1 //===-- CommandObjectMemory.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "CommandObjectMemory.h"
10 #include "CommandObjectMemoryTag.h"
11 #include "lldb/Core/DumpDataExtractor.h"
12 #include "lldb/Core/Section.h"
13 #include "lldb/Core/ValueObjectMemory.h"
14 #include "lldb/Expression/ExpressionVariable.h"
15 #include "lldb/Host/OptionParser.h"
16 #include "lldb/Interpreter/CommandReturnObject.h"
17 #include "lldb/Interpreter/OptionArgParser.h"
18 #include "lldb/Interpreter/OptionGroupFormat.h"
19 #include "lldb/Interpreter/OptionGroupOutputFile.h"
20 #include "lldb/Interpreter/OptionGroupValueObjectDisplay.h"
21 #include "lldb/Interpreter/OptionValueLanguage.h"
22 #include "lldb/Interpreter/OptionValueString.h"
23 #include "lldb/Interpreter/Options.h"
24 #include "lldb/Symbol/SymbolFile.h"
25 #include "lldb/Symbol/TypeList.h"
26 #include "lldb/Target/Language.h"
27 #include "lldb/Target/MemoryHistory.h"
28 #include "lldb/Target/MemoryRegionInfo.h"
29 #include "lldb/Target/Process.h"
30 #include "lldb/Target/StackFrame.h"
31 #include "lldb/Target/Target.h"
32 #include "lldb/Target/Thread.h"
33 #include "lldb/Utility/Args.h"
34 #include "lldb/Utility/DataBufferHeap.h"
35 #include "lldb/Utility/DataBufferLLVM.h"
36 #include "lldb/Utility/StreamString.h"
37 #include "llvm/Support/MathExtras.h"
38 #include <cinttypes>
39 #include <memory>
40 
41 using namespace lldb;
42 using namespace lldb_private;
43 
44 #define LLDB_OPTIONS_memory_read
45 #include "CommandOptions.inc"
46 
47 class OptionGroupReadMemory : public OptionGroup {
48 public:
49   OptionGroupReadMemory()
50       : m_num_per_line(1, 1), m_view_as_type(), m_offset(0, 0),
51         m_language_for_type(eLanguageTypeUnknown) {}
52 
53   ~OptionGroupReadMemory() override = default;
54 
55   llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
56     return llvm::makeArrayRef(g_memory_read_options);
57   }
58 
59   Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
60                         ExecutionContext *execution_context) override {
61     Status error;
62     const int short_option = g_memory_read_options[option_idx].short_option;
63 
64     switch (short_option) {
65     case 'l':
66       error = m_num_per_line.SetValueFromString(option_value);
67       if (m_num_per_line.GetCurrentValue() == 0)
68         error.SetErrorStringWithFormat(
69             "invalid value for --num-per-line option '%s'",
70             option_value.str().c_str());
71       break;
72 
73     case 'b':
74       m_output_as_binary = true;
75       break;
76 
77     case 't':
78       error = m_view_as_type.SetValueFromString(option_value);
79       break;
80 
81     case 'r':
82       m_force = true;
83       break;
84 
85     case 'x':
86       error = m_language_for_type.SetValueFromString(option_value);
87       break;
88 
89     case 'E':
90       error = m_offset.SetValueFromString(option_value);
91       break;
92 
93     default:
94       llvm_unreachable("Unimplemented option");
95     }
96     return error;
97   }
98 
99   void OptionParsingStarting(ExecutionContext *execution_context) override {
100     m_num_per_line.Clear();
101     m_output_as_binary = false;
102     m_view_as_type.Clear();
103     m_force = false;
104     m_offset.Clear();
105     m_language_for_type.Clear();
106   }
107 
108   Status FinalizeSettings(Target *target, OptionGroupFormat &format_options) {
109     Status error;
110     OptionValueUInt64 &byte_size_value = format_options.GetByteSizeValue();
111     OptionValueUInt64 &count_value = format_options.GetCountValue();
112     const bool byte_size_option_set = byte_size_value.OptionWasSet();
113     const bool num_per_line_option_set = m_num_per_line.OptionWasSet();
114     const bool count_option_set = format_options.GetCountValue().OptionWasSet();
115 
116     switch (format_options.GetFormat()) {
117     default:
118       break;
119 
120     case eFormatBoolean:
121       if (!byte_size_option_set)
122         byte_size_value = 1;
123       if (!num_per_line_option_set)
124         m_num_per_line = 1;
125       if (!count_option_set)
126         format_options.GetCountValue() = 8;
127       break;
128 
129     case eFormatCString:
130       break;
131 
132     case eFormatInstruction:
133       if (count_option_set)
134         byte_size_value = target->GetArchitecture().GetMaximumOpcodeByteSize();
135       m_num_per_line = 1;
136       break;
137 
138     case eFormatAddressInfo:
139       if (!byte_size_option_set)
140         byte_size_value = target->GetArchitecture().GetAddressByteSize();
141       m_num_per_line = 1;
142       if (!count_option_set)
143         format_options.GetCountValue() = 8;
144       break;
145 
146     case eFormatPointer:
147       byte_size_value = target->GetArchitecture().GetAddressByteSize();
148       if (!num_per_line_option_set)
149         m_num_per_line = 4;
150       if (!count_option_set)
151         format_options.GetCountValue() = 8;
152       break;
153 
154     case eFormatBinary:
155     case eFormatFloat:
156     case eFormatOctal:
157     case eFormatDecimal:
158     case eFormatEnum:
159     case eFormatUnicode8:
160     case eFormatUnicode16:
161     case eFormatUnicode32:
162     case eFormatUnsigned:
163     case eFormatHexFloat:
164       if (!byte_size_option_set)
165         byte_size_value = 4;
166       if (!num_per_line_option_set)
167         m_num_per_line = 1;
168       if (!count_option_set)
169         format_options.GetCountValue() = 8;
170       break;
171 
172     case eFormatBytes:
173     case eFormatBytesWithASCII:
174       if (byte_size_option_set) {
175         if (byte_size_value > 1)
176           error.SetErrorStringWithFormat(
177               "display format (bytes/bytes with ASCII) conflicts with the "
178               "specified byte size %" PRIu64 "\n"
179               "\tconsider using a different display format or don't specify "
180               "the byte size.",
181               byte_size_value.GetCurrentValue());
182       } else
183         byte_size_value = 1;
184       if (!num_per_line_option_set)
185         m_num_per_line = 16;
186       if (!count_option_set)
187         format_options.GetCountValue() = 32;
188       break;
189 
190     case eFormatCharArray:
191     case eFormatChar:
192     case eFormatCharPrintable:
193       if (!byte_size_option_set)
194         byte_size_value = 1;
195       if (!num_per_line_option_set)
196         m_num_per_line = 32;
197       if (!count_option_set)
198         format_options.GetCountValue() = 64;
199       break;
200 
201     case eFormatComplex:
202       if (!byte_size_option_set)
203         byte_size_value = 8;
204       if (!num_per_line_option_set)
205         m_num_per_line = 1;
206       if (!count_option_set)
207         format_options.GetCountValue() = 8;
208       break;
209 
210     case eFormatComplexInteger:
211       if (!byte_size_option_set)
212         byte_size_value = 8;
213       if (!num_per_line_option_set)
214         m_num_per_line = 1;
215       if (!count_option_set)
216         format_options.GetCountValue() = 8;
217       break;
218 
219     case eFormatHex:
220       if (!byte_size_option_set)
221         byte_size_value = 4;
222       if (!num_per_line_option_set) {
223         switch (byte_size_value) {
224         case 1:
225         case 2:
226           m_num_per_line = 8;
227           break;
228         case 4:
229           m_num_per_line = 4;
230           break;
231         case 8:
232           m_num_per_line = 2;
233           break;
234         default:
235           m_num_per_line = 1;
236           break;
237         }
238       }
239       if (!count_option_set)
240         count_value = 8;
241       break;
242 
243     case eFormatVectorOfChar:
244     case eFormatVectorOfSInt8:
245     case eFormatVectorOfUInt8:
246     case eFormatVectorOfSInt16:
247     case eFormatVectorOfUInt16:
248     case eFormatVectorOfSInt32:
249     case eFormatVectorOfUInt32:
250     case eFormatVectorOfSInt64:
251     case eFormatVectorOfUInt64:
252     case eFormatVectorOfFloat16:
253     case eFormatVectorOfFloat32:
254     case eFormatVectorOfFloat64:
255     case eFormatVectorOfUInt128:
256       if (!byte_size_option_set)
257         byte_size_value = 128;
258       if (!num_per_line_option_set)
259         m_num_per_line = 1;
260       if (!count_option_set)
261         count_value = 4;
262       break;
263     }
264     return error;
265   }
266 
267   bool AnyOptionWasSet() const {
268     return m_num_per_line.OptionWasSet() || m_output_as_binary ||
269            m_view_as_type.OptionWasSet() || m_offset.OptionWasSet() ||
270            m_language_for_type.OptionWasSet();
271   }
272 
273   OptionValueUInt64 m_num_per_line;
274   bool m_output_as_binary = false;
275   OptionValueString m_view_as_type;
276   bool m_force;
277   OptionValueUInt64 m_offset;
278   OptionValueLanguage m_language_for_type;
279 };
280 
281 // Read memory from the inferior process
282 class CommandObjectMemoryRead : public CommandObjectParsed {
283 public:
284   CommandObjectMemoryRead(CommandInterpreter &interpreter)
285       : CommandObjectParsed(
286             interpreter, "memory read",
287             "Read from the memory of the current target process.", nullptr,
288             eCommandRequiresTarget | eCommandProcessMustBePaused),
289         m_option_group(), m_format_options(eFormatBytesWithASCII, 1, 8),
290         m_memory_options(), m_outfile_options(), m_varobj_options(),
291         m_next_addr(LLDB_INVALID_ADDRESS), m_prev_byte_size(0),
292         m_prev_format_options(eFormatBytesWithASCII, 1, 8),
293         m_prev_memory_options(), m_prev_outfile_options(),
294         m_prev_varobj_options() {
295     CommandArgumentEntry arg1;
296     CommandArgumentEntry arg2;
297     CommandArgumentData start_addr_arg;
298     CommandArgumentData end_addr_arg;
299 
300     // Define the first (and only) variant of this arg.
301     start_addr_arg.arg_type = eArgTypeAddressOrExpression;
302     start_addr_arg.arg_repetition = eArgRepeatPlain;
303 
304     // There is only one variant this argument could be; put it into the
305     // argument entry.
306     arg1.push_back(start_addr_arg);
307 
308     // Define the first (and only) variant of this arg.
309     end_addr_arg.arg_type = eArgTypeAddressOrExpression;
310     end_addr_arg.arg_repetition = eArgRepeatOptional;
311 
312     // There is only one variant this argument could be; put it into the
313     // argument entry.
314     arg2.push_back(end_addr_arg);
315 
316     // Push the data for the first argument into the m_arguments vector.
317     m_arguments.push_back(arg1);
318     m_arguments.push_back(arg2);
319 
320     // Add the "--format" and "--count" options to group 1 and 3
321     m_option_group.Append(&m_format_options,
322                           OptionGroupFormat::OPTION_GROUP_FORMAT |
323                               OptionGroupFormat::OPTION_GROUP_COUNT,
324                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
325     m_option_group.Append(&m_format_options,
326                           OptionGroupFormat::OPTION_GROUP_GDB_FMT,
327                           LLDB_OPT_SET_1 | LLDB_OPT_SET_3);
328     // Add the "--size" option to group 1 and 2
329     m_option_group.Append(&m_format_options,
330                           OptionGroupFormat::OPTION_GROUP_SIZE,
331                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
332     m_option_group.Append(&m_memory_options);
333     m_option_group.Append(&m_outfile_options, LLDB_OPT_SET_ALL,
334                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
335     m_option_group.Append(&m_varobj_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_3);
336     m_option_group.Finalize();
337   }
338 
339   ~CommandObjectMemoryRead() override = default;
340 
341   Options *GetOptions() override { return &m_option_group; }
342 
343   const char *GetRepeatCommand(Args &current_command_args,
344                                uint32_t index) override {
345     return m_cmd_name.c_str();
346   }
347 
348 protected:
349   bool DoExecute(Args &command, CommandReturnObject &result) override {
350     // No need to check "target" for validity as eCommandRequiresTarget ensures
351     // it is valid
352     Target *target = m_exe_ctx.GetTargetPtr();
353 
354     const size_t argc = command.GetArgumentCount();
355 
356     if ((argc == 0 && m_next_addr == LLDB_INVALID_ADDRESS) || argc > 2) {
357       result.AppendErrorWithFormat("%s takes a start address expression with "
358                                    "an optional end address expression.\n",
359                                    m_cmd_name.c_str());
360       result.AppendWarning("Expressions should be quoted if they contain "
361                            "spaces or other special characters.");
362       return false;
363     }
364 
365     CompilerType compiler_type;
366     Status error;
367 
368     const char *view_as_type_cstr =
369         m_memory_options.m_view_as_type.GetCurrentValue();
370     if (view_as_type_cstr && view_as_type_cstr[0]) {
371       // We are viewing memory as a type
372 
373       const bool exact_match = false;
374       TypeList type_list;
375       uint32_t reference_count = 0;
376       uint32_t pointer_count = 0;
377       size_t idx;
378 
379 #define ALL_KEYWORDS                                                           \
380   KEYWORD("const")                                                             \
381   KEYWORD("volatile")                                                          \
382   KEYWORD("restrict")                                                          \
383   KEYWORD("struct")                                                            \
384   KEYWORD("class")                                                             \
385   KEYWORD("union")
386 
387 #define KEYWORD(s) s,
388       static const char *g_keywords[] = {ALL_KEYWORDS};
389 #undef KEYWORD
390 
391 #define KEYWORD(s) (sizeof(s) - 1),
392       static const int g_keyword_lengths[] = {ALL_KEYWORDS};
393 #undef KEYWORD
394 
395 #undef ALL_KEYWORDS
396 
397       static size_t g_num_keywords = sizeof(g_keywords) / sizeof(const char *);
398       std::string type_str(view_as_type_cstr);
399 
400       // Remove all instances of g_keywords that are followed by spaces
401       for (size_t i = 0; i < g_num_keywords; ++i) {
402         const char *keyword = g_keywords[i];
403         int keyword_len = g_keyword_lengths[i];
404 
405         idx = 0;
406         while ((idx = type_str.find(keyword, idx)) != std::string::npos) {
407           if (type_str[idx + keyword_len] == ' ' ||
408               type_str[idx + keyword_len] == '\t') {
409             type_str.erase(idx, keyword_len + 1);
410             idx = 0;
411           } else {
412             idx += keyword_len;
413           }
414         }
415       }
416       bool done = type_str.empty();
417       //
418       idx = type_str.find_first_not_of(" \t");
419       if (idx > 0 && idx != std::string::npos)
420         type_str.erase(0, idx);
421       while (!done) {
422         // Strip trailing spaces
423         if (type_str.empty())
424           done = true;
425         else {
426           switch (type_str[type_str.size() - 1]) {
427           case '*':
428             ++pointer_count;
429             LLVM_FALLTHROUGH;
430           case ' ':
431           case '\t':
432             type_str.erase(type_str.size() - 1);
433             break;
434 
435           case '&':
436             if (reference_count == 0) {
437               reference_count = 1;
438               type_str.erase(type_str.size() - 1);
439             } else {
440               result.AppendErrorWithFormat("invalid type string: '%s'\n",
441                                            view_as_type_cstr);
442               return false;
443             }
444             break;
445 
446           default:
447             done = true;
448             break;
449           }
450         }
451       }
452 
453       llvm::DenseSet<lldb_private::SymbolFile *> searched_symbol_files;
454       ConstString lookup_type_name(type_str.c_str());
455       StackFrame *frame = m_exe_ctx.GetFramePtr();
456       ModuleSP search_first;
457       if (frame) {
458         search_first = frame->GetSymbolContext(eSymbolContextModule).module_sp;
459       }
460       target->GetImages().FindTypes(search_first.get(), lookup_type_name,
461                                     exact_match, 1, searched_symbol_files,
462                                     type_list);
463 
464       if (type_list.GetSize() == 0 && lookup_type_name.GetCString()) {
465         LanguageType language_for_type =
466             m_memory_options.m_language_for_type.GetCurrentValue();
467         std::set<LanguageType> languages_to_check;
468         if (language_for_type != eLanguageTypeUnknown) {
469           languages_to_check.insert(language_for_type);
470         } else {
471           languages_to_check = Language::GetSupportedLanguages();
472         }
473 
474         std::set<CompilerType> user_defined_types;
475         for (auto lang : languages_to_check) {
476           if (auto *persistent_vars =
477                   target->GetPersistentExpressionStateForLanguage(lang)) {
478             if (llvm::Optional<CompilerType> type =
479                     persistent_vars->GetCompilerTypeFromPersistentDecl(
480                         lookup_type_name)) {
481               user_defined_types.emplace(*type);
482             }
483           }
484         }
485 
486         if (user_defined_types.size() > 1) {
487           result.AppendErrorWithFormat(
488               "Mutiple types found matching raw type '%s', please disambiguate "
489               "by specifying the language with -x",
490               lookup_type_name.GetCString());
491           return false;
492         }
493 
494         if (user_defined_types.size() == 1) {
495           compiler_type = *user_defined_types.begin();
496         }
497       }
498 
499       if (!compiler_type.IsValid()) {
500         if (type_list.GetSize() == 0) {
501           result.AppendErrorWithFormat("unable to find any types that match "
502                                        "the raw type '%s' for full type '%s'\n",
503                                        lookup_type_name.GetCString(),
504                                        view_as_type_cstr);
505           return false;
506         } else {
507           TypeSP type_sp(type_list.GetTypeAtIndex(0));
508           compiler_type = type_sp->GetFullCompilerType();
509         }
510       }
511 
512       while (pointer_count > 0) {
513         CompilerType pointer_type = compiler_type.GetPointerType();
514         if (pointer_type.IsValid())
515           compiler_type = pointer_type;
516         else {
517           result.AppendError("unable make a pointer type\n");
518           return false;
519         }
520         --pointer_count;
521       }
522 
523       llvm::Optional<uint64_t> size = compiler_type.GetByteSize(nullptr);
524       if (!size) {
525         result.AppendErrorWithFormat(
526             "unable to get the byte size of the type '%s'\n",
527             view_as_type_cstr);
528         return false;
529       }
530       m_format_options.GetByteSizeValue() = *size;
531 
532       if (!m_format_options.GetCountValue().OptionWasSet())
533         m_format_options.GetCountValue() = 1;
534     } else {
535       error = m_memory_options.FinalizeSettings(target, m_format_options);
536     }
537 
538     // Look for invalid combinations of settings
539     if (error.Fail()) {
540       result.AppendError(error.AsCString());
541       return false;
542     }
543 
544     lldb::addr_t addr;
545     size_t total_byte_size = 0;
546     if (argc == 0) {
547       // Use the last address and byte size and all options as they were if no
548       // options have been set
549       addr = m_next_addr;
550       total_byte_size = m_prev_byte_size;
551       compiler_type = m_prev_compiler_type;
552       if (!m_format_options.AnyOptionWasSet() &&
553           !m_memory_options.AnyOptionWasSet() &&
554           !m_outfile_options.AnyOptionWasSet() &&
555           !m_varobj_options.AnyOptionWasSet()) {
556         m_format_options = m_prev_format_options;
557         m_memory_options = m_prev_memory_options;
558         m_outfile_options = m_prev_outfile_options;
559         m_varobj_options = m_prev_varobj_options;
560       }
561     }
562 
563     size_t item_count = m_format_options.GetCountValue().GetCurrentValue();
564 
565     // TODO For non-8-bit byte addressable architectures this needs to be
566     // revisited to fully support all lldb's range of formatting options.
567     // Furthermore code memory reads (for those architectures) will not be
568     // correctly formatted even w/o formatting options.
569     size_t item_byte_size =
570         target->GetArchitecture().GetDataByteSize() > 1
571             ? target->GetArchitecture().GetDataByteSize()
572             : m_format_options.GetByteSizeValue().GetCurrentValue();
573 
574     const size_t num_per_line =
575         m_memory_options.m_num_per_line.GetCurrentValue();
576 
577     if (total_byte_size == 0) {
578       total_byte_size = item_count * item_byte_size;
579       if (total_byte_size == 0)
580         total_byte_size = 32;
581     }
582 
583     if (argc > 0)
584       addr = OptionArgParser::ToAddress(&m_exe_ctx, command[0].ref(),
585                                         LLDB_INVALID_ADDRESS, &error);
586 
587     if (addr == LLDB_INVALID_ADDRESS) {
588       result.AppendError("invalid start address expression.");
589       result.AppendError(error.AsCString());
590       return false;
591     }
592 
593     if (argc == 2) {
594       lldb::addr_t end_addr = OptionArgParser::ToAddress(
595           &m_exe_ctx, command[1].ref(), LLDB_INVALID_ADDRESS, nullptr);
596       if (end_addr == LLDB_INVALID_ADDRESS) {
597         result.AppendError("invalid end address expression.");
598         result.AppendError(error.AsCString());
599         return false;
600       } else if (end_addr <= addr) {
601         result.AppendErrorWithFormat(
602             "end address (0x%" PRIx64
603             ") must be greater than the start address (0x%" PRIx64 ").\n",
604             end_addr, addr);
605         return false;
606       } else if (m_format_options.GetCountValue().OptionWasSet()) {
607         result.AppendErrorWithFormat(
608             "specify either the end address (0x%" PRIx64
609             ") or the count (--count %" PRIu64 "), not both.\n",
610             end_addr, (uint64_t)item_count);
611         return false;
612       }
613 
614       total_byte_size = end_addr - addr;
615       item_count = total_byte_size / item_byte_size;
616     }
617 
618     uint32_t max_unforced_size = target->GetMaximumMemReadSize();
619 
620     if (total_byte_size > max_unforced_size && !m_memory_options.m_force) {
621       result.AppendErrorWithFormat(
622           "Normally, \'memory read\' will not read over %" PRIu32
623           " bytes of data.\n",
624           max_unforced_size);
625       result.AppendErrorWithFormat(
626           "Please use --force to override this restriction just once.\n");
627       result.AppendErrorWithFormat("or set target.max-memory-read-size if you "
628                                    "will often need a larger limit.\n");
629       return false;
630     }
631 
632     DataBufferSP data_sp;
633     size_t bytes_read = 0;
634     if (compiler_type.GetOpaqueQualType()) {
635       // Make sure we don't display our type as ASCII bytes like the default
636       // memory read
637       if (!m_format_options.GetFormatValue().OptionWasSet())
638         m_format_options.GetFormatValue().SetCurrentValue(eFormatDefault);
639 
640       llvm::Optional<uint64_t> size = compiler_type.GetByteSize(nullptr);
641       if (!size) {
642         result.AppendError("can't get size of type");
643         return false;
644       }
645       bytes_read = *size * m_format_options.GetCountValue().GetCurrentValue();
646 
647       if (argc > 0)
648         addr = addr + (*size * m_memory_options.m_offset.GetCurrentValue());
649     } else if (m_format_options.GetFormatValue().GetCurrentValue() !=
650                eFormatCString) {
651       data_sp = std::make_shared<DataBufferHeap>(total_byte_size, '\0');
652       if (data_sp->GetBytes() == nullptr) {
653         result.AppendErrorWithFormat(
654             "can't allocate 0x%" PRIx32
655             " bytes for the memory read buffer, specify a smaller size to read",
656             (uint32_t)total_byte_size);
657         return false;
658       }
659 
660       Address address(addr, nullptr);
661       bytes_read = target->ReadMemory(address, data_sp->GetBytes(),
662                                       data_sp->GetByteSize(), error, true);
663       if (bytes_read == 0) {
664         const char *error_cstr = error.AsCString();
665         if (error_cstr && error_cstr[0]) {
666           result.AppendError(error_cstr);
667         } else {
668           result.AppendErrorWithFormat(
669               "failed to read memory from 0x%" PRIx64 ".\n", addr);
670         }
671         return false;
672       }
673 
674       if (bytes_read < total_byte_size)
675         result.AppendWarningWithFormat(
676             "Not all bytes (%" PRIu64 "/%" PRIu64
677             ") were able to be read from 0x%" PRIx64 ".\n",
678             (uint64_t)bytes_read, (uint64_t)total_byte_size, addr);
679     } else {
680       // we treat c-strings as a special case because they do not have a fixed
681       // size
682       if (m_format_options.GetByteSizeValue().OptionWasSet() &&
683           !m_format_options.HasGDBFormat())
684         item_byte_size = m_format_options.GetByteSizeValue().GetCurrentValue();
685       else
686         item_byte_size = target->GetMaximumSizeOfStringSummary();
687       if (!m_format_options.GetCountValue().OptionWasSet())
688         item_count = 1;
689       data_sp = std::make_shared<DataBufferHeap>(
690           (item_byte_size + 1) * item_count,
691           '\0'); // account for NULLs as necessary
692       if (data_sp->GetBytes() == nullptr) {
693         result.AppendErrorWithFormat(
694             "can't allocate 0x%" PRIx64
695             " bytes for the memory read buffer, specify a smaller size to read",
696             (uint64_t)((item_byte_size + 1) * item_count));
697         return false;
698       }
699       uint8_t *data_ptr = data_sp->GetBytes();
700       auto data_addr = addr;
701       auto count = item_count;
702       item_count = 0;
703       bool break_on_no_NULL = false;
704       while (item_count < count) {
705         std::string buffer;
706         buffer.resize(item_byte_size + 1, 0);
707         Status error;
708         size_t read = target->ReadCStringFromMemory(data_addr, &buffer[0],
709                                                     item_byte_size + 1, error);
710         if (error.Fail()) {
711           result.AppendErrorWithFormat(
712               "failed to read memory from 0x%" PRIx64 ".\n", addr);
713           return false;
714         }
715 
716         if (item_byte_size == read) {
717           result.AppendWarningWithFormat(
718               "unable to find a NULL terminated string at 0x%" PRIx64
719               ".Consider increasing the maximum read length.\n",
720               data_addr);
721           --read;
722           break_on_no_NULL = true;
723         } else
724           ++read; // account for final NULL byte
725 
726         memcpy(data_ptr, &buffer[0], read);
727         data_ptr += read;
728         data_addr += read;
729         bytes_read += read;
730         item_count++; // if we break early we know we only read item_count
731                       // strings
732 
733         if (break_on_no_NULL)
734           break;
735       }
736       data_sp =
737           std::make_shared<DataBufferHeap>(data_sp->GetBytes(), bytes_read + 1);
738     }
739 
740     m_next_addr = addr + bytes_read;
741     m_prev_byte_size = bytes_read;
742     m_prev_format_options = m_format_options;
743     m_prev_memory_options = m_memory_options;
744     m_prev_outfile_options = m_outfile_options;
745     m_prev_varobj_options = m_varobj_options;
746     m_prev_compiler_type = compiler_type;
747 
748     std::unique_ptr<Stream> output_stream_storage;
749     Stream *output_stream_p = nullptr;
750     const FileSpec &outfile_spec =
751         m_outfile_options.GetFile().GetCurrentValue();
752 
753     std::string path = outfile_spec.GetPath();
754     if (outfile_spec) {
755 
756       File::OpenOptions open_options =
757           File::eOpenOptionWrite | File::eOpenOptionCanCreate;
758       const bool append = m_outfile_options.GetAppend().GetCurrentValue();
759       open_options |=
760           append ? File::eOpenOptionAppend : File::eOpenOptionTruncate;
761 
762       auto outfile = FileSystem::Instance().Open(outfile_spec, open_options);
763 
764       if (outfile) {
765         auto outfile_stream_up =
766             std::make_unique<StreamFile>(std::move(outfile.get()));
767         if (m_memory_options.m_output_as_binary) {
768           const size_t bytes_written =
769               outfile_stream_up->Write(data_sp->GetBytes(), bytes_read);
770           if (bytes_written > 0) {
771             result.GetOutputStream().Printf(
772                 "%zi bytes %s to '%s'\n", bytes_written,
773                 append ? "appended" : "written", path.c_str());
774             return true;
775           } else {
776             result.AppendErrorWithFormat("Failed to write %" PRIu64
777                                          " bytes to '%s'.\n",
778                                          (uint64_t)bytes_read, path.c_str());
779             return false;
780           }
781         } else {
782           // We are going to write ASCII to the file just point the
783           // output_stream to our outfile_stream...
784           output_stream_storage = std::move(outfile_stream_up);
785           output_stream_p = output_stream_storage.get();
786         }
787       } else {
788         result.AppendErrorWithFormat("Failed to open file '%s' for %s:\n",
789                                      path.c_str(), append ? "append" : "write");
790 
791         result.AppendError(llvm::toString(outfile.takeError()));
792         return false;
793       }
794     } else {
795       output_stream_p = &result.GetOutputStream();
796     }
797 
798     ExecutionContextScope *exe_scope = m_exe_ctx.GetBestExecutionContextScope();
799     if (compiler_type.GetOpaqueQualType()) {
800       for (uint32_t i = 0; i < item_count; ++i) {
801         addr_t item_addr = addr + (i * item_byte_size);
802         Address address(item_addr);
803         StreamString name_strm;
804         name_strm.Printf("0x%" PRIx64, item_addr);
805         ValueObjectSP valobj_sp(ValueObjectMemory::Create(
806             exe_scope, name_strm.GetString(), address, compiler_type));
807         if (valobj_sp) {
808           Format format = m_format_options.GetFormat();
809           if (format != eFormatDefault)
810             valobj_sp->SetFormat(format);
811 
812           DumpValueObjectOptions options(m_varobj_options.GetAsDumpOptions(
813               eLanguageRuntimeDescriptionDisplayVerbosityFull, format));
814 
815           valobj_sp->Dump(*output_stream_p, options);
816         } else {
817           result.AppendErrorWithFormat(
818               "failed to create a value object for: (%s) %s\n",
819               view_as_type_cstr, name_strm.GetData());
820           return false;
821         }
822       }
823       return true;
824     }
825 
826     result.SetStatus(eReturnStatusSuccessFinishResult);
827     DataExtractor data(data_sp, target->GetArchitecture().GetByteOrder(),
828                        target->GetArchitecture().GetAddressByteSize(),
829                        target->GetArchitecture().GetDataByteSize());
830 
831     Format format = m_format_options.GetFormat();
832     if (((format == eFormatChar) || (format == eFormatCharPrintable)) &&
833         (item_byte_size != 1)) {
834       // if a count was not passed, or it is 1
835       if (!m_format_options.GetCountValue().OptionWasSet() || item_count == 1) {
836         // this turns requests such as
837         // memory read -fc -s10 -c1 *charPtrPtr
838         // which make no sense (what is a char of size 10?) into a request for
839         // fetching 10 chars of size 1 from the same memory location
840         format = eFormatCharArray;
841         item_count = item_byte_size;
842         item_byte_size = 1;
843       } else {
844         // here we passed a count, and it was not 1 so we have a byte_size and
845         // a count we could well multiply those, but instead let's just fail
846         result.AppendErrorWithFormat(
847             "reading memory as characters of size %" PRIu64 " is not supported",
848             (uint64_t)item_byte_size);
849         return false;
850       }
851     }
852 
853     assert(output_stream_p);
854     size_t bytes_dumped = DumpDataExtractor(
855         data, output_stream_p, 0, format, item_byte_size, item_count,
856         num_per_line / target->GetArchitecture().GetDataByteSize(), addr, 0, 0,
857         exe_scope);
858     m_next_addr = addr + bytes_dumped;
859     output_stream_p->EOL();
860     return true;
861   }
862 
863   OptionGroupOptions m_option_group;
864   OptionGroupFormat m_format_options;
865   OptionGroupReadMemory m_memory_options;
866   OptionGroupOutputFile m_outfile_options;
867   OptionGroupValueObjectDisplay m_varobj_options;
868   lldb::addr_t m_next_addr;
869   lldb::addr_t m_prev_byte_size;
870   OptionGroupFormat m_prev_format_options;
871   OptionGroupReadMemory m_prev_memory_options;
872   OptionGroupOutputFile m_prev_outfile_options;
873   OptionGroupValueObjectDisplay m_prev_varobj_options;
874   CompilerType m_prev_compiler_type;
875 };
876 
877 #define LLDB_OPTIONS_memory_find
878 #include "CommandOptions.inc"
879 
880 // Find the specified data in memory
881 class CommandObjectMemoryFind : public CommandObjectParsed {
882 public:
883   class OptionGroupFindMemory : public OptionGroup {
884   public:
885     OptionGroupFindMemory() : OptionGroup(), m_count(1), m_offset(0) {}
886 
887     ~OptionGroupFindMemory() override = default;
888 
889     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
890       return llvm::makeArrayRef(g_memory_find_options);
891     }
892 
893     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
894                           ExecutionContext *execution_context) override {
895       Status error;
896       const int short_option = g_memory_find_options[option_idx].short_option;
897 
898       switch (short_option) {
899       case 'e':
900         m_expr.SetValueFromString(option_value);
901         break;
902 
903       case 's':
904         m_string.SetValueFromString(option_value);
905         break;
906 
907       case 'c':
908         if (m_count.SetValueFromString(option_value).Fail())
909           error.SetErrorString("unrecognized value for count");
910         break;
911 
912       case 'o':
913         if (m_offset.SetValueFromString(option_value).Fail())
914           error.SetErrorString("unrecognized value for dump-offset");
915         break;
916 
917       default:
918         llvm_unreachable("Unimplemented option");
919       }
920       return error;
921     }
922 
923     void OptionParsingStarting(ExecutionContext *execution_context) override {
924       m_expr.Clear();
925       m_string.Clear();
926       m_count.Clear();
927     }
928 
929     OptionValueString m_expr;
930     OptionValueString m_string;
931     OptionValueUInt64 m_count;
932     OptionValueUInt64 m_offset;
933   };
934 
935   CommandObjectMemoryFind(CommandInterpreter &interpreter)
936       : CommandObjectParsed(
937             interpreter, "memory find",
938             "Find a value in the memory of the current target process.",
939             nullptr, eCommandRequiresProcess | eCommandProcessMustBeLaunched),
940         m_option_group(), m_memory_options() {
941     CommandArgumentEntry arg1;
942     CommandArgumentEntry arg2;
943     CommandArgumentData addr_arg;
944     CommandArgumentData value_arg;
945 
946     // Define the first (and only) variant of this arg.
947     addr_arg.arg_type = eArgTypeAddressOrExpression;
948     addr_arg.arg_repetition = eArgRepeatPlain;
949 
950     // There is only one variant this argument could be; put it into the
951     // argument entry.
952     arg1.push_back(addr_arg);
953 
954     // Define the first (and only) variant of this arg.
955     value_arg.arg_type = eArgTypeAddressOrExpression;
956     value_arg.arg_repetition = eArgRepeatPlain;
957 
958     // There is only one variant this argument could be; put it into the
959     // argument entry.
960     arg2.push_back(value_arg);
961 
962     // Push the data for the first argument into the m_arguments vector.
963     m_arguments.push_back(arg1);
964     m_arguments.push_back(arg2);
965 
966     m_option_group.Append(&m_memory_options);
967     m_option_group.Finalize();
968   }
969 
970   ~CommandObjectMemoryFind() override = default;
971 
972   Options *GetOptions() override { return &m_option_group; }
973 
974 protected:
975   class ProcessMemoryIterator {
976   public:
977     ProcessMemoryIterator(ProcessSP process_sp, lldb::addr_t base)
978         : m_process_sp(process_sp), m_base_addr(base), m_is_valid(true) {
979       lldbassert(process_sp.get() != nullptr);
980     }
981 
982     bool IsValid() { return m_is_valid; }
983 
984     uint8_t operator[](lldb::addr_t offset) {
985       if (!IsValid())
986         return 0;
987 
988       uint8_t retval = 0;
989       Status error;
990       if (0 ==
991           m_process_sp->ReadMemory(m_base_addr + offset, &retval, 1, error)) {
992         m_is_valid = false;
993         return 0;
994       }
995 
996       return retval;
997     }
998 
999   private:
1000     ProcessSP m_process_sp;
1001     lldb::addr_t m_base_addr;
1002     bool m_is_valid;
1003   };
1004   bool DoExecute(Args &command, CommandReturnObject &result) override {
1005     // No need to check "process" for validity as eCommandRequiresProcess
1006     // ensures it is valid
1007     Process *process = m_exe_ctx.GetProcessPtr();
1008 
1009     const size_t argc = command.GetArgumentCount();
1010 
1011     if (argc != 2) {
1012       result.AppendError("two addresses needed for memory find");
1013       return false;
1014     }
1015 
1016     Status error;
1017     lldb::addr_t low_addr = OptionArgParser::ToAddress(
1018         &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1019     if (low_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
1020       result.AppendError("invalid low address");
1021       return false;
1022     }
1023     lldb::addr_t high_addr = OptionArgParser::ToAddress(
1024         &m_exe_ctx, command[1].ref(), LLDB_INVALID_ADDRESS, &error);
1025     if (high_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
1026       result.AppendError("invalid high address");
1027       return false;
1028     }
1029 
1030     if (high_addr <= low_addr) {
1031       result.AppendError(
1032           "starting address must be smaller than ending address");
1033       return false;
1034     }
1035 
1036     lldb::addr_t found_location = LLDB_INVALID_ADDRESS;
1037 
1038     DataBufferHeap buffer;
1039 
1040     if (m_memory_options.m_string.OptionWasSet())
1041       buffer.CopyData(m_memory_options.m_string.GetStringValue());
1042     else if (m_memory_options.m_expr.OptionWasSet()) {
1043       StackFrame *frame = m_exe_ctx.GetFramePtr();
1044       ValueObjectSP result_sp;
1045       if ((eExpressionCompleted ==
1046            process->GetTarget().EvaluateExpression(
1047                m_memory_options.m_expr.GetStringValue(), frame, result_sp)) &&
1048           result_sp) {
1049         uint64_t value = result_sp->GetValueAsUnsigned(0);
1050         llvm::Optional<uint64_t> size =
1051             result_sp->GetCompilerType().GetByteSize(nullptr);
1052         if (!size)
1053           return false;
1054         switch (*size) {
1055         case 1: {
1056           uint8_t byte = (uint8_t)value;
1057           buffer.CopyData(&byte, 1);
1058         } break;
1059         case 2: {
1060           uint16_t word = (uint16_t)value;
1061           buffer.CopyData(&word, 2);
1062         } break;
1063         case 4: {
1064           uint32_t lword = (uint32_t)value;
1065           buffer.CopyData(&lword, 4);
1066         } break;
1067         case 8: {
1068           buffer.CopyData(&value, 8);
1069         } break;
1070         case 3:
1071         case 5:
1072         case 6:
1073         case 7:
1074           result.AppendError("unknown type. pass a string instead");
1075           return false;
1076         default:
1077           result.AppendError(
1078               "result size larger than 8 bytes. pass a string instead");
1079           return false;
1080         }
1081       } else {
1082         result.AppendError(
1083             "expression evaluation failed. pass a string instead");
1084         return false;
1085       }
1086     } else {
1087       result.AppendError(
1088           "please pass either a block of text, or an expression to evaluate.");
1089       return false;
1090     }
1091 
1092     size_t count = m_memory_options.m_count.GetCurrentValue();
1093     found_location = low_addr;
1094     bool ever_found = false;
1095     while (count) {
1096       found_location = FastSearch(found_location, high_addr, buffer.GetBytes(),
1097                                   buffer.GetByteSize());
1098       if (found_location == LLDB_INVALID_ADDRESS) {
1099         if (!ever_found) {
1100           result.AppendMessage("data not found within the range.\n");
1101           result.SetStatus(lldb::eReturnStatusSuccessFinishNoResult);
1102         } else
1103           result.AppendMessage("no more matches within the range.\n");
1104         break;
1105       }
1106       result.AppendMessageWithFormat("data found at location: 0x%" PRIx64 "\n",
1107                                      found_location);
1108 
1109       DataBufferHeap dumpbuffer(32, 0);
1110       process->ReadMemory(
1111           found_location + m_memory_options.m_offset.GetCurrentValue(),
1112           dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(), error);
1113       if (!error.Fail()) {
1114         DataExtractor data(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
1115                            process->GetByteOrder(),
1116                            process->GetAddressByteSize());
1117         DumpDataExtractor(
1118             data, &result.GetOutputStream(), 0, lldb::eFormatBytesWithASCII, 1,
1119             dumpbuffer.GetByteSize(), 16,
1120             found_location + m_memory_options.m_offset.GetCurrentValue(), 0, 0);
1121         result.GetOutputStream().EOL();
1122       }
1123 
1124       --count;
1125       found_location++;
1126       ever_found = true;
1127     }
1128 
1129     result.SetStatus(lldb::eReturnStatusSuccessFinishResult);
1130     return true;
1131   }
1132 
1133   lldb::addr_t FastSearch(lldb::addr_t low, lldb::addr_t high, uint8_t *buffer,
1134                           size_t buffer_size) {
1135     const size_t region_size = high - low;
1136 
1137     if (region_size < buffer_size)
1138       return LLDB_INVALID_ADDRESS;
1139 
1140     std::vector<size_t> bad_char_heuristic(256, buffer_size);
1141     ProcessSP process_sp = m_exe_ctx.GetProcessSP();
1142     ProcessMemoryIterator iterator(process_sp, low);
1143 
1144     for (size_t idx = 0; idx < buffer_size - 1; idx++) {
1145       decltype(bad_char_heuristic)::size_type bcu_idx = buffer[idx];
1146       bad_char_heuristic[bcu_idx] = buffer_size - idx - 1;
1147     }
1148     for (size_t s = 0; s <= (region_size - buffer_size);) {
1149       int64_t j = buffer_size - 1;
1150       while (j >= 0 && buffer[j] == iterator[s + j])
1151         j--;
1152       if (j < 0)
1153         return low + s;
1154       else
1155         s += bad_char_heuristic[iterator[s + buffer_size - 1]];
1156     }
1157 
1158     return LLDB_INVALID_ADDRESS;
1159   }
1160 
1161   OptionGroupOptions m_option_group;
1162   OptionGroupFindMemory m_memory_options;
1163 };
1164 
1165 #define LLDB_OPTIONS_memory_write
1166 #include "CommandOptions.inc"
1167 
1168 // Write memory to the inferior process
1169 class CommandObjectMemoryWrite : public CommandObjectParsed {
1170 public:
1171   class OptionGroupWriteMemory : public OptionGroup {
1172   public:
1173     OptionGroupWriteMemory() : OptionGroup() {}
1174 
1175     ~OptionGroupWriteMemory() override = default;
1176 
1177     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
1178       return llvm::makeArrayRef(g_memory_write_options);
1179     }
1180 
1181     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
1182                           ExecutionContext *execution_context) override {
1183       Status error;
1184       const int short_option = g_memory_write_options[option_idx].short_option;
1185 
1186       switch (short_option) {
1187       case 'i':
1188         m_infile.SetFile(option_value, FileSpec::Style::native);
1189         FileSystem::Instance().Resolve(m_infile);
1190         if (!FileSystem::Instance().Exists(m_infile)) {
1191           m_infile.Clear();
1192           error.SetErrorStringWithFormat("input file does not exist: '%s'",
1193                                          option_value.str().c_str());
1194         }
1195         break;
1196 
1197       case 'o': {
1198         if (option_value.getAsInteger(0, m_infile_offset)) {
1199           m_infile_offset = 0;
1200           error.SetErrorStringWithFormat("invalid offset string '%s'",
1201                                          option_value.str().c_str());
1202         }
1203       } break;
1204 
1205       default:
1206         llvm_unreachable("Unimplemented option");
1207       }
1208       return error;
1209     }
1210 
1211     void OptionParsingStarting(ExecutionContext *execution_context) override {
1212       m_infile.Clear();
1213       m_infile_offset = 0;
1214     }
1215 
1216     FileSpec m_infile;
1217     off_t m_infile_offset;
1218   };
1219 
1220   CommandObjectMemoryWrite(CommandInterpreter &interpreter)
1221       : CommandObjectParsed(
1222             interpreter, "memory write",
1223             "Write to the memory of the current target process.", nullptr,
1224             eCommandRequiresProcess | eCommandProcessMustBeLaunched),
1225         m_option_group(), m_format_options(eFormatBytes, 1, UINT64_MAX),
1226         m_memory_options() {
1227     CommandArgumentEntry arg1;
1228     CommandArgumentEntry arg2;
1229     CommandArgumentData addr_arg;
1230     CommandArgumentData value_arg;
1231 
1232     // Define the first (and only) variant of this arg.
1233     addr_arg.arg_type = eArgTypeAddress;
1234     addr_arg.arg_repetition = eArgRepeatPlain;
1235 
1236     // There is only one variant this argument could be; put it into the
1237     // argument entry.
1238     arg1.push_back(addr_arg);
1239 
1240     // Define the first (and only) variant of this arg.
1241     value_arg.arg_type = eArgTypeValue;
1242     value_arg.arg_repetition = eArgRepeatPlus;
1243 
1244     // There is only one variant this argument could be; put it into the
1245     // argument entry.
1246     arg2.push_back(value_arg);
1247 
1248     // Push the data for the first argument into the m_arguments vector.
1249     m_arguments.push_back(arg1);
1250     m_arguments.push_back(arg2);
1251 
1252     m_option_group.Append(&m_format_options,
1253                           OptionGroupFormat::OPTION_GROUP_FORMAT,
1254                           LLDB_OPT_SET_1);
1255     m_option_group.Append(&m_format_options,
1256                           OptionGroupFormat::OPTION_GROUP_SIZE,
1257                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
1258     m_option_group.Append(&m_memory_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_2);
1259     m_option_group.Finalize();
1260   }
1261 
1262   ~CommandObjectMemoryWrite() override = default;
1263 
1264   Options *GetOptions() override { return &m_option_group; }
1265 
1266 protected:
1267   bool DoExecute(Args &command, CommandReturnObject &result) override {
1268     // No need to check "process" for validity as eCommandRequiresProcess
1269     // ensures it is valid
1270     Process *process = m_exe_ctx.GetProcessPtr();
1271 
1272     const size_t argc = command.GetArgumentCount();
1273 
1274     if (m_memory_options.m_infile) {
1275       if (argc < 1) {
1276         result.AppendErrorWithFormat(
1277             "%s takes a destination address when writing file contents.\n",
1278             m_cmd_name.c_str());
1279         return false;
1280       }
1281     } else if (argc < 2) {
1282       result.AppendErrorWithFormat(
1283           "%s takes a destination address and at least one value.\n",
1284           m_cmd_name.c_str());
1285       return false;
1286     }
1287 
1288     StreamString buffer(
1289         Stream::eBinary,
1290         process->GetTarget().GetArchitecture().GetAddressByteSize(),
1291         process->GetTarget().GetArchitecture().GetByteOrder());
1292 
1293     OptionValueUInt64 &byte_size_value = m_format_options.GetByteSizeValue();
1294     size_t item_byte_size = byte_size_value.GetCurrentValue();
1295 
1296     Status error;
1297     lldb::addr_t addr = OptionArgParser::ToAddress(
1298         &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1299 
1300     if (addr == LLDB_INVALID_ADDRESS) {
1301       result.AppendError("invalid address expression\n");
1302       result.AppendError(error.AsCString());
1303       return false;
1304     }
1305 
1306     if (m_memory_options.m_infile) {
1307       size_t length = SIZE_MAX;
1308       if (item_byte_size > 1)
1309         length = item_byte_size;
1310       auto data_sp = FileSystem::Instance().CreateDataBuffer(
1311           m_memory_options.m_infile.GetPath(), length,
1312           m_memory_options.m_infile_offset);
1313       if (data_sp) {
1314         length = data_sp->GetByteSize();
1315         if (length > 0) {
1316           Status error;
1317           size_t bytes_written =
1318               process->WriteMemory(addr, data_sp->GetBytes(), length, error);
1319 
1320           if (bytes_written == length) {
1321             // All bytes written
1322             result.GetOutputStream().Printf(
1323                 "%" PRIu64 " bytes were written to 0x%" PRIx64 "\n",
1324                 (uint64_t)bytes_written, addr);
1325             result.SetStatus(eReturnStatusSuccessFinishResult);
1326           } else if (bytes_written > 0) {
1327             // Some byte written
1328             result.GetOutputStream().Printf(
1329                 "%" PRIu64 " bytes of %" PRIu64
1330                 " requested were written to 0x%" PRIx64 "\n",
1331                 (uint64_t)bytes_written, (uint64_t)length, addr);
1332             result.SetStatus(eReturnStatusSuccessFinishResult);
1333           } else {
1334             result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1335                                          " failed: %s.\n",
1336                                          addr, error.AsCString());
1337           }
1338         }
1339       } else {
1340         result.AppendErrorWithFormat("Unable to read contents of file.\n");
1341       }
1342       return result.Succeeded();
1343     } else if (item_byte_size == 0) {
1344       if (m_format_options.GetFormat() == eFormatPointer)
1345         item_byte_size = buffer.GetAddressByteSize();
1346       else
1347         item_byte_size = 1;
1348     }
1349 
1350     command.Shift(); // shift off the address argument
1351     uint64_t uval64;
1352     int64_t sval64;
1353     bool success = false;
1354     for (auto &entry : command) {
1355       switch (m_format_options.GetFormat()) {
1356       case kNumFormats:
1357       case eFormatFloat: // TODO: add support for floats soon
1358       case eFormatCharPrintable:
1359       case eFormatBytesWithASCII:
1360       case eFormatComplex:
1361       case eFormatEnum:
1362       case eFormatUnicode8:
1363       case eFormatUnicode16:
1364       case eFormatUnicode32:
1365       case eFormatVectorOfChar:
1366       case eFormatVectorOfSInt8:
1367       case eFormatVectorOfUInt8:
1368       case eFormatVectorOfSInt16:
1369       case eFormatVectorOfUInt16:
1370       case eFormatVectorOfSInt32:
1371       case eFormatVectorOfUInt32:
1372       case eFormatVectorOfSInt64:
1373       case eFormatVectorOfUInt64:
1374       case eFormatVectorOfFloat16:
1375       case eFormatVectorOfFloat32:
1376       case eFormatVectorOfFloat64:
1377       case eFormatVectorOfUInt128:
1378       case eFormatOSType:
1379       case eFormatComplexInteger:
1380       case eFormatAddressInfo:
1381       case eFormatHexFloat:
1382       case eFormatInstruction:
1383       case eFormatVoid:
1384         result.AppendError("unsupported format for writing memory");
1385         return false;
1386 
1387       case eFormatDefault:
1388       case eFormatBytes:
1389       case eFormatHex:
1390       case eFormatHexUppercase:
1391       case eFormatPointer: {
1392         // Decode hex bytes
1393         // Be careful, getAsInteger with a radix of 16 rejects "0xab" so we
1394         // have to special case that:
1395         bool success = false;
1396         if (entry.ref().startswith("0x"))
1397           success = !entry.ref().getAsInteger(0, uval64);
1398         if (!success)
1399           success = !entry.ref().getAsInteger(16, uval64);
1400         if (!success) {
1401           result.AppendErrorWithFormat(
1402               "'%s' is not a valid hex string value.\n", entry.c_str());
1403           return false;
1404         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1405           result.AppendErrorWithFormat("Value 0x%" PRIx64
1406                                        " is too large to fit in a %" PRIu64
1407                                        " byte unsigned integer value.\n",
1408                                        uval64, (uint64_t)item_byte_size);
1409           return false;
1410         }
1411         buffer.PutMaxHex64(uval64, item_byte_size);
1412         break;
1413       }
1414       case eFormatBoolean:
1415         uval64 = OptionArgParser::ToBoolean(entry.ref(), false, &success);
1416         if (!success) {
1417           result.AppendErrorWithFormat(
1418               "'%s' is not a valid boolean string value.\n", entry.c_str());
1419           return false;
1420         }
1421         buffer.PutMaxHex64(uval64, item_byte_size);
1422         break;
1423 
1424       case eFormatBinary:
1425         if (entry.ref().getAsInteger(2, uval64)) {
1426           result.AppendErrorWithFormat(
1427               "'%s' is not a valid binary string value.\n", entry.c_str());
1428           return false;
1429         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1430           result.AppendErrorWithFormat("Value 0x%" PRIx64
1431                                        " is too large to fit in a %" PRIu64
1432                                        " byte unsigned integer value.\n",
1433                                        uval64, (uint64_t)item_byte_size);
1434           return false;
1435         }
1436         buffer.PutMaxHex64(uval64, item_byte_size);
1437         break;
1438 
1439       case eFormatCharArray:
1440       case eFormatChar:
1441       case eFormatCString: {
1442         if (entry.ref().empty())
1443           break;
1444 
1445         size_t len = entry.ref().size();
1446         // Include the NULL for C strings...
1447         if (m_format_options.GetFormat() == eFormatCString)
1448           ++len;
1449         Status error;
1450         if (process->WriteMemory(addr, entry.c_str(), len, error) == len) {
1451           addr += len;
1452         } else {
1453           result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1454                                        " failed: %s.\n",
1455                                        addr, error.AsCString());
1456           return false;
1457         }
1458         break;
1459       }
1460       case eFormatDecimal:
1461         if (entry.ref().getAsInteger(0, sval64)) {
1462           result.AppendErrorWithFormat(
1463               "'%s' is not a valid signed decimal value.\n", entry.c_str());
1464           return false;
1465         } else if (!llvm::isIntN(item_byte_size * 8, sval64)) {
1466           result.AppendErrorWithFormat(
1467               "Value %" PRIi64 " is too large or small to fit in a %" PRIu64
1468               " byte signed integer value.\n",
1469               sval64, (uint64_t)item_byte_size);
1470           return false;
1471         }
1472         buffer.PutMaxHex64(sval64, item_byte_size);
1473         break;
1474 
1475       case eFormatUnsigned:
1476 
1477         if (entry.ref().getAsInteger(0, uval64)) {
1478           result.AppendErrorWithFormat(
1479               "'%s' is not a valid unsigned decimal string value.\n",
1480               entry.c_str());
1481           return false;
1482         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1483           result.AppendErrorWithFormat("Value %" PRIu64
1484                                        " is too large to fit in a %" PRIu64
1485                                        " byte unsigned integer value.\n",
1486                                        uval64, (uint64_t)item_byte_size);
1487           return false;
1488         }
1489         buffer.PutMaxHex64(uval64, item_byte_size);
1490         break;
1491 
1492       case eFormatOctal:
1493         if (entry.ref().getAsInteger(8, uval64)) {
1494           result.AppendErrorWithFormat(
1495               "'%s' is not a valid octal string value.\n", entry.c_str());
1496           return false;
1497         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1498           result.AppendErrorWithFormat("Value %" PRIo64
1499                                        " is too large to fit in a %" PRIu64
1500                                        " byte unsigned integer value.\n",
1501                                        uval64, (uint64_t)item_byte_size);
1502           return false;
1503         }
1504         buffer.PutMaxHex64(uval64, item_byte_size);
1505         break;
1506       }
1507     }
1508 
1509     if (!buffer.GetString().empty()) {
1510       Status error;
1511       if (process->WriteMemory(addr, buffer.GetString().data(),
1512                                buffer.GetString().size(),
1513                                error) == buffer.GetString().size())
1514         return true;
1515       else {
1516         result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1517                                      " failed: %s.\n",
1518                                      addr, error.AsCString());
1519         return false;
1520       }
1521     }
1522     return true;
1523   }
1524 
1525   OptionGroupOptions m_option_group;
1526   OptionGroupFormat m_format_options;
1527   OptionGroupWriteMemory m_memory_options;
1528 };
1529 
1530 // Get malloc/free history of a memory address.
1531 class CommandObjectMemoryHistory : public CommandObjectParsed {
1532 public:
1533   CommandObjectMemoryHistory(CommandInterpreter &interpreter)
1534       : CommandObjectParsed(interpreter, "memory history",
1535                             "Print recorded stack traces for "
1536                             "allocation/deallocation events "
1537                             "associated with an address.",
1538                             nullptr,
1539                             eCommandRequiresTarget | eCommandRequiresProcess |
1540                                 eCommandProcessMustBePaused |
1541                                 eCommandProcessMustBeLaunched) {
1542     CommandArgumentEntry arg1;
1543     CommandArgumentData addr_arg;
1544 
1545     // Define the first (and only) variant of this arg.
1546     addr_arg.arg_type = eArgTypeAddress;
1547     addr_arg.arg_repetition = eArgRepeatPlain;
1548 
1549     // There is only one variant this argument could be; put it into the
1550     // argument entry.
1551     arg1.push_back(addr_arg);
1552 
1553     // Push the data for the first argument into the m_arguments vector.
1554     m_arguments.push_back(arg1);
1555   }
1556 
1557   ~CommandObjectMemoryHistory() override = default;
1558 
1559   const char *GetRepeatCommand(Args &current_command_args,
1560                                uint32_t index) override {
1561     return m_cmd_name.c_str();
1562   }
1563 
1564 protected:
1565   bool DoExecute(Args &command, CommandReturnObject &result) override {
1566     const size_t argc = command.GetArgumentCount();
1567 
1568     if (argc == 0 || argc > 1) {
1569       result.AppendErrorWithFormat("%s takes an address expression",
1570                                    m_cmd_name.c_str());
1571       return false;
1572     }
1573 
1574     Status error;
1575     lldb::addr_t addr = OptionArgParser::ToAddress(
1576         &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1577 
1578     if (addr == LLDB_INVALID_ADDRESS) {
1579       result.AppendError("invalid address expression");
1580       result.AppendError(error.AsCString());
1581       return false;
1582     }
1583 
1584     Stream *output_stream = &result.GetOutputStream();
1585 
1586     const ProcessSP &process_sp = m_exe_ctx.GetProcessSP();
1587     const MemoryHistorySP &memory_history =
1588         MemoryHistory::FindPlugin(process_sp);
1589 
1590     if (!memory_history) {
1591       result.AppendError("no available memory history provider");
1592       return false;
1593     }
1594 
1595     HistoryThreads thread_list = memory_history->GetHistoryThreads(addr);
1596 
1597     const bool stop_format = false;
1598     for (auto thread : thread_list) {
1599       thread->GetStatus(*output_stream, 0, UINT32_MAX, 0, stop_format);
1600     }
1601 
1602     result.SetStatus(eReturnStatusSuccessFinishResult);
1603 
1604     return true;
1605   }
1606 };
1607 
1608 // CommandObjectMemoryRegion
1609 #pragma mark CommandObjectMemoryRegion
1610 
1611 class CommandObjectMemoryRegion : public CommandObjectParsed {
1612 public:
1613   CommandObjectMemoryRegion(CommandInterpreter &interpreter)
1614       : CommandObjectParsed(interpreter, "memory region",
1615                             "Get information on the memory region containing "
1616                             "an address in the current target process.",
1617                             "memory region ADDR",
1618                             eCommandRequiresProcess | eCommandTryTargetAPILock |
1619                                 eCommandProcessMustBeLaunched),
1620         m_prev_end_addr(LLDB_INVALID_ADDRESS) {}
1621 
1622   ~CommandObjectMemoryRegion() override = default;
1623 
1624 protected:
1625   bool DoExecute(Args &command, CommandReturnObject &result) override {
1626     ProcessSP process_sp = m_exe_ctx.GetProcessSP();
1627     if (!process_sp) {
1628       m_prev_end_addr = LLDB_INVALID_ADDRESS;
1629       result.AppendError("invalid process");
1630       return false;
1631     }
1632 
1633     Status error;
1634     lldb::addr_t load_addr = m_prev_end_addr;
1635     m_prev_end_addr = LLDB_INVALID_ADDRESS;
1636 
1637     const size_t argc = command.GetArgumentCount();
1638     if (argc > 1 || (argc == 0 && load_addr == LLDB_INVALID_ADDRESS)) {
1639       result.AppendErrorWithFormat("'%s' takes one argument:\nUsage: %s\n",
1640                                    m_cmd_name.c_str(), m_cmd_syntax.c_str());
1641       return false;
1642     }
1643 
1644     if (argc == 1) {
1645       auto load_addr_str = command[0].ref();
1646       load_addr = OptionArgParser::ToAddress(&m_exe_ctx, load_addr_str,
1647                                              LLDB_INVALID_ADDRESS, &error);
1648       if (error.Fail() || load_addr == LLDB_INVALID_ADDRESS) {
1649         result.AppendErrorWithFormat("invalid address argument \"%s\": %s\n",
1650                                      command[0].c_str(), error.AsCString());
1651         return false;
1652       }
1653     }
1654 
1655     lldb_private::MemoryRegionInfo range_info;
1656     error = process_sp->GetMemoryRegionInfo(load_addr, range_info);
1657     if (error.Success()) {
1658       lldb_private::Address addr;
1659       ConstString name = range_info.GetName();
1660       ConstString section_name;
1661       if (process_sp->GetTarget().ResolveLoadAddress(load_addr, addr)) {
1662         SectionSP section_sp(addr.GetSection());
1663         if (section_sp) {
1664           // Got the top most section, not the deepest section
1665           while (section_sp->GetParent())
1666             section_sp = section_sp->GetParent();
1667           section_name = section_sp->GetName();
1668         }
1669       }
1670 
1671       result.AppendMessageWithFormatv(
1672           "[{0:x16}-{1:x16}) {2:r}{3:w}{4:x}{5}{6}{7}{8}",
1673           range_info.GetRange().GetRangeBase(),
1674           range_info.GetRange().GetRangeEnd(), range_info.GetReadable(),
1675           range_info.GetWritable(), range_info.GetExecutable(), name ? " " : "",
1676           name, section_name ? " " : "", section_name);
1677       MemoryRegionInfo::OptionalBool memory_tagged =
1678           range_info.GetMemoryTagged();
1679       if (memory_tagged == MemoryRegionInfo::OptionalBool::eYes)
1680         result.AppendMessage("memory tagging: enabled");
1681 
1682       const llvm::Optional<std::vector<addr_t>> &dirty_page_list =
1683           range_info.GetDirtyPageList();
1684       if (dirty_page_list.hasValue()) {
1685         const size_t page_count = dirty_page_list.getValue().size();
1686         result.AppendMessageWithFormat(
1687             "Modified memory (dirty) page list provided, %zu entries.\n",
1688             page_count);
1689         if (page_count > 0) {
1690           bool print_comma = false;
1691           result.AppendMessageWithFormat("Dirty pages: ");
1692           for (size_t i = 0; i < page_count; i++) {
1693             if (print_comma)
1694               result.AppendMessageWithFormat(", ");
1695             else
1696               print_comma = true;
1697             result.AppendMessageWithFormat("0x%" PRIx64,
1698                                            dirty_page_list.getValue()[i]);
1699           }
1700           result.AppendMessageWithFormat(".\n");
1701         }
1702       }
1703 
1704       m_prev_end_addr = range_info.GetRange().GetRangeEnd();
1705       result.SetStatus(eReturnStatusSuccessFinishResult);
1706       return true;
1707     }
1708 
1709     result.AppendErrorWithFormat("%s\n", error.AsCString());
1710     return false;
1711   }
1712 
1713   const char *GetRepeatCommand(Args &current_command_args,
1714                                uint32_t index) override {
1715     // If we repeat this command, repeat it without any arguments so we can
1716     // show the next memory range
1717     return m_cmd_name.c_str();
1718   }
1719 
1720   lldb::addr_t m_prev_end_addr;
1721 };
1722 
1723 // CommandObjectMemory
1724 
1725 CommandObjectMemory::CommandObjectMemory(CommandInterpreter &interpreter)
1726     : CommandObjectMultiword(
1727           interpreter, "memory",
1728           "Commands for operating on memory in the current target process.",
1729           "memory <subcommand> [<subcommand-options>]") {
1730   LoadSubCommand("find",
1731                  CommandObjectSP(new CommandObjectMemoryFind(interpreter)));
1732   LoadSubCommand("read",
1733                  CommandObjectSP(new CommandObjectMemoryRead(interpreter)));
1734   LoadSubCommand("write",
1735                  CommandObjectSP(new CommandObjectMemoryWrite(interpreter)));
1736   LoadSubCommand("history",
1737                  CommandObjectSP(new CommandObjectMemoryHistory(interpreter)));
1738   LoadSubCommand("region",
1739                  CommandObjectSP(new CommandObjectMemoryRegion(interpreter)));
1740   LoadSubCommand("tag",
1741                  CommandObjectSP(new CommandObjectMemoryTag(interpreter)));
1742 }
1743 
1744 CommandObjectMemory::~CommandObjectMemory() = default;
1745