 2481 off += target->pltEntrySize; 2482 } 2483 } 2484 2485 void PltSection::addEntry(Symbol &sym) { 2486 sym.pltIndex = entries.size(); 2487 entries.push_back(&sym); 2488 } 2489 2490 size_t PltSection::getSize() const { 2491 return headerSize + entries.size() * target->pltEntrySize; 2492 } 2493 2494 bool PltSection::isNeeded() const { 2495 // For -z retpolineplt, .iplt needs the .plt header. 2496 return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded()); 2497 } 2498 2499 // Used by ARM to add mapping symbols in the PLT section, which aid 2500 // disassembly. 2501 void PltSection::addSymbols() { 2502 target->addPltHeaderSymbols(*this); 2503 2504 size_t off = headerSize; 2505 for (size_t i = 0; i < entries.size(); ++i) { 2506 target->addPltSymbols(*this, off); 2507 off += target->pltEntrySize; 2508 } 2509 } 2510 2511 IpltSection::IpltSection() 2512 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") { 2513 if (config->emachine == EM_PPC || config->emachine == EM_PPC64) { 2514 name = ".glink"; 2515 alignment = 4; 2516 } 2517 } 2518 2519 void IpltSection::writeTo(uint8_t *buf) { 2520 uint32_t off = 0; 2521 for (const Symbol *sym : entries) { 2522 target->writeIplt(buf + off, *sym, getVA() + off); 2523 off += target->ipltEntrySize; 2524 } 2525 } 2526 2527 size_t IpltSection::getSize() const { 2528 return entries.size() * target->ipltEntrySize; 2529 } 2530 2531 void IpltSection::addEntry(Symbol &sym) { 2532 sym.pltIndex = entries.size(); 2533 entries.push_back(&sym); 2534 } 2535 2536 // ARM uses mapping symbols to aid disassembly. 2537 void IpltSection::addSymbols() { 2538 size_t off = 0; 2539 for (size_t i = 0, e = entries.size(); i != e; ++i) { 2540 target->addPltSymbols(*this, off); 2541 off += target->pltEntrySize; 2542 } 2543 } 2544 2545 PPC32GlinkSection::PPC32GlinkSection() { 2546 name = ".glink"; 2547 alignment = 4; 2548 } 2549 2550 void PPC32GlinkSection::writeTo(uint8_t *buf) { 2551 writePPC32GlinkSection(buf, entries.size()); 2552 } 2553 2554 size_t PPC32GlinkSection::getSize() const { 2555 return headerSize + entries.size() * target->pltEntrySize + footerSize; 2556 } 2557 2558 // This is an x86-only extra PLT section and used only when a security 2559 // enhancement feature called CET is enabled. In this comment, I'll explain what 2560 // the feature is and why we have two PLT sections if CET is enabled. 2561 // 2562 // So, what does CET do? CET introduces a new restriction to indirect jump 2563 // instructions. CET works this way. Assume that CET is enabled. Then, if you 2564 // execute an indirect jump instruction, the processor verifies that a special 2565 // "landing pad" instruction (which is actually a repurposed NOP instruction and 2566 // now called "endbr32" or "endbr64") is at the jump target. If the jump target 2567 // does not start with that instruction, the processor raises an exception 2568 // instead of continuing executing code. 2569 // 2570 // If CET is enabled, the compiler emits endbr to all locations where indirect 2571 // jumps may jump to. 2572 // 2573 // This mechanism makes it extremely hard to transfer the control to a middle of 2574 // a function that is not supporsed to be a indirect jump target, preventing 2575 // certain types of attacks such as ROP or JOP. 2576 // 2577 // Note that the processors in the market as of 2019 don't actually support the 2578 // feature. Only the spec is available at the moment. 2579 // 2580 // Now, I'll explain why we have this extra PLT section for CET. 2581 // 2582 // Since you can indirectly jump to a PLT entry, we have to make PLT entries 2583 // start with endbr. The problem is there's no extra space for endbr (which is 4 2584 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already 2585 // used. 2586 // 2587 // In order to deal with the issue, we split a PLT entry into two PLT entries. 2588 // Remember that each PLT entry contains code to jump to an address read from 2589 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, 2590 // the former code is written to .plt.sec, and the latter code is written to 2591 // .plt. 2592 // 2593 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except 2594 // that the regular .plt is now called .plt.sec and .plt is repurposed to 2595 // contain only code for lazy symbol resolution. 2596 // 2597 // In other words, this is how the 2-PLT scheme works. Application code is 2598 // supposed to jump to .plt.sec to call an external function. Each .plt.sec 2599 // entry contains code to read an address from a corresponding .got.plt entry 2600 // and jump to that address. Addresses in .got.plt initially point to .plt, so 2601 // when an application calls an external function for the first time, the 2602 // control is transferred to a function that resolves a symbol name from 2603 // external shared object files. That function then rewrites a .got.plt entry 2604 // with a resolved address, so that the subsequent function calls directly jump 2605 // to a desired location from .plt.sec. 2606 // 2607 // There is an open question as to whether the 2-PLT scheme was desirable or 2608 // not. We could have simply extended the PLT entry size to 32-bytes to 2609 // accommodate endbr, and that scheme would have been much simpler than the 2610 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot 2611 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved 2612 // that the optimization actually makes a difference. 2613 // 2614 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools 2615 // depend on it, so we implement the ABI. 2616 IBTPltSection::IBTPltSection() 2617 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {} 2618 2619 void IBTPltSection::writeTo(uint8_t *buf) { 2620 target->writeIBTPlt(buf, in.plt->getNumEntries()); 2621 } 2622 2623 size_t IBTPltSection::getSize() const { 2624 // 16 is the header size of .plt. 2625 return 16 + in.plt->getNumEntries() * target->pltEntrySize; 2626 } 2627 2628 // The string hash function for .gdb_index. 2629 static uint32_t computeGdbHash(StringRef s) { 2630 uint32_t h = 0; 2631 for (uint8_t c : s) 2632 h = h * 67 + toLower(c) - 113; 2633 return h; 2634 } 2635 2636 GdbIndexSection::GdbIndexSection() 2637 : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {} 2638 2639 // Returns the desired size of an on-disk hash table for a .gdb_index section. 2640 // There's a tradeoff between size and collision rate. We aim 75% utilization. 2641 size_t GdbIndexSection::computeSymtabSize() const { 2642 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024); 2643 } 2644 2645 // Compute the output section size. 2646 void GdbIndexSection::initOutputSize() { 2647 size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8; 2648 2649 for (GdbChunk &chunk : chunks) 2650 size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20; 2651 2652 // Add the constant pool size if exists. 2653 if (!symbols.empty()) { 2654 GdbSymbol &sym = symbols.back(); 2655 size += sym.nameOff + sym.name.size() + 1; 2656 } 2657 } 2658 2659 static std::vector<GdbIndexSection::CuEntry> readCuList(DWARFContext &dwarf) { 2660 std::vector<GdbIndexSection::CuEntry> ret; 2661 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) 2662 ret.push_back({cu->getOffset(), cu->getLength() + 4}); 2663 return ret; 2664 } 2665 2666 static std::vector<GdbIndexSection::AddressEntry> 2667 readAddressAreas(DWARFContext &dwarf, InputSection *sec) { 2668 std::vector<GdbIndexSection::AddressEntry> ret; 2669 2670 uint32_t cuIdx = 0; 2671 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) { 2672 if (Error e = cu->tryExtractDIEsIfNeeded(false)) { 2673 warn(toString(sec) + ": " + toString(std::move(e))); 2674 return {}; 2675 } 2676 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges(); 2677 if (!ranges) { 2678 warn(toString(sec) + ": " + toString(ranges.takeError())); 2679 return {}; 2680 } 2681 2682 ArrayRef<InputSectionBase *> sections = sec->file->getSections(); 2683 for (DWARFAddressRange &r : *ranges) { 2684 if (r.SectionIndex == -1ULL) 2685 continue; 2686 // Range list with zero size has no effect. 2687 InputSectionBase *s = sections[r.SectionIndex]; 2688 if (s && s != &InputSection::discarded && s->isLive()) 2689 if (r.LowPC != r.HighPC) 2690 ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx}); 2691 } 2692 ++cuIdx; 2693 } 2694 2695 return ret; 2696 } 2697 2698 template <class ELFT> 2699 static std::vector<GdbIndexSection::NameAttrEntry> 2700 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj, 2701 const std::vector<GdbIndexSection::CuEntry> &cus) { 2702 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection(); 2703 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection(); 2704 2705 std::vector<GdbIndexSection::NameAttrEntry> ret; 2706 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) { 2707 DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize); 2708 DWARFDebugPubTable table; 2709 table.extract(data, /*GnuStyle=*/true, [&](Error e) { 2710 warn(toString(pub->sec) + ": " + toString(std::move(e))); 2711 }); 2712 for (const DWARFDebugPubTable::Set &set : table.getData()) { 2713 // The value written into the constant pool is kind << 24 | cuIndex. As we 2714 // don't know how many compilation units precede this object to compute 2715 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add 2716 // the number of preceding compilation units later. 2717 uint32_t i = llvm::partition_point(cus, 2718 [&](GdbIndexSection::CuEntry cu) { 2719 return cu.cuOffset < set.Offset; 2720 }) - 2721 cus.begin(); 2722 for (const DWARFDebugPubTable::Entry &ent : set.Entries) 2723 ret.push_back({{ent.Name, computeGdbHash(ent.Name)}, 2724 (ent.Descriptor.toBits() << 24) | i}); 2725 } 2726 } 2727 return ret; 2728 } 2729 2730 // Create a list of symbols from a given list of symbol names and types 2731 // by uniquifying them by name. 2732 static std::vector<GdbIndexSection::GdbSymbol> 2733 createSymbols(ArrayRef<std::vector<GdbIndexSection::NameAttrEntry>> nameAttrs, 2734 const std::vector<GdbIndexSection::GdbChunk> &chunks) { 2735 using GdbSymbol = GdbIndexSection::GdbSymbol; 2736 using NameAttrEntry = GdbIndexSection::NameAttrEntry; 2737 2738 // For each chunk, compute the number of compilation units preceding it. 2739 uint32_t cuIdx = 0; 2740 std::vector<uint32_t> cuIdxs(chunks.size()); 2741 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) { 2742 cuIdxs[i] = cuIdx; 2743 cuIdx += chunks[i].compilationUnits.size(); 2744 } 2745 2746 // The number of symbols we will handle in this function is of the order 2747 // of millions for very large executables, so we use multi-threading to 2748 // speed it up. 2749 constexpr size_t numShards = 32; 2750 size_t concurrency = PowerOf2Floor( 2751 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 2752 .compute_thread_count(), 2753 numShards)); 2754 2755 // A sharded map to uniquify symbols by name. 2756 std::vector<DenseMap<CachedHashStringRef, size_t>> map(numShards); 2757 size_t shift = 32 - countTrailingZeros(numShards); 2758 2759 // Instantiate GdbSymbols while uniqufying them by name. 2760 std::vector<std::vector<GdbSymbol>> symbols(numShards); 2761 parallelForEachN(0, concurrency, [&](size_t threadId) { 2762 uint32_t i = 0; 2763 for (ArrayRef<NameAttrEntry> entries : nameAttrs) { 2764 for (const NameAttrEntry &ent : entries) { 2765 size_t shardId = ent.name.hash() >> shift; 2766 if ((shardId & (concurrency - 1)) != threadId) 2767 continue; 2768 2769 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i]; 2770 size_t &idx = map[shardId][ent.name]; 2771 if (idx) { 2772 symbols[shardId][idx - 1].cuVector.push_back(v); 2773 continue; 2774 } 2775 2776 idx = symbols[shardId].size() + 1; 2777 symbols[shardId].push_back({ent.name, {v}, 0, 0}); 2778 } 2779 ++i; 2780 } 2781 }); 2782 2783 size_t numSymbols = 0; 2784 for (ArrayRef<GdbSymbol> v : symbols) 2785 numSymbols += v.size(); 2786 2787 // The return type is a flattened vector, so we'll copy each vector 2788 // contents to Ret. 2789 std::vector<GdbSymbol> ret; 2790 ret.reserve(numSymbols); 2791 for (std::vector<GdbSymbol> &vec : symbols) 2792 for (GdbSymbol &sym : vec) 2793 ret.push_back(std::move(sym)); 2794 2795 // CU vectors and symbol names are adjacent in the output file. 2796 // We can compute their offsets in the output file now. 2797 size_t off = 0; 2798 for (GdbSymbol &sym : ret) { 2799 sym.cuVectorOff = off; 2800 off += (sym.cuVector.size() + 1) * 4; 2801 } 2802 for (GdbSymbol &sym : ret) { 2803 sym.nameOff = off; 2804 off += sym.name.size() + 1; 2805 } 2806 2807 return ret; 2808 } 2809 2810 // Returns a newly-created .gdb_index section. 2811 template <class ELFT> GdbIndexSection *GdbIndexSection::create() { 2812 // Collect InputFiles with .debug_info. See the comment in 2813 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future, 2814 // note that isec->data() may uncompress the full content, which should be 2815 // parallelized. 2816 SetVector<InputFile *> files; 2817 for (InputSectionBase *s : inputSections) { 2818 InputSection *isec = dyn_cast<InputSection>(s); 2819 if (!isec) 2820 continue; 2821 // .debug_gnu_pub{names,types} are useless in executables. 2822 // They are present in input object files solely for creating 2823 // a .gdb_index. So we can remove them from the output. 2824 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes") 2825 s->markDead(); 2826 else if (isec->name == ".debug_info") 2827 files.insert(isec->file); 2828 } 2829 2830 std::vector<GdbChunk> chunks(files.size()); 2831 std::vector<std::vector<NameAttrEntry>> nameAttrs(files.size()); 2832 2833 parallelForEachN(0, files.size(), [&](size_t i) { 2834 // To keep memory usage low, we don't want to keep cached DWARFContext, so 2835 // avoid getDwarf() here. 2836 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]); 2837 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); 2838 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); 2839 2840 // If the are multiple compile units .debug_info (very rare ld -r --unique), 2841 // this only picks the last one. Other address ranges are lost. 2842 chunks[i].sec = dobj.getInfoSection(); 2843 chunks[i].compilationUnits = readCuList(dwarf); 2844 chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec); 2845 nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits); 2846 }); 2847 2848 auto *ret = make<GdbIndexSection>(); 2849 ret->chunks = std::move(chunks); 2850 ret->symbols = createSymbols(nameAttrs, ret->chunks); 2851 ret->initOutputSize(); 2852 return ret; 2853 } 2854 2855 void GdbIndexSection::writeTo(uint8_t *buf) { 2856 // Write the header. 2857 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf); 2858 uint8_t *start = buf; 2859 hdr->version = 7; 2860 buf += sizeof(*hdr); 2861 2862 // Write the CU list. 2863 hdr->cuListOff = buf - start; 2864 for (GdbChunk &chunk : chunks) { 2865 for (CuEntry &cu : chunk.compilationUnits) { 2866 write64le(buf, chunk.sec->outSecOff + cu.cuOffset); 2867 write64le(buf + 8, cu.cuLength); 2868 buf += 16; 2869 } 2870 } 2871 2872 // Write the address area. 2873 hdr->cuTypesOff = buf - start; 2874 hdr->addressAreaOff = buf - start; 2875 uint32_t cuOff = 0; 2876 for (GdbChunk &chunk : chunks) { 2877 for (AddressEntry &e : chunk.addressAreas) { 2878 uint64_t baseAddr = e.section->getVA(0); 2879 write64le(buf, baseAddr + e.lowAddress); 2880 write64le(buf + 8, baseAddr + e.highAddress); 2881 write32le(buf + 16, e.cuIndex + cuOff); 2882 buf += 20; 2883 } 2884 cuOff += chunk.compilationUnits.size(); 2885 } 2886 2887 // Write the on-disk open-addressing hash table containing symbols. 2888 hdr->symtabOff = buf - start; 2889 size_t symtabSize = computeSymtabSize(); 2890 uint32_t mask = symtabSize - 1; 2891 2892 for (GdbSymbol &sym : symbols) { 2893 uint32_t h = sym.name.hash(); 2894 uint32_t i = h & mask; 2895 uint32_t step = ((h * 17) & mask) | 1; 2896 2897 while (read32le(buf + i * 8)) 2898 i = (i + step) & mask; 2899 2900 write32le(buf + i * 8, sym.nameOff); 2901 write32le(buf + i * 8 + 4, sym.cuVectorOff); 2902 } 2903 2904 buf += symtabSize * 8; 2905 2906 // Write the string pool. 2907 hdr->constantPoolOff = buf - start; 2908 parallelForEach(symbols, [&](GdbSymbol &sym) { 2909 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size()); 2910 }); 2911 2912 // Write the CU vectors. 2913 for (GdbSymbol &sym : symbols) { 2914 write32le(buf, sym.cuVector.size()); 2915 buf += 4; 2916 for (uint32_t val : sym.cuVector) { 2917 write32le(buf, val); 2918 buf += 4; 2919 } 2920 } 2921 } 2922 2923 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); } 2924 2925 EhFrameHeader::EhFrameHeader() 2926 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {} 2927 2928 void EhFrameHeader::writeTo(uint8_t *buf) { 2929 // Unlike most sections, the EhFrameHeader section is written while writing 2930 // another section, namely EhFrameSection, which calls the write() function 2931 // below from its writeTo() function. This is necessary because the contents 2932 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we 2933 // don't know which order the sections will be written in. 2934 } 2935 2936 // .eh_frame_hdr contains a binary search table of pointers to FDEs. 2937 // Each entry of the search table consists of two values, 2938 // the starting PC from where FDEs covers, and the FDE's address. 2939 // It is sorted by PC. 2940 void EhFrameHeader::write() { 2941 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff; 2942 using FdeData = EhFrameSection::FdeData; 2943 2944 std::vector<FdeData> fdes = getPartition().ehFrame->getFdeData(); 2945 2946 buf[0] = 1; 2947 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 2948 buf[2] = DW_EH_PE_udata4; 2949 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 2950 write32(buf + 4, 2951 getPartition().ehFrame->getParent()->addr - this->getVA() - 4); 2952 write32(buf + 8, fdes.size()); 2953 buf += 12; 2954 2955 for (FdeData &fde : fdes) { 2956 write32(buf, fde.pcRel); 2957 write32(buf + 4, fde.fdeVARel); 2958 buf += 8; 2959 } 2960 } 2961 2962 size_t EhFrameHeader::getSize() const { 2963 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. 2964 return 12 + getPartition().ehFrame->numFdes * 8; 2965 } 2966 2967 bool EhFrameHeader::isNeeded() const { 2968 return isLive() && getPartition().ehFrame->isNeeded(); 2969 } 2970 2971 VersionDefinitionSection::VersionDefinitionSection() 2972 : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), 2973 ".gnu.version_d") {} 2974 2975 StringRef VersionDefinitionSection::getFileDefName() { 2976 if (!getPartition().name.empty()) 2977 return getPartition().name; 2978 if (!config->soName.empty()) 2979 return config->soName; 2980 return config->outputFile; 2981 } 2982 2983 void VersionDefinitionSection::finalizeContents() { 2984 fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName()); 2985 for (const VersionDefinition &v : namedVersionDefs()) 2986 verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name)); 2987 2988 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 2989 getParent()->link = sec->sectionIndex; 2990 2991 // sh_info should be set to the number of definitions. This fact is missed in 2992 // documentation, but confirmed by binutils community: 2993 // https://sourceware.org/ml/binutils/2014-11/msg00355.html 2994 getParent()->info = getVerDefNum(); 2995 } 2996 2997 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index, 2998 StringRef name, size_t nameOff) { 2999 uint16_t flags = index == 1 ? VER_FLG_BASE : 0; 3000 3001 // Write a verdef. 3002 write16(buf, 1); // vd_version 3003 write16(buf + 2, flags); // vd_flags 3004 write16(buf + 4, index); // vd_ndx 3005 write16(buf + 6, 1); // vd_cnt 3006 write32(buf + 8, hashSysV(name)); // vd_hash 3007 write32(buf + 12, 20); // vd_aux 3008 write32(buf + 16, 28); // vd_next 3009 3010 // Write a veraux. 3011 write32(buf + 20, nameOff); // vda_name 3012 write32(buf + 24, 0); // vda_next 3013 } 3014 3015 void VersionDefinitionSection::writeTo(uint8_t *buf) { 3016 writeOne(buf, 1, getFileDefName(), fileDefNameOff); 3017 3018 auto nameOffIt = verDefNameOffs.begin(); 3019 for (const VersionDefinition &v : namedVersionDefs()) { 3020 buf += EntrySize; 3021 writeOne(buf, v.id, v.name, *nameOffIt++); 3022 } 3023 3024 // Need to terminate the last version definition. 3025 write32(buf + 16, 0); // vd_next 3026 } 3027 3028 size_t VersionDefinitionSection::getSize() const { 3029 return EntrySize * getVerDefNum(); 3030 } 3031 3032 // .gnu.version is a table where each entry is 2 byte long. 3033 VersionTableSection::VersionTableSection() 3034 : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), 3035 ".gnu.version") { 3036 this->entsize = 2; 3037 } 3038 3039 void VersionTableSection::finalizeContents() { 3040 // At the moment of june 2016 GNU docs does not mention that sh_link field 3041 // should be set, but Sun docs do. Also readelf relies on this field. 3042 getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex; 3043 } 3044 3045 size_t VersionTableSection::getSize() const { 3046 return (getPartition().dynSymTab->getSymbols().size() + 1) * 2; 3047 } 3048 3049 void VersionTableSection::writeTo(uint8_t *buf) { 3050 buf += 2; 3051 for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) { 3052 write16(buf, s.sym->versionId); 3053 buf += 2; 3054 } 3055 } 3056 3057 bool VersionTableSection::isNeeded() const { 3058 return isLive() && 3059 (getPartition().verDef || getPartition().verNeed->isNeeded()); 3060 } 3061 3062 void elf::addVerneed(Symbol *ss) { 3063 auto &file = cast<SharedFile>(*ss->file); 3064 if (ss->verdefIndex == VER_NDX_GLOBAL) { 3065 ss->versionId = VER_NDX_GLOBAL; 3066 return; 3067 } 3068 3069 if (file.vernauxs.empty()) 3070 file.vernauxs.resize(file.verdefs.size()); 3071 3072 // Select a version identifier for the vernaux data structure, if we haven't 3073 // already allocated one. The verdef identifiers cover the range 3074 // [1..getVerDefNum()]; this causes the vernaux identifiers to start from 3075 // getVerDefNum()+1. 3076 if (file.vernauxs[ss->verdefIndex] == 0) 3077 file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum(); 3078 3079 ss->versionId = file.vernauxs[ss->verdefIndex]; 3080 } 3081 3082 template <class ELFT> 3083 VersionNeedSection<ELFT>::VersionNeedSection() 3084 : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), 3085 ".gnu.version_r") {} 3086 3087 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { 3088 for (SharedFile *f : sharedFiles) { 3089 if (f->vernauxs.empty()) 3090 continue; 3091 verneeds.emplace_back(); 3092 Verneed &vn = verneeds.back(); 3093 vn.nameStrTab = getPartition().dynStrTab->addString(f->soName); 3094 for (unsigned i = 0; i != f->vernauxs.size(); ++i) { 3095 if (f->vernauxs[i] == 0) 3096 continue; 3097 auto *verdef = 3098 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]); 3099 vn.vernauxs.push_back( 3100 {verdef->vd_hash, f->vernauxs[i], 3101 getPartition().dynStrTab->addString(f->getStringTable().data() + 3102 verdef->getAux()->vda_name)}); 3103 } 3104 } 3105 3106 if (OutputSection *sec = getPartition().dynStrTab->getParent()) 3107 getParent()->link = sec->sectionIndex; 3108 getParent()->info = verneeds.size(); 3109 } 3110 3111 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) { 3112 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. 3113 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf); 3114 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size()); 3115 3116 for (auto &vn : verneeds) { 3117 // Create an Elf_Verneed for this DSO. 3118 verneed->vn_version = 1; 3119 verneed->vn_cnt = vn.vernauxs.size(); 3120 verneed->vn_file = vn.nameStrTab; 3121 verneed->vn_aux = 3122 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed); 3123 verneed->vn_next = sizeof(Elf_Verneed); 3124 ++verneed; 3125 3126 // Create the Elf_Vernauxs for this Elf_Verneed. 3127 for (auto &vna : vn.vernauxs) { 3128 vernaux->vna_hash = vna.hash; 3129 vernaux->vna_flags = 0; 3130 vernaux->vna_other = vna.verneedIndex; 3131 vernaux->vna_name = vna.nameStrTab; 3132 vernaux->vna_next = sizeof(Elf_Vernaux); 3133 ++vernaux; 3134 } 3135 3136 vernaux[-1].vna_next = 0; 3137 } 3138 verneed[-1].vn_next = 0; 3139 } 3140 3141 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { 3142 return verneeds.size() * sizeof(Elf_Verneed) + 3143 SharedFile::vernauxNum * sizeof(Elf_Vernaux); 3144 } 3145 3146 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const { 3147 return isLive() && SharedFile::vernauxNum != 0; 3148 } 3149 3150 void MergeSyntheticSection::addSection(MergeInputSection *ms) { 3151 ms->parent = this; 3152 sections.push_back(ms); 3153 assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS)); 3154 alignment = std::max(alignment, ms->alignment); 3155 } 3156 3157 MergeTailSection::MergeTailSection(StringRef name, uint32_t type, 3158 uint64_t flags, uint32_t alignment) 3159 : MergeSyntheticSection(name, type, flags, alignment), 3160 builder(StringTableBuilder::RAW, alignment) {} 3161 3162 size_t MergeTailSection::getSize() const { return builder.getSize(); } 3163 3164 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); } 3165 3166 void MergeTailSection::finalizeContents() { 3167 // Add all string pieces to the string table builder to create section 3168 // contents. 3169 for (MergeInputSection *sec : sections) 3170 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3171 if (sec->pieces[i].live) 3172 builder.add(sec->getData(i)); 3173 3174 // Fix the string table content. After this, the contents will never change. 3175 builder.finalize(); 3176 3177 // finalize() fixed tail-optimized strings, so we can now get 3178 // offsets of strings. Get an offset for each string and save it 3179 // to a corresponding SectionPiece for easy access. 3180 for (MergeInputSection *sec : sections) 3181 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3182 if (sec->pieces[i].live) 3183 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i)); 3184 } 3185 3186 void MergeNoTailSection::writeTo(uint8_t *buf) { 3187 for (size_t i = 0; i < numShards; ++i) 3188 shards[i].write(buf + shardOffsets[i]); 3189 } 3190 3191 // This function is very hot (i.e. it can take several seconds to finish) 3192 // because sometimes the number of inputs is in an order of magnitude of 3193 // millions. So, we use multi-threading. 3194 // 3195 // For any strings S and T, we know S is not mergeable with T if S's hash 3196 // value is different from T's. If that's the case, we can safely put S and 3197 // T into different string builders without worrying about merge misses. 3198 // We do it in parallel. 3199 void MergeNoTailSection::finalizeContents() { 3200 // Initializes string table builders. 3201 for (size_t i = 0; i < numShards; ++i) 3202 shards.emplace_back(StringTableBuilder::RAW, alignment); 3203 3204 // Concurrency level. Must be a power of 2 to avoid expensive modulo 3205 // operations in the following tight loop. 3206 size_t concurrency = PowerOf2Floor( 3207 std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested) 3208 .compute_thread_count(), 3209 numShards)); 3210 3211 // Add section pieces to the builders. 3212 parallelForEachN(0, concurrency, [&](size_t threadId) { 3213 for (MergeInputSection *sec : sections) { 3214 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) { 3215 if (!sec->pieces[i].live) 3216 continue; 3217 size_t shardId = getShardId(sec->pieces[i].hash); 3218 if ((shardId & (concurrency - 1)) == threadId) 3219 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i)); 3220 } 3221 } 3222 }); 3223 3224 // Compute an in-section offset for each shard. 3225 size_t off = 0; 3226 for (size_t i = 0; i < numShards; ++i) { 3227 shards[i].finalizeInOrder(); 3228 if (shards[i].getSize() > 0) 3229 off = alignTo(off, alignment); 3230 shardOffsets[i] = off; 3231 off += shards[i].getSize(); 3232 } 3233 size = off; 3234 3235 // So far, section pieces have offsets from beginning of shards, but 3236 // we want offsets from beginning of the whole section. Fix them. 3237 parallelForEach(sections, [&](MergeInputSection *sec) { 3238 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) 3239 if (sec->pieces[i].live) 3240 sec->pieces[i].outputOff += 3241 shardOffsets[getShardId(sec->pieces[i].hash)]; 3242 }); 3243 } 3244 3245 MergeSyntheticSection *elf::createMergeSynthetic(StringRef name, uint32_t type, 3246 uint64_t flags, 3247 uint32_t alignment) { 3248 bool shouldTailMerge = (flags & SHF_STRINGS) && config->optimize >= 2; 3249 if (shouldTailMerge) 3250 return make<MergeTailSection>(name, type, flags, alignment); 3251 return make<MergeNoTailSection>(name, type, flags, alignment); 3252 } 3253 3254 template <class ELFT> void elf::splitSections() { 3255 llvm::TimeTraceScope timeScope("Split sections"); 3256 // splitIntoPieces needs to be called on each MergeInputSection 3257 // before calling finalizeContents(). 3258 parallelForEach(inputSections, [](InputSectionBase *sec) { 3259 if (auto *s = dyn_cast<MergeInputSection>(sec)) 3260 s->splitIntoPieces(); 3261 else if (auto *eh = dyn_cast<EhInputSection>(sec)) 3262 eh->split<ELFT>(); 3263 }); 3264 } 3265 3266 MipsRldMapSection::MipsRldMapSection() 3267 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize, 3268 ".rld_map") {} 3269 3270 ARMExidxSyntheticSection::ARMExidxSyntheticSection() 3271 : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, 3272 config->wordsize, ".ARM.exidx") {} 3273 3274 static InputSection *findExidxSection(InputSection *isec) { 3275 for (InputSection *d : isec->dependentSections) 3276 if (d->type == SHT_ARM_EXIDX && d->isLive()) 3277 return d; 3278 return nullptr; 3279 } 3280 3281 static bool isValidExidxSectionDep(InputSection *isec) { 3282 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) && 3283 isec->getSize() > 0; 3284 } 3285 3286 bool ARMExidxSyntheticSection::addSection(InputSection *isec) { 3287 if (isec->type == SHT_ARM_EXIDX) { 3288 if (InputSection *dep = isec->getLinkOrderDep()) 3289 if (isValidExidxSectionDep(dep)) { 3290 exidxSections.push_back(isec); 3291 // Every exidxSection is 8 bytes, we need an estimate of 3292 // size before assignAddresses can be called. Final size 3293 // will only be known after finalize is called. 3294 size += 8; 3295 } 3296 return true; 3297 } 3298 3299 if (isValidExidxSectionDep(isec)) { 3300 executableSections.push_back(isec); 3301 return false; 3302 } 3303 3304 // FIXME: we do not output a relocation section when --emit-relocs is used 3305 // as we do not have relocation sections for linker generated table entries 3306 // and we would have to erase at a late stage relocations from merged entries. 3307 // Given that exception tables are already position independent and a binary 3308 // analyzer could derive the relocations we choose to erase the relocations. 3309 if (config->emitRelocs && isec->type == SHT_REL) 3310 if (InputSectionBase *ex = isec->getRelocatedSection()) 3311 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX) 3312 return true; 3313 3314 return false; 3315 } 3316 3317 // References to .ARM.Extab Sections have bit 31 clear and are not the 3318 // special EXIDX_CANTUNWIND bit-pattern. 3319 static bool isExtabRef(uint32_t unwind) { 3320 return (unwind & 0x80000000) == 0 && unwind != 0x1; 3321 } 3322 3323 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx 3324 // section Prev, where Cur follows Prev in the table. This can be done if the 3325 // unwinding instructions in Cur are identical to Prev. Linker generated 3326 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an 3327 // InputSection. 3328 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) { 3329 3330 struct ExidxEntry { 3331 ulittle32_t fn; 3332 ulittle32_t unwind; 3333 }; 3334 // Get the last table Entry from the previous .ARM.exidx section. If Prev is 3335 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry. 3336 ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)}; 3337 if (prev) 3338 prevEntry = prev->getDataAs<ExidxEntry>().back(); 3339 if (isExtabRef(prevEntry.unwind)) 3340 return false; 3341 3342 // We consider the unwind instructions of an .ARM.exidx table entry 3343 // a duplicate if the previous unwind instructions if: 3344 // - Both are the special EXIDX_CANTUNWIND. 3345 // - Both are the same inline unwind instructions. 3346 // We do not attempt to follow and check links into .ARM.extab tables as 3347 // consecutive identical entries are rare and the effort to check that they 3348 // are identical is high. 3349 3350 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry. 3351 if (cur == nullptr) 3352 return prevEntry.unwind == 1; 3353 3354 for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>()) 3355 if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind) 3356 return false; 3357 3358 // All table entries in this .ARM.exidx Section can be merged into the 3359 // previous Section. 3360 return true; 3361 } 3362 3363 // The .ARM.exidx table must be sorted in ascending order of the address of the 3364 // functions the table describes. Optionally duplicate adjacent table entries 3365 // can be removed. At the end of the function the executableSections must be 3366 // sorted in ascending order of address, Sentinel is set to the InputSection 3367 // with the highest address and any InputSections that have mergeable 3368 // .ARM.exidx table entries are removed from it. 3369 void ARMExidxSyntheticSection::finalizeContents() { 3370 // The executableSections and exidxSections that we use to derive the final 3371 // contents of this SyntheticSection are populated before 3372 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or 3373 // ICF may remove executable InputSections and their dependent .ARM.exidx 3374 // section that we recorded earlier. 3375 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); }; 3376 llvm::erase_if(exidxSections, isDiscarded); 3377 // We need to remove discarded InputSections and InputSections without 3378 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out 3379 // of range. 3380 auto isDiscardedOrOutOfRange = [this](InputSection *isec) { 3381 if (!isec->isLive()) 3382 return true; 3383 if (findExidxSection(isec)) 3384 return false; 3385 int64_t off = static_cast<int64_t>(isec->getVA() - getVA()); 3386 return off != llvm::SignExtend64(off, 31); 3387 }; 3388 llvm::erase_if(executableSections, isDiscardedOrOutOfRange); 3389 3390 // Sort the executable sections that may or may not have associated 3391 // .ARM.exidx sections by order of ascending address. This requires the 3392 // relative positions of InputSections and OutputSections to be known. 3393 auto compareByFilePosition = [](const InputSection *a, 3394 const InputSection *b) { 3395 OutputSection *aOut = a->getParent(); 3396 OutputSection *bOut = b->getParent(); 3397 3398 if (aOut != bOut) 3399 return aOut->addr < bOut->addr; 3400 return a->outSecOff < b->outSecOff; 3401 }; 3402 llvm::stable_sort(executableSections, compareByFilePosition); 3403 sentinel = executableSections.back(); 3404 // Optionally merge adjacent duplicate entries. 3405 if (config->mergeArmExidx) { 3406 std::vector<InputSection *> selectedSections; 3407 selectedSections.reserve(executableSections.size()); 3408 selectedSections.push_back(executableSections[0]); 3409 size_t prev = 0; 3410 for (size_t i = 1; i < executableSections.size(); ++i) { 3411 InputSection *ex1 = findExidxSection(executableSections[prev]); 3412 InputSection *ex2 = findExidxSection(executableSections[i]); 3413 if (!isDuplicateArmExidxSec(ex1, ex2)) { 3414 selectedSections.push_back(executableSections[i]); 3415 prev = i; 3416 } 3417 } 3418 executableSections = std::move(selectedSections); 3419 } 3420 3421 size_t offset = 0; 3422 size = 0; 3423 for (InputSection *isec : executableSections) { 3424 if (InputSection *d = findExidxSection(isec)) { 3425 d->outSecOff = offset; 3426 d->parent = getParent(); 3427 offset += d->getSize(); 3428 } else { 3429 offset += 8; 3430 } 3431 } 3432 // Size includes Sentinel. 3433 size = offset + 8; 3434 } 3435 3436 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const { 3437 return executableSections.front(); 3438 } 3439 3440 // To write the .ARM.exidx table from the ExecutableSections we have three cases 3441 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections. 3442 // We write the .ARM.exidx section contents and apply its relocations. 3443 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We 3444 // must write the contents of an EXIDX_CANTUNWIND directly. We use the 3445 // start of the InputSection as the purpose of the linker generated 3446 // section is to terminate the address range of the previous entry. 3447 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of 3448 // the table to terminate the address range of the final entry. 3449 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) { 3450 3451 const uint8_t cantUnwindData[8] = {0, 0, 0, 0, // PREL31 to target 3452 1, 0, 0, 0}; // EXIDX_CANTUNWIND 3453 3454 uint64_t offset = 0; 3455 for (InputSection *isec : executableSections) { 3456 assert(isec->getParent() != nullptr); 3457 if (InputSection *d = findExidxSection(isec)) { 3458 memcpy(buf + offset, d->data().data(), d->data().size()); 3459 d->relocateAlloc(buf, buf + d->getSize()); 3460 offset += d->getSize(); 3461 } else { 3462 // A Linker generated CANTUNWIND section. 3463 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3464 uint64_t s = isec->getVA(); 3465 uint64_t p = getVA() + offset; 3466 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3467 offset += 8; 3468 } 3469 } 3470 // Write Sentinel. 3471 memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData)); 3472 uint64_t s = sentinel->getVA(sentinel->getSize()); 3473 uint64_t p = getVA() + offset; 3474 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p); 3475 assert(size == offset + 8); 3476 } 3477 3478 bool ARMExidxSyntheticSection::isNeeded() const { 3479 return llvm::find_if(exidxSections, [](InputSection *isec) { 3480 return isec->isLive(); 3481 }) != exidxSections.end(); 3482 } 3483 3484 bool ARMExidxSyntheticSection::classof(const SectionBase *d) { 3485 return d->kind() == InputSectionBase::Synthetic && d->type == SHT_ARM_EXIDX; 3486 } 3487 3488 ThunkSection::ThunkSection(OutputSection *os, uint64_t off) 3489 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4, 3490 ".text.thunk") { 3491 this->parent = os; 3492 this->outSecOff = off; 3493 } 3494 3495 size_t ThunkSection::getSize() const { 3496 if (roundUpSizeForErrata) 3497 return alignTo(size, 4096); 3498 return size; 3499 } 3500 3501 void ThunkSection::addThunk(Thunk *t) { 3502 thunks.push_back(t); 3503 t->addSymbols(*this); 3504 } 3505 3506 void ThunkSection::writeTo(uint8_t *buf) { 3507 for (Thunk *t : thunks) 3508 t->writeTo(buf + t->offset); 3509 } 3510 3511 InputSection *ThunkSection::getTargetInputSection() const { 3512 if (thunks.empty()) 3513 return nullptr; 3514 const Thunk *t = thunks.front(); 3515 return t->getTargetInputSection(); 3516 } 3517 3518 bool ThunkSection::assignOffsets() { 3519 uint64_t off = 0; 3520 for (Thunk *t : thunks) { 3521 off = alignTo(off, t->alignment); 3522 t->setOffset(off); 3523 uint32_t size = t->size(); 3524 t->getThunkTargetSym()->size = size; 3525 off += size; 3526 } 3527 bool changed = off != size; 3528 size = off; 3529 return changed; 3530 } 3531 3532 PPC32Got2Section::PPC32Got2Section() 3533 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {} 3534 3535 bool PPC32Got2Section::isNeeded() const { 3536 // See the comment below. This is not needed if there is no other 3537 // InputSection. 3538 for (BaseCommand *base : getParent()->sectionCommands) 3539 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 3540 for (InputSection *isec : isd->sections) 3541 if (isec != this) 3542 return true; 3543 return false; 3544 } 3545 3546 void PPC32Got2Section::finalizeContents() { 3547 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in 3548 // .got2 . This function computes outSecOff of each .got2 to be used in 3549 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is 3550 // to collect input sections named ".got2". 3551 uint32_t offset = 0; 3552 for (BaseCommand *base : getParent()->sectionCommands) 3553 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 3554 for (InputSection *isec : isd->sections) { 3555 if (isec == this) 3556 continue; 3557 isec->file->ppc32Got2OutSecOff = offset; 3558 offset += (uint32_t)isec->getSize(); 3559 } 3560 } 3561 } 3562 3563 // If linking position-dependent code then the table will store the addresses 3564 // directly in the binary so the section has type SHT_PROGBITS. If linking 3565 // position-independent code the section has type SHT_NOBITS since it will be 3566 // allocated and filled in by the dynamic linker. 3567 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection() 3568 : SyntheticSection(SHF_ALLOC | SHF_WRITE, 3569 config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8, 3570 ".branch_lt") {} 3571 3572 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym, 3573 int64_t addend) { 3574 return getVA() + entry_index.find({sym, addend})->second * 8; 3575 } 3576 3577 Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym, 3578 int64_t addend) { 3579 auto res = 3580 entry_index.try_emplace(std::make_pair(sym, addend), entries.size()); 3581 if (!res.second) 3582 return None; 3583 entries.emplace_back(sym, addend); 3584 return res.first->second; 3585 } 3586 3587 size_t PPC64LongBranchTargetSection::getSize() const { 3588 return entries.size() * 8; 3589 } 3590 3591 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) { 3592 // If linking non-pic we have the final addresses of the targets and they get 3593 // written to the table directly. For pic the dynamic linker will allocate 3594 // the section and fill it it. 3595 if (config->isPic) 3596 return; 3597 3598 for (auto entry : entries) { 3599 const Symbol *sym = entry.first; 3600 int64_t addend = entry.second; 3601 assert(sym->getVA()); 3602 // Need calls to branch to the local entry-point since a long-branch 3603 // must be a local-call. 3604 write64(buf, sym->getVA(addend) + 3605 getPPC64GlobalEntryToLocalEntryOffset(sym->stOther)); 3606 buf += 8; 3607 } 3608 } 3609 3610 bool PPC64LongBranchTargetSection::isNeeded() const { 3611 // `removeUnusedSyntheticSections()` is called before thunk allocation which 3612 // is too early to determine if this section will be empty or not. We need 3613 // Finalized to keep the section alive until after thunk creation. Finalized 3614 // only gets set to true once `finalizeSections()` is called after thunk 3615 // creation. Because of this, if we don't create any long-branch thunks we end 3616 // up with an empty .branch_lt section in the binary. 3617 return !finalized || !entries.empty(); 3618 } 3619 3620 static uint8_t getAbiVersion() { 3621 // MIPS non-PIC executable gets ABI version 1. 3622 if (config->emachine == EM_MIPS) { 3623 if (!config->isPic && !config->relocatable && 3624 (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 3625 return 1; 3626 return 0; 3627 } 3628 3629 if (config->emachine == EM_AMDGPU) { 3630 uint8_t ver = objectFiles[0]->abiVersion; 3631 for (InputFile *file : makeArrayRef(objectFiles).slice(1)) 3632 if (file->abiVersion != ver) 3633 error("incompatible ABI version: " + toString(file)); 3634 return ver; 3635 } 3636 3637 return 0; 3638 } 3639 3640 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) { 3641 // For executable segments, the trap instructions are written before writing 3642 // the header. Setting Elf header bytes to zero ensures that any unused bytes 3643 // in header are zero-cleared, instead of having trap instructions. 3644 memset(buf, 0, sizeof(typename ELFT::Ehdr)); 3645 memcpy(buf, "\177ELF", 4); 3646 3647 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3648 eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32; 3649 eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB; 3650 eHdr->e_ident[EI_VERSION] = EV_CURRENT; 3651 eHdr->e_ident[EI_OSABI] = config->osabi; 3652 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 3653 eHdr->e_machine = config->emachine; 3654 eHdr->e_version = EV_CURRENT; 3655 eHdr->e_flags = config->eflags; 3656 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); 3657 eHdr->e_phnum = part.phdrs.size(); 3658 eHdr->e_shentsize = sizeof(typename ELFT::Shdr); 3659 3660 if (!config->relocatable) { 3661 eHdr->e_phoff = sizeof(typename ELFT::Ehdr); 3662 eHdr->e_phentsize = sizeof(typename ELFT::Phdr); 3663 } 3664 } 3665 3666 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) { 3667 // Write the program header table. 3668 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf); 3669 for (PhdrEntry *p : part.phdrs) { 3670 hBuf->p_type = p->p_type; 3671 hBuf->p_flags = p->p_flags; 3672 hBuf->p_offset = p->p_offset; 3673 hBuf->p_vaddr = p->p_vaddr; 3674 hBuf->p_paddr = p->p_paddr; 3675 hBuf->p_filesz = p->p_filesz; 3676 hBuf->p_memsz = p->p_memsz; 3677 hBuf->p_align = p->p_align; 3678 ++hBuf; 3679 } 3680 } 3681 3682 template <typename ELFT> 3683 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection() 3684 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {} 3685 3686 template <typename ELFT> 3687 size_t PartitionElfHeaderSection<ELFT>::getSize() const { 3688 return sizeof(typename ELFT::Ehdr); 3689 } 3690 3691 template <typename ELFT> 3692 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) { 3693 writeEhdr<ELFT>(buf, getPartition()); 3694 3695 // Loadable partitions are always ET_DYN. 3696 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); 3697 eHdr->e_type = ET_DYN; 3698 } 3699 3700 template <typename ELFT> 3701 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection() 3702 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {} 3703 3704 template <typename ELFT> 3705 size_t PartitionProgramHeadersSection<ELFT>::getSize() const { 3706 return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size(); 3707 } 3708 3709 template <typename ELFT> 3710 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) { 3711 writePhdrs<ELFT>(buf, getPartition()); 3712 } 3713 3714 PartitionIndexSection::PartitionIndexSection() 3715 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {} 3716 3717 size_t PartitionIndexSection::getSize() const { 3718 return 12 * (partitions.size() - 1); 3719 } 3720 3721 void PartitionIndexSection::finalizeContents() { 3722 for (size_t i = 1; i != partitions.size(); ++i) 3723 partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name); 3724 } 3725 3726 void PartitionIndexSection::writeTo(uint8_t *buf) { 3727 uint64_t va = getVA(); 3728 for (size_t i = 1; i != partitions.size(); ++i) { 3729 write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va); 3730 write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4)); 3731 3732 SyntheticSection *next = 3733 i == partitions.size() - 1 ? in.partEnd : partitions[i + 1].elfHeader; 3734 write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA()); 3735 3736 va += 12; 3737 buf += 12; 3738 } 3739 } 3740 3741 InStruct elf::in; 3742 3743 std::vector<Partition> elf::partitions; 3744 Partition *elf::mainPart; 3745 3746 template GdbIndexSection *GdbIndexSection::create<ELF32LE>(); 3747 template GdbIndexSection *GdbIndexSection::create<ELF32BE>(); 3748 template GdbIndexSection *GdbIndexSection::create<ELF64LE>(); 3749 template GdbIndexSection *GdbIndexSection::create<ELF64BE>(); 3750 3751 template void elf::splitSections<ELF32LE>(); 3752 template void elf::splitSections<ELF32BE>(); 3753 template void elf::splitSections<ELF64LE>(); 3754 template void elf::splitSections<ELF64BE>(); 3755 3756 template class elf::MipsAbiFlagsSection<ELF32LE>; 3757 template class elf::MipsAbiFlagsSection<ELF32BE>; 3758 template class elf::MipsAbiFlagsSection<ELF64LE>; 3759 template class elf::MipsAbiFlagsSection<ELF64BE>; 3760 3761 template class elf::MipsOptionsSection<ELF32LE>; 3762 template class elf::MipsOptionsSection<ELF32BE>; 3763 template class elf::MipsOptionsSection<ELF64LE>; 3764 template class elf::MipsOptionsSection<ELF64BE>; 3765 3766 template class elf::MipsReginfoSection<ELF32LE>; 3767 template class elf::MipsReginfoSection<ELF32BE>; 3768 template class elf::MipsReginfoSection<ELF64LE>; 3769 template class elf::MipsReginfoSection<ELF64BE>; 3770 3771 template class elf::DynamicSection<ELF32LE>; 3772 template class elf::DynamicSection<ELF32BE>; 3773 template class elf::DynamicSection<ELF64LE>; 3774 template class elf::DynamicSection<ELF64BE>; 3775 3776 template class elf::RelocationSection<ELF32LE>; 3777 template class elf::RelocationSection<ELF32BE>; 3778 template class elf::RelocationSection<ELF64LE>; 3779 template class elf::RelocationSection<ELF64BE>; 3780 3781 template class elf::AndroidPackedRelocationSection<ELF32LE>; 3782 template class elf::AndroidPackedRelocationSection<ELF32BE>; 3783 template class elf::AndroidPackedRelocationSection<ELF64LE>; 3784 template class elf::AndroidPackedRelocationSection<ELF64BE>; 3785 3786 template class elf::RelrSection<ELF32LE>; 3787 template class elf::RelrSection<ELF32BE>; 3788 template class elf::RelrSection<ELF64LE>; 3789 template class elf::RelrSection<ELF64BE>; 3790 3791 template class elf::SymbolTableSection<ELF32LE>; 3792 template class elf::SymbolTableSection<ELF32BE>; 3793 template class elf::SymbolTableSection<ELF64LE>; 3794 template class elf::SymbolTableSection<ELF64BE>; 3795 3796 template class elf::VersionNeedSection<ELF32LE>; 3797 template class elf::VersionNeedSection<ELF32BE>; 3798 template class elf::VersionNeedSection<ELF64LE>; 3799 template class elf::VersionNeedSection<ELF64BE>; 3800 3801 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part); 3802 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part); 3803 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part); 3804 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part); 3805 3806 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part); 3807 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part); 3808 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part); 3809 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part); 3810 3811 template class elf::PartitionElfHeaderSection<ELF32LE>; 3812 template class elf::PartitionElfHeaderSection<ELF32BE>; 3813 template class elf::PartitionElfHeaderSection<ELF64LE>; 3814 template class elf::PartitionElfHeaderSection<ELF64BE>; 3815 3816 template class elf::PartitionProgramHeadersSection<ELF32LE>; 3817 template class elf::PartitionProgramHeadersSection<ELF32BE>; 3818 template class elf::PartitionProgramHeadersSection<ELF64LE>; 3819 template class elf::PartitionProgramHeadersSection<ELF64BE>; 3820