1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Arrays.h" 23 #include "lld/Common/Filesystem.h" 24 #include "lld/Common/Memory.h" 25 #include "lld/Common/Strings.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/Support/Parallel.h" 29 #include "llvm/Support/RandomNumberGenerator.h" 30 #include "llvm/Support/SHA1.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include "llvm/Support/xxhash.h" 33 #include <climits> 34 35 #define DEBUG_TYPE "lld" 36 37 using namespace llvm; 38 using namespace llvm::ELF; 39 using namespace llvm::object; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::elf; 44 45 namespace { 46 // The writer writes a SymbolTable result to a file. 47 template <class ELFT> class Writer { 48 public: 49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 50 51 Writer() : buffer(errorHandler().outputBuffer) {} 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 59 void sortSections(); 60 void resolveShfLinkOrder(); 61 void finalizeAddressDependentContent(); 62 void optimizeBasicBlockJumps(); 63 void sortInputSections(); 64 void finalizeSections(); 65 void checkExecuteOnly(); 66 void setReservedSymbolSections(); 67 68 std::vector<PhdrEntry *> createPhdrs(Partition &part); 69 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 70 unsigned pFlags); 71 void assignFileOffsets(); 72 void assignFileOffsetsBinary(); 73 void setPhdrs(Partition &part); 74 void checkSections(); 75 void fixSectionAlignments(); 76 void openFile(); 77 void writeTrapInstr(); 78 void writeHeader(); 79 void writeSections(); 80 void writeSectionsBinary(); 81 void writeBuildId(); 82 83 std::unique_ptr<FileOutputBuffer> &buffer; 84 85 void addRelIpltSymbols(); 86 void addStartEndSymbols(); 87 void addStartStopSymbols(OutputSection *sec); 88 89 uint64_t fileSize; 90 uint64_t sectionHeaderOff; 91 }; 92 } // anonymous namespace 93 94 static bool isSectionPrefix(StringRef prefix, StringRef name) { 95 return name.startswith(prefix) || name == prefix.drop_back(); 96 } 97 98 StringRef elf::getOutputSectionName(const InputSectionBase *s) { 99 if (config->relocatable) 100 return s->name; 101 102 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 103 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 104 // technically required, but not doing it is odd). This code guarantees that. 105 if (auto *isec = dyn_cast<InputSection>(s)) { 106 if (InputSectionBase *rel = isec->getRelocatedSection()) { 107 OutputSection *out = rel->getOutputSection(); 108 if (s->type == SHT_RELA) 109 return saver.save(".rela" + out->name); 110 return saver.save(".rel" + out->name); 111 } 112 } 113 114 // A BssSection created for a common symbol is identified as "COMMON" in 115 // linker scripts. It should go to .bss section. 116 if (s->name == "COMMON") 117 return ".bss"; 118 119 if (script->hasSectionsCommand) 120 return s->name; 121 122 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 123 // by grouping sections with certain prefixes. 124 125 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 126 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 127 // We provide an option -z keep-text-section-prefix to group such sections 128 // into separate output sections. This is more flexible. See also 129 // sortISDBySectionOrder(). 130 // ".text.unknown" means the hotness of the section is unknown. When 131 // SampleFDO is used, if a function doesn't have sample, it could be very 132 // cold or it could be a new function never being sampled. Those functions 133 // will be kept in the ".text.unknown" section. 134 // ".text.split." holds symbols which are split out from functions in other 135 // input sections. For example, with -fsplit-machine-functions, placing the 136 // cold parts in .text.split instead of .text.unlikely mitigates against poor 137 // profile inaccuracy. Techniques such as hugepage remapping can make 138 // conservative decisions at the section granularity. 139 if (config->zKeepTextSectionPrefix) 140 for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", 141 ".text.startup.", ".text.exit.", ".text.split."}) 142 if (isSectionPrefix(v, s->name)) 143 return v.drop_back(); 144 145 for (StringRef v : 146 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 147 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 148 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab.", 149 ".openbsd.randomdata.", ".openbsd.mutable." }) 150 if (isSectionPrefix(v, s->name)) 151 return v.drop_back(); 152 153 return s->name; 154 } 155 156 static bool needsInterpSection() { 157 return !config->relocatable && !config->shared && 158 !config->dynamicLinker.empty() && script->needsInterpSection(); 159 } 160 161 template <class ELFT> void elf::writeResult() { 162 Writer<ELFT>().run(); 163 } 164 165 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 166 auto it = std::stable_partition( 167 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 168 if (p->p_type != PT_LOAD) 169 return true; 170 if (!p->firstSec) 171 return false; 172 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 173 return size != 0; 174 }); 175 176 // Clear OutputSection::ptLoad for sections contained in removed 177 // segments. 178 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 179 for (OutputSection *sec : outputSections) 180 if (removed.count(sec->ptLoad)) 181 sec->ptLoad = nullptr; 182 phdrs.erase(it, phdrs.end()); 183 } 184 185 void elf::copySectionsIntoPartitions() { 186 std::vector<InputSectionBase *> newSections; 187 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 188 for (InputSectionBase *s : inputSections) { 189 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 190 continue; 191 InputSectionBase *copy; 192 if (s->type == SHT_NOTE) 193 copy = make<InputSection>(cast<InputSection>(*s)); 194 else if (auto *es = dyn_cast<EhInputSection>(s)) 195 copy = make<EhInputSection>(*es); 196 else 197 continue; 198 copy->partition = part; 199 newSections.push_back(copy); 200 } 201 } 202 203 inputSections.insert(inputSections.end(), newSections.begin(), 204 newSections.end()); 205 } 206 207 void elf::combineEhSections() { 208 llvm::TimeTraceScope timeScope("Combine EH sections"); 209 for (InputSectionBase *&s : inputSections) { 210 // Ignore dead sections and the partition end marker (.part.end), 211 // whose partition number is out of bounds. 212 if (!s->isLive() || s->partition == 255) 213 continue; 214 215 Partition &part = s->getPartition(); 216 if (auto *es = dyn_cast<EhInputSection>(s)) { 217 part.ehFrame->addSection(es); 218 s = nullptr; 219 } else if (s->kind() == SectionBase::Regular && part.armExidx && 220 part.armExidx->addSection(cast<InputSection>(s))) { 221 s = nullptr; 222 } 223 } 224 225 std::vector<InputSectionBase *> &v = inputSections; 226 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 227 } 228 229 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 230 uint64_t val, uint8_t stOther = STV_HIDDEN, 231 uint8_t binding = STB_GLOBAL) { 232 Symbol *s = symtab->find(name); 233 if (!s || s->isDefined()) 234 return nullptr; 235 236 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 237 /*size=*/0, sec}); 238 return cast<Defined>(s); 239 } 240 241 static Defined *addAbsolute(StringRef name) { 242 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 243 STT_NOTYPE, 0, 0, nullptr}); 244 return cast<Defined>(sym); 245 } 246 247 // The linker is expected to define some symbols depending on 248 // the linking result. This function defines such symbols. 249 void elf::addReservedSymbols() { 250 if (config->emachine == EM_MIPS) { 251 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 252 // so that it points to an absolute address which by default is relative 253 // to GOT. Default offset is 0x7ff0. 254 // See "Global Data Symbols" in Chapter 6 in the following document: 255 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 256 ElfSym::mipsGp = addAbsolute("_gp"); 257 258 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 259 // start of function and 'gp' pointer into GOT. 260 if (symtab->find("_gp_disp")) 261 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 262 263 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 264 // pointer. This symbol is used in the code generated by .cpload pseudo-op 265 // in case of using -mno-shared option. 266 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 267 if (symtab->find("__gnu_local_gp")) 268 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 269 } else if (config->emachine == EM_PPC) { 270 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 271 // support Small Data Area, define it arbitrarily as 0. 272 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 273 } else if (config->emachine == EM_PPC64) { 274 addPPC64SaveRestore(); 275 } 276 277 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 278 // combines the typical ELF GOT with the small data sections. It commonly 279 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 280 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 281 // represent the TOC base which is offset by 0x8000 bytes from the start of 282 // the .got section. 283 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 284 // correctness of some relocations depends on its value. 285 StringRef gotSymName = 286 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 287 288 if (Symbol *s = symtab->find(gotSymName)) { 289 if (s->isDefined()) { 290 error(toString(s->file) + " cannot redefine linker defined symbol '" + 291 gotSymName + "'"); 292 return; 293 } 294 295 uint64_t gotOff = 0; 296 if (config->emachine == EM_PPC64) 297 gotOff = 0x8000; 298 299 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 300 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 301 ElfSym::globalOffsetTable = cast<Defined>(s); 302 } 303 304 // __ehdr_start is the location of ELF file headers. Note that we define 305 // this symbol unconditionally even when using a linker script, which 306 // differs from the behavior implemented by GNU linker which only define 307 // this symbol if ELF headers are in the memory mapped segment. 308 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 309 310 // __executable_start is not documented, but the expectation of at 311 // least the Android libc is that it points to the ELF header. 312 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 313 314 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 315 // each DSO. The address of the symbol doesn't matter as long as they are 316 // different in different DSOs, so we chose the start address of the DSO. 317 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 318 319 // If linker script do layout we do not need to create any standard symbols. 320 if (script->hasSectionsCommand) 321 return; 322 323 auto add = [](StringRef s, int64_t pos) { 324 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 325 }; 326 327 ElfSym::bss = add("__bss_start", 0); 328 ElfSym::data = add("__data_start", 0); 329 ElfSym::end1 = add("end", -1); 330 ElfSym::end2 = add("_end", -1); 331 ElfSym::etext1 = add("etext", -1); 332 ElfSym::etext2 = add("_etext", -1); 333 ElfSym::edata1 = add("edata", -1); 334 ElfSym::edata2 = add("_edata", -1); 335 } 336 337 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 338 for (BaseCommand *base : script->sectionCommands) 339 if (auto *sec = dyn_cast<OutputSection>(base)) 340 if (sec->name == name && sec->partition == partition) 341 return sec; 342 return nullptr; 343 } 344 345 template <class ELFT> void elf::createSyntheticSections() { 346 // Initialize all pointers with NULL. This is needed because 347 // you can call lld::elf::main more than once as a library. 348 memset(&Out::first, 0, sizeof(Out)); 349 350 // Add the .interp section first because it is not a SyntheticSection. 351 // The removeUnusedSyntheticSections() function relies on the 352 // SyntheticSections coming last. 353 if (needsInterpSection()) { 354 for (size_t i = 1; i <= partitions.size(); ++i) { 355 InputSection *sec = createInterpSection(); 356 sec->partition = i; 357 inputSections.push_back(sec); 358 } 359 } 360 361 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 362 363 in.shStrTab = make<StringTableSection>(".shstrtab", false); 364 365 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 366 Out::programHeaders->alignment = config->wordsize; 367 368 if (config->strip != StripPolicy::All) { 369 in.strTab = make<StringTableSection>(".strtab", false); 370 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 371 in.symTabShndx = make<SymtabShndxSection>(); 372 } 373 374 in.bss = make<BssSection>(".bss", 0, 1); 375 add(in.bss); 376 377 // If there is a SECTIONS command and a .data.rel.ro section name use name 378 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 379 // This makes sure our relro is contiguous. 380 bool hasDataRelRo = 381 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 382 in.bssRelRo = 383 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 384 add(in.bssRelRo); 385 386 // Add MIPS-specific sections. 387 if (config->emachine == EM_MIPS) { 388 if (!config->shared && config->hasDynSymTab) { 389 in.mipsRldMap = make<MipsRldMapSection>(); 390 add(in.mipsRldMap); 391 } 392 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 393 add(sec); 394 if (auto *sec = MipsOptionsSection<ELFT>::create()) 395 add(sec); 396 if (auto *sec = MipsReginfoSection<ELFT>::create()) 397 add(sec); 398 } 399 400 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 401 402 for (Partition &part : partitions) { 403 auto add = [&](SyntheticSection *sec) { 404 sec->partition = part.getNumber(); 405 inputSections.push_back(sec); 406 }; 407 408 if (!part.name.empty()) { 409 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 410 part.elfHeader->name = part.name; 411 add(part.elfHeader); 412 413 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 414 add(part.programHeaders); 415 } 416 417 if (config->buildId != BuildIdKind::None) { 418 part.buildId = make<BuildIdSection>(); 419 add(part.buildId); 420 } 421 422 part.dynStrTab = make<StringTableSection>(".dynstr", true); 423 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 424 part.dynamic = make<DynamicSection<ELFT>>(); 425 if (config->androidPackDynRelocs) 426 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 427 else 428 part.relaDyn = 429 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 430 431 if (config->hasDynSymTab) { 432 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 433 add(part.dynSymTab); 434 435 part.verSym = make<VersionTableSection>(); 436 add(part.verSym); 437 438 if (!namedVersionDefs().empty()) { 439 part.verDef = make<VersionDefinitionSection>(); 440 add(part.verDef); 441 } 442 443 part.verNeed = make<VersionNeedSection<ELFT>>(); 444 add(part.verNeed); 445 446 if (config->gnuHash) { 447 part.gnuHashTab = make<GnuHashTableSection>(); 448 add(part.gnuHashTab); 449 } 450 451 if (config->sysvHash) { 452 part.hashTab = make<HashTableSection>(); 453 add(part.hashTab); 454 } 455 456 add(part.dynamic); 457 add(part.dynStrTab); 458 add(part.relaDyn); 459 } 460 461 if (config->relrPackDynRelocs) { 462 part.relrDyn = make<RelrSection<ELFT>>(); 463 add(part.relrDyn); 464 } 465 466 if (!config->relocatable) { 467 if (config->ehFrameHdr) { 468 part.ehFrameHdr = make<EhFrameHeader>(); 469 add(part.ehFrameHdr); 470 } 471 part.ehFrame = make<EhFrameSection>(); 472 add(part.ehFrame); 473 } 474 475 if (config->emachine == EM_ARM && !config->relocatable) { 476 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 477 // InputSections. 478 part.armExidx = make<ARMExidxSyntheticSection>(); 479 add(part.armExidx); 480 } 481 } 482 483 if (partitions.size() != 1) { 484 // Create the partition end marker. This needs to be in partition number 255 485 // so that it is sorted after all other partitions. It also has other 486 // special handling (see createPhdrs() and combineEhSections()). 487 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 488 in.partEnd->partition = 255; 489 add(in.partEnd); 490 491 in.partIndex = make<PartitionIndexSection>(); 492 addOptionalRegular("__part_index_begin", in.partIndex, 0); 493 addOptionalRegular("__part_index_end", in.partIndex, 494 in.partIndex->getSize()); 495 add(in.partIndex); 496 } 497 498 // Add .got. MIPS' .got is so different from the other archs, 499 // it has its own class. 500 if (config->emachine == EM_MIPS) { 501 in.mipsGot = make<MipsGotSection>(); 502 add(in.mipsGot); 503 } else { 504 in.got = make<GotSection>(); 505 add(in.got); 506 } 507 508 if (config->emachine == EM_PPC) { 509 in.ppc32Got2 = make<PPC32Got2Section>(); 510 add(in.ppc32Got2); 511 } 512 513 if (config->emachine == EM_PPC64) { 514 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 515 add(in.ppc64LongBranchTarget); 516 } 517 518 in.gotPlt = make<GotPltSection>(); 519 add(in.gotPlt); 520 in.igotPlt = make<IgotPltSection>(); 521 add(in.igotPlt); 522 523 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 524 // it as a relocation and ensure the referenced section is created. 525 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 526 if (target->gotBaseSymInGotPlt) 527 in.gotPlt->hasGotPltOffRel = true; 528 else 529 in.got->hasGotOffRel = true; 530 } 531 532 if (config->gdbIndex) 533 add(GdbIndexSection::create<ELFT>()); 534 535 // We always need to add rel[a].plt to output if it has entries. 536 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 537 in.relaPlt = make<RelocationSection<ELFT>>( 538 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 539 add(in.relaPlt); 540 541 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 542 // relocations are processed last by the dynamic loader. We cannot place the 543 // iplt section in .rel.dyn when Android relocation packing is enabled because 544 // that would cause a section type mismatch. However, because the Android 545 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 546 // behaviour by placing the iplt section in .rel.plt. 547 in.relaIplt = make<RelocationSection<ELFT>>( 548 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 549 /*sort=*/false); 550 add(in.relaIplt); 551 552 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 553 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 554 in.ibtPlt = make<IBTPltSection>(); 555 add(in.ibtPlt); 556 } 557 558 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 559 : make<PltSection>(); 560 add(in.plt); 561 in.iplt = make<IpltSection>(); 562 add(in.iplt); 563 564 if (config->andFeatures) 565 add(make<GnuPropertySection>()); 566 567 // .note.GNU-stack is always added when we are creating a re-linkable 568 // object file. Other linkers are using the presence of this marker 569 // section to control the executable-ness of the stack area, but that 570 // is irrelevant these days. Stack area should always be non-executable 571 // by default. So we emit this section unconditionally. 572 if (config->relocatable) 573 add(make<GnuStackSection>()); 574 575 if (in.symTab) 576 add(in.symTab); 577 if (in.symTabShndx) 578 add(in.symTabShndx); 579 add(in.shStrTab); 580 if (in.strTab) 581 add(in.strTab); 582 } 583 584 // The main function of the writer. 585 template <class ELFT> void Writer<ELFT>::run() { 586 copyLocalSymbols(); 587 588 if (config->copyRelocs) 589 addSectionSymbols(); 590 591 // Now that we have a complete set of output sections. This function 592 // completes section contents. For example, we need to add strings 593 // to the string table, and add entries to .got and .plt. 594 // finalizeSections does that. 595 finalizeSections(); 596 checkExecuteOnly(); 597 if (errorCount()) 598 return; 599 600 // If -compressed-debug-sections is specified, we need to compress 601 // .debug_* sections. Do it right now because it changes the size of 602 // output sections. 603 for (OutputSection *sec : outputSections) 604 sec->maybeCompress<ELFT>(); 605 606 if (script->hasSectionsCommand) 607 script->allocateHeaders(mainPart->phdrs); 608 609 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 610 // 0 sized region. This has to be done late since only after assignAddresses 611 // we know the size of the sections. 612 for (Partition &part : partitions) 613 removeEmptyPTLoad(part.phdrs); 614 615 if (!config->oFormatBinary) 616 assignFileOffsets(); 617 else 618 assignFileOffsetsBinary(); 619 620 for (Partition &part : partitions) 621 setPhdrs(part); 622 623 if (config->relocatable) 624 for (OutputSection *sec : outputSections) 625 sec->addr = 0; 626 627 // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them 628 // before checkSections() because the files may be useful in case 629 // checkSections() or openFile() fails, for example, due to an erroneous file 630 // size. 631 writeMapFile(); 632 writeCrossReferenceTable(); 633 writeArchiveStats(); 634 635 if (config->checkSections) 636 checkSections(); 637 638 // It does not make sense try to open the file if we have error already. 639 if (errorCount()) 640 return; 641 642 { 643 llvm::TimeTraceScope timeScope("Write output file"); 644 // Write the result down to a file. 645 openFile(); 646 if (errorCount()) 647 return; 648 649 if (!config->oFormatBinary) { 650 if (config->zSeparate != SeparateSegmentKind::None) 651 writeTrapInstr(); 652 writeHeader(); 653 writeSections(); 654 } else { 655 writeSectionsBinary(); 656 } 657 658 // Backfill .note.gnu.build-id section content. This is done at last 659 // because the content is usually a hash value of the entire output file. 660 writeBuildId(); 661 if (errorCount()) 662 return; 663 664 if (auto e = buffer->commit()) 665 error("failed to write to the output file: " + toString(std::move(e))); 666 } 667 } 668 669 template <class ELFT, class RelTy> 670 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 671 llvm::ArrayRef<RelTy> rels) { 672 for (const RelTy &rel : rels) { 673 Symbol &sym = file->getRelocTargetSym(rel); 674 if (sym.isLocal()) 675 sym.used = true; 676 } 677 } 678 679 // The function ensures that the "used" field of local symbols reflects the fact 680 // that the symbol is used in a relocation from a live section. 681 template <class ELFT> static void markUsedLocalSymbols() { 682 // With --gc-sections, the field is already filled. 683 // See MarkLive<ELFT>::resolveReloc(). 684 if (config->gcSections) 685 return; 686 // Without --gc-sections, the field is initialized with "true". 687 // Drop the flag first and then rise for symbols referenced in relocations. 688 for (InputFile *file : objectFiles) { 689 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 690 for (Symbol *b : f->getLocalSymbols()) 691 b->used = false; 692 for (InputSectionBase *s : f->getSections()) { 693 InputSection *isec = dyn_cast_or_null<InputSection>(s); 694 if (!isec) 695 continue; 696 if (isec->type == SHT_REL) 697 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 698 else if (isec->type == SHT_RELA) 699 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 700 } 701 } 702 } 703 704 static bool shouldKeepInSymtab(const Defined &sym) { 705 if (sym.isSection()) 706 return false; 707 708 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 709 // from live sections. 710 if (config->copyRelocs && sym.used) 711 return true; 712 713 // Exclude local symbols pointing to .ARM.exidx sections. 714 // They are probably mapping symbols "$d", which are optional for these 715 // sections. After merging the .ARM.exidx sections, some of these symbols 716 // may become dangling. The easiest way to avoid the issue is not to add 717 // them to the symbol table from the beginning. 718 if (config->emachine == EM_ARM && sym.section && 719 sym.section->type == SHT_ARM_EXIDX) 720 return false; 721 722 if (config->discard == DiscardPolicy::None) 723 return true; 724 if (config->discard == DiscardPolicy::All) 725 return false; 726 727 // In ELF assembly .L symbols are normally discarded by the assembler. 728 // If the assembler fails to do so, the linker discards them if 729 // * --discard-locals is used. 730 // * The symbol is in a SHF_MERGE section, which is normally the reason for 731 // the assembler keeping the .L symbol. 732 StringRef name = sym.getName(); 733 bool isLocal = name.startswith(".L") || name.empty(); 734 if (!isLocal) 735 return true; 736 737 if (config->discard == DiscardPolicy::Locals) 738 return false; 739 740 SectionBase *sec = sym.section; 741 return !sec || !(sec->flags & SHF_MERGE); 742 } 743 744 static bool includeInSymtab(const Symbol &b) { 745 if (!b.isLocal() && !b.isUsedInRegularObj) 746 return false; 747 748 if (auto *d = dyn_cast<Defined>(&b)) { 749 // Always include absolute symbols. 750 SectionBase *sec = d->section; 751 if (!sec) 752 return true; 753 sec = sec->repl; 754 755 // Exclude symbols pointing to garbage-collected sections. 756 if (isa<InputSectionBase>(sec) && !sec->isLive()) 757 return false; 758 759 if (auto *s = dyn_cast<MergeInputSection>(sec)) 760 if (!s->getSectionPiece(d->value)->live) 761 return false; 762 return true; 763 } 764 return b.used; 765 } 766 767 // Local symbols are not in the linker's symbol table. This function scans 768 // each object file's symbol table to copy local symbols to the output. 769 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 770 if (!in.symTab) 771 return; 772 llvm::TimeTraceScope timeScope("Add local symbols"); 773 if (config->copyRelocs && config->discard != DiscardPolicy::None) 774 markUsedLocalSymbols<ELFT>(); 775 for (InputFile *file : objectFiles) { 776 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 777 for (Symbol *b : f->getLocalSymbols()) { 778 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 779 auto *dr = dyn_cast<Defined>(b); 780 781 // No reason to keep local undefined symbol in symtab. 782 if (!dr) 783 continue; 784 if (!includeInSymtab(*b)) 785 continue; 786 if (!shouldKeepInSymtab(*dr)) 787 continue; 788 in.symTab->addSymbol(b); 789 } 790 } 791 } 792 793 // Create a section symbol for each output section so that we can represent 794 // relocations that point to the section. If we know that no relocation is 795 // referring to a section (that happens if the section is a synthetic one), we 796 // don't create a section symbol for that section. 797 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 798 for (BaseCommand *base : script->sectionCommands) { 799 auto *sec = dyn_cast<OutputSection>(base); 800 if (!sec) 801 continue; 802 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 803 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 804 return !isd->sections.empty(); 805 return false; 806 }); 807 if (i == sec->sectionCommands.end()) 808 continue; 809 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 810 811 // Relocations are not using REL[A] section symbols. 812 if (isec->type == SHT_REL || isec->type == SHT_RELA) 813 continue; 814 815 // Unlike other synthetic sections, mergeable output sections contain data 816 // copied from input sections, and there may be a relocation pointing to its 817 // contents if -r or -emit-reloc are given. 818 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 819 continue; 820 821 // Set the symbol to be relative to the output section so that its st_value 822 // equals the output section address. Note, there may be a gap between the 823 // start of the output section and isec. 824 auto *sym = 825 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 826 /*value=*/0, /*size=*/0, isec->getOutputSection()); 827 in.symTab->addSymbol(sym); 828 } 829 } 830 831 // Today's loaders have a feature to make segments read-only after 832 // processing dynamic relocations to enhance security. PT_GNU_RELRO 833 // is defined for that. 834 // 835 // This function returns true if a section needs to be put into a 836 // PT_GNU_RELRO segment. 837 static bool isRelroSection(const OutputSection *sec) { 838 if (!config->zRelro) 839 return false; 840 841 uint64_t flags = sec->flags; 842 843 // Non-allocatable or non-writable sections don't need RELRO because 844 // they are not writable or not even mapped to memory in the first place. 845 // RELRO is for sections that are essentially read-only but need to 846 // be writable only at process startup to allow dynamic linker to 847 // apply relocations. 848 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 849 return false; 850 851 // Once initialized, TLS data segments are used as data templates 852 // for a thread-local storage. For each new thread, runtime 853 // allocates memory for a TLS and copy templates there. No thread 854 // are supposed to use templates directly. Thus, it can be in RELRO. 855 if (flags & SHF_TLS) 856 return true; 857 858 // .init_array, .preinit_array and .fini_array contain pointers to 859 // functions that are executed on process startup or exit. These 860 // pointers are set by the static linker, and they are not expected 861 // to change at runtime. But if you are an attacker, you could do 862 // interesting things by manipulating pointers in .fini_array, for 863 // example. So they are put into RELRO. 864 uint32_t type = sec->type; 865 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 866 type == SHT_PREINIT_ARRAY) 867 return true; 868 869 // .got contains pointers to external symbols. They are resolved by 870 // the dynamic linker when a module is loaded into memory, and after 871 // that they are not expected to change. So, it can be in RELRO. 872 if (in.got && sec == in.got->getParent()) 873 return true; 874 875 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 876 // through r2 register, which is reserved for that purpose. Since r2 is used 877 // for accessing .got as well, .got and .toc need to be close enough in the 878 // virtual address space. Usually, .toc comes just after .got. Since we place 879 // .got into RELRO, .toc needs to be placed into RELRO too. 880 if (sec->name.equals(".toc")) 881 return true; 882 883 // .got.plt contains pointers to external function symbols. They are 884 // by default resolved lazily, so we usually cannot put it into RELRO. 885 // However, if "-z now" is given, the lazy symbol resolution is 886 // disabled, which enables us to put it into RELRO. 887 if (sec == in.gotPlt->getParent()) 888 #ifndef __OpenBSD__ 889 return config->zNow; 890 #else 891 return true; /* kbind(2) means we can always put these in RELRO */ 892 #endif 893 894 // .dynamic section contains data for the dynamic linker, and 895 // there's no need to write to it at runtime, so it's better to put 896 // it into RELRO. 897 if (sec->name == ".dynamic") 898 return true; 899 900 // Sections with some special names are put into RELRO. This is a 901 // bit unfortunate because section names shouldn't be significant in 902 // ELF in spirit. But in reality many linker features depend on 903 // magic section names. 904 StringRef s = sec->name; 905 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 906 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 907 s == ".fini_array" || s == ".init_array" || 908 s == ".openbsd.randomdata" || s == ".preinit_array"; 909 } 910 911 // We compute a rank for each section. The rank indicates where the 912 // section should be placed in the file. Instead of using simple 913 // numbers (0,1,2...), we use a series of flags. One for each decision 914 // point when placing the section. 915 // Using flags has two key properties: 916 // * It is easy to check if a give branch was taken. 917 // * It is easy two see how similar two ranks are (see getRankProximity). 918 enum RankFlags { 919 RF_NOT_ADDR_SET = 1 << 27, 920 RF_NOT_ALLOC = 1 << 26, 921 RF_PARTITION = 1 << 18, // Partition number (8 bits) 922 RF_NOT_PART_EHDR = 1 << 17, 923 RF_NOT_PART_PHDR = 1 << 16, 924 RF_NOT_INTERP = 1 << 15, 925 RF_NOT_NOTE = 1 << 14, 926 RF_WRITE = 1 << 13, 927 RF_EXEC_WRITE = 1 << 12, 928 RF_EXEC = 1 << 11, 929 RF_RODATA = 1 << 10, 930 RF_NOT_RELRO = 1 << 9, 931 RF_NOT_TLS = 1 << 8, 932 RF_BSS = 1 << 7, 933 RF_PPC_NOT_TOCBSS = 1 << 6, 934 RF_PPC_TOCL = 1 << 5, 935 RF_PPC_TOC = 1 << 4, 936 RF_PPC_GOT = 1 << 3, 937 RF_PPC_BRANCH_LT = 1 << 2, 938 RF_MIPS_GPREL = 1 << 1, 939 RF_MIPS_NOT_GOT = 1 << 0 940 }; 941 942 static unsigned getSectionRank(const OutputSection *sec) { 943 unsigned rank = sec->partition * RF_PARTITION; 944 945 // We want to put section specified by -T option first, so we 946 // can start assigning VA starting from them later. 947 if (config->sectionStartMap.count(sec->name)) 948 return rank; 949 rank |= RF_NOT_ADDR_SET; 950 951 // Allocatable sections go first to reduce the total PT_LOAD size and 952 // so debug info doesn't change addresses in actual code. 953 if (!(sec->flags & SHF_ALLOC)) 954 return rank | RF_NOT_ALLOC; 955 956 if (sec->type == SHT_LLVM_PART_EHDR) 957 return rank; 958 rank |= RF_NOT_PART_EHDR; 959 960 if (sec->type == SHT_LLVM_PART_PHDR) 961 return rank; 962 rank |= RF_NOT_PART_PHDR; 963 964 // Put .interp first because some loaders want to see that section 965 // on the first page of the executable file when loaded into memory. 966 if (sec->name == ".interp") 967 return rank; 968 rank |= RF_NOT_INTERP; 969 970 // Put .note sections (which make up one PT_NOTE) at the beginning so that 971 // they are likely to be included in a core file even if core file size is 972 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 973 // included in a core to match core files with executables. 974 if (sec->type == SHT_NOTE) 975 return rank; 976 rank |= RF_NOT_NOTE; 977 978 // Sort sections based on their access permission in the following 979 // order: R, RX, RWX, RW. This order is based on the following 980 // considerations: 981 // * Read-only sections come first such that they go in the 982 // PT_LOAD covering the program headers at the start of the file. 983 // * Read-only, executable sections come next. 984 // * Writable, executable sections follow such that .plt on 985 // architectures where it needs to be writable will be placed 986 // between .text and .data. 987 // * Writable sections come last, such that .bss lands at the very 988 // end of the last PT_LOAD. 989 bool isExec = sec->flags & SHF_EXECINSTR; 990 bool isWrite = sec->flags & SHF_WRITE; 991 992 if (isExec) { 993 if (isWrite) 994 rank |= RF_EXEC_WRITE; 995 else 996 rank |= RF_EXEC; 997 } else if (isWrite) { 998 rank |= RF_WRITE; 999 } else if (sec->type == SHT_PROGBITS) { 1000 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 1001 // .eh_frame) closer to .text. They likely contain PC or GOT relative 1002 // relocations and there could be relocation overflow if other huge sections 1003 // (.dynstr .dynsym) were placed in between. 1004 rank |= RF_RODATA; 1005 } 1006 1007 // Place RelRo sections first. After considering SHT_NOBITS below, the 1008 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 1009 // where | marks where page alignment happens. An alternative ordering is 1010 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 1011 // waste more bytes due to 2 alignment places. 1012 if (!isRelroSection(sec)) 1013 rank |= RF_NOT_RELRO; 1014 1015 // If we got here we know that both A and B are in the same PT_LOAD. 1016 1017 // The TLS initialization block needs to be a single contiguous block in a R/W 1018 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 1019 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 1020 // after PROGBITS. 1021 if (!(sec->flags & SHF_TLS)) 1022 rank |= RF_NOT_TLS; 1023 1024 // Within TLS sections, or within other RelRo sections, or within non-RelRo 1025 // sections, place non-NOBITS sections first. 1026 if (sec->type == SHT_NOBITS) 1027 rank |= RF_BSS; 1028 1029 // Some architectures have additional ordering restrictions for sections 1030 // within the same PT_LOAD. 1031 if (config->emachine == EM_PPC64) { 1032 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 1033 // that we would like to make sure appear is a specific order to maximize 1034 // their coverage by a single signed 16-bit offset from the TOC base 1035 // pointer. Conversely, the special .tocbss section should be first among 1036 // all SHT_NOBITS sections. This will put it next to the loaded special 1037 // PPC64 sections (and, thus, within reach of the TOC base pointer). 1038 StringRef name = sec->name; 1039 if (name != ".tocbss") 1040 rank |= RF_PPC_NOT_TOCBSS; 1041 1042 if (name == ".toc1") 1043 rank |= RF_PPC_TOCL; 1044 1045 if (name == ".toc") 1046 rank |= RF_PPC_TOC; 1047 1048 if (name == ".got") 1049 rank |= RF_PPC_GOT; 1050 1051 if (name == ".branch_lt") 1052 rank |= RF_PPC_BRANCH_LT; 1053 } 1054 1055 if (config->emachine == EM_MIPS) { 1056 // All sections with SHF_MIPS_GPREL flag should be grouped together 1057 // because data in these sections is addressable with a gp relative address. 1058 if (sec->flags & SHF_MIPS_GPREL) 1059 rank |= RF_MIPS_GPREL; 1060 1061 if (sec->name != ".got") 1062 rank |= RF_MIPS_NOT_GOT; 1063 } 1064 1065 return rank; 1066 } 1067 1068 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 1069 const OutputSection *a = cast<OutputSection>(aCmd); 1070 const OutputSection *b = cast<OutputSection>(bCmd); 1071 1072 if (a->sortRank != b->sortRank) 1073 return a->sortRank < b->sortRank; 1074 1075 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1076 return config->sectionStartMap.lookup(a->name) < 1077 config->sectionStartMap.lookup(b->name); 1078 return false; 1079 } 1080 1081 void PhdrEntry::add(OutputSection *sec) { 1082 lastSec = sec; 1083 if (!firstSec) 1084 firstSec = sec; 1085 p_align = std::max(p_align, sec->alignment); 1086 if (p_type == PT_LOAD) 1087 sec->ptLoad = this; 1088 } 1089 1090 // The beginning and the ending of .rel[a].plt section are marked 1091 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1092 // executable. The runtime needs these symbols in order to resolve 1093 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1094 // need these symbols, since IRELATIVE relocs are resolved through GOT 1095 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1096 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1097 if (config->relocatable || config->isPic) 1098 return; 1099 1100 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1101 // because .rela.plt might be empty and thus removed from output. 1102 // We'll override Out::elfHeader with In.relaIplt later when we are 1103 // sure that .rela.plt exists in output. 1104 ElfSym::relaIpltStart = addOptionalRegular( 1105 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1106 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1107 1108 ElfSym::relaIpltEnd = addOptionalRegular( 1109 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1110 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1111 } 1112 1113 template <class ELFT> 1114 void Writer<ELFT>::forEachRelSec( 1115 llvm::function_ref<void(InputSectionBase &)> fn) { 1116 // Scan all relocations. Each relocation goes through a series 1117 // of tests to determine if it needs special treatment, such as 1118 // creating GOT, PLT, copy relocations, etc. 1119 // Note that relocations for non-alloc sections are directly 1120 // processed by InputSection::relocateNonAlloc. 1121 for (InputSectionBase *isec : inputSections) 1122 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1123 fn(*isec); 1124 for (Partition &part : partitions) { 1125 for (EhInputSection *es : part.ehFrame->sections) 1126 fn(*es); 1127 if (part.armExidx && part.armExidx->isLive()) 1128 for (InputSection *ex : part.armExidx->exidxSections) 1129 fn(*ex); 1130 } 1131 } 1132 1133 // This function generates assignments for predefined symbols (e.g. _end or 1134 // _etext) and inserts them into the commands sequence to be processed at the 1135 // appropriate time. This ensures that the value is going to be correct by the 1136 // time any references to these symbols are processed and is equivalent to 1137 // defining these symbols explicitly in the linker script. 1138 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1139 if (ElfSym::globalOffsetTable) { 1140 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1141 // to the start of the .got or .got.plt section. 1142 InputSection *gotSection = in.gotPlt; 1143 if (!target->gotBaseSymInGotPlt) 1144 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1145 : cast<InputSection>(in.got); 1146 ElfSym::globalOffsetTable->section = gotSection; 1147 } 1148 1149 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1150 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1151 ElfSym::relaIpltStart->section = in.relaIplt; 1152 ElfSym::relaIpltEnd->section = in.relaIplt; 1153 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1154 } 1155 1156 PhdrEntry *last = nullptr; 1157 PhdrEntry *lastRO = nullptr; 1158 1159 for (Partition &part : partitions) { 1160 for (PhdrEntry *p : part.phdrs) { 1161 if (p->p_type != PT_LOAD) 1162 continue; 1163 last = p; 1164 if (!(p->p_flags & PF_W)) 1165 lastRO = p; 1166 } 1167 } 1168 1169 if (lastRO) { 1170 // _etext is the first location after the last read-only loadable segment. 1171 if (ElfSym::etext1) 1172 ElfSym::etext1->section = lastRO->lastSec; 1173 if (ElfSym::etext2) 1174 ElfSym::etext2->section = lastRO->lastSec; 1175 } 1176 1177 if (last) { 1178 // _edata points to the end of the last mapped initialized section. 1179 OutputSection *edata = nullptr; 1180 for (OutputSection *os : outputSections) { 1181 if (os->type != SHT_NOBITS) 1182 edata = os; 1183 if (os == last->lastSec) 1184 break; 1185 } 1186 1187 if (ElfSym::edata1) 1188 ElfSym::edata1->section = edata; 1189 if (ElfSym::edata2) 1190 ElfSym::edata2->section = edata; 1191 1192 // _end is the first location after the uninitialized data region. 1193 if (ElfSym::end1) 1194 ElfSym::end1->section = last->lastSec; 1195 if (ElfSym::end2) 1196 ElfSym::end2->section = last->lastSec; 1197 } 1198 1199 if (ElfSym::bss) 1200 ElfSym::bss->section = findSection(".bss"); 1201 1202 if (ElfSym::data) 1203 ElfSym::data->section = findSection(".data"); 1204 1205 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1206 // be equal to the _gp symbol's value. 1207 if (ElfSym::mipsGp) { 1208 // Find GP-relative section with the lowest address 1209 // and use this address to calculate default _gp value. 1210 for (OutputSection *os : outputSections) { 1211 if (os->flags & SHF_MIPS_GPREL) { 1212 ElfSym::mipsGp->section = os; 1213 ElfSym::mipsGp->value = 0x7ff0; 1214 break; 1215 } 1216 } 1217 } 1218 } 1219 1220 // We want to find how similar two ranks are. 1221 // The more branches in getSectionRank that match, the more similar they are. 1222 // Since each branch corresponds to a bit flag, we can just use 1223 // countLeadingZeros. 1224 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1225 return countLeadingZeros(a->sortRank ^ b->sortRank); 1226 } 1227 1228 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1229 auto *sec = dyn_cast<OutputSection>(b); 1230 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1231 } 1232 1233 // When placing orphan sections, we want to place them after symbol assignments 1234 // so that an orphan after 1235 // begin_foo = .; 1236 // foo : { *(foo) } 1237 // end_foo = .; 1238 // doesn't break the intended meaning of the begin/end symbols. 1239 // We don't want to go over sections since findOrphanPos is the 1240 // one in charge of deciding the order of the sections. 1241 // We don't want to go over changes to '.', since doing so in 1242 // rx_sec : { *(rx_sec) } 1243 // . = ALIGN(0x1000); 1244 // /* The RW PT_LOAD starts here*/ 1245 // rw_sec : { *(rw_sec) } 1246 // would mean that the RW PT_LOAD would become unaligned. 1247 static bool shouldSkip(BaseCommand *cmd) { 1248 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1249 return assign->name != "."; 1250 return false; 1251 } 1252 1253 // We want to place orphan sections so that they share as much 1254 // characteristics with their neighbors as possible. For example, if 1255 // both are rw, or both are tls. 1256 static std::vector<BaseCommand *>::iterator 1257 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1258 std::vector<BaseCommand *>::iterator e) { 1259 OutputSection *sec = cast<OutputSection>(*e); 1260 1261 // Find the first element that has as close a rank as possible. 1262 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1263 return getRankProximity(sec, a) < getRankProximity(sec, b); 1264 }); 1265 if (i == e) 1266 return e; 1267 1268 // Consider all existing sections with the same proximity. 1269 int proximity = getRankProximity(sec, *i); 1270 for (; i != e; ++i) { 1271 auto *curSec = dyn_cast<OutputSection>(*i); 1272 if (!curSec || !curSec->hasInputSections) 1273 continue; 1274 if (getRankProximity(sec, curSec) != proximity || 1275 sec->sortRank < curSec->sortRank) 1276 break; 1277 } 1278 1279 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1280 auto *os = dyn_cast<OutputSection>(cmd); 1281 return os && os->hasInputSections; 1282 }; 1283 auto j = std::find_if(llvm::make_reverse_iterator(i), 1284 llvm::make_reverse_iterator(b), 1285 isOutputSecWithInputSections); 1286 i = j.base(); 1287 1288 // As a special case, if the orphan section is the last section, put 1289 // it at the very end, past any other commands. 1290 // This matches bfd's behavior and is convenient when the linker script fully 1291 // specifies the start of the file, but doesn't care about the end (the non 1292 // alloc sections for example). 1293 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1294 if (nextSec == e) 1295 return e; 1296 1297 while (i != e && shouldSkip(*i)) 1298 ++i; 1299 return i; 1300 } 1301 1302 // Adds random priorities to sections not already in the map. 1303 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1304 if (config->shuffleSections.empty()) 1305 return; 1306 1307 std::vector<InputSectionBase *> matched, sections = inputSections; 1308 matched.reserve(sections.size()); 1309 for (const auto &patAndSeed : config->shuffleSections) { 1310 matched.clear(); 1311 for (InputSectionBase *sec : sections) 1312 if (patAndSeed.first.match(sec->name)) 1313 matched.push_back(sec); 1314 const uint32_t seed = patAndSeed.second; 1315 if (seed == UINT32_MAX) { 1316 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1317 // section order is stable even if the number of sections changes. This is 1318 // useful to catch issues like static initialization order fiasco 1319 // reliably. 1320 std::reverse(matched.begin(), matched.end()); 1321 } else { 1322 std::mt19937 g(seed ? seed : std::random_device()()); 1323 llvm::shuffle(matched.begin(), matched.end(), g); 1324 } 1325 size_t i = 0; 1326 for (InputSectionBase *&sec : sections) 1327 if (patAndSeed.first.match(sec->name)) 1328 sec = matched[i++]; 1329 } 1330 1331 // Existing priorities are < 0, so use priorities >= 0 for the missing 1332 // sections. 1333 int prio = 0; 1334 for (InputSectionBase *sec : sections) { 1335 if (order.try_emplace(sec, prio).second) 1336 ++prio; 1337 } 1338 } 1339 1340 // Builds section order for handling --symbol-ordering-file. 1341 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1342 DenseMap<const InputSectionBase *, int> sectionOrder; 1343 // Use the rarely used option -call-graph-ordering-file to sort sections. 1344 if (!config->callGraphProfile.empty()) 1345 return computeCallGraphProfileOrder(); 1346 1347 if (config->symbolOrderingFile.empty()) 1348 return sectionOrder; 1349 1350 struct SymbolOrderEntry { 1351 int priority; 1352 bool present; 1353 }; 1354 1355 // Build a map from symbols to their priorities. Symbols that didn't 1356 // appear in the symbol ordering file have the lowest priority 0. 1357 // All explicitly mentioned symbols have negative (higher) priorities. 1358 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1359 int priority = -config->symbolOrderingFile.size(); 1360 for (StringRef s : config->symbolOrderingFile) 1361 symbolOrder.insert({s, {priority++, false}}); 1362 1363 // Build a map from sections to their priorities. 1364 auto addSym = [&](Symbol &sym) { 1365 auto it = symbolOrder.find(sym.getName()); 1366 if (it == symbolOrder.end()) 1367 return; 1368 SymbolOrderEntry &ent = it->second; 1369 ent.present = true; 1370 1371 maybeWarnUnorderableSymbol(&sym); 1372 1373 if (auto *d = dyn_cast<Defined>(&sym)) { 1374 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1375 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1376 priority = std::min(priority, ent.priority); 1377 } 1378 } 1379 }; 1380 1381 // We want both global and local symbols. We get the global ones from the 1382 // symbol table and iterate the object files for the local ones. 1383 for (Symbol *sym : symtab->symbols()) 1384 if (!sym->isLazy()) 1385 addSym(*sym); 1386 1387 for (InputFile *file : objectFiles) 1388 for (Symbol *sym : file->getSymbols()) { 1389 if (!sym->isLocal()) 1390 break; 1391 addSym(*sym); 1392 } 1393 1394 if (config->warnSymbolOrdering) 1395 for (auto orderEntry : symbolOrder) 1396 if (!orderEntry.second.present) 1397 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1398 1399 return sectionOrder; 1400 } 1401 1402 // Sorts the sections in ISD according to the provided section order. 1403 static void 1404 sortISDBySectionOrder(InputSectionDescription *isd, 1405 const DenseMap<const InputSectionBase *, int> &order) { 1406 std::vector<InputSection *> unorderedSections; 1407 std::vector<std::pair<InputSection *, int>> orderedSections; 1408 uint64_t unorderedSize = 0; 1409 1410 for (InputSection *isec : isd->sections) { 1411 auto i = order.find(isec); 1412 if (i == order.end()) { 1413 unorderedSections.push_back(isec); 1414 unorderedSize += isec->getSize(); 1415 continue; 1416 } 1417 orderedSections.push_back({isec, i->second}); 1418 } 1419 llvm::sort(orderedSections, llvm::less_second()); 1420 1421 // Find an insertion point for the ordered section list in the unordered 1422 // section list. On targets with limited-range branches, this is the mid-point 1423 // of the unordered section list. This decreases the likelihood that a range 1424 // extension thunk will be needed to enter or exit the ordered region. If the 1425 // ordered section list is a list of hot functions, we can generally expect 1426 // the ordered functions to be called more often than the unordered functions, 1427 // making it more likely that any particular call will be within range, and 1428 // therefore reducing the number of thunks required. 1429 // 1430 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1431 // If the layout is: 1432 // 1433 // 8MB hot 1434 // 32MB cold 1435 // 1436 // only the first 8-16MB of the cold code (depending on which hot function it 1437 // is actually calling) can call the hot code without a range extension thunk. 1438 // However, if we use this layout: 1439 // 1440 // 16MB cold 1441 // 8MB hot 1442 // 16MB cold 1443 // 1444 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1445 // of the second block of cold code can call the hot code without a thunk. So 1446 // we effectively double the amount of code that could potentially call into 1447 // the hot code without a thunk. 1448 size_t insPt = 0; 1449 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1450 uint64_t unorderedPos = 0; 1451 for (; insPt != unorderedSections.size(); ++insPt) { 1452 unorderedPos += unorderedSections[insPt]->getSize(); 1453 if (unorderedPos > unorderedSize / 2) 1454 break; 1455 } 1456 } 1457 1458 isd->sections.clear(); 1459 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1460 isd->sections.push_back(isec); 1461 for (std::pair<InputSection *, int> p : orderedSections) 1462 isd->sections.push_back(p.first); 1463 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1464 isd->sections.push_back(isec); 1465 } 1466 1467 static void sortSection(OutputSection *sec, 1468 const DenseMap<const InputSectionBase *, int> &order) { 1469 StringRef name = sec->name; 1470 1471 // Never sort these. 1472 if (name == ".init" || name == ".fini") 1473 return; 1474 1475 // IRelative relocations that usually live in the .rel[a].dyn section should 1476 // be processed last by the dynamic loader. To achieve that we add synthetic 1477 // sections in the required order from the beginning so that the in.relaIplt 1478 // section is placed last in an output section. Here we just do not apply 1479 // sorting for an output section which holds the in.relaIplt section. 1480 if (in.relaIplt->getParent() == sec) 1481 return; 1482 1483 // Sort input sections by priority using the list provided by 1484 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1485 // digit radix sort. The sections may be sorted stably again by a more 1486 // significant key. 1487 if (!order.empty()) 1488 for (BaseCommand *b : sec->sectionCommands) 1489 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1490 sortISDBySectionOrder(isd, order); 1491 1492 // Sort input sections by section name suffixes for 1493 // __attribute__((init_priority(N))). 1494 if (name == ".init_array" || name == ".fini_array") { 1495 if (!script->hasSectionsCommand) 1496 sec->sortInitFini(); 1497 return; 1498 } 1499 1500 // Sort input sections by the special rule for .ctors and .dtors. 1501 if (name == ".ctors" || name == ".dtors") { 1502 if (!script->hasSectionsCommand) 1503 sec->sortCtorsDtors(); 1504 return; 1505 } 1506 1507 // .toc is allocated just after .got and is accessed using GOT-relative 1508 // relocations. Object files compiled with small code model have an 1509 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1510 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1511 // sections having smaller relocation offsets are at beginning of .toc 1512 if (config->emachine == EM_PPC64 && name == ".toc") { 1513 if (script->hasSectionsCommand) 1514 return; 1515 assert(sec->sectionCommands.size() == 1); 1516 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1517 llvm::stable_sort(isd->sections, 1518 [](const InputSection *a, const InputSection *b) -> bool { 1519 return a->file->ppc64SmallCodeModelTocRelocs && 1520 !b->file->ppc64SmallCodeModelTocRelocs; 1521 }); 1522 return; 1523 } 1524 } 1525 1526 // If no layout was provided by linker script, we want to apply default 1527 // sorting for special input sections. This also handles --symbol-ordering-file. 1528 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1529 // Build the order once since it is expensive. 1530 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1531 maybeShuffle(order); 1532 for (BaseCommand *base : script->sectionCommands) 1533 if (auto *sec = dyn_cast<OutputSection>(base)) 1534 sortSection(sec, order); 1535 } 1536 1537 template <class ELFT> void Writer<ELFT>::sortSections() { 1538 llvm::TimeTraceScope timeScope("Sort sections"); 1539 script->adjustSectionsBeforeSorting(); 1540 1541 // Don't sort if using -r. It is not necessary and we want to preserve the 1542 // relative order for SHF_LINK_ORDER sections. 1543 if (config->relocatable) 1544 return; 1545 1546 sortInputSections(); 1547 1548 for (BaseCommand *base : script->sectionCommands) { 1549 auto *os = dyn_cast<OutputSection>(base); 1550 if (!os) 1551 continue; 1552 os->sortRank = getSectionRank(os); 1553 1554 // We want to assign rude approximation values to outSecOff fields 1555 // to know the relative order of the input sections. We use it for 1556 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1557 uint64_t i = 0; 1558 for (InputSection *sec : getInputSections(os)) 1559 sec->outSecOff = i++; 1560 } 1561 1562 if (!script->hasSectionsCommand) { 1563 // We know that all the OutputSections are contiguous in this case. 1564 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1565 std::stable_sort( 1566 llvm::find_if(script->sectionCommands, isSection), 1567 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1568 compareSections); 1569 1570 // Process INSERT commands. From this point onwards the order of 1571 // script->sectionCommands is fixed. 1572 script->processInsertCommands(); 1573 return; 1574 } 1575 1576 script->processInsertCommands(); 1577 1578 // Orphan sections are sections present in the input files which are 1579 // not explicitly placed into the output file by the linker script. 1580 // 1581 // The sections in the linker script are already in the correct 1582 // order. We have to figuere out where to insert the orphan 1583 // sections. 1584 // 1585 // The order of the sections in the script is arbitrary and may not agree with 1586 // compareSections. This means that we cannot easily define a strict weak 1587 // ordering. To see why, consider a comparison of a section in the script and 1588 // one not in the script. We have a two simple options: 1589 // * Make them equivalent (a is not less than b, and b is not less than a). 1590 // The problem is then that equivalence has to be transitive and we can 1591 // have sections a, b and c with only b in a script and a less than c 1592 // which breaks this property. 1593 // * Use compareSectionsNonScript. Given that the script order doesn't have 1594 // to match, we can end up with sections a, b, c, d where b and c are in the 1595 // script and c is compareSectionsNonScript less than b. In which case d 1596 // can be equivalent to c, a to b and d < a. As a concrete example: 1597 // .a (rx) # not in script 1598 // .b (rx) # in script 1599 // .c (ro) # in script 1600 // .d (ro) # not in script 1601 // 1602 // The way we define an order then is: 1603 // * Sort only the orphan sections. They are in the end right now. 1604 // * Move each orphan section to its preferred position. We try 1605 // to put each section in the last position where it can share 1606 // a PT_LOAD. 1607 // 1608 // There is some ambiguity as to where exactly a new entry should be 1609 // inserted, because Commands contains not only output section 1610 // commands but also other types of commands such as symbol assignment 1611 // expressions. There's no correct answer here due to the lack of the 1612 // formal specification of the linker script. We use heuristics to 1613 // determine whether a new output command should be added before or 1614 // after another commands. For the details, look at shouldSkip 1615 // function. 1616 1617 auto i = script->sectionCommands.begin(); 1618 auto e = script->sectionCommands.end(); 1619 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1620 if (auto *sec = dyn_cast<OutputSection>(base)) 1621 return sec->sectionIndex == UINT32_MAX; 1622 return false; 1623 }); 1624 1625 // Sort the orphan sections. 1626 std::stable_sort(nonScriptI, e, compareSections); 1627 1628 // As a horrible special case, skip the first . assignment if it is before any 1629 // section. We do this because it is common to set a load address by starting 1630 // the script with ". = 0xabcd" and the expectation is that every section is 1631 // after that. 1632 auto firstSectionOrDotAssignment = 1633 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1634 if (firstSectionOrDotAssignment != e && 1635 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1636 ++firstSectionOrDotAssignment; 1637 i = firstSectionOrDotAssignment; 1638 1639 while (nonScriptI != e) { 1640 auto pos = findOrphanPos(i, nonScriptI); 1641 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1642 1643 // As an optimization, find all sections with the same sort rank 1644 // and insert them with one rotate. 1645 unsigned rank = orphan->sortRank; 1646 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1647 return cast<OutputSection>(cmd)->sortRank != rank; 1648 }); 1649 std::rotate(pos, nonScriptI, end); 1650 nonScriptI = end; 1651 } 1652 1653 script->adjustSectionsAfterSorting(); 1654 } 1655 1656 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1657 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1658 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1659 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1660 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1661 if (!la || !lb) 1662 return la && !lb; 1663 OutputSection *aOut = la->getParent(); 1664 OutputSection *bOut = lb->getParent(); 1665 1666 if (aOut != bOut) 1667 return aOut->addr < bOut->addr; 1668 return la->outSecOff < lb->outSecOff; 1669 } 1670 1671 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1672 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1673 for (OutputSection *sec : outputSections) { 1674 if (!(sec->flags & SHF_LINK_ORDER)) 1675 continue; 1676 1677 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1678 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1679 if (!config->relocatable && config->emachine == EM_ARM && 1680 sec->type == SHT_ARM_EXIDX) 1681 continue; 1682 1683 // Link order may be distributed across several InputSectionDescriptions. 1684 // Sorting is performed separately. 1685 std::vector<InputSection **> scriptSections; 1686 std::vector<InputSection *> sections; 1687 for (BaseCommand *base : sec->sectionCommands) { 1688 auto *isd = dyn_cast<InputSectionDescription>(base); 1689 if (!isd) 1690 continue; 1691 bool hasLinkOrder = false; 1692 scriptSections.clear(); 1693 sections.clear(); 1694 for (InputSection *&isec : isd->sections) { 1695 if (isec->flags & SHF_LINK_ORDER) { 1696 InputSection *link = isec->getLinkOrderDep(); 1697 if (link && !link->getParent()) 1698 error(toString(isec) + ": sh_link points to discarded section " + 1699 toString(link)); 1700 hasLinkOrder = true; 1701 } 1702 scriptSections.push_back(&isec); 1703 sections.push_back(isec); 1704 } 1705 if (hasLinkOrder && errorCount() == 0) { 1706 llvm::stable_sort(sections, compareByFilePosition); 1707 for (int i = 0, n = sections.size(); i != n; ++i) 1708 *scriptSections[i] = sections[i]; 1709 } 1710 } 1711 } 1712 } 1713 1714 static void finalizeSynthetic(SyntheticSection *sec) { 1715 if (sec && sec->isNeeded() && sec->getParent()) { 1716 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1717 sec->finalizeContents(); 1718 } 1719 } 1720 1721 // We need to generate and finalize the content that depends on the address of 1722 // InputSections. As the generation of the content may also alter InputSection 1723 // addresses we must converge to a fixed point. We do that here. See the comment 1724 // in Writer<ELFT>::finalizeSections(). 1725 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1726 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1727 ThunkCreator tc; 1728 AArch64Err843419Patcher a64p; 1729 ARMErr657417Patcher a32p; 1730 script->assignAddresses(); 1731 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1732 // do require the relative addresses of OutputSections because linker scripts 1733 // can assign Virtual Addresses to OutputSections that are not monotonically 1734 // increasing. 1735 for (Partition &part : partitions) 1736 finalizeSynthetic(part.armExidx); 1737 resolveShfLinkOrder(); 1738 1739 // Converts call x@GDPLT to call __tls_get_addr 1740 if (config->emachine == EM_HEXAGON) 1741 hexagonTLSSymbolUpdate(outputSections); 1742 1743 int assignPasses = 0; 1744 for (;;) { 1745 bool changed = target->needsThunks && tc.createThunks(outputSections); 1746 1747 // With Thunk Size much smaller than branch range we expect to 1748 // converge quickly; if we get to 15 something has gone wrong. 1749 if (changed && tc.pass >= 15) { 1750 error("thunk creation not converged"); 1751 break; 1752 } 1753 1754 if (config->fixCortexA53Errata843419) { 1755 if (changed) 1756 script->assignAddresses(); 1757 changed |= a64p.createFixes(); 1758 } 1759 if (config->fixCortexA8) { 1760 if (changed) 1761 script->assignAddresses(); 1762 changed |= a32p.createFixes(); 1763 } 1764 1765 if (in.mipsGot) 1766 in.mipsGot->updateAllocSize(); 1767 1768 for (Partition &part : partitions) { 1769 changed |= part.relaDyn->updateAllocSize(); 1770 if (part.relrDyn) 1771 changed |= part.relrDyn->updateAllocSize(); 1772 } 1773 1774 const Defined *changedSym = script->assignAddresses(); 1775 if (!changed) { 1776 // Some symbols may be dependent on section addresses. When we break the 1777 // loop, the symbol values are finalized because a previous 1778 // assignAddresses() finalized section addresses. 1779 if (!changedSym) 1780 break; 1781 if (++assignPasses == 5) { 1782 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1783 " does not converge"); 1784 break; 1785 } 1786 } 1787 } 1788 1789 // If addrExpr is set, the address may not be a multiple of the alignment. 1790 // Warn because this is error-prone. 1791 for (BaseCommand *cmd : script->sectionCommands) 1792 if (auto *os = dyn_cast<OutputSection>(cmd)) 1793 if (os->addr % os->alignment != 0) 1794 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1795 os->name + " is not a multiple of alignment (" + 1796 Twine(os->alignment) + ")"); 1797 } 1798 1799 // If Input Sections have been shrunk (basic block sections) then 1800 // update symbol values and sizes associated with these sections. With basic 1801 // block sections, input sections can shrink when the jump instructions at 1802 // the end of the section are relaxed. 1803 static void fixSymbolsAfterShrinking() { 1804 for (InputFile *File : objectFiles) { 1805 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1806 auto *def = dyn_cast<Defined>(Sym); 1807 if (!def) 1808 return; 1809 1810 const SectionBase *sec = def->section; 1811 if (!sec) 1812 return; 1813 1814 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl); 1815 if (!inputSec || !inputSec->bytesDropped) 1816 return; 1817 1818 const size_t OldSize = inputSec->data().size(); 1819 const size_t NewSize = OldSize - inputSec->bytesDropped; 1820 1821 if (def->value > NewSize && def->value <= OldSize) { 1822 LLVM_DEBUG(llvm::dbgs() 1823 << "Moving symbol " << Sym->getName() << " from " 1824 << def->value << " to " 1825 << def->value - inputSec->bytesDropped << " bytes\n"); 1826 def->value -= inputSec->bytesDropped; 1827 return; 1828 } 1829 1830 if (def->value + def->size > NewSize && def->value <= OldSize && 1831 def->value + def->size <= OldSize) { 1832 LLVM_DEBUG(llvm::dbgs() 1833 << "Shrinking symbol " << Sym->getName() << " from " 1834 << def->size << " to " << def->size - inputSec->bytesDropped 1835 << " bytes\n"); 1836 def->size -= inputSec->bytesDropped; 1837 } 1838 }); 1839 } 1840 } 1841 1842 // If basic block sections exist, there are opportunities to delete fall thru 1843 // jumps and shrink jump instructions after basic block reordering. This 1844 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1845 // option is used. 1846 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1847 assert(config->optimizeBBJumps); 1848 1849 script->assignAddresses(); 1850 // For every output section that has executable input sections, this 1851 // does the following: 1852 // 1. Deletes all direct jump instructions in input sections that 1853 // jump to the following section as it is not required. 1854 // 2. If there are two consecutive jump instructions, it checks 1855 // if they can be flipped and one can be deleted. 1856 for (OutputSection *os : outputSections) { 1857 if (!(os->flags & SHF_EXECINSTR)) 1858 continue; 1859 std::vector<InputSection *> sections = getInputSections(os); 1860 std::vector<unsigned> result(sections.size()); 1861 // Delete all fall through jump instructions. Also, check if two 1862 // consecutive jump instructions can be flipped so that a fall 1863 // through jmp instruction can be deleted. 1864 parallelForEachN(0, sections.size(), [&](size_t i) { 1865 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1866 InputSection &is = *sections[i]; 1867 result[i] = 1868 target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0; 1869 }); 1870 size_t numDeleted = std::count(result.begin(), result.end(), 1); 1871 if (numDeleted > 0) { 1872 script->assignAddresses(); 1873 LLVM_DEBUG(llvm::dbgs() 1874 << "Removing " << numDeleted << " fall through jumps\n"); 1875 } 1876 } 1877 1878 fixSymbolsAfterShrinking(); 1879 1880 for (OutputSection *os : outputSections) { 1881 std::vector<InputSection *> sections = getInputSections(os); 1882 for (InputSection *is : sections) 1883 is->trim(); 1884 } 1885 } 1886 1887 // In order to allow users to manipulate linker-synthesized sections, 1888 // we had to add synthetic sections to the input section list early, 1889 // even before we make decisions whether they are needed. This allows 1890 // users to write scripts like this: ".mygot : { .got }". 1891 // 1892 // Doing it has an unintended side effects. If it turns out that we 1893 // don't need a .got (for example) at all because there's no 1894 // relocation that needs a .got, we don't want to emit .got. 1895 // 1896 // To deal with the above problem, this function is called after 1897 // scanRelocations is called to remove synthetic sections that turn 1898 // out to be empty. 1899 static void removeUnusedSyntheticSections() { 1900 // All input synthetic sections that can be empty are placed after 1901 // all regular ones. Reverse iterate to find the first synthetic section 1902 // after a non-synthetic one which will be our starting point. 1903 auto start = std::find_if(inputSections.rbegin(), inputSections.rend(), 1904 [](InputSectionBase *s) { 1905 return !isa<SyntheticSection>(s); 1906 }) 1907 .base(); 1908 1909 DenseSet<InputSectionDescription *> isdSet; 1910 // Mark unused synthetic sections for deletion 1911 auto end = std::stable_partition( 1912 start, inputSections.end(), [&](InputSectionBase *s) { 1913 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1914 OutputSection *os = ss->getParent(); 1915 if (!os || ss->isNeeded()) 1916 return true; 1917 1918 // If we reach here, then ss is an unused synthetic section and we want 1919 // to remove it from the corresponding input section description, and 1920 // orphanSections. 1921 for (BaseCommand *b : os->sectionCommands) 1922 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1923 isdSet.insert(isd); 1924 1925 llvm::erase_if( 1926 script->orphanSections, 1927 [=](const InputSectionBase *isec) { return isec == ss; }); 1928 1929 return false; 1930 }); 1931 1932 DenseSet<InputSectionBase *> unused(end, inputSections.end()); 1933 for (auto *isd : isdSet) 1934 llvm::erase_if(isd->sections, 1935 [=](InputSection *isec) { return unused.count(isec); }); 1936 1937 // Erase unused synthetic sections. 1938 inputSections.erase(end, inputSections.end()); 1939 } 1940 1941 // Create output section objects and add them to OutputSections. 1942 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1943 Out::preinitArray = findSection(".preinit_array"); 1944 Out::initArray = findSection(".init_array"); 1945 Out::finiArray = findSection(".fini_array"); 1946 1947 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1948 // symbols for sections, so that the runtime can get the start and end 1949 // addresses of each section by section name. Add such symbols. 1950 if (!config->relocatable) { 1951 addStartEndSymbols(); 1952 for (BaseCommand *base : script->sectionCommands) 1953 if (auto *sec = dyn_cast<OutputSection>(base)) 1954 addStartStopSymbols(sec); 1955 } 1956 1957 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1958 // It should be okay as no one seems to care about the type. 1959 // Even the author of gold doesn't remember why gold behaves that way. 1960 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1961 if (mainPart->dynamic->parent) 1962 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1963 STV_HIDDEN, STT_NOTYPE, 1964 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1965 1966 // Define __rel[a]_iplt_{start,end} symbols if needed. 1967 addRelIpltSymbols(); 1968 1969 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1970 // should only be defined in an executable. If .sdata does not exist, its 1971 // value/section does not matter but it has to be relative, so set its 1972 // st_shndx arbitrarily to 1 (Out::elfHeader). 1973 if (config->emachine == EM_RISCV && !config->shared) { 1974 OutputSection *sec = findSection(".sdata"); 1975 ElfSym::riscvGlobalPointer = 1976 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1977 0x800, STV_DEFAULT, STB_GLOBAL); 1978 } 1979 1980 if (config->emachine == EM_X86_64) { 1981 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1982 // way that: 1983 // 1984 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1985 // computes 0. 1986 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1987 // the TLS block). 1988 // 1989 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1990 // an absolute symbol of zero. This is different from GNU linkers which 1991 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1992 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1993 if (s && s->isUndefined()) { 1994 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1995 STT_TLS, /*value=*/0, 0, 1996 /*section=*/nullptr}); 1997 ElfSym::tlsModuleBase = cast<Defined>(s); 1998 } 1999 } 2000 2001 { 2002 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 2003 // This responsible for splitting up .eh_frame section into 2004 // pieces. The relocation scan uses those pieces, so this has to be 2005 // earlier. 2006 for (Partition &part : partitions) 2007 finalizeSynthetic(part.ehFrame); 2008 } 2009 2010 for (Symbol *sym : symtab->symbols()) 2011 sym->isPreemptible = computeIsPreemptible(*sym); 2012 2013 // Change values of linker-script-defined symbols from placeholders (assigned 2014 // by declareSymbols) to actual definitions. 2015 script->processSymbolAssignments(); 2016 2017 { 2018 llvm::TimeTraceScope timeScope("Scan relocations"); 2019 // Scan relocations. This must be done after every symbol is declared so 2020 // that we can correctly decide if a dynamic relocation is needed. This is 2021 // called after processSymbolAssignments() because it needs to know whether 2022 // a linker-script-defined symbol is absolute. 2023 ppc64noTocRelax.clear(); 2024 if (!config->relocatable) { 2025 forEachRelSec(scanRelocations<ELFT>); 2026 reportUndefinedSymbols<ELFT>(); 2027 } 2028 } 2029 2030 if (in.plt && in.plt->isNeeded()) 2031 in.plt->addSymbols(); 2032 if (in.iplt && in.iplt->isNeeded()) 2033 in.iplt->addSymbols(); 2034 2035 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 2036 auto diagnose = 2037 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 2038 ? errorOrWarn 2039 : warn; 2040 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 2041 // entries are seen. These cases would otherwise lead to runtime errors 2042 // reported by the dynamic linker. 2043 // 2044 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 2045 // catch more cases. That is too much for us. Our approach resembles the one 2046 // used in ld.gold, achieves a good balance to be useful but not too smart. 2047 for (SharedFile *file : sharedFiles) { 2048 bool allNeededIsKnown = 2049 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 2050 return symtab->soNames.count(needed); 2051 }); 2052 if (!allNeededIsKnown) 2053 continue; 2054 for (Symbol *sym : file->requiredSymbols) 2055 if (sym->isUndefined() && !sym->isWeak()) 2056 diagnose(toString(file) + ": undefined reference to " + 2057 toString(*sym) + " [--no-allow-shlib-undefined]"); 2058 } 2059 } 2060 2061 { 2062 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 2063 // Now that we have defined all possible global symbols including linker- 2064 // synthesized ones. Visit all symbols to give the finishing touches. 2065 for (Symbol *sym : symtab->symbols()) { 2066 if (!includeInSymtab(*sym)) 2067 continue; 2068 if (in.symTab) 2069 in.symTab->addSymbol(sym); 2070 2071 if (sym->includeInDynsym()) { 2072 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 2073 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 2074 if (file->isNeeded && !sym->isUndefined()) 2075 addVerneed(sym); 2076 } 2077 } 2078 2079 // We also need to scan the dynamic relocation tables of the other 2080 // partitions and add any referenced symbols to the partition's dynsym. 2081 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2082 DenseSet<Symbol *> syms; 2083 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2084 syms.insert(e.sym); 2085 for (DynamicReloc &reloc : part.relaDyn->relocs) 2086 if (reloc.sym && reloc.needsDynSymIndex() && 2087 syms.insert(reloc.sym).second) 2088 part.dynSymTab->addSymbol(reloc.sym); 2089 } 2090 } 2091 2092 // Do not proceed if there was an undefined symbol. 2093 if (errorCount()) 2094 return; 2095 2096 if (in.mipsGot) 2097 in.mipsGot->build(); 2098 2099 removeUnusedSyntheticSections(); 2100 script->diagnoseOrphanHandling(); 2101 2102 sortSections(); 2103 2104 // Now that we have the final list, create a list of all the 2105 // OutputSections for convenience. 2106 for (BaseCommand *base : script->sectionCommands) 2107 if (auto *sec = dyn_cast<OutputSection>(base)) 2108 outputSections.push_back(sec); 2109 2110 // Prefer command line supplied address over other constraints. 2111 for (OutputSection *sec : outputSections) { 2112 auto i = config->sectionStartMap.find(sec->name); 2113 if (i != config->sectionStartMap.end()) 2114 sec->addrExpr = [=] { return i->second; }; 2115 } 2116 2117 // With the outputSections available check for GDPLT relocations 2118 // and add __tls_get_addr symbol if needed. 2119 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2120 Symbol *sym = symtab->addSymbol(Undefined{ 2121 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2122 sym->isPreemptible = true; 2123 partitions[0].dynSymTab->addSymbol(sym); 2124 } 2125 2126 // This is a bit of a hack. A value of 0 means undef, so we set it 2127 // to 1 to make __ehdr_start defined. The section number is not 2128 // particularly relevant. 2129 Out::elfHeader->sectionIndex = 1; 2130 2131 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 2132 OutputSection *sec = outputSections[i]; 2133 sec->sectionIndex = i + 1; 2134 sec->shName = in.shStrTab->addString(sec->name); 2135 } 2136 2137 // Binary and relocatable output does not have PHDRS. 2138 // The headers have to be created before finalize as that can influence the 2139 // image base and the dynamic section on mips includes the image base. 2140 if (!config->relocatable && !config->oFormatBinary) { 2141 for (Partition &part : partitions) { 2142 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2143 : createPhdrs(part); 2144 if (config->emachine == EM_ARM) { 2145 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2146 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2147 } 2148 if (config->emachine == EM_MIPS) { 2149 // Add separate segments for MIPS-specific sections. 2150 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2151 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2152 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2153 } 2154 } 2155 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2156 2157 // Find the TLS segment. This happens before the section layout loop so that 2158 // Android relocation packing can look up TLS symbol addresses. We only need 2159 // to care about the main partition here because all TLS symbols were moved 2160 // to the main partition (see MarkLive.cpp). 2161 for (PhdrEntry *p : mainPart->phdrs) 2162 if (p->p_type == PT_TLS) 2163 Out::tlsPhdr = p; 2164 } 2165 2166 // Some symbols are defined in term of program headers. Now that we 2167 // have the headers, we can find out which sections they point to. 2168 setReservedSymbolSections(); 2169 2170 { 2171 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2172 2173 finalizeSynthetic(in.bss); 2174 finalizeSynthetic(in.bssRelRo); 2175 finalizeSynthetic(in.symTabShndx); 2176 finalizeSynthetic(in.shStrTab); 2177 finalizeSynthetic(in.strTab); 2178 finalizeSynthetic(in.got); 2179 finalizeSynthetic(in.mipsGot); 2180 finalizeSynthetic(in.igotPlt); 2181 finalizeSynthetic(in.gotPlt); 2182 finalizeSynthetic(in.relaIplt); 2183 finalizeSynthetic(in.relaPlt); 2184 finalizeSynthetic(in.plt); 2185 finalizeSynthetic(in.iplt); 2186 finalizeSynthetic(in.ppc32Got2); 2187 finalizeSynthetic(in.partIndex); 2188 2189 // Dynamic section must be the last one in this list and dynamic 2190 // symbol table section (dynSymTab) must be the first one. 2191 for (Partition &part : partitions) { 2192 finalizeSynthetic(part.dynSymTab); 2193 finalizeSynthetic(part.gnuHashTab); 2194 finalizeSynthetic(part.hashTab); 2195 finalizeSynthetic(part.verDef); 2196 finalizeSynthetic(part.relaDyn); 2197 finalizeSynthetic(part.relrDyn); 2198 finalizeSynthetic(part.ehFrameHdr); 2199 finalizeSynthetic(part.verSym); 2200 finalizeSynthetic(part.verNeed); 2201 finalizeSynthetic(part.dynamic); 2202 } 2203 } 2204 2205 if (!script->hasSectionsCommand && !config->relocatable) 2206 fixSectionAlignments(); 2207 2208 // This is used to: 2209 // 1) Create "thunks": 2210 // Jump instructions in many ISAs have small displacements, and therefore 2211 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2212 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2213 // responsibility to create and insert small pieces of code between 2214 // sections to extend the ranges if jump targets are out of range. Such 2215 // code pieces are called "thunks". 2216 // 2217 // We add thunks at this stage. We couldn't do this before this point 2218 // because this is the earliest point where we know sizes of sections and 2219 // their layouts (that are needed to determine if jump targets are in 2220 // range). 2221 // 2222 // 2) Update the sections. We need to generate content that depends on the 2223 // address of InputSections. For example, MIPS GOT section content or 2224 // android packed relocations sections content. 2225 // 2226 // 3) Assign the final values for the linker script symbols. Linker scripts 2227 // sometimes using forward symbol declarations. We want to set the correct 2228 // values. They also might change after adding the thunks. 2229 finalizeAddressDependentContent(); 2230 if (errorCount()) 2231 return; 2232 2233 { 2234 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2235 // finalizeAddressDependentContent may have added local symbols to the 2236 // static symbol table. 2237 finalizeSynthetic(in.symTab); 2238 finalizeSynthetic(in.ppc64LongBranchTarget); 2239 } 2240 2241 // Relaxation to delete inter-basic block jumps created by basic block 2242 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2243 // can relax jump instructions based on symbol offset. 2244 if (config->optimizeBBJumps) 2245 optimizeBasicBlockJumps(); 2246 2247 // Fill other section headers. The dynamic table is finalized 2248 // at the end because some tags like RELSZ depend on result 2249 // of finalizing other sections. 2250 for (OutputSection *sec : outputSections) 2251 sec->finalize(); 2252 } 2253 2254 // Ensure data sections are not mixed with executable sections when 2255 // -execute-only is used. -execute-only is a feature to make pages executable 2256 // but not readable, and the feature is currently supported only on AArch64. 2257 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2258 if (!config->executeOnly) 2259 return; 2260 2261 for (OutputSection *os : outputSections) 2262 if (os->flags & SHF_EXECINSTR) 2263 for (InputSection *isec : getInputSections(os)) 2264 if (!(isec->flags & SHF_EXECINSTR)) 2265 error("cannot place " + toString(isec) + " into " + toString(os->name) + 2266 ": -execute-only does not support intermingling data and code"); 2267 } 2268 2269 // The linker is expected to define SECNAME_start and SECNAME_end 2270 // symbols for a few sections. This function defines them. 2271 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2272 // If a section does not exist, there's ambiguity as to how we 2273 // define _start and _end symbols for an init/fini section. Since 2274 // the loader assume that the symbols are always defined, we need to 2275 // always define them. But what value? The loader iterates over all 2276 // pointers between _start and _end to run global ctors/dtors, so if 2277 // the section is empty, their symbol values don't actually matter 2278 // as long as _start and _end point to the same location. 2279 // 2280 // That said, we don't want to set the symbols to 0 (which is 2281 // probably the simplest value) because that could cause some 2282 // program to fail to link due to relocation overflow, if their 2283 // program text is above 2 GiB. We use the address of the .text 2284 // section instead to prevent that failure. 2285 // 2286 // In rare situations, the .text section may not exist. If that's the 2287 // case, use the image base address as a last resort. 2288 OutputSection *Default = findSection(".text"); 2289 if (!Default) 2290 Default = Out::elfHeader; 2291 2292 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2293 if (os) { 2294 addOptionalRegular(start, os, 0); 2295 addOptionalRegular(end, os, -1); 2296 } else { 2297 addOptionalRegular(start, Default, 0); 2298 addOptionalRegular(end, Default, 0); 2299 } 2300 }; 2301 2302 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2303 define("__init_array_start", "__init_array_end", Out::initArray); 2304 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2305 2306 if (OutputSection *sec = findSection(".ARM.exidx")) 2307 define("__exidx_start", "__exidx_end", sec); 2308 } 2309 2310 // If a section name is valid as a C identifier (which is rare because of 2311 // the leading '.'), linkers are expected to define __start_<secname> and 2312 // __stop_<secname> symbols. They are at beginning and end of the section, 2313 // respectively. This is not requested by the ELF standard, but GNU ld and 2314 // gold provide the feature, and used by many programs. 2315 template <class ELFT> 2316 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2317 StringRef s = sec->name; 2318 if (!isValidCIdentifier(s)) 2319 return; 2320 addOptionalRegular(saver.save("__start_" + s), sec, 0, 2321 config->zStartStopVisibility); 2322 addOptionalRegular(saver.save("__stop_" + s), sec, -1, 2323 config->zStartStopVisibility); 2324 } 2325 2326 static bool needsPtLoad(OutputSection *sec) { 2327 if (!(sec->flags & SHF_ALLOC)) 2328 return false; 2329 2330 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2331 // responsible for allocating space for them, not the PT_LOAD that 2332 // contains the TLS initialization image. 2333 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2334 return false; 2335 return true; 2336 } 2337 2338 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2339 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2340 // RW. This means that there is no alignment in the RO to RX transition and we 2341 // cannot create a PT_LOAD there. 2342 static uint64_t computeFlags(uint64_t flags) { 2343 if (config->omagic) 2344 return PF_R | PF_W | PF_X; 2345 if (config->executeOnly && (flags & PF_X)) 2346 return flags & ~PF_R; 2347 if (config->singleRoRx && !(flags & PF_W)) 2348 return flags | PF_X; 2349 return flags; 2350 } 2351 2352 // Decide which program headers to create and which sections to include in each 2353 // one. 2354 template <class ELFT> 2355 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2356 std::vector<PhdrEntry *> ret; 2357 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2358 ret.push_back(make<PhdrEntry>(type, flags)); 2359 return ret.back(); 2360 }; 2361 2362 unsigned partNo = part.getNumber(); 2363 bool isMain = partNo == 1; 2364 2365 // Add the first PT_LOAD segment for regular output sections. 2366 uint64_t flags = computeFlags(PF_R); 2367 PhdrEntry *load = nullptr; 2368 2369 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2370 // PT_LOAD. 2371 if (!config->nmagic && !config->omagic) { 2372 // The first phdr entry is PT_PHDR which describes the program header 2373 // itself. 2374 if (isMain) 2375 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2376 else 2377 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2378 2379 // PT_INTERP must be the second entry if exists. 2380 if (OutputSection *cmd = findSection(".interp", partNo)) 2381 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2382 2383 // Add the headers. We will remove them if they don't fit. 2384 // In the other partitions the headers are ordinary sections, so they don't 2385 // need to be added here. 2386 if (isMain) { 2387 load = addHdr(PT_LOAD, flags); 2388 load->add(Out::elfHeader); 2389 load->add(Out::programHeaders); 2390 } 2391 } 2392 2393 // PT_GNU_RELRO includes all sections that should be marked as 2394 // read-only by dynamic linker after processing relocations. 2395 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2396 // an error message if more than one PT_GNU_RELRO PHDR is required. 2397 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2398 bool inRelroPhdr = false; 2399 OutputSection *relroEnd = nullptr; 2400 for (OutputSection *sec : outputSections) { 2401 if (sec->partition != partNo || !needsPtLoad(sec)) 2402 continue; 2403 if (isRelroSection(sec)) { 2404 inRelroPhdr = true; 2405 if (!relroEnd) 2406 relRo->add(sec); 2407 else 2408 error("section: " + sec->name + " is not contiguous with other relro" + 2409 " sections"); 2410 } else if (inRelroPhdr) { 2411 inRelroPhdr = false; 2412 relroEnd = sec; 2413 } 2414 } 2415 2416 for (OutputSection *sec : outputSections) { 2417 if (!needsPtLoad(sec)) 2418 continue; 2419 2420 // Normally, sections in partitions other than the current partition are 2421 // ignored. But partition number 255 is a special case: it contains the 2422 // partition end marker (.part.end). It needs to be added to the main 2423 // partition so that a segment is created for it in the main partition, 2424 // which will cause the dynamic loader to reserve space for the other 2425 // partitions. 2426 if (sec->partition != partNo) { 2427 if (isMain && sec->partition == 255) 2428 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2429 continue; 2430 } 2431 2432 // Segments are contiguous memory regions that has the same attributes 2433 // (e.g. executable or writable). There is one phdr for each segment. 2434 // Therefore, we need to create a new phdr when the next section has 2435 // different flags or is loaded at a discontiguous address or memory 2436 // region using AT or AT> linker script command, respectively. At the same 2437 // time, we don't want to create a separate load segment for the headers, 2438 // even if the first output section has an AT or AT> attribute. 2439 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2440 bool sameLMARegion = 2441 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2442 if (!(load && newFlags == flags && sec != relroEnd && 2443 sec->memRegion == load->firstSec->memRegion && 2444 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2445 load = addHdr(PT_LOAD, newFlags); 2446 flags = newFlags; 2447 } 2448 2449 load->add(sec); 2450 } 2451 2452 // Add a TLS segment if any. 2453 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2454 for (OutputSection *sec : outputSections) 2455 if (sec->partition == partNo && sec->flags & SHF_TLS) 2456 tlsHdr->add(sec); 2457 if (tlsHdr->firstSec) 2458 ret.push_back(tlsHdr); 2459 2460 // Add an entry for .dynamic. 2461 if (OutputSection *sec = part.dynamic->getParent()) 2462 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2463 2464 if (relRo->firstSec) 2465 ret.push_back(relRo); 2466 2467 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2468 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2469 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2470 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2471 ->add(part.ehFrameHdr->getParent()); 2472 2473 // PT_OPENBSD_MUTABLE is an OpenBSD-specific feature. That makes 2474 // the dynamic linker fill the segment with zero data, like bss, but 2475 // it can be treated differently. 2476 if (OutputSection *cmd = findSection(".openbsd.mutable", partNo)) 2477 addHdr(PT_OPENBSD_MUTABLE, cmd->getPhdrFlags())->add(cmd); 2478 2479 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2480 // the dynamic linker fill the segment with random data. 2481 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2482 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2483 2484 if (config->zGnustack != GnuStackKind::None) { 2485 // PT_GNU_STACK is a special section to tell the loader to make the 2486 // pages for the stack non-executable. If you really want an executable 2487 // stack, you can pass -z execstack, but that's not recommended for 2488 // security reasons. 2489 unsigned perm = PF_R | PF_W; 2490 if (config->zGnustack == GnuStackKind::Exec) 2491 perm |= PF_X; 2492 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2493 } 2494 2495 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2496 // is expected to perform W^X violations, such as calling mprotect(2) or 2497 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2498 // OpenBSD. 2499 if (config->zWxneeded) 2500 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2501 2502 // PT_OPENBSD_NOBTCFI is an OpenBSD-specific header to mark that the 2503 // executable is expected to violate branch-target CFI checks. 2504 if (config->zNoBtCfi) 2505 addHdr(PT_OPENBSD_NOBTCFI, PF_X); 2506 2507 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2508 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2509 2510 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2511 // same alignment. 2512 PhdrEntry *note = nullptr; 2513 for (OutputSection *sec : outputSections) { 2514 if (sec->partition != partNo) 2515 continue; 2516 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2517 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2518 note = addHdr(PT_NOTE, PF_R); 2519 note->add(sec); 2520 } else { 2521 note = nullptr; 2522 } 2523 } 2524 return ret; 2525 } 2526 2527 template <class ELFT> 2528 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2529 unsigned pType, unsigned pFlags) { 2530 unsigned partNo = part.getNumber(); 2531 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2532 return cmd->partition == partNo && cmd->type == shType; 2533 }); 2534 if (i == outputSections.end()) 2535 return; 2536 2537 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2538 entry->add(*i); 2539 part.phdrs.push_back(entry); 2540 } 2541 2542 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2543 // This is achieved by assigning an alignment expression to addrExpr of each 2544 // such section. 2545 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2546 const PhdrEntry *prev; 2547 auto pageAlign = [&](const PhdrEntry *p) { 2548 OutputSection *cmd = p->firstSec; 2549 if (!cmd) 2550 return; 2551 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2552 if (!cmd->addrExpr) { 2553 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2554 // padding in the file contents. 2555 // 2556 // When -z separate-code is used we must not have any overlap in pages 2557 // between an executable segment and a non-executable segment. We align to 2558 // the next maximum page size boundary on transitions between executable 2559 // and non-executable segments. 2560 // 2561 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2562 // sections will be extracted to a separate file. Align to the next 2563 // maximum page size boundary so that we can find the ELF header at the 2564 // start. We cannot benefit from overlapping p_offset ranges with the 2565 // previous segment anyway. 2566 if (config->zSeparate == SeparateSegmentKind::Loadable || 2567 (config->zSeparate == SeparateSegmentKind::Code && prev && 2568 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2569 cmd->type == SHT_LLVM_PART_EHDR) 2570 cmd->addrExpr = [] { 2571 return alignTo(script->getDot(), config->maxPageSize); 2572 }; 2573 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2574 // it must be the RW. Align to p_align(PT_TLS) to make sure 2575 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2576 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2577 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2578 // be congruent to 0 modulo p_align(PT_TLS). 2579 // 2580 // Technically this is not required, but as of 2019, some dynamic loaders 2581 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2582 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2583 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2584 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2585 // blocks correctly. We need to keep the workaround for a while. 2586 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2587 cmd->addrExpr = [] { 2588 return alignTo(script->getDot(), config->maxPageSize) + 2589 alignTo(script->getDot() % config->maxPageSize, 2590 Out::tlsPhdr->p_align); 2591 }; 2592 else 2593 cmd->addrExpr = [] { 2594 return alignTo(script->getDot(), config->maxPageSize) + 2595 script->getDot() % config->maxPageSize; 2596 }; 2597 } 2598 }; 2599 2600 #ifdef __OpenBSD__ 2601 // On i386, produce binaries that are compatible with our W^X implementation 2602 if (config->emachine == EM_386) { 2603 auto NXAlign = [](OutputSection *Cmd) { 2604 if (Cmd && !Cmd->addrExpr) 2605 Cmd->addrExpr = [=] { 2606 return alignTo(script->getDot(), 0x20000000); 2607 }; 2608 }; 2609 2610 for (Partition &part : partitions) { 2611 PhdrEntry *firstRW = nullptr; 2612 for (PhdrEntry *P : part.phdrs) { 2613 if (P->p_type == PT_LOAD && (P->p_flags & PF_W)) { 2614 firstRW = P; 2615 break; 2616 } 2617 } 2618 2619 if (firstRW) 2620 NXAlign(firstRW->firstSec); 2621 } 2622 } 2623 #endif 2624 2625 for (Partition &part : partitions) { 2626 prev = nullptr; 2627 for (const PhdrEntry *p : part.phdrs) 2628 if (p->p_type == PT_LOAD && p->firstSec) { 2629 pageAlign(p); 2630 prev = p; 2631 } 2632 } 2633 } 2634 2635 // Compute an in-file position for a given section. The file offset must be the 2636 // same with its virtual address modulo the page size, so that the loader can 2637 // load executables without any address adjustment. 2638 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2639 // The first section in a PT_LOAD has to have congruent offset and address 2640 // modulo the maximum page size. 2641 if (os->ptLoad && os->ptLoad->firstSec == os) 2642 return alignTo(off, os->ptLoad->p_align, os->addr); 2643 2644 // File offsets are not significant for .bss sections other than the first one 2645 // in a PT_LOAD. By convention, we keep section offsets monotonically 2646 // increasing rather than setting to zero. 2647 if (os->type == SHT_NOBITS) 2648 return off; 2649 2650 // If the section is not in a PT_LOAD, we just have to align it. 2651 if (!os->ptLoad) 2652 return alignTo(off, os->alignment); 2653 2654 // If two sections share the same PT_LOAD the file offset is calculated 2655 // using this formula: Off2 = Off1 + (VA2 - VA1). 2656 OutputSection *first = os->ptLoad->firstSec; 2657 return first->offset + os->addr - first->addr; 2658 } 2659 2660 // Set an in-file position to a given section and returns the end position of 2661 // the section. 2662 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2663 off = computeFileOffset(os, off); 2664 os->offset = off; 2665 2666 if (os->type == SHT_NOBITS) 2667 return off; 2668 return off + os->size; 2669 } 2670 2671 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2672 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2673 auto needsOffset = [](OutputSection &sec) { 2674 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2675 }; 2676 uint64_t minAddr = UINT64_MAX; 2677 for (OutputSection *sec : outputSections) 2678 if (needsOffset(*sec)) { 2679 sec->offset = sec->getLMA(); 2680 minAddr = std::min(minAddr, sec->offset); 2681 } 2682 2683 // Sections are laid out at LMA minus minAddr. 2684 fileSize = 0; 2685 for (OutputSection *sec : outputSections) 2686 if (needsOffset(*sec)) { 2687 sec->offset -= minAddr; 2688 fileSize = std::max(fileSize, sec->offset + sec->size); 2689 } 2690 } 2691 2692 static std::string rangeToString(uint64_t addr, uint64_t len) { 2693 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2694 } 2695 2696 // Assign file offsets to output sections. 2697 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2698 uint64_t off = 0; 2699 off = setFileOffset(Out::elfHeader, off); 2700 off = setFileOffset(Out::programHeaders, off); 2701 2702 PhdrEntry *lastRX = nullptr; 2703 for (Partition &part : partitions) 2704 for (PhdrEntry *p : part.phdrs) 2705 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2706 lastRX = p; 2707 2708 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2709 // will not occupy file offsets contained by a PT_LOAD. 2710 for (OutputSection *sec : outputSections) { 2711 if (!(sec->flags & SHF_ALLOC)) 2712 continue; 2713 off = setFileOffset(sec, off); 2714 2715 // If this is a last section of the last executable segment and that 2716 // segment is the last loadable segment, align the offset of the 2717 // following section to avoid loading non-segments parts of the file. 2718 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2719 lastRX->lastSec == sec) 2720 off = alignTo(off, config->commonPageSize); 2721 } 2722 for (OutputSection *sec : outputSections) 2723 if (!(sec->flags & SHF_ALLOC)) 2724 off = setFileOffset(sec, off); 2725 2726 sectionHeaderOff = alignTo(off, config->wordsize); 2727 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2728 2729 // Our logic assumes that sections have rising VA within the same segment. 2730 // With use of linker scripts it is possible to violate this rule and get file 2731 // offset overlaps or overflows. That should never happen with a valid script 2732 // which does not move the location counter backwards and usually scripts do 2733 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2734 // kernel, which control segment distribution explicitly and move the counter 2735 // backwards, so we have to allow doing that to support linking them. We 2736 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2737 // we want to prevent file size overflows because it would crash the linker. 2738 for (OutputSection *sec : outputSections) { 2739 if (sec->type == SHT_NOBITS) 2740 continue; 2741 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2742 error("unable to place section " + sec->name + " at file offset " + 2743 rangeToString(sec->offset, sec->size) + 2744 "; check your linker script for overflows"); 2745 } 2746 } 2747 2748 // Finalize the program headers. We call this function after we assign 2749 // file offsets and VAs to all sections. 2750 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2751 for (PhdrEntry *p : part.phdrs) { 2752 OutputSection *first = p->firstSec; 2753 OutputSection *last = p->lastSec; 2754 2755 if (first) { 2756 p->p_filesz = last->offset - first->offset; 2757 if (last->type != SHT_NOBITS) 2758 p->p_filesz += last->size; 2759 2760 p->p_memsz = last->addr + last->size - first->addr; 2761 p->p_offset = first->offset; 2762 p->p_vaddr = first->addr; 2763 2764 // File offsets in partitions other than the main partition are relative 2765 // to the offset of the ELF headers. Perform that adjustment now. 2766 if (part.elfHeader) 2767 p->p_offset -= part.elfHeader->getParent()->offset; 2768 2769 if (!p->hasLMA) 2770 p->p_paddr = first->getLMA(); 2771 } 2772 2773 if (p->p_type == PT_GNU_RELRO) { 2774 p->p_align = 1; 2775 // musl/glibc ld.so rounds the size down, so we need to round up 2776 // to protect the last page. This is a no-op on FreeBSD which always 2777 // rounds up. 2778 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2779 p->p_offset; 2780 } 2781 } 2782 } 2783 2784 // A helper struct for checkSectionOverlap. 2785 namespace { 2786 struct SectionOffset { 2787 OutputSection *sec; 2788 uint64_t offset; 2789 }; 2790 } // namespace 2791 2792 // Check whether sections overlap for a specific address range (file offsets, 2793 // load and virtual addresses). 2794 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2795 bool isVirtualAddr) { 2796 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2797 return a.offset < b.offset; 2798 }); 2799 2800 // Finding overlap is easy given a vector is sorted by start position. 2801 // If an element starts before the end of the previous element, they overlap. 2802 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2803 SectionOffset a = sections[i - 1]; 2804 SectionOffset b = sections[i]; 2805 if (b.offset >= a.offset + a.sec->size) 2806 continue; 2807 2808 // If both sections are in OVERLAY we allow the overlapping of virtual 2809 // addresses, because it is what OVERLAY was designed for. 2810 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2811 continue; 2812 2813 errorOrWarn("section " + a.sec->name + " " + name + 2814 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2815 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2816 b.sec->name + " range is " + 2817 rangeToString(b.offset, b.sec->size)); 2818 } 2819 } 2820 2821 // Check for overlapping sections and address overflows. 2822 // 2823 // In this function we check that none of the output sections have overlapping 2824 // file offsets. For SHF_ALLOC sections we also check that the load address 2825 // ranges and the virtual address ranges don't overlap 2826 template <class ELFT> void Writer<ELFT>::checkSections() { 2827 // First, check that section's VAs fit in available address space for target. 2828 for (OutputSection *os : outputSections) 2829 if ((os->addr + os->size < os->addr) || 2830 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2831 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2832 " of size 0x" + utohexstr(os->size) + 2833 " exceeds available address space"); 2834 2835 // Check for overlapping file offsets. In this case we need to skip any 2836 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2837 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2838 // binary is specified only add SHF_ALLOC sections are added to the output 2839 // file so we skip any non-allocated sections in that case. 2840 std::vector<SectionOffset> fileOffs; 2841 for (OutputSection *sec : outputSections) 2842 if (sec->size > 0 && sec->type != SHT_NOBITS && 2843 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2844 fileOffs.push_back({sec, sec->offset}); 2845 checkOverlap("file", fileOffs, false); 2846 2847 // When linking with -r there is no need to check for overlapping virtual/load 2848 // addresses since those addresses will only be assigned when the final 2849 // executable/shared object is created. 2850 if (config->relocatable) 2851 return; 2852 2853 // Checking for overlapping virtual and load addresses only needs to take 2854 // into account SHF_ALLOC sections since others will not be loaded. 2855 // Furthermore, we also need to skip SHF_TLS sections since these will be 2856 // mapped to other addresses at runtime and can therefore have overlapping 2857 // ranges in the file. 2858 std::vector<SectionOffset> vmas; 2859 for (OutputSection *sec : outputSections) 2860 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2861 vmas.push_back({sec, sec->addr}); 2862 checkOverlap("virtual address", vmas, true); 2863 2864 // Finally, check that the load addresses don't overlap. This will usually be 2865 // the same as the virtual addresses but can be different when using a linker 2866 // script with AT(). 2867 std::vector<SectionOffset> lmas; 2868 for (OutputSection *sec : outputSections) 2869 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2870 lmas.push_back({sec, sec->getLMA()}); 2871 checkOverlap("load address", lmas, false); 2872 } 2873 2874 // The entry point address is chosen in the following ways. 2875 // 2876 // 1. the '-e' entry command-line option; 2877 // 2. the ENTRY(symbol) command in a linker control script; 2878 // 3. the value of the symbol _start, if present; 2879 // 4. the number represented by the entry symbol, if it is a number; 2880 // 5. the address of the first byte of the .text section, if present; 2881 // 6. the address 0. 2882 static uint64_t getEntryAddr() { 2883 // Case 1, 2 or 3 2884 if (Symbol *b = symtab->find(config->entry)) 2885 return b->getVA(); 2886 2887 // Case 4 2888 uint64_t addr; 2889 if (to_integer(config->entry, addr)) 2890 return addr; 2891 2892 // Case 5 2893 if (OutputSection *sec = findSection(".text")) { 2894 if (config->warnMissingEntry) 2895 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2896 utohexstr(sec->addr)); 2897 return sec->addr; 2898 } 2899 2900 // Case 6 2901 if (config->warnMissingEntry) 2902 warn("cannot find entry symbol " + config->entry + 2903 "; not setting start address"); 2904 return 0; 2905 } 2906 2907 static uint16_t getELFType() { 2908 if (config->isPic) 2909 return ET_DYN; 2910 if (config->relocatable) 2911 return ET_REL; 2912 return ET_EXEC; 2913 } 2914 2915 template <class ELFT> void Writer<ELFT>::writeHeader() { 2916 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2917 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2918 2919 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2920 eHdr->e_type = getELFType(); 2921 eHdr->e_entry = getEntryAddr(); 2922 eHdr->e_shoff = sectionHeaderOff; 2923 2924 // Write the section header table. 2925 // 2926 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2927 // and e_shstrndx fields. When the value of one of these fields exceeds 2928 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2929 // use fields in the section header at index 0 to store 2930 // the value. The sentinel values and fields are: 2931 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2932 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2933 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2934 size_t num = outputSections.size() + 1; 2935 if (num >= SHN_LORESERVE) 2936 sHdrs->sh_size = num; 2937 else 2938 eHdr->e_shnum = num; 2939 2940 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2941 if (strTabIndex >= SHN_LORESERVE) { 2942 sHdrs->sh_link = strTabIndex; 2943 eHdr->e_shstrndx = SHN_XINDEX; 2944 } else { 2945 eHdr->e_shstrndx = strTabIndex; 2946 } 2947 2948 for (OutputSection *sec : outputSections) 2949 sec->writeHeaderTo<ELFT>(++sHdrs); 2950 } 2951 2952 // Open a result file. 2953 template <class ELFT> void Writer<ELFT>::openFile() { 2954 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2955 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2956 std::string msg; 2957 raw_string_ostream s(msg); 2958 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2959 << "section sizes:\n"; 2960 for (OutputSection *os : outputSections) 2961 s << os->name << ' ' << os->size << "\n"; 2962 error(s.str()); 2963 return; 2964 } 2965 2966 unlinkAsync(config->outputFile); 2967 unsigned flags = 0; 2968 if (!config->relocatable) 2969 flags |= FileOutputBuffer::F_executable; 2970 if (!config->mmapOutputFile) 2971 flags |= FileOutputBuffer::F_no_mmap; 2972 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2973 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2974 2975 if (!bufferOrErr) { 2976 error("failed to open " + config->outputFile + ": " + 2977 llvm::toString(bufferOrErr.takeError())); 2978 return; 2979 } 2980 buffer = std::move(*bufferOrErr); 2981 Out::bufferStart = buffer->getBufferStart(); 2982 } 2983 2984 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2985 for (OutputSection *sec : outputSections) 2986 if (sec->flags & SHF_ALLOC) 2987 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2988 } 2989 2990 static void fillTrap(uint8_t *i, uint8_t *end) { 2991 for (; i + 4 <= end; i += 4) 2992 memcpy(i, &target->trapInstr, 4); 2993 } 2994 2995 // Fill the last page of executable segments with trap instructions 2996 // instead of leaving them as zero. Even though it is not required by any 2997 // standard, it is in general a good thing to do for security reasons. 2998 // 2999 // We'll leave other pages in segments as-is because the rest will be 3000 // overwritten by output sections. 3001 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 3002 for (Partition &part : partitions) { 3003 // Fill the last page. 3004 for (PhdrEntry *p : part.phdrs) 3005 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 3006 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 3007 config->commonPageSize), 3008 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 3009 config->commonPageSize)); 3010 3011 // Round up the file size of the last segment to the page boundary iff it is 3012 // an executable segment to ensure that other tools don't accidentally 3013 // trim the instruction padding (e.g. when stripping the file). 3014 PhdrEntry *last = nullptr; 3015 for (PhdrEntry *p : part.phdrs) 3016 if (p->p_type == PT_LOAD) 3017 last = p; 3018 3019 if (last && (last->p_flags & PF_X)) 3020 last->p_memsz = last->p_filesz = 3021 alignTo(last->p_filesz, config->commonPageSize); 3022 } 3023 } 3024 3025 // Write section contents to a mmap'ed file. 3026 template <class ELFT> void Writer<ELFT>::writeSections() { 3027 // In -r or -emit-relocs mode, write the relocation sections first as in 3028 // ELf_Rel targets we might find out that we need to modify the relocated 3029 // section while doing it. 3030 for (OutputSection *sec : outputSections) 3031 if (sec->type == SHT_REL || sec->type == SHT_RELA) 3032 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 3033 3034 for (OutputSection *sec : outputSections) 3035 if (sec->type != SHT_REL && sec->type != SHT_RELA) 3036 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 3037 3038 // Finally, check that all dynamic relocation addends were written correctly. 3039 if (config->checkDynamicRelocs && config->writeAddends) { 3040 for (OutputSection *sec : outputSections) 3041 if (sec->type == SHT_REL || sec->type == SHT_RELA) 3042 sec->checkDynRelAddends(Out::bufferStart); 3043 } 3044 } 3045 3046 // Computes a hash value of Data using a given hash function. 3047 // In order to utilize multiple cores, we first split data into 1MB 3048 // chunks, compute a hash for each chunk, and then compute a hash value 3049 // of the hash values. 3050 static void 3051 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 3052 llvm::ArrayRef<uint8_t> data, 3053 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 3054 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 3055 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 3056 3057 // Compute hash values. 3058 parallelForEachN(0, chunks.size(), [&](size_t i) { 3059 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 3060 }); 3061 3062 // Write to the final output buffer. 3063 hashFn(hashBuf.data(), hashes); 3064 } 3065 3066 template <class ELFT> void Writer<ELFT>::writeBuildId() { 3067 if (!mainPart->buildId || !mainPart->buildId->getParent()) 3068 return; 3069 3070 if (config->buildId == BuildIdKind::Hexstring) { 3071 for (Partition &part : partitions) 3072 part.buildId->writeBuildId(config->buildIdVector); 3073 return; 3074 } 3075 3076 // Compute a hash of all sections of the output file. 3077 size_t hashSize = mainPart->buildId->hashSize; 3078 std::vector<uint8_t> buildId(hashSize); 3079 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 3080 3081 switch (config->buildId) { 3082 case BuildIdKind::Fast: 3083 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 3084 write64le(dest, xxHash64(arr)); 3085 }); 3086 break; 3087 case BuildIdKind::Md5: 3088 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3089 memcpy(dest, MD5::hash(arr).data(), hashSize); 3090 }); 3091 break; 3092 case BuildIdKind::Sha1: 3093 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3094 memcpy(dest, SHA1::hash(arr).data(), hashSize); 3095 }); 3096 break; 3097 case BuildIdKind::Uuid: 3098 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 3099 error("entropy source failure: " + ec.message()); 3100 break; 3101 default: 3102 llvm_unreachable("unknown BuildIdKind"); 3103 } 3104 for (Partition &part : partitions) 3105 part.buildId->writeBuildId(buildId); 3106 } 3107 3108 template void elf::createSyntheticSections<ELF32LE>(); 3109 template void elf::createSyntheticSections<ELF32BE>(); 3110 template void elf::createSyntheticSections<ELF64LE>(); 3111 template void elf::createSyntheticSections<ELF64BE>(); 3112 3113 template void elf::writeResult<ELF32LE>(); 3114 template void elf::writeResult<ELF32BE>(); 3115 template void elf::writeResult<ELF64LE>(); 3116 template void elf::writeResult<ELF64BE>(); 3117