xref: /openbsd/gnu/llvm/lld/ELF/Writer.cpp (revision 097a140d)
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "LinkerScript.h"
15 #include "MapFile.h"
16 #include "OutputSections.h"
17 #include "Relocations.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "SyntheticSections.h"
21 #include "Target.h"
22 #include "lld/Common/Filesystem.h"
23 #include "lld/Common/Memory.h"
24 #include "lld/Common/Strings.h"
25 #include "lld/Common/Threads.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/Support/RandomNumberGenerator.h"
29 #include "llvm/Support/SHA1.h"
30 #include "llvm/Support/xxhash.h"
31 #include <climits>
32 
33 using namespace llvm;
34 using namespace llvm::ELF;
35 using namespace llvm::object;
36 using namespace llvm::support;
37 using namespace llvm::support::endian;
38 
39 namespace lld {
40 namespace elf {
41 namespace {
42 // The writer writes a SymbolTable result to a file.
43 template <class ELFT> class Writer {
44 public:
45   Writer() : buffer(errorHandler().outputBuffer) {}
46   using Elf_Shdr = typename ELFT::Shdr;
47   using Elf_Ehdr = typename ELFT::Ehdr;
48   using Elf_Phdr = typename ELFT::Phdr;
49 
50   void run();
51 
52 private:
53   void copyLocalSymbols();
54   void addSectionSymbols();
55   void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
56   void sortSections();
57   void resolveShfLinkOrder();
58   void finalizeAddressDependentContent();
59   void sortInputSections();
60   void finalizeSections();
61   void checkExecuteOnly();
62   void setReservedSymbolSections();
63 
64   std::vector<PhdrEntry *> createPhdrs(Partition &part);
65   void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
66                          unsigned pFlags);
67   void assignFileOffsets();
68   void assignFileOffsetsBinary();
69   void setPhdrs(Partition &part);
70   void checkSections();
71   void fixSectionAlignments();
72   void openFile();
73   void writeTrapInstr();
74   void writeHeader();
75   void writeSections();
76   void writeSectionsBinary();
77   void writeBuildId();
78 
79   std::unique_ptr<FileOutputBuffer> &buffer;
80 
81   void addRelIpltSymbols();
82   void addStartEndSymbols();
83   void addStartStopSymbols(OutputSection *sec);
84 
85   uint64_t fileSize;
86   uint64_t sectionHeaderOff;
87 };
88 } // anonymous namespace
89 
90 static bool isSectionPrefix(StringRef prefix, StringRef name) {
91   return name.startswith(prefix) || name == prefix.drop_back();
92 }
93 
94 StringRef getOutputSectionName(const InputSectionBase *s) {
95   if (config->relocatable)
96     return s->name;
97 
98   // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
99   // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
100   // technically required, but not doing it is odd). This code guarantees that.
101   if (auto *isec = dyn_cast<InputSection>(s)) {
102     if (InputSectionBase *rel = isec->getRelocatedSection()) {
103       OutputSection *out = rel->getOutputSection();
104       if (s->type == SHT_RELA)
105         return saver.save(".rela" + out->name);
106       return saver.save(".rel" + out->name);
107     }
108   }
109 
110   // This check is for -z keep-text-section-prefix.  This option separates text
111   // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or
112   // ".text.exit".
113   // When enabled, this allows identifying the hot code region (.text.hot) in
114   // the final binary which can be selectively mapped to huge pages or mlocked,
115   // for instance.
116   if (config->zKeepTextSectionPrefix)
117     for (StringRef v :
118          {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."})
119       if (isSectionPrefix(v, s->name))
120         return v.drop_back();
121 
122   for (StringRef v :
123        {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
124         ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
125         ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab.",
126         ".openbsd.randomdata."})
127     if (isSectionPrefix(v, s->name))
128       return v.drop_back();
129 
130   // CommonSection is identified as "COMMON" in linker scripts.
131   // By default, it should go to .bss section.
132   if (s->name == "COMMON")
133     return ".bss";
134 
135   return s->name;
136 }
137 
138 static bool needsInterpSection() {
139   return !config->relocatable && !config->shared &&
140          !config->dynamicLinker.empty() && script->needsInterpSection();
141 }
142 
143 template <class ELFT> void writeResult() { Writer<ELFT>().run(); }
144 
145 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
146   llvm::erase_if(phdrs, [&](const PhdrEntry *p) {
147     if (p->p_type != PT_LOAD)
148       return false;
149     if (!p->firstSec)
150       return true;
151     uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
152     return size == 0;
153   });
154 }
155 
156 void copySectionsIntoPartitions() {
157   std::vector<InputSectionBase *> newSections;
158   for (unsigned part = 2; part != partitions.size() + 1; ++part) {
159     for (InputSectionBase *s : inputSections) {
160       if (!(s->flags & SHF_ALLOC) || !s->isLive())
161         continue;
162       InputSectionBase *copy;
163       if (s->type == SHT_NOTE)
164         copy = make<InputSection>(cast<InputSection>(*s));
165       else if (auto *es = dyn_cast<EhInputSection>(s))
166         copy = make<EhInputSection>(*es);
167       else
168         continue;
169       copy->partition = part;
170       newSections.push_back(copy);
171     }
172   }
173 
174   inputSections.insert(inputSections.end(), newSections.begin(),
175                        newSections.end());
176 }
177 
178 void combineEhSections() {
179   for (InputSectionBase *&s : inputSections) {
180     // Ignore dead sections and the partition end marker (.part.end),
181     // whose partition number is out of bounds.
182     if (!s->isLive() || s->partition == 255)
183       continue;
184 
185     Partition &part = s->getPartition();
186     if (auto *es = dyn_cast<EhInputSection>(s)) {
187       part.ehFrame->addSection(es);
188       s = nullptr;
189     } else if (s->kind() == SectionBase::Regular && part.armExidx &&
190                part.armExidx->addSection(cast<InputSection>(s))) {
191       s = nullptr;
192     }
193   }
194 
195   std::vector<InputSectionBase *> &v = inputSections;
196   v.erase(std::remove(v.begin(), v.end(), nullptr), v.end());
197 }
198 
199 static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
200                                    uint64_t val, uint8_t stOther = STV_HIDDEN,
201                                    uint8_t binding = STB_GLOBAL) {
202   Symbol *s = symtab->find(name);
203   if (!s || s->isDefined())
204     return nullptr;
205 
206   s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val,
207                      /*size=*/0, sec});
208   return cast<Defined>(s);
209 }
210 
211 static Defined *addAbsolute(StringRef name) {
212   Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
213                                           STT_NOTYPE, 0, 0, nullptr});
214   return cast<Defined>(sym);
215 }
216 
217 // The linker is expected to define some symbols depending on
218 // the linking result. This function defines such symbols.
219 void addReservedSymbols() {
220   if (config->emachine == EM_MIPS) {
221     // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
222     // so that it points to an absolute address which by default is relative
223     // to GOT. Default offset is 0x7ff0.
224     // See "Global Data Symbols" in Chapter 6 in the following document:
225     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
226     ElfSym::mipsGp = addAbsolute("_gp");
227 
228     // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
229     // start of function and 'gp' pointer into GOT.
230     if (symtab->find("_gp_disp"))
231       ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
232 
233     // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
234     // pointer. This symbol is used in the code generated by .cpload pseudo-op
235     // in case of using -mno-shared option.
236     // https://sourceware.org/ml/binutils/2004-12/msg00094.html
237     if (symtab->find("__gnu_local_gp"))
238       ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
239   } else if (config->emachine == EM_PPC) {
240     // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
241     // support Small Data Area, define it arbitrarily as 0.
242     addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
243   }
244 
245   // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
246   // combines the typical ELF GOT with the small data sections. It commonly
247   // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
248   // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
249   // represent the TOC base which is offset by 0x8000 bytes from the start of
250   // the .got section.
251   // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
252   // correctness of some relocations depends on its value.
253   StringRef gotSymName =
254       (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
255 
256   if (Symbol *s = symtab->find(gotSymName)) {
257     if (s->isDefined()) {
258       error(toString(s->file) + " cannot redefine linker defined symbol '" +
259             gotSymName + "'");
260       return;
261     }
262 
263     uint64_t gotOff = 0;
264     if (config->emachine == EM_PPC64)
265       gotOff = 0x8000;
266 
267     s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
268                        STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
269     ElfSym::globalOffsetTable = cast<Defined>(s);
270   }
271 
272   // __ehdr_start is the location of ELF file headers. Note that we define
273   // this symbol unconditionally even when using a linker script, which
274   // differs from the behavior implemented by GNU linker which only define
275   // this symbol if ELF headers are in the memory mapped segment.
276   addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
277 
278   // __executable_start is not documented, but the expectation of at
279   // least the Android libc is that it points to the ELF header.
280   addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
281 
282   // __dso_handle symbol is passed to cxa_finalize as a marker to identify
283   // each DSO. The address of the symbol doesn't matter as long as they are
284   // different in different DSOs, so we chose the start address of the DSO.
285   addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
286 
287   // If linker script do layout we do not need to create any standard symbols.
288   if (script->hasSectionsCommand)
289     return;
290 
291   auto add = [](StringRef s, int64_t pos) {
292     return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
293   };
294 
295   ElfSym::bss = add("__bss_start", 0);
296   ElfSym::data = add("__data_start", 0);
297   ElfSym::end1 = add("end", -1);
298   ElfSym::end2 = add("_end", -1);
299   ElfSym::etext1 = add("etext", -1);
300   ElfSym::etext2 = add("_etext", -1);
301   ElfSym::edata1 = add("edata", -1);
302   ElfSym::edata2 = add("_edata", -1);
303 }
304 
305 static OutputSection *findSection(StringRef name, unsigned partition = 1) {
306   for (BaseCommand *base : script->sectionCommands)
307     if (auto *sec = dyn_cast<OutputSection>(base))
308       if (sec->name == name && sec->partition == partition)
309         return sec;
310   return nullptr;
311 }
312 
313 template <class ELFT> void createSyntheticSections() {
314   // Initialize all pointers with NULL. This is needed because
315   // you can call lld::elf::main more than once as a library.
316   memset(&Out::first, 0, sizeof(Out));
317 
318   // Add the .interp section first because it is not a SyntheticSection.
319   // The removeUnusedSyntheticSections() function relies on the
320   // SyntheticSections coming last.
321   if (needsInterpSection()) {
322     for (size_t i = 1; i <= partitions.size(); ++i) {
323       InputSection *sec = createInterpSection();
324       sec->partition = i;
325       inputSections.push_back(sec);
326     }
327   }
328 
329   auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); };
330 
331   in.shStrTab = make<StringTableSection>(".shstrtab", false);
332 
333   Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
334   Out::programHeaders->alignment = config->wordsize;
335 
336   if (config->strip != StripPolicy::All) {
337     in.strTab = make<StringTableSection>(".strtab", false);
338     in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
339     in.symTabShndx = make<SymtabShndxSection>();
340   }
341 
342   in.bss = make<BssSection>(".bss", 0, 1);
343   add(in.bss);
344 
345   // If there is a SECTIONS command and a .data.rel.ro section name use name
346   // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
347   // This makes sure our relro is contiguous.
348   bool hasDataRelRo =
349       script->hasSectionsCommand && findSection(".data.rel.ro", 0);
350   in.bssRelRo =
351       make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
352   add(in.bssRelRo);
353 
354   // Add MIPS-specific sections.
355   if (config->emachine == EM_MIPS) {
356     if (!config->shared && config->hasDynSymTab) {
357       in.mipsRldMap = make<MipsRldMapSection>();
358       add(in.mipsRldMap);
359     }
360     if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
361       add(sec);
362     if (auto *sec = MipsOptionsSection<ELFT>::create())
363       add(sec);
364     if (auto *sec = MipsReginfoSection<ELFT>::create())
365       add(sec);
366   }
367 
368   StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
369 
370   for (Partition &part : partitions) {
371     auto add = [&](SyntheticSection *sec) {
372       sec->partition = part.getNumber();
373       inputSections.push_back(sec);
374     };
375 
376     if (!part.name.empty()) {
377       part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
378       part.elfHeader->name = part.name;
379       add(part.elfHeader);
380 
381       part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
382       add(part.programHeaders);
383     }
384 
385     if (config->buildId != BuildIdKind::None) {
386       part.buildId = make<BuildIdSection>();
387       add(part.buildId);
388     }
389 
390     part.dynStrTab = make<StringTableSection>(".dynstr", true);
391     part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
392     part.dynamic = make<DynamicSection<ELFT>>();
393     if (config->androidPackDynRelocs)
394       part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName);
395     else
396       part.relaDyn =
397           make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc);
398 
399     if (config->hasDynSymTab) {
400       part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
401       add(part.dynSymTab);
402 
403       part.verSym = make<VersionTableSection>();
404       add(part.verSym);
405 
406       if (!namedVersionDefs().empty()) {
407         part.verDef = make<VersionDefinitionSection>();
408         add(part.verDef);
409       }
410 
411       part.verNeed = make<VersionNeedSection<ELFT>>();
412       add(part.verNeed);
413 
414       if (config->gnuHash) {
415         part.gnuHashTab = make<GnuHashTableSection>();
416         add(part.gnuHashTab);
417       }
418 
419       if (config->sysvHash) {
420         part.hashTab = make<HashTableSection>();
421         add(part.hashTab);
422       }
423 
424       add(part.dynamic);
425       add(part.dynStrTab);
426       add(part.relaDyn);
427     }
428 
429     if (config->relrPackDynRelocs) {
430       part.relrDyn = make<RelrSection<ELFT>>();
431       add(part.relrDyn);
432     }
433 
434     if (!config->relocatable) {
435       if (config->ehFrameHdr) {
436         part.ehFrameHdr = make<EhFrameHeader>();
437         add(part.ehFrameHdr);
438       }
439       part.ehFrame = make<EhFrameSection>();
440       add(part.ehFrame);
441     }
442 
443     if (config->emachine == EM_ARM && !config->relocatable) {
444       // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
445       // InputSections.
446       part.armExidx = make<ARMExidxSyntheticSection>();
447       add(part.armExidx);
448     }
449   }
450 
451   if (partitions.size() != 1) {
452     // Create the partition end marker. This needs to be in partition number 255
453     // so that it is sorted after all other partitions. It also has other
454     // special handling (see createPhdrs() and combineEhSections()).
455     in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
456     in.partEnd->partition = 255;
457     add(in.partEnd);
458 
459     in.partIndex = make<PartitionIndexSection>();
460     addOptionalRegular("__part_index_begin", in.partIndex, 0);
461     addOptionalRegular("__part_index_end", in.partIndex,
462                        in.partIndex->getSize());
463     add(in.partIndex);
464   }
465 
466   // Add .got. MIPS' .got is so different from the other archs,
467   // it has its own class.
468   if (config->emachine == EM_MIPS) {
469     in.mipsGot = make<MipsGotSection>();
470     add(in.mipsGot);
471   } else {
472     in.got = make<GotSection>();
473     add(in.got);
474   }
475 
476   if (config->emachine == EM_PPC) {
477     in.ppc32Got2 = make<PPC32Got2Section>();
478     add(in.ppc32Got2);
479   }
480 
481   if (config->emachine == EM_PPC64) {
482     in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
483     add(in.ppc64LongBranchTarget);
484   }
485 
486   in.gotPlt = make<GotPltSection>();
487   add(in.gotPlt);
488   in.igotPlt = make<IgotPltSection>();
489   add(in.igotPlt);
490 
491   // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
492   // it as a relocation and ensure the referenced section is created.
493   if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
494     if (target->gotBaseSymInGotPlt)
495       in.gotPlt->hasGotPltOffRel = true;
496     else
497       in.got->hasGotOffRel = true;
498   }
499 
500   if (config->gdbIndex)
501     add(GdbIndexSection::create<ELFT>());
502 
503   // We always need to add rel[a].plt to output if it has entries.
504   // Even for static linking it can contain R_[*]_IRELATIVE relocations.
505   in.relaPlt = make<RelocationSection<ELFT>>(
506       config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
507   add(in.relaPlt);
508 
509   // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
510   // relocations are processed last by the dynamic loader. We cannot place the
511   // iplt section in .rel.dyn when Android relocation packing is enabled because
512   // that would cause a section type mismatch. However, because the Android
513   // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
514   // behaviour by placing the iplt section in .rel.plt.
515   in.relaIplt = make<RelocationSection<ELFT>>(
516       config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
517       /*sort=*/false);
518   add(in.relaIplt);
519 
520   if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
521       (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
522     in.ibtPlt = make<IBTPltSection>();
523     add(in.ibtPlt);
524   }
525 
526   in.plt = make<PltSection>();
527   add(in.plt);
528   in.iplt = make<IpltSection>();
529   add(in.iplt);
530 
531   if (config->andFeatures)
532     add(make<GnuPropertySection>());
533 
534   // .note.GNU-stack is always added when we are creating a re-linkable
535   // object file. Other linkers are using the presence of this marker
536   // section to control the executable-ness of the stack area, but that
537   // is irrelevant these days. Stack area should always be non-executable
538   // by default. So we emit this section unconditionally.
539   if (config->relocatable)
540     add(make<GnuStackSection>());
541 
542   if (in.symTab)
543     add(in.symTab);
544   if (in.symTabShndx)
545     add(in.symTabShndx);
546   add(in.shStrTab);
547   if (in.strTab)
548     add(in.strTab);
549 }
550 
551 // The main function of the writer.
552 template <class ELFT> void Writer<ELFT>::run() {
553   if (config->discard != DiscardPolicy::All)
554     copyLocalSymbols();
555 
556   if (config->copyRelocs)
557     addSectionSymbols();
558 
559   // Now that we have a complete set of output sections. This function
560   // completes section contents. For example, we need to add strings
561   // to the string table, and add entries to .got and .plt.
562   // finalizeSections does that.
563   finalizeSections();
564   checkExecuteOnly();
565   if (errorCount())
566     return;
567 
568   // If -compressed-debug-sections is specified, we need to compress
569   // .debug_* sections. Do it right now because it changes the size of
570   // output sections.
571   for (OutputSection *sec : outputSections)
572     sec->maybeCompress<ELFT>();
573 
574   if (script->hasSectionsCommand)
575     script->allocateHeaders(mainPart->phdrs);
576 
577   // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
578   // 0 sized region. This has to be done late since only after assignAddresses
579   // we know the size of the sections.
580   for (Partition &part : partitions)
581     removeEmptyPTLoad(part.phdrs);
582 
583   if (!config->oFormatBinary)
584     assignFileOffsets();
585   else
586     assignFileOffsetsBinary();
587 
588   for (Partition &part : partitions)
589     setPhdrs(part);
590 
591   if (config->relocatable)
592     for (OutputSection *sec : outputSections)
593       sec->addr = 0;
594 
595   if (config->checkSections)
596     checkSections();
597 
598   // It does not make sense try to open the file if we have error already.
599   if (errorCount())
600     return;
601   // Write the result down to a file.
602   openFile();
603   if (errorCount())
604     return;
605 
606   if (!config->oFormatBinary) {
607     if (config->zSeparate != SeparateSegmentKind::None)
608       writeTrapInstr();
609     writeHeader();
610     writeSections();
611   } else {
612     writeSectionsBinary();
613   }
614 
615   // Backfill .note.gnu.build-id section content. This is done at last
616   // because the content is usually a hash value of the entire output file.
617   writeBuildId();
618   if (errorCount())
619     return;
620 
621   // Handle -Map and -cref options.
622   writeMapFile();
623   writeCrossReferenceTable();
624   if (errorCount())
625     return;
626 
627   if (auto e = buffer->commit())
628     error("failed to write to the output file: " + toString(std::move(e)));
629 }
630 
631 static bool shouldKeepInSymtab(const Defined &sym) {
632   if (sym.isSection())
633     return false;
634 
635   if (config->discard == DiscardPolicy::None)
636     return true;
637 
638   // If -emit-reloc is given, all symbols including local ones need to be
639   // copied because they may be referenced by relocations.
640   if (config->emitRelocs)
641     return true;
642 
643   // In ELF assembly .L symbols are normally discarded by the assembler.
644   // If the assembler fails to do so, the linker discards them if
645   // * --discard-locals is used.
646   // * The symbol is in a SHF_MERGE section, which is normally the reason for
647   //   the assembler keeping the .L symbol.
648   StringRef name = sym.getName();
649   bool isLocal = name.startswith(".L") || name.empty();
650   if (!isLocal)
651     return true;
652 
653   if (config->discard == DiscardPolicy::Locals)
654     return false;
655 
656   SectionBase *sec = sym.section;
657   return !sec || !(sec->flags & SHF_MERGE);
658 }
659 
660 static bool includeInSymtab(const Symbol &b) {
661   if (!b.isLocal() && !b.isUsedInRegularObj)
662     return false;
663 
664   if (auto *d = dyn_cast<Defined>(&b)) {
665     // Always include absolute symbols.
666     SectionBase *sec = d->section;
667     if (!sec)
668       return true;
669     sec = sec->repl;
670 
671     // Exclude symbols pointing to garbage-collected sections.
672     if (isa<InputSectionBase>(sec) && !sec->isLive())
673       return false;
674 
675     if (auto *s = dyn_cast<MergeInputSection>(sec))
676       if (!s->getSectionPiece(d->value)->live)
677         return false;
678     return true;
679   }
680   return b.used;
681 }
682 
683 // Local symbols are not in the linker's symbol table. This function scans
684 // each object file's symbol table to copy local symbols to the output.
685 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
686   if (!in.symTab)
687     return;
688   for (InputFile *file : objectFiles) {
689     ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
690     for (Symbol *b : f->getLocalSymbols()) {
691       if (!b->isLocal())
692         fatal(toString(f) +
693               ": broken object: getLocalSymbols returns a non-local symbol");
694       auto *dr = dyn_cast<Defined>(b);
695 
696       // No reason to keep local undefined symbol in symtab.
697       if (!dr)
698         continue;
699       if (!includeInSymtab(*b))
700         continue;
701       if (!shouldKeepInSymtab(*dr))
702         continue;
703       in.symTab->addSymbol(b);
704     }
705   }
706 }
707 
708 // Create a section symbol for each output section so that we can represent
709 // relocations that point to the section. If we know that no relocation is
710 // referring to a section (that happens if the section is a synthetic one), we
711 // don't create a section symbol for that section.
712 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
713   for (BaseCommand *base : script->sectionCommands) {
714     auto *sec = dyn_cast<OutputSection>(base);
715     if (!sec)
716       continue;
717     auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) {
718       if (auto *isd = dyn_cast<InputSectionDescription>(base))
719         return !isd->sections.empty();
720       return false;
721     });
722     if (i == sec->sectionCommands.end())
723       continue;
724     InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0];
725 
726     // Relocations are not using REL[A] section symbols.
727     if (isec->type == SHT_REL || isec->type == SHT_RELA)
728       continue;
729 
730     // Unlike other synthetic sections, mergeable output sections contain data
731     // copied from input sections, and there may be a relocation pointing to its
732     // contents if -r or -emit-reloc are given.
733     if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
734       continue;
735 
736     auto *sym =
737         make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
738                       /*value=*/0, /*size=*/0, isec);
739     in.symTab->addSymbol(sym);
740   }
741 }
742 
743 // Today's loaders have a feature to make segments read-only after
744 // processing dynamic relocations to enhance security. PT_GNU_RELRO
745 // is defined for that.
746 //
747 // This function returns true if a section needs to be put into a
748 // PT_GNU_RELRO segment.
749 static bool isRelroSection(const OutputSection *sec) {
750   if (!config->zRelro)
751     return false;
752 
753   uint64_t flags = sec->flags;
754 
755   // Non-allocatable or non-writable sections don't need RELRO because
756   // they are not writable or not even mapped to memory in the first place.
757   // RELRO is for sections that are essentially read-only but need to
758   // be writable only at process startup to allow dynamic linker to
759   // apply relocations.
760   if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
761     return false;
762 
763   // Once initialized, TLS data segments are used as data templates
764   // for a thread-local storage. For each new thread, runtime
765   // allocates memory for a TLS and copy templates there. No thread
766   // are supposed to use templates directly. Thus, it can be in RELRO.
767   if (flags & SHF_TLS)
768     return true;
769 
770   // .init_array, .preinit_array and .fini_array contain pointers to
771   // functions that are executed on process startup or exit. These
772   // pointers are set by the static linker, and they are not expected
773   // to change at runtime. But if you are an attacker, you could do
774   // interesting things by manipulating pointers in .fini_array, for
775   // example. So they are put into RELRO.
776   uint32_t type = sec->type;
777   if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
778       type == SHT_PREINIT_ARRAY)
779     return true;
780 
781   // .got contains pointers to external symbols. They are resolved by
782   // the dynamic linker when a module is loaded into memory, and after
783   // that they are not expected to change. So, it can be in RELRO.
784   if (in.got && sec == in.got->getParent())
785     return true;
786 
787   // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
788   // through r2 register, which is reserved for that purpose. Since r2 is used
789   // for accessing .got as well, .got and .toc need to be close enough in the
790   // virtual address space. Usually, .toc comes just after .got. Since we place
791   // .got into RELRO, .toc needs to be placed into RELRO too.
792   if (sec->name.equals(".toc"))
793     return true;
794 
795   // .got.plt contains pointers to external function symbols. They are
796   // by default resolved lazily, so we usually cannot put it into RELRO.
797   // However, if "-z now" is given, the lazy symbol resolution is
798   // disabled, which enables us to put it into RELRO.
799   if (sec == in.gotPlt->getParent())
800 #ifndef __OpenBSD__
801     return config->zNow;
802 #else
803     return true;	/* kbind(2) means we can always put these in RELRO */
804 #endif
805 
806   // .dynamic section contains data for the dynamic linker, and
807   // there's no need to write to it at runtime, so it's better to put
808   // it into RELRO.
809   if (sec->name == ".dynamic")
810     return true;
811 
812   // Sections with some special names are put into RELRO. This is a
813   // bit unfortunate because section names shouldn't be significant in
814   // ELF in spirit. But in reality many linker features depend on
815   // magic section names.
816   StringRef s = sec->name;
817   return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
818          s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
819          s == ".openbsd.randomdata";
820 }
821 
822 // We compute a rank for each section. The rank indicates where the
823 // section should be placed in the file.  Instead of using simple
824 // numbers (0,1,2...), we use a series of flags. One for each decision
825 // point when placing the section.
826 // Using flags has two key properties:
827 // * It is easy to check if a give branch was taken.
828 // * It is easy two see how similar two ranks are (see getRankProximity).
829 enum RankFlags {
830   RF_NOT_ADDR_SET = 1 << 27,
831   RF_NOT_ALLOC = 1 << 26,
832   RF_PARTITION = 1 << 18, // Partition number (8 bits)
833   RF_NOT_PART_EHDR = 1 << 17,
834   RF_NOT_PART_PHDR = 1 << 16,
835   RF_NOT_INTERP = 1 << 15,
836   RF_NOT_NOTE = 1 << 14,
837   RF_WRITE = 1 << 13,
838   RF_EXEC_WRITE = 1 << 12,
839   RF_EXEC = 1 << 11,
840   RF_RODATA = 1 << 10,
841   RF_NOT_RELRO = 1 << 9,
842   RF_NOT_TLS = 1 << 8,
843   RF_BSS = 1 << 7,
844   RF_PPC_NOT_TOCBSS = 1 << 6,
845   RF_PPC_TOCL = 1 << 5,
846   RF_PPC_TOC = 1 << 4,
847   RF_PPC_GOT = 1 << 3,
848   RF_PPC_BRANCH_LT = 1 << 2,
849   RF_MIPS_GPREL = 1 << 1,
850   RF_MIPS_NOT_GOT = 1 << 0
851 };
852 
853 static unsigned getSectionRank(const OutputSection *sec) {
854   unsigned rank = sec->partition * RF_PARTITION;
855 
856   // We want to put section specified by -T option first, so we
857   // can start assigning VA starting from them later.
858   if (config->sectionStartMap.count(sec->name))
859     return rank;
860   rank |= RF_NOT_ADDR_SET;
861 
862   // Allocatable sections go first to reduce the total PT_LOAD size and
863   // so debug info doesn't change addresses in actual code.
864   if (!(sec->flags & SHF_ALLOC))
865     return rank | RF_NOT_ALLOC;
866 
867   if (sec->type == SHT_LLVM_PART_EHDR)
868     return rank;
869   rank |= RF_NOT_PART_EHDR;
870 
871   if (sec->type == SHT_LLVM_PART_PHDR)
872     return rank;
873   rank |= RF_NOT_PART_PHDR;
874 
875   // Put .interp first because some loaders want to see that section
876   // on the first page of the executable file when loaded into memory.
877   if (sec->name == ".interp")
878     return rank;
879   rank |= RF_NOT_INTERP;
880 
881   // Put .note sections (which make up one PT_NOTE) at the beginning so that
882   // they are likely to be included in a core file even if core file size is
883   // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
884   // included in a core to match core files with executables.
885   if (sec->type == SHT_NOTE)
886     return rank;
887   rank |= RF_NOT_NOTE;
888 
889   // Sort sections based on their access permission in the following
890   // order: R, RX, RWX, RW.  This order is based on the following
891   // considerations:
892   // * Read-only sections come first such that they go in the
893   //   PT_LOAD covering the program headers at the start of the file.
894   // * Read-only, executable sections come next.
895   // * Writable, executable sections follow such that .plt on
896   //   architectures where it needs to be writable will be placed
897   //   between .text and .data.
898   // * Writable sections come last, such that .bss lands at the very
899   //   end of the last PT_LOAD.
900   bool isExec = sec->flags & SHF_EXECINSTR;
901   bool isWrite = sec->flags & SHF_WRITE;
902 
903   if (isExec) {
904     if (isWrite)
905       rank |= RF_EXEC_WRITE;
906     else
907       rank |= RF_EXEC;
908   } else if (isWrite) {
909     rank |= RF_WRITE;
910   } else if (sec->type == SHT_PROGBITS) {
911     // Make non-executable and non-writable PROGBITS sections (e.g .rodata
912     // .eh_frame) closer to .text. They likely contain PC or GOT relative
913     // relocations and there could be relocation overflow if other huge sections
914     // (.dynstr .dynsym) were placed in between.
915     rank |= RF_RODATA;
916   }
917 
918   // Place RelRo sections first. After considering SHT_NOBITS below, the
919   // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
920   // where | marks where page alignment happens. An alternative ordering is
921   // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
922   // waste more bytes due to 2 alignment places.
923   if (!isRelroSection(sec))
924     rank |= RF_NOT_RELRO;
925 
926   // If we got here we know that both A and B are in the same PT_LOAD.
927 
928   // The TLS initialization block needs to be a single contiguous block in a R/W
929   // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
930   // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
931   // after PROGBITS.
932   if (!(sec->flags & SHF_TLS))
933     rank |= RF_NOT_TLS;
934 
935   // Within TLS sections, or within other RelRo sections, or within non-RelRo
936   // sections, place non-NOBITS sections first.
937   if (sec->type == SHT_NOBITS)
938     rank |= RF_BSS;
939 
940   // Some architectures have additional ordering restrictions for sections
941   // within the same PT_LOAD.
942   if (config->emachine == EM_PPC64) {
943     // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
944     // that we would like to make sure appear is a specific order to maximize
945     // their coverage by a single signed 16-bit offset from the TOC base
946     // pointer. Conversely, the special .tocbss section should be first among
947     // all SHT_NOBITS sections. This will put it next to the loaded special
948     // PPC64 sections (and, thus, within reach of the TOC base pointer).
949     StringRef name = sec->name;
950     if (name != ".tocbss")
951       rank |= RF_PPC_NOT_TOCBSS;
952 
953     if (name == ".toc1")
954       rank |= RF_PPC_TOCL;
955 
956     if (name == ".toc")
957       rank |= RF_PPC_TOC;
958 
959     if (name == ".got")
960       rank |= RF_PPC_GOT;
961 
962     if (name == ".branch_lt")
963       rank |= RF_PPC_BRANCH_LT;
964   }
965 
966   if (config->emachine == EM_MIPS) {
967     // All sections with SHF_MIPS_GPREL flag should be grouped together
968     // because data in these sections is addressable with a gp relative address.
969     if (sec->flags & SHF_MIPS_GPREL)
970       rank |= RF_MIPS_GPREL;
971 
972     if (sec->name != ".got")
973       rank |= RF_MIPS_NOT_GOT;
974   }
975 
976   return rank;
977 }
978 
979 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) {
980   const OutputSection *a = cast<OutputSection>(aCmd);
981   const OutputSection *b = cast<OutputSection>(bCmd);
982 
983   if (a->sortRank != b->sortRank)
984     return a->sortRank < b->sortRank;
985 
986   if (!(a->sortRank & RF_NOT_ADDR_SET))
987     return config->sectionStartMap.lookup(a->name) <
988            config->sectionStartMap.lookup(b->name);
989   return false;
990 }
991 
992 void PhdrEntry::add(OutputSection *sec) {
993   lastSec = sec;
994   if (!firstSec)
995     firstSec = sec;
996   p_align = std::max(p_align, sec->alignment);
997   if (p_type == PT_LOAD)
998     sec->ptLoad = this;
999 }
1000 
1001 // The beginning and the ending of .rel[a].plt section are marked
1002 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
1003 // executable. The runtime needs these symbols in order to resolve
1004 // all IRELATIVE relocs on startup. For dynamic executables, we don't
1005 // need these symbols, since IRELATIVE relocs are resolved through GOT
1006 // and PLT. For details, see http://www.airs.com/blog/archives/403.
1007 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
1008   if (config->relocatable || needsInterpSection())
1009     return;
1010 
1011   // By default, __rela_iplt_{start,end} belong to a dummy section 0
1012   // because .rela.plt might be empty and thus removed from output.
1013   // We'll override Out::elfHeader with In.relaIplt later when we are
1014   // sure that .rela.plt exists in output.
1015   ElfSym::relaIpltStart = addOptionalRegular(
1016       config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1017       Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1018 
1019   ElfSym::relaIpltEnd = addOptionalRegular(
1020       config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1021       Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1022 }
1023 
1024 template <class ELFT>
1025 void Writer<ELFT>::forEachRelSec(
1026     llvm::function_ref<void(InputSectionBase &)> fn) {
1027   // Scan all relocations. Each relocation goes through a series
1028   // of tests to determine if it needs special treatment, such as
1029   // creating GOT, PLT, copy relocations, etc.
1030   // Note that relocations for non-alloc sections are directly
1031   // processed by InputSection::relocateNonAlloc.
1032   for (InputSectionBase *isec : inputSections)
1033     if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
1034       fn(*isec);
1035   for (Partition &part : partitions) {
1036     for (EhInputSection *es : part.ehFrame->sections)
1037       fn(*es);
1038     if (part.armExidx && part.armExidx->isLive())
1039       for (InputSection *ex : part.armExidx->exidxSections)
1040         fn(*ex);
1041   }
1042 }
1043 
1044 // This function generates assignments for predefined symbols (e.g. _end or
1045 // _etext) and inserts them into the commands sequence to be processed at the
1046 // appropriate time. This ensures that the value is going to be correct by the
1047 // time any references to these symbols are processed and is equivalent to
1048 // defining these symbols explicitly in the linker script.
1049 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1050   if (ElfSym::globalOffsetTable) {
1051     // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1052     // to the start of the .got or .got.plt section.
1053     InputSection *gotSection = in.gotPlt;
1054     if (!target->gotBaseSymInGotPlt)
1055       gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
1056                               : cast<InputSection>(in.got);
1057     ElfSym::globalOffsetTable->section = gotSection;
1058   }
1059 
1060   // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1061   if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1062     ElfSym::relaIpltStart->section = in.relaIplt;
1063     ElfSym::relaIpltEnd->section = in.relaIplt;
1064     ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1065   }
1066 
1067   PhdrEntry *last = nullptr;
1068   PhdrEntry *lastRO = nullptr;
1069 
1070   for (Partition &part : partitions) {
1071     for (PhdrEntry *p : part.phdrs) {
1072       if (p->p_type != PT_LOAD)
1073         continue;
1074       last = p;
1075       if (!(p->p_flags & PF_W))
1076         lastRO = p;
1077     }
1078   }
1079 
1080   if (lastRO) {
1081     // _etext is the first location after the last read-only loadable segment.
1082     if (ElfSym::etext1)
1083       ElfSym::etext1->section = lastRO->lastSec;
1084     if (ElfSym::etext2)
1085       ElfSym::etext2->section = lastRO->lastSec;
1086   }
1087 
1088   if (last) {
1089     // _edata points to the end of the last mapped initialized section.
1090     OutputSection *edata = nullptr;
1091     for (OutputSection *os : outputSections) {
1092       if (os->type != SHT_NOBITS)
1093         edata = os;
1094       if (os == last->lastSec)
1095         break;
1096     }
1097 
1098     if (ElfSym::edata1)
1099       ElfSym::edata1->section = edata;
1100     if (ElfSym::edata2)
1101       ElfSym::edata2->section = edata;
1102 
1103     // _end is the first location after the uninitialized data region.
1104     if (ElfSym::end1)
1105       ElfSym::end1->section = last->lastSec;
1106     if (ElfSym::end2)
1107       ElfSym::end2->section = last->lastSec;
1108   }
1109 
1110   if (ElfSym::bss)
1111     ElfSym::bss->section = findSection(".bss");
1112 
1113   if (ElfSym::data)
1114     ElfSym::data->section = findSection(".data");
1115 
1116   // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1117   // be equal to the _gp symbol's value.
1118   if (ElfSym::mipsGp) {
1119     // Find GP-relative section with the lowest address
1120     // and use this address to calculate default _gp value.
1121     for (OutputSection *os : outputSections) {
1122       if (os->flags & SHF_MIPS_GPREL) {
1123         ElfSym::mipsGp->section = os;
1124         ElfSym::mipsGp->value = 0x7ff0;
1125         break;
1126       }
1127     }
1128   }
1129 }
1130 
1131 // We want to find how similar two ranks are.
1132 // The more branches in getSectionRank that match, the more similar they are.
1133 // Since each branch corresponds to a bit flag, we can just use
1134 // countLeadingZeros.
1135 static int getRankProximityAux(OutputSection *a, OutputSection *b) {
1136   return countLeadingZeros(a->sortRank ^ b->sortRank);
1137 }
1138 
1139 static int getRankProximity(OutputSection *a, BaseCommand *b) {
1140   auto *sec = dyn_cast<OutputSection>(b);
1141   return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
1142 }
1143 
1144 // When placing orphan sections, we want to place them after symbol assignments
1145 // so that an orphan after
1146 //   begin_foo = .;
1147 //   foo : { *(foo) }
1148 //   end_foo = .;
1149 // doesn't break the intended meaning of the begin/end symbols.
1150 // We don't want to go over sections since findOrphanPos is the
1151 // one in charge of deciding the order of the sections.
1152 // We don't want to go over changes to '.', since doing so in
1153 //  rx_sec : { *(rx_sec) }
1154 //  . = ALIGN(0x1000);
1155 //  /* The RW PT_LOAD starts here*/
1156 //  rw_sec : { *(rw_sec) }
1157 // would mean that the RW PT_LOAD would become unaligned.
1158 static bool shouldSkip(BaseCommand *cmd) {
1159   if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1160     return assign->name != ".";
1161   return false;
1162 }
1163 
1164 // We want to place orphan sections so that they share as much
1165 // characteristics with their neighbors as possible. For example, if
1166 // both are rw, or both are tls.
1167 static std::vector<BaseCommand *>::iterator
1168 findOrphanPos(std::vector<BaseCommand *>::iterator b,
1169               std::vector<BaseCommand *>::iterator e) {
1170   OutputSection *sec = cast<OutputSection>(*e);
1171 
1172   // Find the first element that has as close a rank as possible.
1173   auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) {
1174     return getRankProximity(sec, a) < getRankProximity(sec, b);
1175   });
1176   if (i == e)
1177     return e;
1178 
1179   // Consider all existing sections with the same proximity.
1180   int proximity = getRankProximity(sec, *i);
1181   for (; i != e; ++i) {
1182     auto *curSec = dyn_cast<OutputSection>(*i);
1183     if (!curSec || !curSec->hasInputSections)
1184       continue;
1185     if (getRankProximity(sec, curSec) != proximity ||
1186         sec->sortRank < curSec->sortRank)
1187       break;
1188   }
1189 
1190   auto isOutputSecWithInputSections = [](BaseCommand *cmd) {
1191     auto *os = dyn_cast<OutputSection>(cmd);
1192     return os && os->hasInputSections;
1193   };
1194   auto j = std::find_if(llvm::make_reverse_iterator(i),
1195                         llvm::make_reverse_iterator(b),
1196                         isOutputSecWithInputSections);
1197   i = j.base();
1198 
1199   // As a special case, if the orphan section is the last section, put
1200   // it at the very end, past any other commands.
1201   // This matches bfd's behavior and is convenient when the linker script fully
1202   // specifies the start of the file, but doesn't care about the end (the non
1203   // alloc sections for example).
1204   auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1205   if (nextSec == e)
1206     return e;
1207 
1208   while (i != e && shouldSkip(*i))
1209     ++i;
1210   return i;
1211 }
1212 
1213 // Builds section order for handling --symbol-ordering-file.
1214 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1215   DenseMap<const InputSectionBase *, int> sectionOrder;
1216   // Use the rarely used option -call-graph-ordering-file to sort sections.
1217   if (!config->callGraphProfile.empty())
1218     return computeCallGraphProfileOrder();
1219 
1220   if (config->symbolOrderingFile.empty())
1221     return sectionOrder;
1222 
1223   struct SymbolOrderEntry {
1224     int priority;
1225     bool present;
1226   };
1227 
1228   // Build a map from symbols to their priorities. Symbols that didn't
1229   // appear in the symbol ordering file have the lowest priority 0.
1230   // All explicitly mentioned symbols have negative (higher) priorities.
1231   DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
1232   int priority = -config->symbolOrderingFile.size();
1233   for (StringRef s : config->symbolOrderingFile)
1234     symbolOrder.insert({s, {priority++, false}});
1235 
1236   // Build a map from sections to their priorities.
1237   auto addSym = [&](Symbol &sym) {
1238     auto it = symbolOrder.find(sym.getName());
1239     if (it == symbolOrder.end())
1240       return;
1241     SymbolOrderEntry &ent = it->second;
1242     ent.present = true;
1243 
1244     maybeWarnUnorderableSymbol(&sym);
1245 
1246     if (auto *d = dyn_cast<Defined>(&sym)) {
1247       if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1248         int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
1249         priority = std::min(priority, ent.priority);
1250       }
1251     }
1252   };
1253 
1254   // We want both global and local symbols. We get the global ones from the
1255   // symbol table and iterate the object files for the local ones.
1256   for (Symbol *sym : symtab->symbols())
1257     if (!sym->isLazy())
1258       addSym(*sym);
1259 
1260   for (InputFile *file : objectFiles)
1261     for (Symbol *sym : file->getSymbols())
1262       if (sym->isLocal())
1263         addSym(*sym);
1264 
1265   if (config->warnSymbolOrdering)
1266     for (auto orderEntry : symbolOrder)
1267       if (!orderEntry.second.present)
1268         warn("symbol ordering file: no such symbol: " + orderEntry.first);
1269 
1270   return sectionOrder;
1271 }
1272 
1273 // Sorts the sections in ISD according to the provided section order.
1274 static void
1275 sortISDBySectionOrder(InputSectionDescription *isd,
1276                       const DenseMap<const InputSectionBase *, int> &order) {
1277   std::vector<InputSection *> unorderedSections;
1278   std::vector<std::pair<InputSection *, int>> orderedSections;
1279   uint64_t unorderedSize = 0;
1280 
1281   for (InputSection *isec : isd->sections) {
1282     auto i = order.find(isec);
1283     if (i == order.end()) {
1284       unorderedSections.push_back(isec);
1285       unorderedSize += isec->getSize();
1286       continue;
1287     }
1288     orderedSections.push_back({isec, i->second});
1289   }
1290   llvm::sort(orderedSections, llvm::less_second());
1291 
1292   // Find an insertion point for the ordered section list in the unordered
1293   // section list. On targets with limited-range branches, this is the mid-point
1294   // of the unordered section list. This decreases the likelihood that a range
1295   // extension thunk will be needed to enter or exit the ordered region. If the
1296   // ordered section list is a list of hot functions, we can generally expect
1297   // the ordered functions to be called more often than the unordered functions,
1298   // making it more likely that any particular call will be within range, and
1299   // therefore reducing the number of thunks required.
1300   //
1301   // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1302   // If the layout is:
1303   //
1304   // 8MB hot
1305   // 32MB cold
1306   //
1307   // only the first 8-16MB of the cold code (depending on which hot function it
1308   // is actually calling) can call the hot code without a range extension thunk.
1309   // However, if we use this layout:
1310   //
1311   // 16MB cold
1312   // 8MB hot
1313   // 16MB cold
1314   //
1315   // both the last 8-16MB of the first block of cold code and the first 8-16MB
1316   // of the second block of cold code can call the hot code without a thunk. So
1317   // we effectively double the amount of code that could potentially call into
1318   // the hot code without a thunk.
1319   size_t insPt = 0;
1320   if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
1321     uint64_t unorderedPos = 0;
1322     for (; insPt != unorderedSections.size(); ++insPt) {
1323       unorderedPos += unorderedSections[insPt]->getSize();
1324       if (unorderedPos > unorderedSize / 2)
1325         break;
1326     }
1327   }
1328 
1329   isd->sections.clear();
1330   for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
1331     isd->sections.push_back(isec);
1332   for (std::pair<InputSection *, int> p : orderedSections)
1333     isd->sections.push_back(p.first);
1334   for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
1335     isd->sections.push_back(isec);
1336 }
1337 
1338 static void sortSection(OutputSection *sec,
1339                         const DenseMap<const InputSectionBase *, int> &order) {
1340   StringRef name = sec->name;
1341 
1342   // Sort input sections by section name suffixes for
1343   // __attribute__((init_priority(N))).
1344   if (name == ".init_array" || name == ".fini_array") {
1345     if (!script->hasSectionsCommand)
1346       sec->sortInitFini();
1347     return;
1348   }
1349 
1350   // Sort input sections by the special rule for .ctors and .dtors.
1351   if (name == ".ctors" || name == ".dtors") {
1352     if (!script->hasSectionsCommand)
1353       sec->sortCtorsDtors();
1354     return;
1355   }
1356 
1357   // Never sort these.
1358   if (name == ".init" || name == ".fini")
1359     return;
1360 
1361   // .toc is allocated just after .got and is accessed using GOT-relative
1362   // relocations. Object files compiled with small code model have an
1363   // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1364   // To reduce the risk of relocation overflow, .toc contents are sorted so that
1365   // sections having smaller relocation offsets are at beginning of .toc
1366   if (config->emachine == EM_PPC64 && name == ".toc") {
1367     if (script->hasSectionsCommand)
1368       return;
1369     assert(sec->sectionCommands.size() == 1);
1370     auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]);
1371     llvm::stable_sort(isd->sections,
1372                       [](const InputSection *a, const InputSection *b) -> bool {
1373                         return a->file->ppc64SmallCodeModelTocRelocs &&
1374                                !b->file->ppc64SmallCodeModelTocRelocs;
1375                       });
1376     return;
1377   }
1378 
1379   // Sort input sections by priority using the list provided
1380   // by --symbol-ordering-file.
1381   if (!order.empty())
1382     for (BaseCommand *b : sec->sectionCommands)
1383       if (auto *isd = dyn_cast<InputSectionDescription>(b))
1384         sortISDBySectionOrder(isd, order);
1385 }
1386 
1387 // If no layout was provided by linker script, we want to apply default
1388 // sorting for special input sections. This also handles --symbol-ordering-file.
1389 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1390   // Build the order once since it is expensive.
1391   DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1392   for (BaseCommand *base : script->sectionCommands)
1393     if (auto *sec = dyn_cast<OutputSection>(base))
1394       sortSection(sec, order);
1395 }
1396 
1397 template <class ELFT> void Writer<ELFT>::sortSections() {
1398   script->adjustSectionsBeforeSorting();
1399 
1400   // Don't sort if using -r. It is not necessary and we want to preserve the
1401   // relative order for SHF_LINK_ORDER sections.
1402   if (config->relocatable)
1403     return;
1404 
1405   sortInputSections();
1406 
1407   for (BaseCommand *base : script->sectionCommands) {
1408     auto *os = dyn_cast<OutputSection>(base);
1409     if (!os)
1410       continue;
1411     os->sortRank = getSectionRank(os);
1412 
1413     // We want to assign rude approximation values to outSecOff fields
1414     // to know the relative order of the input sections. We use it for
1415     // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
1416     uint64_t i = 0;
1417     for (InputSection *sec : getInputSections(os))
1418       sec->outSecOff = i++;
1419   }
1420 
1421   if (!script->hasSectionsCommand) {
1422     // We know that all the OutputSections are contiguous in this case.
1423     auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); };
1424     std::stable_sort(
1425         llvm::find_if(script->sectionCommands, isSection),
1426         llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
1427         compareSections);
1428     return;
1429   }
1430 
1431   // Orphan sections are sections present in the input files which are
1432   // not explicitly placed into the output file by the linker script.
1433   //
1434   // The sections in the linker script are already in the correct
1435   // order. We have to figuere out where to insert the orphan
1436   // sections.
1437   //
1438   // The order of the sections in the script is arbitrary and may not agree with
1439   // compareSections. This means that we cannot easily define a strict weak
1440   // ordering. To see why, consider a comparison of a section in the script and
1441   // one not in the script. We have a two simple options:
1442   // * Make them equivalent (a is not less than b, and b is not less than a).
1443   //   The problem is then that equivalence has to be transitive and we can
1444   //   have sections a, b and c with only b in a script and a less than c
1445   //   which breaks this property.
1446   // * Use compareSectionsNonScript. Given that the script order doesn't have
1447   //   to match, we can end up with sections a, b, c, d where b and c are in the
1448   //   script and c is compareSectionsNonScript less than b. In which case d
1449   //   can be equivalent to c, a to b and d < a. As a concrete example:
1450   //   .a (rx) # not in script
1451   //   .b (rx) # in script
1452   //   .c (ro) # in script
1453   //   .d (ro) # not in script
1454   //
1455   // The way we define an order then is:
1456   // *  Sort only the orphan sections. They are in the end right now.
1457   // *  Move each orphan section to its preferred position. We try
1458   //    to put each section in the last position where it can share
1459   //    a PT_LOAD.
1460   //
1461   // There is some ambiguity as to where exactly a new entry should be
1462   // inserted, because Commands contains not only output section
1463   // commands but also other types of commands such as symbol assignment
1464   // expressions. There's no correct answer here due to the lack of the
1465   // formal specification of the linker script. We use heuristics to
1466   // determine whether a new output command should be added before or
1467   // after another commands. For the details, look at shouldSkip
1468   // function.
1469 
1470   auto i = script->sectionCommands.begin();
1471   auto e = script->sectionCommands.end();
1472   auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) {
1473     if (auto *sec = dyn_cast<OutputSection>(base))
1474       return sec->sectionIndex == UINT32_MAX;
1475     return false;
1476   });
1477 
1478   // Sort the orphan sections.
1479   std::stable_sort(nonScriptI, e, compareSections);
1480 
1481   // As a horrible special case, skip the first . assignment if it is before any
1482   // section. We do this because it is common to set a load address by starting
1483   // the script with ". = 0xabcd" and the expectation is that every section is
1484   // after that.
1485   auto firstSectionOrDotAssignment =
1486       std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); });
1487   if (firstSectionOrDotAssignment != e &&
1488       isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1489     ++firstSectionOrDotAssignment;
1490   i = firstSectionOrDotAssignment;
1491 
1492   while (nonScriptI != e) {
1493     auto pos = findOrphanPos(i, nonScriptI);
1494     OutputSection *orphan = cast<OutputSection>(*nonScriptI);
1495 
1496     // As an optimization, find all sections with the same sort rank
1497     // and insert them with one rotate.
1498     unsigned rank = orphan->sortRank;
1499     auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) {
1500       return cast<OutputSection>(cmd)->sortRank != rank;
1501     });
1502     std::rotate(pos, nonScriptI, end);
1503     nonScriptI = end;
1504   }
1505 
1506   script->adjustSectionsAfterSorting();
1507 }
1508 
1509 static bool compareByFilePosition(InputSection *a, InputSection *b) {
1510   InputSection *la = a->getLinkOrderDep();
1511   InputSection *lb = b->getLinkOrderDep();
1512   OutputSection *aOut = la->getParent();
1513   OutputSection *bOut = lb->getParent();
1514 
1515   if (aOut != bOut)
1516     return aOut->sectionIndex < bOut->sectionIndex;
1517   return la->outSecOff < lb->outSecOff;
1518 }
1519 
1520 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1521   for (OutputSection *sec : outputSections) {
1522     if (!(sec->flags & SHF_LINK_ORDER))
1523       continue;
1524 
1525     // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1526     // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1527     if (!config->relocatable && config->emachine == EM_ARM &&
1528         sec->type == SHT_ARM_EXIDX)
1529       continue;
1530 
1531     // Link order may be distributed across several InputSectionDescriptions
1532     // but sort must consider them all at once.
1533     std::vector<InputSection **> scriptSections;
1534     std::vector<InputSection *> sections;
1535     bool started = false, stopped = false;
1536     for (BaseCommand *base : sec->sectionCommands) {
1537       if (auto *isd = dyn_cast<InputSectionDescription>(base)) {
1538         for (InputSection *&isec : isd->sections) {
1539           if (!(isec->flags & SHF_LINK_ORDER)) {
1540             if (started)
1541               stopped = true;
1542           } else if (stopped) {
1543             error(toString(isec) + ": SHF_LINK_ORDER sections in " + sec->name +
1544                   " are not contiguous");
1545           } else {
1546             started = true;
1547 
1548             scriptSections.push_back(&isec);
1549             sections.push_back(isec);
1550 
1551             InputSection *link = isec->getLinkOrderDep();
1552             if (!link->getParent())
1553               error(toString(isec) + ": sh_link points to discarded section " +
1554                     toString(link));
1555           }
1556         }
1557       } else if (started) {
1558         stopped = true;
1559       }
1560     }
1561 
1562     if (errorCount())
1563       continue;
1564 
1565     llvm::stable_sort(sections, compareByFilePosition);
1566 
1567     for (int i = 0, n = sections.size(); i < n; ++i)
1568       *scriptSections[i] = sections[i];
1569   }
1570 }
1571 
1572 // We need to generate and finalize the content that depends on the address of
1573 // InputSections. As the generation of the content may also alter InputSection
1574 // addresses we must converge to a fixed point. We do that here. See the comment
1575 // in Writer<ELFT>::finalizeSections().
1576 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1577   ThunkCreator tc;
1578   AArch64Err843419Patcher a64p;
1579   ARMErr657417Patcher a32p;
1580   script->assignAddresses();
1581 
1582   int assignPasses = 0;
1583   for (;;) {
1584     bool changed = target->needsThunks && tc.createThunks(outputSections);
1585 
1586     // With Thunk Size much smaller than branch range we expect to
1587     // converge quickly; if we get to 10 something has gone wrong.
1588     if (changed && tc.pass >= 10) {
1589       error("thunk creation not converged");
1590       break;
1591     }
1592 
1593     if (config->fixCortexA53Errata843419) {
1594       if (changed)
1595         script->assignAddresses();
1596       changed |= a64p.createFixes();
1597     }
1598     if (config->fixCortexA8) {
1599       if (changed)
1600         script->assignAddresses();
1601       changed |= a32p.createFixes();
1602     }
1603 
1604     if (in.mipsGot)
1605       in.mipsGot->updateAllocSize();
1606 
1607     for (Partition &part : partitions) {
1608       changed |= part.relaDyn->updateAllocSize();
1609       if (part.relrDyn)
1610         changed |= part.relrDyn->updateAllocSize();
1611     }
1612 
1613     const Defined *changedSym = script->assignAddresses();
1614     if (!changed) {
1615       // Some symbols may be dependent on section addresses. When we break the
1616       // loop, the symbol values are finalized because a previous
1617       // assignAddresses() finalized section addresses.
1618       if (!changedSym)
1619         break;
1620       if (++assignPasses == 5) {
1621         errorOrWarn("assignment to symbol " + toString(*changedSym) +
1622                     " does not converge");
1623         break;
1624       }
1625     }
1626   }
1627 }
1628 
1629 static void finalizeSynthetic(SyntheticSection *sec) {
1630   if (sec && sec->isNeeded() && sec->getParent())
1631     sec->finalizeContents();
1632 }
1633 
1634 // In order to allow users to manipulate linker-synthesized sections,
1635 // we had to add synthetic sections to the input section list early,
1636 // even before we make decisions whether they are needed. This allows
1637 // users to write scripts like this: ".mygot : { .got }".
1638 //
1639 // Doing it has an unintended side effects. If it turns out that we
1640 // don't need a .got (for example) at all because there's no
1641 // relocation that needs a .got, we don't want to emit .got.
1642 //
1643 // To deal with the above problem, this function is called after
1644 // scanRelocations is called to remove synthetic sections that turn
1645 // out to be empty.
1646 static void removeUnusedSyntheticSections() {
1647   // All input synthetic sections that can be empty are placed after
1648   // all regular ones. We iterate over them all and exit at first
1649   // non-synthetic.
1650   for (InputSectionBase *s : llvm::reverse(inputSections)) {
1651     SyntheticSection *ss = dyn_cast<SyntheticSection>(s);
1652     if (!ss)
1653       return;
1654     OutputSection *os = ss->getParent();
1655     if (!os || ss->isNeeded())
1656       continue;
1657 
1658     // If we reach here, then SS is an unused synthetic section and we want to
1659     // remove it from corresponding input section description of output section.
1660     for (BaseCommand *b : os->sectionCommands)
1661       if (auto *isd = dyn_cast<InputSectionDescription>(b))
1662         llvm::erase_if(isd->sections,
1663                        [=](InputSection *isec) { return isec == ss; });
1664   }
1665 }
1666 
1667 // Create output section objects and add them to OutputSections.
1668 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1669   Out::preinitArray = findSection(".preinit_array");
1670   Out::initArray = findSection(".init_array");
1671   Out::finiArray = findSection(".fini_array");
1672 
1673   // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1674   // symbols for sections, so that the runtime can get the start and end
1675   // addresses of each section by section name. Add such symbols.
1676   if (!config->relocatable) {
1677     addStartEndSymbols();
1678     for (BaseCommand *base : script->sectionCommands)
1679       if (auto *sec = dyn_cast<OutputSection>(base))
1680         addStartStopSymbols(sec);
1681   }
1682 
1683   // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1684   // It should be okay as no one seems to care about the type.
1685   // Even the author of gold doesn't remember why gold behaves that way.
1686   // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1687   if (mainPart->dynamic->parent)
1688     symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
1689                               STV_HIDDEN, STT_NOTYPE,
1690                               /*value=*/0, /*size=*/0, mainPart->dynamic});
1691 
1692   // Define __rel[a]_iplt_{start,end} symbols if needed.
1693   addRelIpltSymbols();
1694 
1695   // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1696   // should only be defined in an executable. If .sdata does not exist, its
1697   // value/section does not matter but it has to be relative, so set its
1698   // st_shndx arbitrarily to 1 (Out::elfHeader).
1699   if (config->emachine == EM_RISCV && !config->shared) {
1700     OutputSection *sec = findSection(".sdata");
1701     ElfSym::riscvGlobalPointer =
1702         addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader,
1703                            0x800, STV_DEFAULT, STB_GLOBAL);
1704   }
1705 
1706   if (config->emachine == EM_X86_64) {
1707     // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1708     // way that:
1709     //
1710     // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1711     // computes 0.
1712     // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
1713     // the TLS block).
1714     //
1715     // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
1716     // an absolute symbol of zero. This is different from GNU linkers which
1717     // define _TLS_MODULE_BASE_ relative to the first TLS section.
1718     Symbol *s = symtab->find("_TLS_MODULE_BASE_");
1719     if (s && s->isUndefined()) {
1720       s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
1721                          STT_TLS, /*value=*/0, 0,
1722                          /*section=*/nullptr});
1723       ElfSym::tlsModuleBase = cast<Defined>(s);
1724     }
1725   }
1726 
1727   // This responsible for splitting up .eh_frame section into
1728   // pieces. The relocation scan uses those pieces, so this has to be
1729   // earlier.
1730   for (Partition &part : partitions)
1731     finalizeSynthetic(part.ehFrame);
1732 
1733   for (Symbol *sym : symtab->symbols())
1734     sym->isPreemptible = computeIsPreemptible(*sym);
1735 
1736   // Change values of linker-script-defined symbols from placeholders (assigned
1737   // by declareSymbols) to actual definitions.
1738   script->processSymbolAssignments();
1739 
1740   // Scan relocations. This must be done after every symbol is declared so that
1741   // we can correctly decide if a dynamic relocation is needed. This is called
1742   // after processSymbolAssignments() because it needs to know whether a
1743   // linker-script-defined symbol is absolute.
1744   if (!config->relocatable) {
1745     forEachRelSec(scanRelocations<ELFT>);
1746     reportUndefinedSymbols<ELFT>();
1747   }
1748 
1749   if (in.plt && in.plt->isNeeded())
1750     in.plt->addSymbols();
1751   if (in.iplt && in.iplt->isNeeded())
1752     in.iplt->addSymbols();
1753 
1754   if (!config->allowShlibUndefined) {
1755     // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1756     // entries are seen. These cases would otherwise lead to runtime errors
1757     // reported by the dynamic linker.
1758     //
1759     // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
1760     // catch more cases. That is too much for us. Our approach resembles the one
1761     // used in ld.gold, achieves a good balance to be useful but not too smart.
1762     for (SharedFile *file : sharedFiles)
1763       file->allNeededIsKnown =
1764           llvm::all_of(file->dtNeeded, [&](StringRef needed) {
1765             return symtab->soNames.count(needed);
1766           });
1767 
1768     for (Symbol *sym : symtab->symbols())
1769       if (sym->isUndefined() && !sym->isWeak())
1770         if (auto *f = dyn_cast_or_null<SharedFile>(sym->file))
1771           if (f->allNeededIsKnown)
1772             error(toString(f) + ": undefined reference to " + toString(*sym));
1773   }
1774 
1775   // Now that we have defined all possible global symbols including linker-
1776   // synthesized ones. Visit all symbols to give the finishing touches.
1777   for (Symbol *sym : symtab->symbols()) {
1778     if (!includeInSymtab(*sym))
1779       continue;
1780     if (in.symTab)
1781       in.symTab->addSymbol(sym);
1782 
1783     if (sym->includeInDynsym()) {
1784       partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
1785       if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
1786         if (file->isNeeded && !sym->isUndefined())
1787           addVerneed(sym);
1788     }
1789   }
1790 
1791   // We also need to scan the dynamic relocation tables of the other partitions
1792   // and add any referenced symbols to the partition's dynsym.
1793   for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
1794     DenseSet<Symbol *> syms;
1795     for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
1796       syms.insert(e.sym);
1797     for (DynamicReloc &reloc : part.relaDyn->relocs)
1798       if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second)
1799         part.dynSymTab->addSymbol(reloc.sym);
1800   }
1801 
1802   // Do not proceed if there was an undefined symbol.
1803   if (errorCount())
1804     return;
1805 
1806   if (in.mipsGot)
1807     in.mipsGot->build();
1808 
1809   removeUnusedSyntheticSections();
1810 
1811   sortSections();
1812 
1813   // Now that we have the final list, create a list of all the
1814   // OutputSections for convenience.
1815   for (BaseCommand *base : script->sectionCommands)
1816     if (auto *sec = dyn_cast<OutputSection>(base))
1817       outputSections.push_back(sec);
1818 
1819   // Prefer command line supplied address over other constraints.
1820   for (OutputSection *sec : outputSections) {
1821     auto i = config->sectionStartMap.find(sec->name);
1822     if (i != config->sectionStartMap.end())
1823       sec->addrExpr = [=] { return i->second; };
1824   }
1825 
1826   // This is a bit of a hack. A value of 0 means undef, so we set it
1827   // to 1 to make __ehdr_start defined. The section number is not
1828   // particularly relevant.
1829   Out::elfHeader->sectionIndex = 1;
1830 
1831   for (size_t i = 0, e = outputSections.size(); i != e; ++i) {
1832     OutputSection *sec = outputSections[i];
1833     sec->sectionIndex = i + 1;
1834     sec->shName = in.shStrTab->addString(sec->name);
1835   }
1836 
1837   // Binary and relocatable output does not have PHDRS.
1838   // The headers have to be created before finalize as that can influence the
1839   // image base and the dynamic section on mips includes the image base.
1840   if (!config->relocatable && !config->oFormatBinary) {
1841     for (Partition &part : partitions) {
1842       part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
1843                                               : createPhdrs(part);
1844       if (config->emachine == EM_ARM) {
1845         // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
1846         addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
1847       }
1848       if (config->emachine == EM_MIPS) {
1849         // Add separate segments for MIPS-specific sections.
1850         addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
1851         addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
1852         addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
1853       }
1854     }
1855     Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
1856 
1857     // Find the TLS segment. This happens before the section layout loop so that
1858     // Android relocation packing can look up TLS symbol addresses. We only need
1859     // to care about the main partition here because all TLS symbols were moved
1860     // to the main partition (see MarkLive.cpp).
1861     for (PhdrEntry *p : mainPart->phdrs)
1862       if (p->p_type == PT_TLS)
1863         Out::tlsPhdr = p;
1864   }
1865 
1866   // Some symbols are defined in term of program headers. Now that we
1867   // have the headers, we can find out which sections they point to.
1868   setReservedSymbolSections();
1869 
1870   finalizeSynthetic(in.bss);
1871   finalizeSynthetic(in.bssRelRo);
1872   finalizeSynthetic(in.symTabShndx);
1873   finalizeSynthetic(in.shStrTab);
1874   finalizeSynthetic(in.strTab);
1875   finalizeSynthetic(in.got);
1876   finalizeSynthetic(in.mipsGot);
1877   finalizeSynthetic(in.igotPlt);
1878   finalizeSynthetic(in.gotPlt);
1879   finalizeSynthetic(in.relaIplt);
1880   finalizeSynthetic(in.relaPlt);
1881   finalizeSynthetic(in.plt);
1882   finalizeSynthetic(in.iplt);
1883   finalizeSynthetic(in.ppc32Got2);
1884   finalizeSynthetic(in.partIndex);
1885 
1886   // Dynamic section must be the last one in this list and dynamic
1887   // symbol table section (dynSymTab) must be the first one.
1888   for (Partition &part : partitions) {
1889     finalizeSynthetic(part.armExidx);
1890     finalizeSynthetic(part.dynSymTab);
1891     finalizeSynthetic(part.gnuHashTab);
1892     finalizeSynthetic(part.hashTab);
1893     finalizeSynthetic(part.verDef);
1894     finalizeSynthetic(part.relaDyn);
1895     finalizeSynthetic(part.relrDyn);
1896     finalizeSynthetic(part.ehFrameHdr);
1897     finalizeSynthetic(part.verSym);
1898     finalizeSynthetic(part.verNeed);
1899     finalizeSynthetic(part.dynamic);
1900   }
1901 
1902   if (!script->hasSectionsCommand && !config->relocatable)
1903     fixSectionAlignments();
1904 
1905   // SHFLinkOrder processing must be processed after relative section placements are
1906   // known but before addresses are allocated.
1907   resolveShfLinkOrder();
1908   if (errorCount())
1909     return;
1910 
1911   // This is used to:
1912   // 1) Create "thunks":
1913   //    Jump instructions in many ISAs have small displacements, and therefore
1914   //    they cannot jump to arbitrary addresses in memory. For example, RISC-V
1915   //    JAL instruction can target only +-1 MiB from PC. It is a linker's
1916   //    responsibility to create and insert small pieces of code between
1917   //    sections to extend the ranges if jump targets are out of range. Such
1918   //    code pieces are called "thunks".
1919   //
1920   //    We add thunks at this stage. We couldn't do this before this point
1921   //    because this is the earliest point where we know sizes of sections and
1922   //    their layouts (that are needed to determine if jump targets are in
1923   //    range).
1924   //
1925   // 2) Update the sections. We need to generate content that depends on the
1926   //    address of InputSections. For example, MIPS GOT section content or
1927   //    android packed relocations sections content.
1928   //
1929   // 3) Assign the final values for the linker script symbols. Linker scripts
1930   //    sometimes using forward symbol declarations. We want to set the correct
1931   //    values. They also might change after adding the thunks.
1932   finalizeAddressDependentContent();
1933 
1934   // finalizeAddressDependentContent may have added local symbols to the static symbol table.
1935   finalizeSynthetic(in.symTab);
1936   finalizeSynthetic(in.ppc64LongBranchTarget);
1937 
1938   // Fill other section headers. The dynamic table is finalized
1939   // at the end because some tags like RELSZ depend on result
1940   // of finalizing other sections.
1941   for (OutputSection *sec : outputSections)
1942     sec->finalize();
1943 }
1944 
1945 // Ensure data sections are not mixed with executable sections when
1946 // -execute-only is used. -execute-only is a feature to make pages executable
1947 // but not readable, and the feature is currently supported only on AArch64.
1948 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
1949   if (!config->executeOnly)
1950     return;
1951 
1952   for (OutputSection *os : outputSections)
1953     if (os->flags & SHF_EXECINSTR)
1954       for (InputSection *isec : getInputSections(os))
1955         if (!(isec->flags & SHF_EXECINSTR))
1956           error("cannot place " + toString(isec) + " into " + toString(os->name) +
1957                 ": -execute-only does not support intermingling data and code");
1958 }
1959 
1960 // The linker is expected to define SECNAME_start and SECNAME_end
1961 // symbols for a few sections. This function defines them.
1962 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
1963   // If a section does not exist, there's ambiguity as to how we
1964   // define _start and _end symbols for an init/fini section. Since
1965   // the loader assume that the symbols are always defined, we need to
1966   // always define them. But what value? The loader iterates over all
1967   // pointers between _start and _end to run global ctors/dtors, so if
1968   // the section is empty, their symbol values don't actually matter
1969   // as long as _start and _end point to the same location.
1970   //
1971   // That said, we don't want to set the symbols to 0 (which is
1972   // probably the simplest value) because that could cause some
1973   // program to fail to link due to relocation overflow, if their
1974   // program text is above 2 GiB. We use the address of the .text
1975   // section instead to prevent that failure.
1976   //
1977   // In rare situations, the .text section may not exist. If that's the
1978   // case, use the image base address as a last resort.
1979   OutputSection *Default = findSection(".text");
1980   if (!Default)
1981     Default = Out::elfHeader;
1982 
1983   auto define = [=](StringRef start, StringRef end, OutputSection *os) {
1984     if (os) {
1985       addOptionalRegular(start, os, 0);
1986       addOptionalRegular(end, os, -1);
1987     } else {
1988       addOptionalRegular(start, Default, 0);
1989       addOptionalRegular(end, Default, 0);
1990     }
1991   };
1992 
1993   define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
1994   define("__init_array_start", "__init_array_end", Out::initArray);
1995   define("__fini_array_start", "__fini_array_end", Out::finiArray);
1996 
1997   if (OutputSection *sec = findSection(".ARM.exidx"))
1998     define("__exidx_start", "__exidx_end", sec);
1999 }
2000 
2001 // If a section name is valid as a C identifier (which is rare because of
2002 // the leading '.'), linkers are expected to define __start_<secname> and
2003 // __stop_<secname> symbols. They are at beginning and end of the section,
2004 // respectively. This is not requested by the ELF standard, but GNU ld and
2005 // gold provide the feature, and used by many programs.
2006 template <class ELFT>
2007 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
2008   StringRef s = sec->name;
2009   if (!isValidCIdentifier(s))
2010     return;
2011   addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED);
2012   addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED);
2013 }
2014 
2015 static bool needsPtLoad(OutputSection *sec) {
2016   if (!(sec->flags & SHF_ALLOC) || sec->noload)
2017     return false;
2018 
2019   // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2020   // responsible for allocating space for them, not the PT_LOAD that
2021   // contains the TLS initialization image.
2022   if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
2023     return false;
2024   return true;
2025 }
2026 
2027 // Linker scripts are responsible for aligning addresses. Unfortunately, most
2028 // linker scripts are designed for creating two PT_LOADs only, one RX and one
2029 // RW. This means that there is no alignment in the RO to RX transition and we
2030 // cannot create a PT_LOAD there.
2031 static uint64_t computeFlags(uint64_t flags) {
2032   if (config->omagic)
2033     return PF_R | PF_W | PF_X;
2034   if (config->executeOnly && (flags & PF_X))
2035     return flags & ~PF_R;
2036   if (config->singleRoRx && !(flags & PF_W))
2037     return flags | PF_X;
2038   return flags;
2039 }
2040 
2041 // Decide which program headers to create and which sections to include in each
2042 // one.
2043 template <class ELFT>
2044 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
2045   std::vector<PhdrEntry *> ret;
2046   auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2047     ret.push_back(make<PhdrEntry>(type, flags));
2048     return ret.back();
2049   };
2050 
2051   unsigned partNo = part.getNumber();
2052   bool isMain = partNo == 1;
2053 
2054   // Add the first PT_LOAD segment for regular output sections.
2055   uint64_t flags = computeFlags(PF_R);
2056   PhdrEntry *load = nullptr;
2057 
2058   // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2059   // PT_LOAD.
2060   if (!config->nmagic && !config->omagic) {
2061     // The first phdr entry is PT_PHDR which describes the program header
2062     // itself.
2063     if (isMain)
2064       addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2065     else
2066       addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2067 
2068     // PT_INTERP must be the second entry if exists.
2069     if (OutputSection *cmd = findSection(".interp", partNo))
2070       addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2071 
2072     // Add the headers. We will remove them if they don't fit.
2073     // In the other partitions the headers are ordinary sections, so they don't
2074     // need to be added here.
2075     if (isMain) {
2076       load = addHdr(PT_LOAD, flags);
2077       load->add(Out::elfHeader);
2078       load->add(Out::programHeaders);
2079     }
2080   }
2081 
2082   // PT_GNU_RELRO includes all sections that should be marked as
2083   // read-only by dynamic linker after processing relocations.
2084   // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2085   // an error message if more than one PT_GNU_RELRO PHDR is required.
2086   PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2087   bool inRelroPhdr = false;
2088   OutputSection *relroEnd = nullptr;
2089   for (OutputSection *sec : outputSections) {
2090     if (sec->partition != partNo || !needsPtLoad(sec))
2091       continue;
2092     if (isRelroSection(sec)) {
2093       inRelroPhdr = true;
2094       if (!relroEnd)
2095         relRo->add(sec);
2096       else
2097         error("section: " + sec->name + " is not contiguous with other relro" +
2098               " sections");
2099     } else if (inRelroPhdr) {
2100       inRelroPhdr = false;
2101       relroEnd = sec;
2102     }
2103   }
2104 
2105   for (OutputSection *sec : outputSections) {
2106     if (!(sec->flags & SHF_ALLOC))
2107       break;
2108     if (!needsPtLoad(sec))
2109       continue;
2110 
2111     // Normally, sections in partitions other than the current partition are
2112     // ignored. But partition number 255 is a special case: it contains the
2113     // partition end marker (.part.end). It needs to be added to the main
2114     // partition so that a segment is created for it in the main partition,
2115     // which will cause the dynamic loader to reserve space for the other
2116     // partitions.
2117     if (sec->partition != partNo) {
2118       if (isMain && sec->partition == 255)
2119         addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2120       continue;
2121     }
2122 
2123     // Segments are contiguous memory regions that has the same attributes
2124     // (e.g. executable or writable). There is one phdr for each segment.
2125     // Therefore, we need to create a new phdr when the next section has
2126     // different flags or is loaded at a discontiguous address or memory
2127     // region using AT or AT> linker script command, respectively. At the same
2128     // time, we don't want to create a separate load segment for the headers,
2129     // even if the first output section has an AT or AT> attribute.
2130     uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2131     if (!load ||
2132         ((sec->lmaExpr ||
2133           (sec->lmaRegion && (sec->lmaRegion != load->firstSec->lmaRegion))) &&
2134          load->lastSec != Out::programHeaders) ||
2135         sec->memRegion != load->firstSec->memRegion || flags != newFlags ||
2136         sec == relroEnd) {
2137       load = addHdr(PT_LOAD, newFlags);
2138       flags = newFlags;
2139     }
2140 
2141     load->add(sec);
2142   }
2143 
2144   // Add a TLS segment if any.
2145   PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2146   for (OutputSection *sec : outputSections)
2147     if (sec->partition == partNo && sec->flags & SHF_TLS)
2148       tlsHdr->add(sec);
2149   if (tlsHdr->firstSec)
2150     ret.push_back(tlsHdr);
2151 
2152   // Add an entry for .dynamic.
2153   if (OutputSection *sec = part.dynamic->getParent())
2154     addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2155 
2156   if (relRo->firstSec)
2157     ret.push_back(relRo);
2158 
2159   // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2160   if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2161       part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2162     addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2163         ->add(part.ehFrameHdr->getParent());
2164 
2165   // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2166   // the dynamic linker fill the segment with random data.
2167   if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2168     addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2169 
2170   if (config->zGnustack != GnuStackKind::None) {
2171     // PT_GNU_STACK is a special section to tell the loader to make the
2172     // pages for the stack non-executable. If you really want an executable
2173     // stack, you can pass -z execstack, but that's not recommended for
2174     // security reasons.
2175     unsigned perm = PF_R | PF_W;
2176     if (config->zGnustack == GnuStackKind::Exec)
2177       perm |= PF_X;
2178     addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2179   }
2180 
2181   // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2182   // is expected to perform W^X violations, such as calling mprotect(2) or
2183   // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2184   // OpenBSD.
2185   if (config->zWxneeded)
2186     addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2187 
2188   if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2189     addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2190 
2191   // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2192   // same alignment.
2193   PhdrEntry *note = nullptr;
2194   for (OutputSection *sec : outputSections) {
2195     if (sec->partition != partNo)
2196       continue;
2197     if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2198       if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
2199         note = addHdr(PT_NOTE, PF_R);
2200       note->add(sec);
2201     } else {
2202       note = nullptr;
2203     }
2204   }
2205   return ret;
2206 }
2207 
2208 template <class ELFT>
2209 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2210                                      unsigned pType, unsigned pFlags) {
2211   unsigned partNo = part.getNumber();
2212   auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2213     return cmd->partition == partNo && cmd->type == shType;
2214   });
2215   if (i == outputSections.end())
2216     return;
2217 
2218   PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2219   entry->add(*i);
2220   part.phdrs.push_back(entry);
2221 }
2222 
2223 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2224 // This is achieved by assigning an alignment expression to addrExpr of each
2225 // such section.
2226 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2227   const PhdrEntry *prev;
2228   auto pageAlign = [&](const PhdrEntry *p) {
2229     OutputSection *cmd = p->firstSec;
2230     if (cmd && !cmd->addrExpr) {
2231       // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2232       // padding in the file contents.
2233       //
2234       // When -z separate-code is used we must not have any overlap in pages
2235       // between an executable segment and a non-executable segment. We align to
2236       // the next maximum page size boundary on transitions between executable
2237       // and non-executable segments.
2238       //
2239       // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2240       // sections will be extracted to a separate file. Align to the next
2241       // maximum page size boundary so that we can find the ELF header at the
2242       // start. We cannot benefit from overlapping p_offset ranges with the
2243       // previous segment anyway.
2244       if (config->zSeparate == SeparateSegmentKind::Loadable ||
2245           (config->zSeparate == SeparateSegmentKind::Code && prev &&
2246            (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2247           cmd->type == SHT_LLVM_PART_EHDR)
2248         cmd->addrExpr = [] {
2249           return alignTo(script->getDot(), config->maxPageSize);
2250         };
2251       // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2252       // it must be the RW. Align to p_align(PT_TLS) to make sure
2253       // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2254       // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2255       // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2256       // be congruent to 0 modulo p_align(PT_TLS).
2257       //
2258       // Technically this is not required, but as of 2019, some dynamic loaders
2259       // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2260       // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2261       // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2262       // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2263       // blocks correctly. We need to keep the workaround for a while.
2264       else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2265         cmd->addrExpr = [] {
2266           return alignTo(script->getDot(), config->maxPageSize) +
2267                  alignTo(script->getDot() % config->maxPageSize,
2268                          Out::tlsPhdr->p_align);
2269         };
2270       else
2271         cmd->addrExpr = [] {
2272           return alignTo(script->getDot(), config->maxPageSize) +
2273                  script->getDot() % config->maxPageSize;
2274         };
2275     }
2276   };
2277 
2278 #ifdef __OpenBSD__
2279   // On i386, produce binaries that are compatible with our W^X implementation
2280   if (config->emachine == EM_386) {
2281     auto NXAlign = [](OutputSection *Cmd) {
2282       if (Cmd && !Cmd->addrExpr)
2283         Cmd->addrExpr = [=] {
2284           return alignTo(script->getDot(), 0x20000000);
2285         };
2286     };
2287 
2288     for (Partition &part : partitions) {
2289       PhdrEntry *firstRW = nullptr;
2290       for (PhdrEntry *P : part.phdrs) {
2291         if (P->p_type == PT_LOAD && (P->p_flags & PF_W)) {
2292           firstRW = P;
2293           break;
2294         }
2295       }
2296 
2297       if (firstRW)
2298         NXAlign(firstRW->firstSec);
2299     }
2300   }
2301 #endif
2302 
2303   for (Partition &part : partitions) {
2304     prev = nullptr;
2305     for (const PhdrEntry *p : part.phdrs)
2306       if (p->p_type == PT_LOAD && p->firstSec) {
2307         pageAlign(p);
2308         prev = p;
2309       }
2310   }
2311 }
2312 
2313 // Compute an in-file position for a given section. The file offset must be the
2314 // same with its virtual address modulo the page size, so that the loader can
2315 // load executables without any address adjustment.
2316 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2317   // The first section in a PT_LOAD has to have congruent offset and address
2318   // modulo the maximum page size.
2319   if (os->ptLoad && os->ptLoad->firstSec == os)
2320     return alignTo(off, os->ptLoad->p_align, os->addr);
2321 
2322   // File offsets are not significant for .bss sections other than the first one
2323   // in a PT_LOAD. By convention, we keep section offsets monotonically
2324   // increasing rather than setting to zero.
2325    if (os->type == SHT_NOBITS)
2326      return off;
2327 
2328   // If the section is not in a PT_LOAD, we just have to align it.
2329   if (!os->ptLoad)
2330     return alignTo(off, os->alignment);
2331 
2332   // If two sections share the same PT_LOAD the file offset is calculated
2333   // using this formula: Off2 = Off1 + (VA2 - VA1).
2334   OutputSection *first = os->ptLoad->firstSec;
2335   return first->offset + os->addr - first->addr;
2336 }
2337 
2338 // Set an in-file position to a given section and returns the end position of
2339 // the section.
2340 static uint64_t setFileOffset(OutputSection *os, uint64_t off) {
2341   off = computeFileOffset(os, off);
2342   os->offset = off;
2343 
2344   if (os->type == SHT_NOBITS)
2345     return off;
2346   return off + os->size;
2347 }
2348 
2349 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2350   uint64_t off = 0;
2351   for (OutputSection *sec : outputSections)
2352     if (sec->flags & SHF_ALLOC)
2353       off = setFileOffset(sec, off);
2354   fileSize = alignTo(off, config->wordsize);
2355 }
2356 
2357 static std::string rangeToString(uint64_t addr, uint64_t len) {
2358   return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2359 }
2360 
2361 // Assign file offsets to output sections.
2362 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2363   uint64_t off = 0;
2364   off = setFileOffset(Out::elfHeader, off);
2365   off = setFileOffset(Out::programHeaders, off);
2366 
2367   PhdrEntry *lastRX = nullptr;
2368   for (Partition &part : partitions)
2369     for (PhdrEntry *p : part.phdrs)
2370       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2371         lastRX = p;
2372 
2373   for (OutputSection *sec : outputSections) {
2374     off = setFileOffset(sec, off);
2375 
2376     // If this is a last section of the last executable segment and that
2377     // segment is the last loadable segment, align the offset of the
2378     // following section to avoid loading non-segments parts of the file.
2379     if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2380         lastRX->lastSec == sec)
2381       off = alignTo(off, config->commonPageSize);
2382   }
2383 
2384   sectionHeaderOff = alignTo(off, config->wordsize);
2385   fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2386 
2387   // Our logic assumes that sections have rising VA within the same segment.
2388   // With use of linker scripts it is possible to violate this rule and get file
2389   // offset overlaps or overflows. That should never happen with a valid script
2390   // which does not move the location counter backwards and usually scripts do
2391   // not do that. Unfortunately, there are apps in the wild, for example, Linux
2392   // kernel, which control segment distribution explicitly and move the counter
2393   // backwards, so we have to allow doing that to support linking them. We
2394   // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2395   // we want to prevent file size overflows because it would crash the linker.
2396   for (OutputSection *sec : outputSections) {
2397     if (sec->type == SHT_NOBITS)
2398       continue;
2399     if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2400       error("unable to place section " + sec->name + " at file offset " +
2401             rangeToString(sec->offset, sec->size) +
2402             "; check your linker script for overflows");
2403   }
2404 }
2405 
2406 // Finalize the program headers. We call this function after we assign
2407 // file offsets and VAs to all sections.
2408 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2409   for (PhdrEntry *p : part.phdrs) {
2410     OutputSection *first = p->firstSec;
2411     OutputSection *last = p->lastSec;
2412 
2413     if (first) {
2414       p->p_filesz = last->offset - first->offset;
2415       if (last->type != SHT_NOBITS)
2416         p->p_filesz += last->size;
2417 
2418       p->p_memsz = last->addr + last->size - first->addr;
2419       p->p_offset = first->offset;
2420       p->p_vaddr = first->addr;
2421 
2422       // File offsets in partitions other than the main partition are relative
2423       // to the offset of the ELF headers. Perform that adjustment now.
2424       if (part.elfHeader)
2425         p->p_offset -= part.elfHeader->getParent()->offset;
2426 
2427       if (!p->hasLMA)
2428         p->p_paddr = first->getLMA();
2429     }
2430 
2431     if (p->p_type == PT_GNU_RELRO) {
2432       p->p_align = 1;
2433       // musl/glibc ld.so rounds the size down, so we need to round up
2434       // to protect the last page. This is a no-op on FreeBSD which always
2435       // rounds up.
2436       p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) -
2437                    p->p_offset;
2438     }
2439   }
2440 }
2441 
2442 // A helper struct for checkSectionOverlap.
2443 namespace {
2444 struct SectionOffset {
2445   OutputSection *sec;
2446   uint64_t offset;
2447 };
2448 } // namespace
2449 
2450 // Check whether sections overlap for a specific address range (file offsets,
2451 // load and virtual addresses).
2452 static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
2453                          bool isVirtualAddr) {
2454   llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2455     return a.offset < b.offset;
2456   });
2457 
2458   // Finding overlap is easy given a vector is sorted by start position.
2459   // If an element starts before the end of the previous element, they overlap.
2460   for (size_t i = 1, end = sections.size(); i < end; ++i) {
2461     SectionOffset a = sections[i - 1];
2462     SectionOffset b = sections[i];
2463     if (b.offset >= a.offset + a.sec->size)
2464       continue;
2465 
2466     // If both sections are in OVERLAY we allow the overlapping of virtual
2467     // addresses, because it is what OVERLAY was designed for.
2468     if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2469       continue;
2470 
2471     errorOrWarn("section " + a.sec->name + " " + name +
2472                 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2473                 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2474                 b.sec->name + " range is " +
2475                 rangeToString(b.offset, b.sec->size));
2476   }
2477 }
2478 
2479 // Check for overlapping sections and address overflows.
2480 //
2481 // In this function we check that none of the output sections have overlapping
2482 // file offsets. For SHF_ALLOC sections we also check that the load address
2483 // ranges and the virtual address ranges don't overlap
2484 template <class ELFT> void Writer<ELFT>::checkSections() {
2485   // First, check that section's VAs fit in available address space for target.
2486   for (OutputSection *os : outputSections)
2487     if ((os->addr + os->size < os->addr) ||
2488         (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
2489       errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2490                   " of size 0x" + utohexstr(os->size) +
2491                   " exceeds available address space");
2492 
2493   // Check for overlapping file offsets. In this case we need to skip any
2494   // section marked as SHT_NOBITS. These sections don't actually occupy space in
2495   // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2496   // binary is specified only add SHF_ALLOC sections are added to the output
2497   // file so we skip any non-allocated sections in that case.
2498   std::vector<SectionOffset> fileOffs;
2499   for (OutputSection *sec : outputSections)
2500     if (sec->size > 0 && sec->type != SHT_NOBITS &&
2501         (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2502       fileOffs.push_back({sec, sec->offset});
2503   checkOverlap("file", fileOffs, false);
2504 
2505   // When linking with -r there is no need to check for overlapping virtual/load
2506   // addresses since those addresses will only be assigned when the final
2507   // executable/shared object is created.
2508   if (config->relocatable)
2509     return;
2510 
2511   // Checking for overlapping virtual and load addresses only needs to take
2512   // into account SHF_ALLOC sections since others will not be loaded.
2513   // Furthermore, we also need to skip SHF_TLS sections since these will be
2514   // mapped to other addresses at runtime and can therefore have overlapping
2515   // ranges in the file.
2516   std::vector<SectionOffset> vmas;
2517   for (OutputSection *sec : outputSections)
2518     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2519       vmas.push_back({sec, sec->addr});
2520   checkOverlap("virtual address", vmas, true);
2521 
2522   // Finally, check that the load addresses don't overlap. This will usually be
2523   // the same as the virtual addresses but can be different when using a linker
2524   // script with AT().
2525   std::vector<SectionOffset> lmas;
2526   for (OutputSection *sec : outputSections)
2527     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2528       lmas.push_back({sec, sec->getLMA()});
2529   checkOverlap("load address", lmas, false);
2530 }
2531 
2532 // The entry point address is chosen in the following ways.
2533 //
2534 // 1. the '-e' entry command-line option;
2535 // 2. the ENTRY(symbol) command in a linker control script;
2536 // 3. the value of the symbol _start, if present;
2537 // 4. the number represented by the entry symbol, if it is a number;
2538 // 5. the address of the first byte of the .text section, if present;
2539 // 6. the address 0.
2540 static uint64_t getEntryAddr() {
2541   // Case 1, 2 or 3
2542   if (Symbol *b = symtab->find(config->entry))
2543     return b->getVA();
2544 
2545   // Case 4
2546   uint64_t addr;
2547   if (to_integer(config->entry, addr))
2548     return addr;
2549 
2550   // Case 5
2551   if (OutputSection *sec = findSection(".text")) {
2552     if (config->warnMissingEntry)
2553       warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" +
2554            utohexstr(sec->addr));
2555     return sec->addr;
2556   }
2557 
2558   // Case 6
2559   if (config->warnMissingEntry)
2560     warn("cannot find entry symbol " + config->entry +
2561          "; not setting start address");
2562   return 0;
2563 }
2564 
2565 static uint16_t getELFType() {
2566   if (config->isPic)
2567     return ET_DYN;
2568   if (config->relocatable)
2569     return ET_REL;
2570   return ET_EXEC;
2571 }
2572 
2573 template <class ELFT> void Writer<ELFT>::writeHeader() {
2574   writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2575   writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2576 
2577   auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2578   eHdr->e_type = getELFType();
2579   eHdr->e_entry = getEntryAddr();
2580   eHdr->e_shoff = sectionHeaderOff;
2581 
2582   // Write the section header table.
2583   //
2584   // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2585   // and e_shstrndx fields. When the value of one of these fields exceeds
2586   // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2587   // use fields in the section header at index 0 to store
2588   // the value. The sentinel values and fields are:
2589   // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2590   // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2591   auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2592   size_t num = outputSections.size() + 1;
2593   if (num >= SHN_LORESERVE)
2594     sHdrs->sh_size = num;
2595   else
2596     eHdr->e_shnum = num;
2597 
2598   uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2599   if (strTabIndex >= SHN_LORESERVE) {
2600     sHdrs->sh_link = strTabIndex;
2601     eHdr->e_shstrndx = SHN_XINDEX;
2602   } else {
2603     eHdr->e_shstrndx = strTabIndex;
2604   }
2605 
2606   for (OutputSection *sec : outputSections)
2607     sec->writeHeaderTo<ELFT>(++sHdrs);
2608 }
2609 
2610 // Open a result file.
2611 template <class ELFT> void Writer<ELFT>::openFile() {
2612   uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2613   if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2614     error("output file too large: " + Twine(fileSize) + " bytes");
2615     return;
2616   }
2617 
2618   unlinkAsync(config->outputFile);
2619   unsigned flags = 0;
2620   if (!config->relocatable)
2621     flags |= FileOutputBuffer::F_executable;
2622   if (!config->mmapOutputFile)
2623     flags |= FileOutputBuffer::F_no_mmap;
2624   Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2625       FileOutputBuffer::create(config->outputFile, fileSize, flags);
2626 
2627   if (!bufferOrErr) {
2628     error("failed to open " + config->outputFile + ": " +
2629           llvm::toString(bufferOrErr.takeError()));
2630     return;
2631   }
2632   buffer = std::move(*bufferOrErr);
2633   Out::bufferStart = buffer->getBufferStart();
2634 }
2635 
2636 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2637   for (OutputSection *sec : outputSections)
2638     if (sec->flags & SHF_ALLOC)
2639       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2640 }
2641 
2642 static void fillTrap(uint8_t *i, uint8_t *end) {
2643   for (; i + 4 <= end; i += 4)
2644     memcpy(i, &target->trapInstr, 4);
2645 }
2646 
2647 // Fill the last page of executable segments with trap instructions
2648 // instead of leaving them as zero. Even though it is not required by any
2649 // standard, it is in general a good thing to do for security reasons.
2650 //
2651 // We'll leave other pages in segments as-is because the rest will be
2652 // overwritten by output sections.
2653 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2654   for (Partition &part : partitions) {
2655     // Fill the last page.
2656     for (PhdrEntry *p : part.phdrs)
2657       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2658         fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
2659                                               config->commonPageSize),
2660                  Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
2661                                             config->commonPageSize));
2662 
2663     // Round up the file size of the last segment to the page boundary iff it is
2664     // an executable segment to ensure that other tools don't accidentally
2665     // trim the instruction padding (e.g. when stripping the file).
2666     PhdrEntry *last = nullptr;
2667     for (PhdrEntry *p : part.phdrs)
2668       if (p->p_type == PT_LOAD)
2669         last = p;
2670 
2671     if (last && (last->p_flags & PF_X))
2672       last->p_memsz = last->p_filesz =
2673           alignTo(last->p_filesz, config->commonPageSize);
2674   }
2675 }
2676 
2677 // Write section contents to a mmap'ed file.
2678 template <class ELFT> void Writer<ELFT>::writeSections() {
2679   // In -r or -emit-relocs mode, write the relocation sections first as in
2680   // ELf_Rel targets we might find out that we need to modify the relocated
2681   // section while doing it.
2682   for (OutputSection *sec : outputSections)
2683     if (sec->type == SHT_REL || sec->type == SHT_RELA)
2684       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2685 
2686   for (OutputSection *sec : outputSections)
2687     if (sec->type != SHT_REL && sec->type != SHT_RELA)
2688       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2689 }
2690 
2691 // Split one uint8 array into small pieces of uint8 arrays.
2692 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr,
2693                                             size_t chunkSize) {
2694   std::vector<ArrayRef<uint8_t>> ret;
2695   while (arr.size() > chunkSize) {
2696     ret.push_back(arr.take_front(chunkSize));
2697     arr = arr.drop_front(chunkSize);
2698   }
2699   if (!arr.empty())
2700     ret.push_back(arr);
2701   return ret;
2702 }
2703 
2704 // Computes a hash value of Data using a given hash function.
2705 // In order to utilize multiple cores, we first split data into 1MB
2706 // chunks, compute a hash for each chunk, and then compute a hash value
2707 // of the hash values.
2708 static void
2709 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
2710             llvm::ArrayRef<uint8_t> data,
2711             std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
2712   std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
2713   std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());
2714 
2715   // Compute hash values.
2716   parallelForEachN(0, chunks.size(), [&](size_t i) {
2717     hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
2718   });
2719 
2720   // Write to the final output buffer.
2721   hashFn(hashBuf.data(), hashes);
2722 }
2723 
2724 template <class ELFT> void Writer<ELFT>::writeBuildId() {
2725   if (!mainPart->buildId || !mainPart->buildId->getParent())
2726     return;
2727 
2728   if (config->buildId == BuildIdKind::Hexstring) {
2729     for (Partition &part : partitions)
2730       part.buildId->writeBuildId(config->buildIdVector);
2731     return;
2732   }
2733 
2734   // Compute a hash of all sections of the output file.
2735   size_t hashSize = mainPart->buildId->hashSize;
2736   std::vector<uint8_t> buildId(hashSize);
2737   llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};
2738 
2739   switch (config->buildId) {
2740   case BuildIdKind::Fast:
2741     computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
2742       write64le(dest, xxHash64(arr));
2743     });
2744     break;
2745   case BuildIdKind::Md5:
2746     computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2747       memcpy(dest, MD5::hash(arr).data(), hashSize);
2748     });
2749     break;
2750   case BuildIdKind::Sha1:
2751     computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2752       memcpy(dest, SHA1::hash(arr).data(), hashSize);
2753     });
2754     break;
2755   case BuildIdKind::Uuid:
2756     if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
2757       error("entropy source failure: " + ec.message());
2758     break;
2759   default:
2760     llvm_unreachable("unknown BuildIdKind");
2761   }
2762   for (Partition &part : partitions)
2763     part.buildId->writeBuildId(buildId);
2764 }
2765 
2766 template void createSyntheticSections<ELF32LE>();
2767 template void createSyntheticSections<ELF32BE>();
2768 template void createSyntheticSections<ELF64LE>();
2769 template void createSyntheticSections<ELF64BE>();
2770 
2771 template void writeResult<ELF32LE>();
2772 template void writeResult<ELF32BE>();
2773 template void writeResult<ELF64LE>();
2774 template void writeResult<ELF64BE>();
2775 
2776 } // namespace elf
2777 } // namespace lld
2778