1 //===- SyntheticSections.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "SyntheticSections.h" 10 #include "ConcatOutputSection.h" 11 #include "Config.h" 12 #include "ExportTrie.h" 13 #include "InputFiles.h" 14 #include "MachOStructs.h" 15 #include "OutputSegment.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 19 #include "lld/Common/ErrorHandler.h" 20 #include "lld/Common/Memory.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/Support/EndianStream.h" 24 #include "llvm/Support/FileSystem.h" 25 #include "llvm/Support/LEB128.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/SHA256.h" 28 29 #if defined(__APPLE__) 30 #include <sys/mman.h> 31 #endif 32 33 #ifdef LLVM_HAVE_LIBXAR 34 #include <fcntl.h> 35 #include <xar/xar.h> 36 #endif 37 38 using namespace llvm; 39 using namespace llvm::MachO; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::macho; 44 45 InStruct macho::in; 46 std::vector<SyntheticSection *> macho::syntheticSections; 47 48 SyntheticSection::SyntheticSection(const char *segname, const char *name) 49 : OutputSection(SyntheticKind, name) { 50 std::tie(this->segname, this->name) = maybeRenameSection({segname, name}); 51 isec = make<ConcatInputSection>(segname, name); 52 isec->parent = this; 53 syntheticSections.push_back(this); 54 } 55 56 // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts 57 // from the beginning of the file (i.e. the header). 58 MachHeaderSection::MachHeaderSection() 59 : SyntheticSection(segment_names::text, section_names::header) { 60 // XXX: This is a hack. (See D97007) 61 // Setting the index to 1 to pretend that this section is the text 62 // section. 63 index = 1; 64 isec->isFinal = true; 65 } 66 67 void MachHeaderSection::addLoadCommand(LoadCommand *lc) { 68 loadCommands.push_back(lc); 69 sizeOfCmds += lc->getSize(); 70 } 71 72 uint64_t MachHeaderSection::getSize() const { 73 uint64_t size = target->headerSize + sizeOfCmds + config->headerPad; 74 // If we are emitting an encryptable binary, our load commands must have a 75 // separate (non-encrypted) page to themselves. 76 if (config->emitEncryptionInfo) 77 size = alignTo(size, target->getPageSize()); 78 return size; 79 } 80 81 static uint32_t cpuSubtype() { 82 uint32_t subtype = target->cpuSubtype; 83 84 if (config->outputType == MH_EXECUTE && !config->staticLink && 85 target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL && 86 config->platform() == PlatformKind::macOS && 87 config->platformInfo.minimum >= VersionTuple(10, 5)) 88 subtype |= CPU_SUBTYPE_LIB64; 89 90 return subtype; 91 } 92 93 void MachHeaderSection::writeTo(uint8_t *buf) const { 94 auto *hdr = reinterpret_cast<mach_header *>(buf); 95 hdr->magic = target->magic; 96 hdr->cputype = target->cpuType; 97 hdr->cpusubtype = cpuSubtype(); 98 hdr->filetype = config->outputType; 99 hdr->ncmds = loadCommands.size(); 100 hdr->sizeofcmds = sizeOfCmds; 101 hdr->flags = MH_DYLDLINK; 102 103 if (config->namespaceKind == NamespaceKind::twolevel) 104 hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL; 105 106 if (config->outputType == MH_DYLIB && !config->hasReexports) 107 hdr->flags |= MH_NO_REEXPORTED_DYLIBS; 108 109 if (config->markDeadStrippableDylib) 110 hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB; 111 112 if (config->outputType == MH_EXECUTE && config->isPic) 113 hdr->flags |= MH_PIE; 114 115 if (config->outputType == MH_DYLIB && config->applicationExtension) 116 hdr->flags |= MH_APP_EXTENSION_SAFE; 117 118 if (in.exports->hasWeakSymbol || in.weakBinding->hasNonWeakDefinition()) 119 hdr->flags |= MH_WEAK_DEFINES; 120 121 if (in.exports->hasWeakSymbol || in.weakBinding->hasEntry()) 122 hdr->flags |= MH_BINDS_TO_WEAK; 123 124 for (const OutputSegment *seg : outputSegments) { 125 for (const OutputSection *osec : seg->getSections()) { 126 if (isThreadLocalVariables(osec->flags)) { 127 hdr->flags |= MH_HAS_TLV_DESCRIPTORS; 128 break; 129 } 130 } 131 } 132 133 uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize; 134 for (const LoadCommand *lc : loadCommands) { 135 lc->writeTo(p); 136 p += lc->getSize(); 137 } 138 } 139 140 PageZeroSection::PageZeroSection() 141 : SyntheticSection(segment_names::pageZero, section_names::pageZero) {} 142 143 RebaseSection::RebaseSection() 144 : LinkEditSection(segment_names::linkEdit, section_names::rebase) {} 145 146 namespace { 147 struct Rebase { 148 OutputSegment *segment = nullptr; 149 uint64_t offset = 0; 150 uint64_t consecutiveCount = 0; 151 }; 152 } // namespace 153 154 // Rebase opcodes allow us to describe a contiguous sequence of rebase location 155 // using a single DO_REBASE opcode. To take advantage of it, we delay emitting 156 // `DO_REBASE` until we have reached the end of a contiguous sequence. 157 static void encodeDoRebase(Rebase &rebase, raw_svector_ostream &os) { 158 assert(rebase.consecutiveCount != 0); 159 if (rebase.consecutiveCount <= REBASE_IMMEDIATE_MASK) { 160 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES | 161 rebase.consecutiveCount); 162 } else { 163 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES); 164 encodeULEB128(rebase.consecutiveCount, os); 165 } 166 rebase.consecutiveCount = 0; 167 } 168 169 static void encodeRebase(const OutputSection *osec, uint64_t outSecOff, 170 Rebase &lastRebase, raw_svector_ostream &os) { 171 OutputSegment *seg = osec->parent; 172 uint64_t offset = osec->getSegmentOffset() + outSecOff; 173 if (lastRebase.segment != seg || lastRebase.offset != offset) { 174 if (lastRebase.consecutiveCount != 0) 175 encodeDoRebase(lastRebase, os); 176 177 if (lastRebase.segment != seg) { 178 os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 179 seg->index); 180 encodeULEB128(offset, os); 181 lastRebase.segment = seg; 182 lastRebase.offset = offset; 183 } else { 184 assert(lastRebase.offset != offset); 185 os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB); 186 encodeULEB128(offset - lastRebase.offset, os); 187 lastRebase.offset = offset; 188 } 189 } 190 ++lastRebase.consecutiveCount; 191 // DO_REBASE causes dyld to both perform the binding and increment the offset 192 lastRebase.offset += target->wordSize; 193 } 194 195 void RebaseSection::finalizeContents() { 196 if (locations.empty()) 197 return; 198 199 raw_svector_ostream os{contents}; 200 Rebase lastRebase; 201 202 os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER); 203 204 llvm::sort(locations, [](const Location &a, const Location &b) { 205 return a.isec->getVA(a.offset) < b.isec->getVA(b.offset); 206 }); 207 for (const Location &loc : locations) 208 encodeRebase(loc.isec->parent, loc.isec->getOffset(loc.offset), lastRebase, 209 os); 210 if (lastRebase.consecutiveCount != 0) 211 encodeDoRebase(lastRebase, os); 212 213 os << static_cast<uint8_t>(REBASE_OPCODE_DONE); 214 } 215 216 void RebaseSection::writeTo(uint8_t *buf) const { 217 memcpy(buf, contents.data(), contents.size()); 218 } 219 220 NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname, 221 const char *name) 222 : SyntheticSection(segname, name) { 223 align = target->wordSize; 224 } 225 226 void macho::addNonLazyBindingEntries(const Symbol *sym, 227 const InputSection *isec, uint64_t offset, 228 int64_t addend) { 229 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { 230 in.binding->addEntry(dysym, isec, offset, addend); 231 if (dysym->isWeakDef()) 232 in.weakBinding->addEntry(sym, isec, offset, addend); 233 } else if (const auto *defined = dyn_cast<Defined>(sym)) { 234 in.rebase->addEntry(isec, offset); 235 if (defined->isExternalWeakDef()) 236 in.weakBinding->addEntry(sym, isec, offset, addend); 237 } else { 238 // Undefined symbols are filtered out in scanRelocations(); we should never 239 // get here 240 llvm_unreachable("cannot bind to an undefined symbol"); 241 } 242 } 243 244 void NonLazyPointerSectionBase::addEntry(Symbol *sym) { 245 if (entries.insert(sym)) { 246 assert(!sym->isInGot()); 247 sym->gotIndex = entries.size() - 1; 248 249 addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize); 250 } 251 } 252 253 void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const { 254 for (size_t i = 0, n = entries.size(); i < n; ++i) 255 if (auto *defined = dyn_cast<Defined>(entries[i])) 256 write64le(&buf[i * target->wordSize], defined->getVA()); 257 } 258 259 GotSection::GotSection() 260 : NonLazyPointerSectionBase(segment_names::dataConst, section_names::got) { 261 flags = S_NON_LAZY_SYMBOL_POINTERS; 262 } 263 264 TlvPointerSection::TlvPointerSection() 265 : NonLazyPointerSectionBase(segment_names::data, 266 section_names::threadPtrs) { 267 flags = S_THREAD_LOCAL_VARIABLE_POINTERS; 268 } 269 270 BindingSection::BindingSection() 271 : LinkEditSection(segment_names::linkEdit, section_names::binding) {} 272 273 namespace { 274 struct Binding { 275 OutputSegment *segment = nullptr; 276 uint64_t offset = 0; 277 int64_t addend = 0; 278 }; 279 struct BindIR { 280 // Default value of 0xF0 is not valid opcode and should make the program 281 // scream instead of accidentally writing "valid" values. 282 uint8_t opcode = 0xF0; 283 uint64_t data = 0; 284 uint64_t consecutiveCount = 0; 285 }; 286 } // namespace 287 288 // Encode a sequence of opcodes that tell dyld to write the address of symbol + 289 // addend at osec->addr + outSecOff. 290 // 291 // The bind opcode "interpreter" remembers the values of each binding field, so 292 // we only need to encode the differences between bindings. Hence the use of 293 // lastBinding. 294 static void encodeBinding(const OutputSection *osec, uint64_t outSecOff, 295 int64_t addend, Binding &lastBinding, 296 std::vector<BindIR> &opcodes) { 297 OutputSegment *seg = osec->parent; 298 uint64_t offset = osec->getSegmentOffset() + outSecOff; 299 if (lastBinding.segment != seg) { 300 opcodes.push_back( 301 {static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 302 seg->index), 303 offset}); 304 lastBinding.segment = seg; 305 lastBinding.offset = offset; 306 } else if (lastBinding.offset != offset) { 307 opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset}); 308 lastBinding.offset = offset; 309 } 310 311 if (lastBinding.addend != addend) { 312 opcodes.push_back( 313 {BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)}); 314 lastBinding.addend = addend; 315 } 316 317 opcodes.push_back({BIND_OPCODE_DO_BIND, 0}); 318 // DO_BIND causes dyld to both perform the binding and increment the offset 319 lastBinding.offset += target->wordSize; 320 } 321 322 static void optimizeOpcodes(std::vector<BindIR> &opcodes) { 323 // Pass 1: Combine bind/add pairs 324 size_t i; 325 int pWrite = 0; 326 for (i = 1; i < opcodes.size(); ++i, ++pWrite) { 327 if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) && 328 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) { 329 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB; 330 opcodes[pWrite].data = opcodes[i].data; 331 ++i; 332 } else { 333 opcodes[pWrite] = opcodes[i - 1]; 334 } 335 } 336 if (i == opcodes.size()) 337 opcodes[pWrite] = opcodes[i - 1]; 338 opcodes.resize(pWrite + 1); 339 340 // Pass 2: Compress two or more bind_add opcodes 341 pWrite = 0; 342 for (i = 1; i < opcodes.size(); ++i, ++pWrite) { 343 if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 344 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 345 (opcodes[i].data == opcodes[i - 1].data)) { 346 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB; 347 opcodes[pWrite].consecutiveCount = 2; 348 opcodes[pWrite].data = opcodes[i].data; 349 ++i; 350 while (i < opcodes.size() && 351 (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 352 (opcodes[i].data == opcodes[i - 1].data)) { 353 opcodes[pWrite].consecutiveCount++; 354 ++i; 355 } 356 } else { 357 opcodes[pWrite] = opcodes[i - 1]; 358 } 359 } 360 if (i == opcodes.size()) 361 opcodes[pWrite] = opcodes[i - 1]; 362 opcodes.resize(pWrite + 1); 363 364 // Pass 3: Use immediate encodings 365 // Every binding is the size of one pointer. If the next binding is a 366 // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the 367 // opcode can be scaled by wordSize into a single byte and dyld will 368 // expand it to the correct address. 369 for (auto &p : opcodes) { 370 // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK, 371 // but ld64 currently does this. This could be a potential bug, but 372 // for now, perform the same behavior to prevent mysterious bugs. 373 if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 374 ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) && 375 ((p.data % target->wordSize) == 0)) { 376 p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED; 377 p.data /= target->wordSize; 378 } 379 } 380 } 381 382 static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) { 383 uint8_t opcode = op.opcode & BIND_OPCODE_MASK; 384 switch (opcode) { 385 case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: 386 case BIND_OPCODE_ADD_ADDR_ULEB: 387 case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB: 388 os << op.opcode; 389 encodeULEB128(op.data, os); 390 break; 391 case BIND_OPCODE_SET_ADDEND_SLEB: 392 os << op.opcode; 393 encodeSLEB128(static_cast<int64_t>(op.data), os); 394 break; 395 case BIND_OPCODE_DO_BIND: 396 os << op.opcode; 397 break; 398 case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB: 399 os << op.opcode; 400 encodeULEB128(op.consecutiveCount, os); 401 encodeULEB128(op.data, os); 402 break; 403 case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED: 404 os << static_cast<uint8_t>(op.opcode | op.data); 405 break; 406 default: 407 llvm_unreachable("cannot bind to an unrecognized symbol"); 408 } 409 } 410 411 // Non-weak bindings need to have their dylib ordinal encoded as well. 412 static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) { 413 if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup()) 414 return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP); 415 assert(dysym.getFile()->isReferenced()); 416 return dysym.getFile()->ordinal; 417 } 418 419 static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) { 420 if (ordinal <= 0) { 421 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM | 422 (ordinal & BIND_IMMEDIATE_MASK)); 423 } else if (ordinal <= BIND_IMMEDIATE_MASK) { 424 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal); 425 } else { 426 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB); 427 encodeULEB128(ordinal, os); 428 } 429 } 430 431 static void encodeWeakOverride(const Defined *defined, 432 raw_svector_ostream &os) { 433 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM | 434 BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) 435 << defined->getName() << '\0'; 436 } 437 438 // Organize the bindings so we can encoded them with fewer opcodes. 439 // 440 // First, all bindings for a given symbol should be grouped together. 441 // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it 442 // has an associated symbol string), so we only want to emit it once per symbol. 443 // 444 // Within each group, we sort the bindings by address. Since bindings are 445 // delta-encoded, sorting them allows for a more compact result. Note that 446 // sorting by address alone ensures that bindings for the same segment / section 447 // are located together, minimizing the number of times we have to emit 448 // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB. 449 // 450 // Finally, we sort the symbols by the address of their first binding, again 451 // to facilitate the delta-encoding process. 452 template <class Sym> 453 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> 454 sortBindings(const BindingsMap<const Sym *> &bindingsMap) { 455 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec( 456 bindingsMap.begin(), bindingsMap.end()); 457 for (auto &p : bindingsVec) { 458 std::vector<BindingEntry> &bindings = p.second; 459 llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) { 460 return a.target.getVA() < b.target.getVA(); 461 }); 462 } 463 llvm::sort(bindingsVec, [](const auto &a, const auto &b) { 464 return a.second[0].target.getVA() < b.second[0].target.getVA(); 465 }); 466 return bindingsVec; 467 } 468 469 // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld 470 // interprets to update a record with the following fields: 471 // * segment index (of the segment to write the symbol addresses to, typically 472 // the __DATA_CONST segment which contains the GOT) 473 // * offset within the segment, indicating the next location to write a binding 474 // * symbol type 475 // * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command) 476 // * symbol name 477 // * addend 478 // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind 479 // a symbol in the GOT, and increments the segment offset to point to the next 480 // entry. It does *not* clear the record state after doing the bind, so 481 // subsequent opcodes only need to encode the differences between bindings. 482 void BindingSection::finalizeContents() { 483 raw_svector_ostream os{contents}; 484 Binding lastBinding; 485 int16_t lastOrdinal = 0; 486 487 for (auto &p : sortBindings(bindingsMap)) { 488 const DylibSymbol *sym = p.first; 489 std::vector<BindingEntry> &bindings = p.second; 490 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; 491 if (sym->isWeakRef()) 492 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; 493 os << flags << sym->getName() << '\0' 494 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); 495 int16_t ordinal = ordinalForDylibSymbol(*sym); 496 if (ordinal != lastOrdinal) { 497 encodeDylibOrdinal(ordinal, os); 498 lastOrdinal = ordinal; 499 } 500 std::vector<BindIR> opcodes; 501 for (const BindingEntry &b : bindings) 502 encodeBinding(b.target.isec->parent, 503 b.target.isec->getOffset(b.target.offset), b.addend, 504 lastBinding, opcodes); 505 if (config->optimize > 1) 506 optimizeOpcodes(opcodes); 507 for (const auto &op : opcodes) 508 flushOpcodes(op, os); 509 } 510 if (!bindingsMap.empty()) 511 os << static_cast<uint8_t>(BIND_OPCODE_DONE); 512 } 513 514 void BindingSection::writeTo(uint8_t *buf) const { 515 memcpy(buf, contents.data(), contents.size()); 516 } 517 518 WeakBindingSection::WeakBindingSection() 519 : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {} 520 521 void WeakBindingSection::finalizeContents() { 522 raw_svector_ostream os{contents}; 523 Binding lastBinding; 524 525 for (const Defined *defined : definitions) 526 encodeWeakOverride(defined, os); 527 528 for (auto &p : sortBindings(bindingsMap)) { 529 const Symbol *sym = p.first; 530 std::vector<BindingEntry> &bindings = p.second; 531 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM) 532 << sym->getName() << '\0' 533 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); 534 std::vector<BindIR> opcodes; 535 for (const BindingEntry &b : bindings) 536 encodeBinding(b.target.isec->parent, 537 b.target.isec->getOffset(b.target.offset), b.addend, 538 lastBinding, opcodes); 539 if (config->optimize > 1) 540 optimizeOpcodes(opcodes); 541 for (const auto &op : opcodes) 542 flushOpcodes(op, os); 543 } 544 if (!bindingsMap.empty() || !definitions.empty()) 545 os << static_cast<uint8_t>(BIND_OPCODE_DONE); 546 } 547 548 void WeakBindingSection::writeTo(uint8_t *buf) const { 549 memcpy(buf, contents.data(), contents.size()); 550 } 551 552 StubsSection::StubsSection() 553 : SyntheticSection(segment_names::text, section_names::stubs) { 554 flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; 555 // The stubs section comprises machine instructions, which are aligned to 556 // 4 bytes on the archs we care about. 557 align = 4; 558 reserved2 = target->stubSize; 559 } 560 561 uint64_t StubsSection::getSize() const { 562 return entries.size() * target->stubSize; 563 } 564 565 void StubsSection::writeTo(uint8_t *buf) const { 566 size_t off = 0; 567 for (const Symbol *sym : entries) { 568 target->writeStub(buf + off, *sym); 569 off += target->stubSize; 570 } 571 } 572 573 void StubsSection::finalize() { isFinal = true; } 574 575 bool StubsSection::addEntry(Symbol *sym) { 576 bool inserted = entries.insert(sym); 577 if (inserted) 578 sym->stubsIndex = entries.size() - 1; 579 return inserted; 580 } 581 582 StubHelperSection::StubHelperSection() 583 : SyntheticSection(segment_names::text, section_names::stubHelper) { 584 flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; 585 align = 4; // This section comprises machine instructions 586 } 587 588 uint64_t StubHelperSection::getSize() const { 589 return target->stubHelperHeaderSize + 590 in.lazyBinding->getEntries().size() * target->stubHelperEntrySize; 591 } 592 593 bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); } 594 595 void StubHelperSection::writeTo(uint8_t *buf) const { 596 target->writeStubHelperHeader(buf); 597 size_t off = target->stubHelperHeaderSize; 598 for (const DylibSymbol *sym : in.lazyBinding->getEntries()) { 599 target->writeStubHelperEntry(buf + off, *sym, addr + off); 600 off += target->stubHelperEntrySize; 601 } 602 } 603 604 void StubHelperSection::setup() { 605 Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr, 606 /*isWeakRef=*/false); 607 if (auto *undefined = dyn_cast<Undefined>(binder)) 608 treatUndefinedSymbol(*undefined, 609 "lazy binding (normally in libSystem.dylib)"); 610 611 // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check. 612 stubBinder = dyn_cast_or_null<DylibSymbol>(binder); 613 if (stubBinder == nullptr) 614 return; 615 616 in.got->addEntry(stubBinder); 617 618 in.imageLoaderCache->parent = 619 ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache); 620 inputSections.push_back(in.imageLoaderCache); 621 // Since this isn't in the symbol table or in any input file, the noDeadStrip 622 // argument doesn't matter. It's kept alive by ImageLoaderCacheSection() 623 // setting `live` to true on the backing InputSection. 624 dyldPrivate = 625 make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0, 626 /*isWeakDef=*/false, 627 /*isExternal=*/false, /*isPrivateExtern=*/false, 628 /*isThumb=*/false, /*isReferencedDynamically=*/false, 629 /*noDeadStrip=*/false); 630 } 631 632 LazyPointerSection::LazyPointerSection() 633 : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) { 634 align = target->wordSize; 635 flags = S_LAZY_SYMBOL_POINTERS; 636 } 637 638 uint64_t LazyPointerSection::getSize() const { 639 return in.stubs->getEntries().size() * target->wordSize; 640 } 641 642 bool LazyPointerSection::isNeeded() const { 643 return !in.stubs->getEntries().empty(); 644 } 645 646 void LazyPointerSection::writeTo(uint8_t *buf) const { 647 size_t off = 0; 648 for (const Symbol *sym : in.stubs->getEntries()) { 649 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { 650 if (dysym->hasStubsHelper()) { 651 uint64_t stubHelperOffset = 652 target->stubHelperHeaderSize + 653 dysym->stubsHelperIndex * target->stubHelperEntrySize; 654 write64le(buf + off, in.stubHelper->addr + stubHelperOffset); 655 } 656 } else { 657 write64le(buf + off, sym->getVA()); 658 } 659 off += target->wordSize; 660 } 661 } 662 663 LazyBindingSection::LazyBindingSection() 664 : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {} 665 666 void LazyBindingSection::finalizeContents() { 667 // TODO: Just precompute output size here instead of writing to a temporary 668 // buffer 669 for (DylibSymbol *sym : entries) 670 sym->lazyBindOffset = encode(*sym); 671 } 672 673 void LazyBindingSection::writeTo(uint8_t *buf) const { 674 memcpy(buf, contents.data(), contents.size()); 675 } 676 677 void LazyBindingSection::addEntry(DylibSymbol *dysym) { 678 if (entries.insert(dysym)) { 679 dysym->stubsHelperIndex = entries.size() - 1; 680 in.rebase->addEntry(in.lazyPointers->isec, 681 dysym->stubsIndex * target->wordSize); 682 } 683 } 684 685 // Unlike the non-lazy binding section, the bind opcodes in this section aren't 686 // interpreted all at once. Rather, dyld will start interpreting opcodes at a 687 // given offset, typically only binding a single symbol before it finds a 688 // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case, 689 // we cannot encode just the differences between symbols; we have to emit the 690 // complete bind information for each symbol. 691 uint32_t LazyBindingSection::encode(const DylibSymbol &sym) { 692 uint32_t opstreamOffset = contents.size(); 693 OutputSegment *dataSeg = in.lazyPointers->parent; 694 os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 695 dataSeg->index); 696 uint64_t offset = in.lazyPointers->addr - dataSeg->addr + 697 sym.stubsIndex * target->wordSize; 698 encodeULEB128(offset, os); 699 encodeDylibOrdinal(ordinalForDylibSymbol(sym), os); 700 701 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; 702 if (sym.isWeakRef()) 703 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; 704 705 os << flags << sym.getName() << '\0' 706 << static_cast<uint8_t>(BIND_OPCODE_DO_BIND) 707 << static_cast<uint8_t>(BIND_OPCODE_DONE); 708 return opstreamOffset; 709 } 710 711 ExportSection::ExportSection() 712 : LinkEditSection(segment_names::linkEdit, section_names::export_) {} 713 714 void ExportSection::finalizeContents() { 715 trieBuilder.setImageBase(in.header->addr); 716 for (const Symbol *sym : symtab->getSymbols()) { 717 if (const auto *defined = dyn_cast<Defined>(sym)) { 718 if (defined->privateExtern || !defined->isLive()) 719 continue; 720 trieBuilder.addSymbol(*defined); 721 hasWeakSymbol = hasWeakSymbol || sym->isWeakDef(); 722 } 723 } 724 size = trieBuilder.build(); 725 } 726 727 void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); } 728 729 DataInCodeSection::DataInCodeSection() 730 : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {} 731 732 template <class LP> 733 static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() { 734 using SegmentCommand = typename LP::segment_command; 735 using Section = typename LP::section; 736 737 std::vector<MachO::data_in_code_entry> dataInCodeEntries; 738 for (const InputFile *inputFile : inputFiles) { 739 if (!isa<ObjFile>(inputFile)) 740 continue; 741 const ObjFile *objFile = cast<ObjFile>(inputFile); 742 const auto *c = reinterpret_cast<const SegmentCommand *>( 743 findCommand(objFile->mb.getBufferStart(), LP::segmentLCType)); 744 if (!c) 745 continue; 746 ArrayRef<Section> sections{reinterpret_cast<const Section *>(c + 1), 747 c->nsects}; 748 749 ArrayRef<MachO::data_in_code_entry> entries = objFile->dataInCodeEntries; 750 if (entries.empty()) 751 continue; 752 // For each code subsection find 'data in code' entries residing in it. 753 // Compute the new offset values as 754 // <offset within subsection> + <subsection address> - <__TEXT address>. 755 for (size_t i = 0, n = sections.size(); i < n; ++i) { 756 const SubsectionMap &subsecMap = objFile->subsections[i]; 757 for (const SubsectionEntry &subsecEntry : subsecMap) { 758 const InputSection *isec = subsecEntry.isec; 759 if (!isCodeSection(isec)) 760 continue; 761 if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput()) 762 continue; 763 const uint64_t beginAddr = sections[i].addr + subsecEntry.offset; 764 auto it = llvm::lower_bound( 765 entries, beginAddr, 766 [](const MachO::data_in_code_entry &entry, uint64_t addr) { 767 return entry.offset < addr; 768 }); 769 const uint64_t endAddr = beginAddr + isec->getFileSize(); 770 for (const auto end = entries.end(); 771 it != end && it->offset + it->length <= endAddr; ++it) 772 dataInCodeEntries.push_back( 773 {static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) - 774 in.header->addr), 775 it->length, it->kind}); 776 } 777 } 778 } 779 return dataInCodeEntries; 780 } 781 782 void DataInCodeSection::finalizeContents() { 783 entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>() 784 : collectDataInCodeEntries<ILP32>(); 785 } 786 787 void DataInCodeSection::writeTo(uint8_t *buf) const { 788 if (!entries.empty()) 789 memcpy(buf, entries.data(), getRawSize()); 790 } 791 792 FunctionStartsSection::FunctionStartsSection() 793 : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {} 794 795 void FunctionStartsSection::finalizeContents() { 796 raw_svector_ostream os{contents}; 797 std::vector<uint64_t> addrs; 798 for (const Symbol *sym : symtab->getSymbols()) { 799 if (const auto *defined = dyn_cast<Defined>(sym)) { 800 if (!defined->isec || !isCodeSection(defined->isec) || !defined->isLive()) 801 continue; 802 if (const auto *concatIsec = dyn_cast<ConcatInputSection>(defined->isec)) 803 if (concatIsec->shouldOmitFromOutput()) 804 continue; 805 // TODO: Add support for thumbs, in that case 806 // the lowest bit of nextAddr needs to be set to 1. 807 addrs.push_back(defined->getVA()); 808 } 809 } 810 llvm::sort(addrs); 811 uint64_t addr = in.header->addr; 812 for (uint64_t nextAddr : addrs) { 813 uint64_t delta = nextAddr - addr; 814 if (delta == 0) 815 continue; 816 encodeULEB128(delta, os); 817 addr = nextAddr; 818 } 819 os << '\0'; 820 } 821 822 void FunctionStartsSection::writeTo(uint8_t *buf) const { 823 memcpy(buf, contents.data(), contents.size()); 824 } 825 826 SymtabSection::SymtabSection(StringTableSection &stringTableSection) 827 : LinkEditSection(segment_names::linkEdit, section_names::symbolTable), 828 stringTableSection(stringTableSection) {} 829 830 void SymtabSection::emitBeginSourceStab(DWARFUnit *compileUnit) { 831 StabsEntry stab(N_SO); 832 SmallString<261> dir(compileUnit->getCompilationDir()); 833 StringRef sep = sys::path::get_separator(); 834 // We don't use `path::append` here because we want an empty `dir` to result 835 // in an absolute path. `append` would give us a relative path for that case. 836 if (!dir.endswith(sep)) 837 dir += sep; 838 stab.strx = stringTableSection.addString( 839 saver.save(dir + compileUnit->getUnitDIE().getShortName())); 840 stabs.emplace_back(std::move(stab)); 841 } 842 843 void SymtabSection::emitEndSourceStab() { 844 StabsEntry stab(N_SO); 845 stab.sect = 1; 846 stabs.emplace_back(std::move(stab)); 847 } 848 849 void SymtabSection::emitObjectFileStab(ObjFile *file) { 850 StabsEntry stab(N_OSO); 851 stab.sect = target->cpuSubtype; 852 SmallString<261> path(!file->archiveName.empty() ? file->archiveName 853 : file->getName()); 854 std::error_code ec = sys::fs::make_absolute(path); 855 if (ec) 856 fatal("failed to get absolute path for " + path); 857 858 if (!file->archiveName.empty()) 859 path.append({"(", file->getName(), ")"}); 860 861 stab.strx = stringTableSection.addString(saver.save(path.str())); 862 stab.desc = 1; 863 stab.value = file->modTime; 864 stabs.emplace_back(std::move(stab)); 865 } 866 867 void SymtabSection::emitEndFunStab(Defined *defined) { 868 StabsEntry stab(N_FUN); 869 stab.value = defined->size; 870 stabs.emplace_back(std::move(stab)); 871 } 872 873 void SymtabSection::emitStabs() { 874 for (const std::string &s : config->astPaths) { 875 StabsEntry astStab(N_AST); 876 astStab.strx = stringTableSection.addString(s); 877 stabs.emplace_back(std::move(astStab)); 878 } 879 880 std::vector<Defined *> symbolsNeedingStabs; 881 for (const SymtabEntry &entry : 882 concat<SymtabEntry>(localSymbols, externalSymbols)) { 883 Symbol *sym = entry.sym; 884 assert(sym->isLive() && 885 "dead symbols should not be in localSymbols, externalSymbols"); 886 if (auto *defined = dyn_cast<Defined>(sym)) { 887 if (defined->isAbsolute()) 888 continue; 889 InputSection *isec = defined->isec; 890 ObjFile *file = dyn_cast_or_null<ObjFile>(isec->getFile()); 891 if (!file || !file->compileUnit) 892 continue; 893 symbolsNeedingStabs.push_back(defined); 894 } 895 } 896 897 llvm::stable_sort(symbolsNeedingStabs, [&](Defined *a, Defined *b) { 898 return a->isec->getFile()->id < b->isec->getFile()->id; 899 }); 900 901 // Emit STABS symbols so that dsymutil and/or the debugger can map address 902 // regions in the final binary to the source and object files from which they 903 // originated. 904 InputFile *lastFile = nullptr; 905 for (Defined *defined : symbolsNeedingStabs) { 906 InputSection *isec = defined->isec; 907 ObjFile *file = cast<ObjFile>(isec->getFile()); 908 909 if (lastFile == nullptr || lastFile != file) { 910 if (lastFile != nullptr) 911 emitEndSourceStab(); 912 lastFile = file; 913 914 emitBeginSourceStab(file->compileUnit); 915 emitObjectFileStab(file); 916 } 917 918 StabsEntry symStab; 919 symStab.sect = defined->isec->canonical()->parent->index; 920 symStab.strx = stringTableSection.addString(defined->getName()); 921 symStab.value = defined->getVA(); 922 923 if (isCodeSection(isec)) { 924 symStab.type = N_FUN; 925 stabs.emplace_back(std::move(symStab)); 926 emitEndFunStab(defined); 927 } else { 928 symStab.type = defined->isExternal() ? N_GSYM : N_STSYM; 929 stabs.emplace_back(std::move(symStab)); 930 } 931 } 932 933 if (!stabs.empty()) 934 emitEndSourceStab(); 935 } 936 937 void SymtabSection::finalizeContents() { 938 auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) { 939 uint32_t strx = stringTableSection.addString(sym->getName()); 940 symbols.push_back({sym, strx}); 941 }; 942 943 // Local symbols aren't in the SymbolTable, so we walk the list of object 944 // files to gather them. 945 for (const InputFile *file : inputFiles) { 946 if (auto *objFile = dyn_cast<ObjFile>(file)) { 947 for (Symbol *sym : objFile->symbols) { 948 if (auto *defined = dyn_cast_or_null<Defined>(sym)) { 949 if (!defined->isExternal() && defined->isLive()) { 950 StringRef name = defined->getName(); 951 if (!name.startswith("l") && !name.startswith("L")) 952 addSymbol(localSymbols, sym); 953 } 954 } 955 } 956 } 957 } 958 959 // __dyld_private is a local symbol too. It's linker-created and doesn't 960 // exist in any object file. 961 if (Defined *dyldPrivate = in.stubHelper->dyldPrivate) 962 addSymbol(localSymbols, dyldPrivate); 963 964 for (Symbol *sym : symtab->getSymbols()) { 965 if (!sym->isLive()) 966 continue; 967 if (auto *defined = dyn_cast<Defined>(sym)) { 968 if (!defined->includeInSymtab) 969 continue; 970 assert(defined->isExternal()); 971 if (defined->privateExtern) 972 addSymbol(localSymbols, defined); 973 else 974 addSymbol(externalSymbols, defined); 975 } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) { 976 if (dysym->isReferenced()) 977 addSymbol(undefinedSymbols, sym); 978 } 979 } 980 981 emitStabs(); 982 uint32_t symtabIndex = stabs.size(); 983 for (const SymtabEntry &entry : 984 concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) { 985 entry.sym->symtabIndex = symtabIndex++; 986 } 987 } 988 989 uint32_t SymtabSection::getNumSymbols() const { 990 return stabs.size() + localSymbols.size() + externalSymbols.size() + 991 undefinedSymbols.size(); 992 } 993 994 // This serves to hide (type-erase) the template parameter from SymtabSection. 995 template <class LP> class SymtabSectionImpl final : public SymtabSection { 996 public: 997 SymtabSectionImpl(StringTableSection &stringTableSection) 998 : SymtabSection(stringTableSection) {} 999 uint64_t getRawSize() const override; 1000 void writeTo(uint8_t *buf) const override; 1001 }; 1002 1003 template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const { 1004 return getNumSymbols() * sizeof(typename LP::nlist); 1005 } 1006 1007 template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const { 1008 auto *nList = reinterpret_cast<typename LP::nlist *>(buf); 1009 // Emit the stabs entries before the "real" symbols. We cannot emit them 1010 // after as that would render Symbol::symtabIndex inaccurate. 1011 for (const StabsEntry &entry : stabs) { 1012 nList->n_strx = entry.strx; 1013 nList->n_type = entry.type; 1014 nList->n_sect = entry.sect; 1015 nList->n_desc = entry.desc; 1016 nList->n_value = entry.value; 1017 ++nList; 1018 } 1019 1020 for (const SymtabEntry &entry : concat<const SymtabEntry>( 1021 localSymbols, externalSymbols, undefinedSymbols)) { 1022 nList->n_strx = entry.strx; 1023 // TODO populate n_desc with more flags 1024 if (auto *defined = dyn_cast<Defined>(entry.sym)) { 1025 uint8_t scope = 0; 1026 if (defined->privateExtern) { 1027 // Private external -- dylib scoped symbol. 1028 // Promote to non-external at link time. 1029 scope = N_PEXT; 1030 } else if (defined->isExternal()) { 1031 // Normal global symbol. 1032 scope = N_EXT; 1033 } else { 1034 // TU-local symbol from localSymbols. 1035 scope = 0; 1036 } 1037 1038 if (defined->isAbsolute()) { 1039 nList->n_type = scope | N_ABS; 1040 nList->n_sect = NO_SECT; 1041 nList->n_value = defined->value; 1042 } else { 1043 nList->n_type = scope | N_SECT; 1044 nList->n_sect = defined->isec->canonical()->parent->index; 1045 // For the N_SECT symbol type, n_value is the address of the symbol 1046 nList->n_value = defined->getVA(); 1047 } 1048 nList->n_desc |= defined->thumb ? N_ARM_THUMB_DEF : 0; 1049 nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0; 1050 nList->n_desc |= 1051 defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0; 1052 } else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) { 1053 uint16_t n_desc = nList->n_desc; 1054 int16_t ordinal = ordinalForDylibSymbol(*dysym); 1055 if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP) 1056 SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL); 1057 else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE) 1058 SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL); 1059 else { 1060 assert(ordinal > 0); 1061 SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal)); 1062 } 1063 1064 nList->n_type = N_EXT; 1065 n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0; 1066 n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0; 1067 nList->n_desc = n_desc; 1068 } 1069 ++nList; 1070 } 1071 } 1072 1073 template <class LP> 1074 SymtabSection * 1075 macho::makeSymtabSection(StringTableSection &stringTableSection) { 1076 return make<SymtabSectionImpl<LP>>(stringTableSection); 1077 } 1078 1079 IndirectSymtabSection::IndirectSymtabSection() 1080 : LinkEditSection(segment_names::linkEdit, 1081 section_names::indirectSymbolTable) {} 1082 1083 uint32_t IndirectSymtabSection::getNumSymbols() const { 1084 return in.got->getEntries().size() + in.tlvPointers->getEntries().size() + 1085 2 * in.stubs->getEntries().size(); 1086 } 1087 1088 bool IndirectSymtabSection::isNeeded() const { 1089 return in.got->isNeeded() || in.tlvPointers->isNeeded() || 1090 in.stubs->isNeeded(); 1091 } 1092 1093 void IndirectSymtabSection::finalizeContents() { 1094 uint32_t off = 0; 1095 in.got->reserved1 = off; 1096 off += in.got->getEntries().size(); 1097 in.tlvPointers->reserved1 = off; 1098 off += in.tlvPointers->getEntries().size(); 1099 in.stubs->reserved1 = off; 1100 off += in.stubs->getEntries().size(); 1101 in.lazyPointers->reserved1 = off; 1102 } 1103 1104 static uint32_t indirectValue(const Symbol *sym) { 1105 return sym->symtabIndex != UINT32_MAX ? sym->symtabIndex 1106 : INDIRECT_SYMBOL_LOCAL; 1107 } 1108 1109 void IndirectSymtabSection::writeTo(uint8_t *buf) const { 1110 uint32_t off = 0; 1111 for (const Symbol *sym : in.got->getEntries()) { 1112 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1113 ++off; 1114 } 1115 for (const Symbol *sym : in.tlvPointers->getEntries()) { 1116 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1117 ++off; 1118 } 1119 for (const Symbol *sym : in.stubs->getEntries()) { 1120 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1121 ++off; 1122 } 1123 // There is a 1:1 correspondence between stubs and LazyPointerSection 1124 // entries. But giving __stubs and __la_symbol_ptr the same reserved1 1125 // (the offset into the indirect symbol table) so that they both refer 1126 // to the same range of offsets confuses `strip`, so write the stubs 1127 // symbol table offsets a second time. 1128 for (const Symbol *sym : in.stubs->getEntries()) { 1129 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1130 ++off; 1131 } 1132 } 1133 1134 StringTableSection::StringTableSection() 1135 : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {} 1136 1137 uint32_t StringTableSection::addString(StringRef str) { 1138 uint32_t strx = size; 1139 strings.push_back(str); // TODO: consider deduplicating strings 1140 size += str.size() + 1; // account for null terminator 1141 return strx; 1142 } 1143 1144 void StringTableSection::writeTo(uint8_t *buf) const { 1145 uint32_t off = 0; 1146 for (StringRef str : strings) { 1147 memcpy(buf + off, str.data(), str.size()); 1148 off += str.size() + 1; // account for null terminator 1149 } 1150 } 1151 1152 static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0, ""); 1153 static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0, ""); 1154 1155 CodeSignatureSection::CodeSignatureSection() 1156 : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) { 1157 align = 16; // required by libstuff 1158 // FIXME: Consider using finalOutput instead of outputFile. 1159 fileName = config->outputFile; 1160 size_t slashIndex = fileName.rfind("/"); 1161 if (slashIndex != std::string::npos) 1162 fileName = fileName.drop_front(slashIndex + 1); 1163 allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1); 1164 fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size(); 1165 } 1166 1167 uint32_t CodeSignatureSection::getBlockCount() const { 1168 return (fileOff + blockSize - 1) / blockSize; 1169 } 1170 1171 uint64_t CodeSignatureSection::getRawSize() const { 1172 return allHeadersSize + getBlockCount() * hashSize; 1173 } 1174 1175 void CodeSignatureSection::writeHashes(uint8_t *buf) const { 1176 uint8_t *code = buf; 1177 uint8_t *codeEnd = buf + fileOff; 1178 uint8_t *hashes = codeEnd + allHeadersSize; 1179 while (code < codeEnd) { 1180 StringRef block(reinterpret_cast<char *>(code), 1181 std::min(codeEnd - code, static_cast<ssize_t>(blockSize))); 1182 SHA256 hasher; 1183 hasher.update(block); 1184 StringRef hash = hasher.final(); 1185 assert(hash.size() == hashSize); 1186 memcpy(hashes, hash.data(), hashSize); 1187 code += blockSize; 1188 hashes += hashSize; 1189 } 1190 #if defined(__APPLE__) 1191 // This is macOS-specific work-around and makes no sense for any 1192 // other host OS. See https://openradar.appspot.com/FB8914231 1193 // 1194 // The macOS kernel maintains a signature-verification cache to 1195 // quickly validate applications at time of execve(2). The trouble 1196 // is that for the kernel creates the cache entry at the time of the 1197 // mmap(2) call, before we have a chance to write either the code to 1198 // sign or the signature header+hashes. The fix is to invalidate 1199 // all cached data associated with the output file, thus discarding 1200 // the bogus prematurely-cached signature. 1201 msync(buf, fileOff + getSize(), MS_INVALIDATE); 1202 #endif 1203 } 1204 1205 void CodeSignatureSection::writeTo(uint8_t *buf) const { 1206 uint32_t signatureSize = static_cast<uint32_t>(getSize()); 1207 auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf); 1208 write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE); 1209 write32be(&superBlob->length, signatureSize); 1210 write32be(&superBlob->count, 1); 1211 auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]); 1212 write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY); 1213 write32be(&blobIndex->offset, blobHeadersSize); 1214 auto *codeDirectory = 1215 reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize); 1216 write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY); 1217 write32be(&codeDirectory->length, signatureSize - blobHeadersSize); 1218 write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG); 1219 write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED); 1220 write32be(&codeDirectory->hashOffset, 1221 sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad); 1222 write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory)); 1223 codeDirectory->nSpecialSlots = 0; 1224 write32be(&codeDirectory->nCodeSlots, getBlockCount()); 1225 write32be(&codeDirectory->codeLimit, fileOff); 1226 codeDirectory->hashSize = static_cast<uint8_t>(hashSize); 1227 codeDirectory->hashType = kSecCodeSignatureHashSHA256; 1228 codeDirectory->platform = 0; 1229 codeDirectory->pageSize = blockSizeShift; 1230 codeDirectory->spare2 = 0; 1231 codeDirectory->scatterOffset = 0; 1232 codeDirectory->teamOffset = 0; 1233 codeDirectory->spare3 = 0; 1234 codeDirectory->codeLimit64 = 0; 1235 OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text); 1236 write64be(&codeDirectory->execSegBase, textSeg->fileOff); 1237 write64be(&codeDirectory->execSegLimit, textSeg->fileSize); 1238 write64be(&codeDirectory->execSegFlags, 1239 config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0); 1240 auto *id = reinterpret_cast<char *>(&codeDirectory[1]); 1241 memcpy(id, fileName.begin(), fileName.size()); 1242 memset(id + fileName.size(), 0, fileNamePad); 1243 } 1244 1245 BitcodeBundleSection::BitcodeBundleSection() 1246 : SyntheticSection(segment_names::llvm, section_names::bitcodeBundle) {} 1247 1248 class ErrorCodeWrapper { 1249 public: 1250 explicit ErrorCodeWrapper(std::error_code ec) : errorCode(ec.value()) {} 1251 explicit ErrorCodeWrapper(int ec) : errorCode(ec) {} 1252 operator int() const { return errorCode; } 1253 1254 private: 1255 int errorCode; 1256 }; 1257 1258 #define CHECK_EC(exp) \ 1259 do { \ 1260 ErrorCodeWrapper ec(exp); \ 1261 if (ec) \ 1262 fatal(Twine("operation failed with error code ") + Twine(ec) + ": " + \ 1263 #exp); \ 1264 } while (0); 1265 1266 void BitcodeBundleSection::finalize() { 1267 #ifdef LLVM_HAVE_LIBXAR 1268 using namespace llvm::sys::fs; 1269 CHECK_EC(createTemporaryFile("bitcode-bundle", "xar", xarPath)); 1270 1271 xar_t xar(xar_open(xarPath.data(), O_RDWR)); 1272 if (!xar) 1273 fatal("failed to open XAR temporary file at " + xarPath); 1274 CHECK_EC(xar_opt_set(xar, XAR_OPT_COMPRESSION, XAR_OPT_VAL_NONE)); 1275 // FIXME: add more data to XAR 1276 CHECK_EC(xar_close(xar)); 1277 1278 file_size(xarPath, xarSize); 1279 #endif // defined(LLVM_HAVE_LIBXAR) 1280 } 1281 1282 void BitcodeBundleSection::writeTo(uint8_t *buf) const { 1283 using namespace llvm::sys::fs; 1284 file_t handle = 1285 CHECK(openNativeFile(xarPath, CD_OpenExisting, FA_Read, OF_None), 1286 "failed to open XAR file"); 1287 std::error_code ec; 1288 mapped_file_region xarMap(handle, mapped_file_region::mapmode::readonly, 1289 xarSize, 0, ec); 1290 if (ec) 1291 fatal("failed to map XAR file"); 1292 memcpy(buf, xarMap.const_data(), xarSize); 1293 1294 closeFile(handle); 1295 remove(xarPath); 1296 } 1297 1298 CStringSection::CStringSection() 1299 : SyntheticSection(segment_names::text, section_names::cString) { 1300 flags = S_CSTRING_LITERALS; 1301 } 1302 1303 void CStringSection::addInput(CStringInputSection *isec) { 1304 isec->parent = this; 1305 inputs.push_back(isec); 1306 if (isec->align > align) 1307 align = isec->align; 1308 } 1309 1310 void CStringSection::writeTo(uint8_t *buf) const { 1311 for (const CStringInputSection *isec : inputs) { 1312 for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) { 1313 if (!isec->pieces[i].live) 1314 continue; 1315 StringRef string = isec->getStringRef(i); 1316 memcpy(buf + isec->pieces[i].outSecOff, string.data(), string.size()); 1317 } 1318 } 1319 } 1320 1321 void CStringSection::finalizeContents() { 1322 uint64_t offset = 0; 1323 for (CStringInputSection *isec : inputs) { 1324 for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) { 1325 if (!isec->pieces[i].live) 1326 continue; 1327 uint32_t pieceAlign = MinAlign(isec->pieces[i].inSecOff, align); 1328 offset = alignTo(offset, pieceAlign); 1329 isec->pieces[i].outSecOff = offset; 1330 isec->isFinal = true; 1331 StringRef string = isec->getStringRef(i); 1332 offset += string.size(); 1333 } 1334 } 1335 size = offset; 1336 } 1337 // Mergeable cstring literals are found under the __TEXT,__cstring section. In 1338 // contrast to ELF, which puts strings that need different alignments into 1339 // different sections, clang's Mach-O backend puts them all in one section. 1340 // Strings that need to be aligned have the .p2align directive emitted before 1341 // them, which simply translates into zero padding in the object file. 1342 // 1343 // I *think* ld64 extracts the desired per-string alignment from this data by 1344 // preserving each string's offset from the last section-aligned address. I'm 1345 // not entirely certain since it doesn't seem consistent about doing this, and 1346 // in fact doesn't seem to be correct in general: we can in fact can induce ld64 1347 // to produce a crashing binary just by linking in an additional object file 1348 // that only contains a duplicate cstring at a different alignment. See PR50563 1349 // for details. 1350 // 1351 // On x86_64, the cstrings we've seen so far that require special alignment are 1352 // all accessed by SIMD operations -- x86_64 requires SIMD accesses to be 1353 // 16-byte-aligned. arm64 also seems to require 16-byte-alignment in some cases 1354 // (PR50791), but I haven't tracked down the root cause. So for now, I'm just 1355 // aligning all strings to 16 bytes. This is indeed wasteful, but 1356 // implementation-wise it's simpler than preserving per-string 1357 // alignment+offsets. It also avoids the aforementioned crash after 1358 // deduplication of differently-aligned strings. Finally, the overhead is not 1359 // huge: using 16-byte alignment (vs no alignment) is only a 0.5% size overhead 1360 // when linking chromium_framework on x86_64. 1361 DeduplicatedCStringSection::DeduplicatedCStringSection() 1362 : builder(StringTableBuilder::RAW, /*Alignment=*/16) {} 1363 1364 void DeduplicatedCStringSection::finalizeContents() { 1365 // Add all string pieces to the string table builder to create section 1366 // contents. 1367 for (const CStringInputSection *isec : inputs) 1368 for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) 1369 if (isec->pieces[i].live) 1370 builder.add(isec->getCachedHashStringRef(i)); 1371 1372 // Fix the string table content. After this, the contents will never change. 1373 builder.finalizeInOrder(); 1374 1375 // finalize() fixed tail-optimized strings, so we can now get 1376 // offsets of strings. Get an offset for each string and save it 1377 // to a corresponding SectionPiece for easy access. 1378 for (CStringInputSection *isec : inputs) { 1379 for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) { 1380 if (!isec->pieces[i].live) 1381 continue; 1382 isec->pieces[i].outSecOff = 1383 builder.getOffset(isec->getCachedHashStringRef(i)); 1384 isec->isFinal = true; 1385 } 1386 } 1387 } 1388 1389 // This section is actually emitted as __TEXT,__const by ld64, but clang may 1390 // emit input sections of that name, and LLD doesn't currently support mixing 1391 // synthetic and concat-type OutputSections. To work around this, I've given 1392 // our merged-literals section a different name. 1393 WordLiteralSection::WordLiteralSection() 1394 : SyntheticSection(segment_names::text, section_names::literals) { 1395 align = 16; 1396 } 1397 1398 void WordLiteralSection::addInput(WordLiteralInputSection *isec) { 1399 isec->parent = this; 1400 inputs.push_back(isec); 1401 } 1402 1403 void WordLiteralSection::finalizeContents() { 1404 for (WordLiteralInputSection *isec : inputs) { 1405 // We do all processing of the InputSection here, so it will be effectively 1406 // finalized. 1407 isec->isFinal = true; 1408 const uint8_t *buf = isec->data.data(); 1409 switch (sectionType(isec->getFlags())) { 1410 case S_4BYTE_LITERALS: { 1411 for (size_t off = 0, e = isec->data.size(); off < e; off += 4) { 1412 if (!isec->isLive(off)) 1413 continue; 1414 uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off); 1415 literal4Map.emplace(value, literal4Map.size()); 1416 } 1417 break; 1418 } 1419 case S_8BYTE_LITERALS: { 1420 for (size_t off = 0, e = isec->data.size(); off < e; off += 8) { 1421 if (!isec->isLive(off)) 1422 continue; 1423 uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off); 1424 literal8Map.emplace(value, literal8Map.size()); 1425 } 1426 break; 1427 } 1428 case S_16BYTE_LITERALS: { 1429 for (size_t off = 0, e = isec->data.size(); off < e; off += 16) { 1430 if (!isec->isLive(off)) 1431 continue; 1432 UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off); 1433 literal16Map.emplace(value, literal16Map.size()); 1434 } 1435 break; 1436 } 1437 default: 1438 llvm_unreachable("invalid literal section type"); 1439 } 1440 } 1441 } 1442 1443 void WordLiteralSection::writeTo(uint8_t *buf) const { 1444 // Note that we don't attempt to do any endianness conversion in addInput(), 1445 // so we don't do it here either -- just write out the original value, 1446 // byte-for-byte. 1447 for (const auto &p : literal16Map) 1448 memcpy(buf + p.second * 16, &p.first, 16); 1449 buf += literal16Map.size() * 16; 1450 1451 for (const auto &p : literal8Map) 1452 memcpy(buf + p.second * 8, &p.first, 8); 1453 buf += literal8Map.size() * 8; 1454 1455 for (const auto &p : literal4Map) 1456 memcpy(buf + p.second * 4, &p.first, 4); 1457 } 1458 1459 void macho::createSyntheticSymbols() { 1460 auto addHeaderSymbol = [](const char *name) { 1461 symtab->addSynthetic(name, in.header->isec, /*value=*/0, 1462 /*privateExtern=*/true, /*includeInSymtab=*/false, 1463 /*referencedDynamically=*/false); 1464 }; 1465 1466 switch (config->outputType) { 1467 // FIXME: Assign the right address value for these symbols 1468 // (rather than 0). But we need to do that after assignAddresses(). 1469 case MH_EXECUTE: 1470 // If linking PIE, __mh_execute_header is a defined symbol in 1471 // __TEXT, __text) 1472 // Otherwise, it's an absolute symbol. 1473 if (config->isPic) 1474 symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0, 1475 /*privateExtern=*/false, /*includeInSymtab=*/true, 1476 /*referencedDynamically=*/true); 1477 else 1478 symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0, 1479 /*privateExtern=*/false, /*includeInSymtab=*/true, 1480 /*referencedDynamically=*/true); 1481 break; 1482 1483 // The following symbols are N_SECT symbols, even though the header is not 1484 // part of any section and that they are private to the bundle/dylib/object 1485 // they are part of. 1486 case MH_BUNDLE: 1487 addHeaderSymbol("__mh_bundle_header"); 1488 break; 1489 case MH_DYLIB: 1490 addHeaderSymbol("__mh_dylib_header"); 1491 break; 1492 case MH_DYLINKER: 1493 addHeaderSymbol("__mh_dylinker_header"); 1494 break; 1495 case MH_OBJECT: 1496 addHeaderSymbol("__mh_object_header"); 1497 break; 1498 default: 1499 llvm_unreachable("unexpected outputType"); 1500 break; 1501 } 1502 1503 // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit 1504 // which does e.g. cleanup of static global variables. The ABI document 1505 // says that the pointer can point to any address in one of the dylib's 1506 // segments, but in practice ld64 seems to set it to point to the header, 1507 // so that's what's implemented here. 1508 addHeaderSymbol("___dso_handle"); 1509 } 1510 1511 template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &); 1512 template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &); 1513