1 //===-- DWARFExpression.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Expression/DWARFExpression.h"
10 
11 #include <cinttypes>
12 
13 #include <vector>
14 
15 #include "lldb/Core/Module.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/dwarf.h"
18 #include "lldb/Utility/DataEncoder.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/RegisterValue.h"
21 #include "lldb/Utility/Scalar.h"
22 #include "lldb/Utility/StreamString.h"
23 #include "lldb/Utility/VMRange.h"
24 
25 #include "lldb/Host/Host.h"
26 #include "lldb/Utility/Endian.h"
27 
28 #include "lldb/Symbol/Function.h"
29 
30 #include "lldb/Target/ABI.h"
31 #include "lldb/Target/ExecutionContext.h"
32 #include "lldb/Target/Process.h"
33 #include "lldb/Target/RegisterContext.h"
34 #include "lldb/Target/StackFrame.h"
35 #include "lldb/Target/StackID.h"
36 #include "lldb/Target/Target.h"
37 #include "lldb/Target/Thread.h"
38 
39 #include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
40 
41 using namespace lldb;
42 using namespace lldb_private;
43 
44 static lldb::addr_t
45 ReadAddressFromDebugAddrSection(const DWARFUnit *dwarf_cu,
46                                 uint32_t index) {
47   uint32_t index_size = dwarf_cu->GetAddressByteSize();
48   dw_offset_t addr_base = dwarf_cu->GetAddrBase();
49   lldb::offset_t offset = addr_base + index * index_size;
50   const DWARFDataExtractor &data =
51       dwarf_cu->GetSymbolFileDWARF().GetDWARFContext().getOrLoadAddrData();
52   if (data.ValidOffsetForDataOfSize(offset, index_size))
53     return data.GetMaxU64_unchecked(&offset, index_size);
54   return LLDB_INVALID_ADDRESS;
55 }
56 
57 // DWARFExpression constructor
58 DWARFExpression::DWARFExpression() : m_module_wp(), m_data() {}
59 
60 DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp,
61                                  const DataExtractor &data,
62                                  const DWARFUnit *dwarf_cu)
63     : m_module_wp(), m_data(data), m_dwarf_cu(dwarf_cu),
64       m_reg_kind(eRegisterKindDWARF) {
65   if (module_sp)
66     m_module_wp = module_sp;
67 }
68 
69 // Destructor
70 DWARFExpression::~DWARFExpression() = default;
71 
72 bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
73 
74 void DWARFExpression::UpdateValue(uint64_t const_value,
75                                   lldb::offset_t const_value_byte_size,
76                                   uint8_t addr_byte_size) {
77   if (!const_value_byte_size)
78     return;
79 
80   m_data.SetData(
81       DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
82   m_data.SetByteOrder(endian::InlHostByteOrder());
83   m_data.SetAddressByteSize(addr_byte_size);
84 }
85 
86 void DWARFExpression::DumpLocation(Stream *s, const DataExtractor &data,
87                                    lldb::DescriptionLevel level,
88                                    ABI *abi) const {
89   llvm::DWARFExpression(data.GetAsLLVM(), data.GetAddressByteSize())
90       .print(s->AsRawOstream(), llvm::DIDumpOptions(),
91              abi ? &abi->GetMCRegisterInfo() : nullptr, nullptr);
92 }
93 
94 void DWARFExpression::SetLocationListAddresses(addr_t cu_file_addr,
95                                                addr_t func_file_addr) {
96   m_loclist_addresses = LoclistAddresses{cu_file_addr, func_file_addr};
97 }
98 
99 int DWARFExpression::GetRegisterKind() { return m_reg_kind; }
100 
101 void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
102   m_reg_kind = reg_kind;
103 }
104 
105 bool DWARFExpression::IsLocationList() const {
106   return bool(m_loclist_addresses);
107 }
108 
109 namespace {
110 /// Implement enough of the DWARFObject interface in order to be able to call
111 /// DWARFLocationTable::dumpLocationList. We don't have access to a real
112 /// DWARFObject here because DWARFExpression is used in non-DWARF scenarios too.
113 class DummyDWARFObject final: public llvm::DWARFObject {
114 public:
115   DummyDWARFObject(bool IsLittleEndian) : IsLittleEndian(IsLittleEndian) {}
116 
117   bool isLittleEndian() const override { return IsLittleEndian; }
118 
119   llvm::Optional<llvm::RelocAddrEntry> find(const llvm::DWARFSection &Sec,
120                                             uint64_t Pos) const override {
121     return llvm::None;
122   }
123 private:
124   bool IsLittleEndian;
125 };
126 }
127 
128 void DWARFExpression::GetDescription(Stream *s, lldb::DescriptionLevel level,
129                                      addr_t location_list_base_addr,
130                                      ABI *abi) const {
131   if (IsLocationList()) {
132     // We have a location list
133     lldb::offset_t offset = 0;
134     std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
135         m_dwarf_cu->GetLocationTable(m_data);
136 
137     llvm::MCRegisterInfo *MRI = abi ? &abi->GetMCRegisterInfo() : nullptr;
138     llvm::DIDumpOptions DumpOpts;
139     DumpOpts.RecoverableErrorHandler = [&](llvm::Error E) {
140       s->AsRawOstream() << "error: " << toString(std::move(E));
141     };
142     loctable_up->dumpLocationList(
143         &offset, s->AsRawOstream(),
144         llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr}, MRI,
145         DummyDWARFObject(m_data.GetByteOrder() == eByteOrderLittle), nullptr,
146         DumpOpts, s->GetIndentLevel() + 2);
147   } else {
148     // We have a normal location that contains DW_OP location opcodes
149     DumpLocation(s, m_data, level, abi);
150   }
151 }
152 
153 static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
154                                       lldb::RegisterKind reg_kind,
155                                       uint32_t reg_num, Status *error_ptr,
156                                       Value &value) {
157   if (reg_ctx == nullptr) {
158     if (error_ptr)
159       error_ptr->SetErrorString("No register context in frame.\n");
160   } else {
161     uint32_t native_reg =
162         reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
163     if (native_reg == LLDB_INVALID_REGNUM) {
164       if (error_ptr)
165         error_ptr->SetErrorStringWithFormat("Unable to convert register "
166                                             "kind=%u reg_num=%u to a native "
167                                             "register number.\n",
168                                             reg_kind, reg_num);
169     } else {
170       const RegisterInfo *reg_info =
171           reg_ctx->GetRegisterInfoAtIndex(native_reg);
172       RegisterValue reg_value;
173       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
174         if (reg_value.GetScalarValue(value.GetScalar())) {
175           value.SetValueType(Value::ValueType::Scalar);
176           value.SetContext(Value::ContextType::RegisterInfo,
177                            const_cast<RegisterInfo *>(reg_info));
178           if (error_ptr)
179             error_ptr->Clear();
180           return true;
181         } else {
182           // If we get this error, then we need to implement a value buffer in
183           // the dwarf expression evaluation function...
184           if (error_ptr)
185             error_ptr->SetErrorStringWithFormat(
186                 "register %s can't be converted to a scalar value",
187                 reg_info->name);
188         }
189       } else {
190         if (error_ptr)
191           error_ptr->SetErrorStringWithFormat("register %s is not available",
192                                               reg_info->name);
193       }
194     }
195   }
196   return false;
197 }
198 
199 /// Return the length in bytes of the set of operands for \p op. No guarantees
200 /// are made on the state of \p data after this call.
201 static offset_t GetOpcodeDataSize(const DataExtractor &data,
202                                   const lldb::offset_t data_offset,
203                                   const uint8_t op) {
204   lldb::offset_t offset = data_offset;
205   switch (op) {
206   case DW_OP_addr:
207   case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
208     return data.GetAddressByteSize();
209 
210   // Opcodes with no arguments
211   case DW_OP_deref:                // 0x06
212   case DW_OP_dup:                  // 0x12
213   case DW_OP_drop:                 // 0x13
214   case DW_OP_over:                 // 0x14
215   case DW_OP_swap:                 // 0x16
216   case DW_OP_rot:                  // 0x17
217   case DW_OP_xderef:               // 0x18
218   case DW_OP_abs:                  // 0x19
219   case DW_OP_and:                  // 0x1a
220   case DW_OP_div:                  // 0x1b
221   case DW_OP_minus:                // 0x1c
222   case DW_OP_mod:                  // 0x1d
223   case DW_OP_mul:                  // 0x1e
224   case DW_OP_neg:                  // 0x1f
225   case DW_OP_not:                  // 0x20
226   case DW_OP_or:                   // 0x21
227   case DW_OP_plus:                 // 0x22
228   case DW_OP_shl:                  // 0x24
229   case DW_OP_shr:                  // 0x25
230   case DW_OP_shra:                 // 0x26
231   case DW_OP_xor:                  // 0x27
232   case DW_OP_eq:                   // 0x29
233   case DW_OP_ge:                   // 0x2a
234   case DW_OP_gt:                   // 0x2b
235   case DW_OP_le:                   // 0x2c
236   case DW_OP_lt:                   // 0x2d
237   case DW_OP_ne:                   // 0x2e
238   case DW_OP_lit0:                 // 0x30
239   case DW_OP_lit1:                 // 0x31
240   case DW_OP_lit2:                 // 0x32
241   case DW_OP_lit3:                 // 0x33
242   case DW_OP_lit4:                 // 0x34
243   case DW_OP_lit5:                 // 0x35
244   case DW_OP_lit6:                 // 0x36
245   case DW_OP_lit7:                 // 0x37
246   case DW_OP_lit8:                 // 0x38
247   case DW_OP_lit9:                 // 0x39
248   case DW_OP_lit10:                // 0x3A
249   case DW_OP_lit11:                // 0x3B
250   case DW_OP_lit12:                // 0x3C
251   case DW_OP_lit13:                // 0x3D
252   case DW_OP_lit14:                // 0x3E
253   case DW_OP_lit15:                // 0x3F
254   case DW_OP_lit16:                // 0x40
255   case DW_OP_lit17:                // 0x41
256   case DW_OP_lit18:                // 0x42
257   case DW_OP_lit19:                // 0x43
258   case DW_OP_lit20:                // 0x44
259   case DW_OP_lit21:                // 0x45
260   case DW_OP_lit22:                // 0x46
261   case DW_OP_lit23:                // 0x47
262   case DW_OP_lit24:                // 0x48
263   case DW_OP_lit25:                // 0x49
264   case DW_OP_lit26:                // 0x4A
265   case DW_OP_lit27:                // 0x4B
266   case DW_OP_lit28:                // 0x4C
267   case DW_OP_lit29:                // 0x4D
268   case DW_OP_lit30:                // 0x4E
269   case DW_OP_lit31:                // 0x4f
270   case DW_OP_reg0:                 // 0x50
271   case DW_OP_reg1:                 // 0x51
272   case DW_OP_reg2:                 // 0x52
273   case DW_OP_reg3:                 // 0x53
274   case DW_OP_reg4:                 // 0x54
275   case DW_OP_reg5:                 // 0x55
276   case DW_OP_reg6:                 // 0x56
277   case DW_OP_reg7:                 // 0x57
278   case DW_OP_reg8:                 // 0x58
279   case DW_OP_reg9:                 // 0x59
280   case DW_OP_reg10:                // 0x5A
281   case DW_OP_reg11:                // 0x5B
282   case DW_OP_reg12:                // 0x5C
283   case DW_OP_reg13:                // 0x5D
284   case DW_OP_reg14:                // 0x5E
285   case DW_OP_reg15:                // 0x5F
286   case DW_OP_reg16:                // 0x60
287   case DW_OP_reg17:                // 0x61
288   case DW_OP_reg18:                // 0x62
289   case DW_OP_reg19:                // 0x63
290   case DW_OP_reg20:                // 0x64
291   case DW_OP_reg21:                // 0x65
292   case DW_OP_reg22:                // 0x66
293   case DW_OP_reg23:                // 0x67
294   case DW_OP_reg24:                // 0x68
295   case DW_OP_reg25:                // 0x69
296   case DW_OP_reg26:                // 0x6A
297   case DW_OP_reg27:                // 0x6B
298   case DW_OP_reg28:                // 0x6C
299   case DW_OP_reg29:                // 0x6D
300   case DW_OP_reg30:                // 0x6E
301   case DW_OP_reg31:                // 0x6F
302   case DW_OP_nop:                  // 0x96
303   case DW_OP_push_object_address:  // 0x97 DWARF3
304   case DW_OP_form_tls_address:     // 0x9b DWARF3
305   case DW_OP_call_frame_cfa:       // 0x9c DWARF3
306   case DW_OP_stack_value:          // 0x9f DWARF4
307   case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
308     return 0;
309 
310   // Opcodes with a single 1 byte arguments
311   case DW_OP_const1u:     // 0x08 1 1-byte constant
312   case DW_OP_const1s:     // 0x09 1 1-byte constant
313   case DW_OP_pick:        // 0x15 1 1-byte stack index
314   case DW_OP_deref_size:  // 0x94 1 1-byte size of data retrieved
315   case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
316     return 1;
317 
318   // Opcodes with a single 2 byte arguments
319   case DW_OP_const2u: // 0x0a 1 2-byte constant
320   case DW_OP_const2s: // 0x0b 1 2-byte constant
321   case DW_OP_skip:    // 0x2f 1 signed 2-byte constant
322   case DW_OP_bra:     // 0x28 1 signed 2-byte constant
323   case DW_OP_call2:   // 0x98 1 2-byte offset of DIE (DWARF3)
324     return 2;
325 
326   // Opcodes with a single 4 byte arguments
327   case DW_OP_const4u: // 0x0c 1 4-byte constant
328   case DW_OP_const4s: // 0x0d 1 4-byte constant
329   case DW_OP_call4:   // 0x99 1 4-byte offset of DIE (DWARF3)
330     return 4;
331 
332   // Opcodes with a single 8 byte arguments
333   case DW_OP_const8u: // 0x0e 1 8-byte constant
334   case DW_OP_const8s: // 0x0f 1 8-byte constant
335     return 8;
336 
337   // All opcodes that have a single ULEB (signed or unsigned) argument
338   case DW_OP_addrx:           // 0xa1 1 ULEB128 index
339   case DW_OP_constu:          // 0x10 1 ULEB128 constant
340   case DW_OP_consts:          // 0x11 1 SLEB128 constant
341   case DW_OP_plus_uconst:     // 0x23 1 ULEB128 addend
342   case DW_OP_breg0:           // 0x70 1 ULEB128 register
343   case DW_OP_breg1:           // 0x71 1 ULEB128 register
344   case DW_OP_breg2:           // 0x72 1 ULEB128 register
345   case DW_OP_breg3:           // 0x73 1 ULEB128 register
346   case DW_OP_breg4:           // 0x74 1 ULEB128 register
347   case DW_OP_breg5:           // 0x75 1 ULEB128 register
348   case DW_OP_breg6:           // 0x76 1 ULEB128 register
349   case DW_OP_breg7:           // 0x77 1 ULEB128 register
350   case DW_OP_breg8:           // 0x78 1 ULEB128 register
351   case DW_OP_breg9:           // 0x79 1 ULEB128 register
352   case DW_OP_breg10:          // 0x7a 1 ULEB128 register
353   case DW_OP_breg11:          // 0x7b 1 ULEB128 register
354   case DW_OP_breg12:          // 0x7c 1 ULEB128 register
355   case DW_OP_breg13:          // 0x7d 1 ULEB128 register
356   case DW_OP_breg14:          // 0x7e 1 ULEB128 register
357   case DW_OP_breg15:          // 0x7f 1 ULEB128 register
358   case DW_OP_breg16:          // 0x80 1 ULEB128 register
359   case DW_OP_breg17:          // 0x81 1 ULEB128 register
360   case DW_OP_breg18:          // 0x82 1 ULEB128 register
361   case DW_OP_breg19:          // 0x83 1 ULEB128 register
362   case DW_OP_breg20:          // 0x84 1 ULEB128 register
363   case DW_OP_breg21:          // 0x85 1 ULEB128 register
364   case DW_OP_breg22:          // 0x86 1 ULEB128 register
365   case DW_OP_breg23:          // 0x87 1 ULEB128 register
366   case DW_OP_breg24:          // 0x88 1 ULEB128 register
367   case DW_OP_breg25:          // 0x89 1 ULEB128 register
368   case DW_OP_breg26:          // 0x8a 1 ULEB128 register
369   case DW_OP_breg27:          // 0x8b 1 ULEB128 register
370   case DW_OP_breg28:          // 0x8c 1 ULEB128 register
371   case DW_OP_breg29:          // 0x8d 1 ULEB128 register
372   case DW_OP_breg30:          // 0x8e 1 ULEB128 register
373   case DW_OP_breg31:          // 0x8f 1 ULEB128 register
374   case DW_OP_regx:            // 0x90 1 ULEB128 register
375   case DW_OP_fbreg:           // 0x91 1 SLEB128 offset
376   case DW_OP_piece:           // 0x93 1 ULEB128 size of piece addressed
377   case DW_OP_GNU_addr_index:  // 0xfb 1 ULEB128 index
378   case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
379     data.Skip_LEB128(&offset);
380     return offset - data_offset;
381 
382   // All opcodes that have a 2 ULEB (signed or unsigned) arguments
383   case DW_OP_bregx:     // 0x92 2 ULEB128 register followed by SLEB128 offset
384   case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
385     data.Skip_LEB128(&offset);
386     data.Skip_LEB128(&offset);
387     return offset - data_offset;
388 
389   case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
390                              // (DWARF4)
391   {
392     uint64_t block_len = data.Skip_LEB128(&offset);
393     offset += block_len;
394     return offset - data_offset;
395   }
396 
397   case DW_OP_GNU_entry_value:
398   case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
399   {
400     uint64_t subexpr_len = data.GetULEB128(&offset);
401     return (offset - data_offset) + subexpr_len;
402   }
403 
404   default:
405     break;
406   }
407   return LLDB_INVALID_OFFSET;
408 }
409 
410 lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(uint32_t op_addr_idx,
411                                                      bool &error) const {
412   error = false;
413   if (IsLocationList())
414     return LLDB_INVALID_ADDRESS;
415   lldb::offset_t offset = 0;
416   uint32_t curr_op_addr_idx = 0;
417   while (m_data.ValidOffset(offset)) {
418     const uint8_t op = m_data.GetU8(&offset);
419 
420     if (op == DW_OP_addr) {
421       const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
422       if (curr_op_addr_idx == op_addr_idx)
423         return op_file_addr;
424       else
425         ++curr_op_addr_idx;
426     } else if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
427       uint64_t index = m_data.GetULEB128(&offset);
428       if (curr_op_addr_idx == op_addr_idx) {
429         if (!m_dwarf_cu) {
430           error = true;
431           break;
432         }
433 
434         return ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
435       } else
436         ++curr_op_addr_idx;
437     } else {
438       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
439       if (op_arg_size == LLDB_INVALID_OFFSET) {
440         error = true;
441         break;
442       }
443       offset += op_arg_size;
444     }
445   }
446   return LLDB_INVALID_ADDRESS;
447 }
448 
449 bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) {
450   if (IsLocationList())
451     return false;
452   lldb::offset_t offset = 0;
453   while (m_data.ValidOffset(offset)) {
454     const uint8_t op = m_data.GetU8(&offset);
455 
456     if (op == DW_OP_addr) {
457       const uint32_t addr_byte_size = m_data.GetAddressByteSize();
458       // We have to make a copy of the data as we don't know if this data is
459       // from a read only memory mapped buffer, so we duplicate all of the data
460       // first, then modify it, and if all goes well, we then replace the data
461       // for this expression
462 
463       // So first we copy the data into a heap buffer
464       std::unique_ptr<DataBufferHeap> head_data_up(
465           new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));
466 
467       // Make en encoder so we can write the address into the buffer using the
468       // correct byte order (endianness)
469       DataEncoder encoder(head_data_up->GetBytes(), head_data_up->GetByteSize(),
470                           m_data.GetByteOrder(), addr_byte_size);
471 
472       // Replace the address in the new buffer
473       if (encoder.PutUnsigned(offset, addr_byte_size, file_addr) == UINT32_MAX)
474         return false;
475 
476       // All went well, so now we can reset the data using a shared pointer to
477       // the heap data so "m_data" will now correctly manage the heap data.
478       m_data.SetData(DataBufferSP(head_data_up.release()));
479       return true;
480     } else {
481       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
482       if (op_arg_size == LLDB_INVALID_OFFSET)
483         break;
484       offset += op_arg_size;
485     }
486   }
487   return false;
488 }
489 
490 bool DWARFExpression::ContainsThreadLocalStorage() const {
491   // We are assuming for now that any thread local variable will not have a
492   // location list. This has been true for all thread local variables we have
493   // seen so far produced by any compiler.
494   if (IsLocationList())
495     return false;
496   lldb::offset_t offset = 0;
497   while (m_data.ValidOffset(offset)) {
498     const uint8_t op = m_data.GetU8(&offset);
499 
500     if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
501       return true;
502     const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
503     if (op_arg_size == LLDB_INVALID_OFFSET)
504       return false;
505     else
506       offset += op_arg_size;
507   }
508   return false;
509 }
510 bool DWARFExpression::LinkThreadLocalStorage(
511     lldb::ModuleSP new_module_sp,
512     std::function<lldb::addr_t(lldb::addr_t file_addr)> const
513         &link_address_callback) {
514   // We are assuming for now that any thread local variable will not have a
515   // location list. This has been true for all thread local variables we have
516   // seen so far produced by any compiler.
517   if (IsLocationList())
518     return false;
519 
520   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
521   // We have to make a copy of the data as we don't know if this data is from a
522   // read only memory mapped buffer, so we duplicate all of the data first,
523   // then modify it, and if all goes well, we then replace the data for this
524   // expression
525 
526   // So first we copy the data into a heap buffer
527   std::shared_ptr<DataBufferHeap> heap_data_sp(
528       new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));
529 
530   // Make en encoder so we can write the address into the buffer using the
531   // correct byte order (endianness)
532   DataEncoder encoder(heap_data_sp->GetBytes(), heap_data_sp->GetByteSize(),
533                       m_data.GetByteOrder(), addr_byte_size);
534 
535   lldb::offset_t offset = 0;
536   lldb::offset_t const_offset = 0;
537   lldb::addr_t const_value = 0;
538   size_t const_byte_size = 0;
539   while (m_data.ValidOffset(offset)) {
540     const uint8_t op = m_data.GetU8(&offset);
541 
542     bool decoded_data = false;
543     switch (op) {
544     case DW_OP_const4u:
545       // Remember the const offset in case we later have a
546       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
547       const_offset = offset;
548       const_value = m_data.GetU32(&offset);
549       decoded_data = true;
550       const_byte_size = 4;
551       break;
552 
553     case DW_OP_const8u:
554       // Remember the const offset in case we later have a
555       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
556       const_offset = offset;
557       const_value = m_data.GetU64(&offset);
558       decoded_data = true;
559       const_byte_size = 8;
560       break;
561 
562     case DW_OP_form_tls_address:
563     case DW_OP_GNU_push_tls_address:
564       // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
565       // by a file address on the stack. We assume that DW_OP_const4u or
566       // DW_OP_const8u is used for these values, and we check that the last
567       // opcode we got before either of these was DW_OP_const4u or
568       // DW_OP_const8u. If so, then we can link the value accodingly. For
569       // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
570       // address of a structure that contains a function pointer, the pthread
571       // key and the offset into the data pointed to by the pthread key. So we
572       // must link this address and also set the module of this expression to
573       // the new_module_sp so we can resolve the file address correctly
574       if (const_byte_size > 0) {
575         lldb::addr_t linked_file_addr = link_address_callback(const_value);
576         if (linked_file_addr == LLDB_INVALID_ADDRESS)
577           return false;
578         // Replace the address in the new buffer
579         if (encoder.PutUnsigned(const_offset, const_byte_size,
580                                 linked_file_addr) == UINT32_MAX)
581           return false;
582       }
583       break;
584 
585     default:
586       const_offset = 0;
587       const_value = 0;
588       const_byte_size = 0;
589       break;
590     }
591 
592     if (!decoded_data) {
593       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
594       if (op_arg_size == LLDB_INVALID_OFFSET)
595         return false;
596       else
597         offset += op_arg_size;
598     }
599   }
600 
601   // If we linked the TLS address correctly, update the module so that when the
602   // expression is evaluated it can resolve the file address to a load address
603   // and read the
604   // TLS data
605   m_module_wp = new_module_sp;
606   m_data.SetData(heap_data_sp);
607   return true;
608 }
609 
610 bool DWARFExpression::LocationListContainsAddress(addr_t func_load_addr,
611                                                   lldb::addr_t addr) const {
612   if (func_load_addr == LLDB_INVALID_ADDRESS || addr == LLDB_INVALID_ADDRESS)
613     return false;
614 
615   if (!IsLocationList())
616     return false;
617 
618   return GetLocationExpression(func_load_addr, addr) != llvm::None;
619 }
620 
621 bool DWARFExpression::DumpLocationForAddress(Stream *s,
622                                              lldb::DescriptionLevel level,
623                                              addr_t func_load_addr,
624                                              addr_t address, ABI *abi) {
625   if (!IsLocationList()) {
626     DumpLocation(s, m_data, level, abi);
627     return true;
628   }
629   if (llvm::Optional<DataExtractor> expr =
630           GetLocationExpression(func_load_addr, address)) {
631     DumpLocation(s, *expr, level, abi);
632     return true;
633   }
634   return false;
635 }
636 
637 static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
638                                        ExecutionContext *exe_ctx,
639                                        RegisterContext *reg_ctx,
640                                        const DataExtractor &opcodes,
641                                        lldb::offset_t &opcode_offset,
642                                        Status *error_ptr, Log *log) {
643   // DW_OP_entry_value(sub-expr) describes the location a variable had upon
644   // function entry: this variable location is presumed to be optimized out at
645   // the current PC value.  The caller of the function may have call site
646   // information that describes an alternate location for the variable (e.g. a
647   // constant literal, or a spilled stack value) in the parent frame.
648   //
649   // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
650   //
651   //     void child(int &sink, int x) {
652   //       ...
653   //       /* "x" gets optimized out. */
654   //
655   //       /* The location of "x" here is: DW_OP_entry_value($reg2). */
656   //       ++sink;
657   //     }
658   //
659   //     void parent() {
660   //       int sink;
661   //
662   //       /*
663   //        * The callsite information emitted here is:
664   //        *
665   //        * DW_TAG_call_site
666   //        *   DW_AT_return_pc ... (for "child(sink, 123);")
667   //        *   DW_TAG_call_site_parameter (for "sink")
668   //        *     DW_AT_location   ($reg1)
669   //        *     DW_AT_call_value ($SP - 8)
670   //        *   DW_TAG_call_site_parameter (for "x")
671   //        *     DW_AT_location   ($reg2)
672   //        *     DW_AT_call_value ($literal 123)
673   //        *
674   //        * DW_TAG_call_site
675   //        *   DW_AT_return_pc ... (for "child(sink, 456);")
676   //        *   ...
677   //        */
678   //       child(sink, 123);
679   //       child(sink, 456);
680   //     }
681   //
682   // When the program stops at "++sink" within `child`, the debugger determines
683   // the call site by analyzing the return address. Once the call site is found,
684   // the debugger determines which parameter is referenced by DW_OP_entry_value
685   // and evaluates the corresponding location for that parameter in `parent`.
686 
687   // 1. Find the function which pushed the current frame onto the stack.
688   if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
689     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
690     return false;
691   }
692 
693   StackFrame *current_frame = exe_ctx->GetFramePtr();
694   Thread *thread = exe_ctx->GetThreadPtr();
695   if (!current_frame || !thread) {
696     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
697     return false;
698   }
699 
700   Target &target = exe_ctx->GetTargetRef();
701   StackFrameSP parent_frame = nullptr;
702   addr_t return_pc = LLDB_INVALID_ADDRESS;
703   uint32_t current_frame_idx = current_frame->GetFrameIndex();
704   uint32_t num_frames = thread->GetStackFrameCount();
705   for (uint32_t parent_frame_idx = current_frame_idx + 1;
706        parent_frame_idx < num_frames; ++parent_frame_idx) {
707     parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
708     // Require a valid sequence of frames.
709     if (!parent_frame)
710       break;
711 
712     // Record the first valid return address, even if this is an inlined frame,
713     // in order to look up the associated call edge in the first non-inlined
714     // parent frame.
715     if (return_pc == LLDB_INVALID_ADDRESS) {
716       return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
717       LLDB_LOG(log,
718                "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
719                return_pc);
720     }
721 
722     // If we've found an inlined frame, skip it (these have no call site
723     // parameters).
724     if (parent_frame->IsInlined())
725       continue;
726 
727     // We've found the first non-inlined parent frame.
728     break;
729   }
730   if (!parent_frame || !parent_frame->GetRegisterContext()) {
731     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
732     return false;
733   }
734 
735   Function *parent_func =
736       parent_frame->GetSymbolContext(eSymbolContextFunction).function;
737   if (!parent_func) {
738     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
739     return false;
740   }
741 
742   // 2. Find the call edge in the parent function responsible for creating the
743   //    current activation.
744   Function *current_func =
745       current_frame->GetSymbolContext(eSymbolContextFunction).function;
746   if (!current_func) {
747     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
748     return false;
749   }
750 
751   CallEdge *call_edge = nullptr;
752   ModuleList &modlist = target.GetImages();
753   ExecutionContext parent_exe_ctx = *exe_ctx;
754   parent_exe_ctx.SetFrameSP(parent_frame);
755   if (!parent_frame->IsArtificial()) {
756     // If the parent frame is not artificial, the current activation may be
757     // produced by an ambiguous tail call. In this case, refuse to proceed.
758     call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
759     if (!call_edge) {
760       LLDB_LOG(log,
761                "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
762                "in parent frame {1}",
763                return_pc, parent_func->GetName());
764       return false;
765     }
766     Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
767     if (callee_func != current_func) {
768       LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
769                     "can't find real parent frame");
770       return false;
771     }
772   } else {
773     // The StackFrameList solver machinery has deduced that an unambiguous tail
774     // call sequence that produced the current activation.  The first edge in
775     // the parent that points to the current function must be valid.
776     for (auto &edge : parent_func->GetTailCallingEdges()) {
777       if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
778         call_edge = edge.get();
779         break;
780       }
781     }
782   }
783   if (!call_edge) {
784     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
785                   "to current function");
786     return false;
787   }
788 
789   // 3. Attempt to locate the DW_OP_entry_value expression in the set of
790   //    available call site parameters. If found, evaluate the corresponding
791   //    parameter in the context of the parent frame.
792   const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
793   const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
794   if (!subexpr_data) {
795     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
796     return false;
797   }
798 
799   const CallSiteParameter *matched_param = nullptr;
800   for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
801     DataExtractor param_subexpr_extractor;
802     if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
803       continue;
804     lldb::offset_t param_subexpr_offset = 0;
805     const void *param_subexpr_data =
806         param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
807     if (!param_subexpr_data ||
808         param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
809       continue;
810 
811     // At this point, the DW_OP_entry_value sub-expression and the callee-side
812     // expression in the call site parameter are known to have the same length.
813     // Check whether they are equal.
814     //
815     // Note that an equality check is sufficient: the contents of the
816     // DW_OP_entry_value subexpression are only used to identify the right call
817     // site parameter in the parent, and do not require any special handling.
818     if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
819       matched_param = &param;
820       break;
821     }
822   }
823   if (!matched_param) {
824     LLDB_LOG(log,
825              "Evaluate_DW_OP_entry_value: no matching call site param found");
826     return false;
827   }
828 
829   // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
830   // subexpresion whenever llvm does.
831   Value result;
832   const DWARFExpression &param_expr = matched_param->LocationInCaller;
833   if (!param_expr.Evaluate(&parent_exe_ctx,
834                            parent_frame->GetRegisterContext().get(),
835                            /*loclist_base_addr=*/LLDB_INVALID_ADDRESS,
836                            /*initial_value_ptr=*/nullptr,
837                            /*object_address_ptr=*/nullptr, result, error_ptr)) {
838     LLDB_LOG(log,
839              "Evaluate_DW_OP_entry_value: call site param evaluation failed");
840     return false;
841   }
842 
843   stack.push_back(result);
844   return true;
845 }
846 
847 bool DWARFExpression::Evaluate(ExecutionContextScope *exe_scope,
848                                lldb::addr_t loclist_base_load_addr,
849                                const Value *initial_value_ptr,
850                                const Value *object_address_ptr, Value &result,
851                                Status *error_ptr) const {
852   ExecutionContext exe_ctx(exe_scope);
853   return Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, initial_value_ptr,
854                   object_address_ptr, result, error_ptr);
855 }
856 
857 bool DWARFExpression::Evaluate(ExecutionContext *exe_ctx,
858                                RegisterContext *reg_ctx,
859                                lldb::addr_t func_load_addr,
860                                const Value *initial_value_ptr,
861                                const Value *object_address_ptr, Value &result,
862                                Status *error_ptr) const {
863   ModuleSP module_sp = m_module_wp.lock();
864 
865   if (IsLocationList()) {
866     addr_t pc;
867     StackFrame *frame = nullptr;
868     if (reg_ctx)
869       pc = reg_ctx->GetPC();
870     else {
871       frame = exe_ctx->GetFramePtr();
872       if (!frame)
873         return false;
874       RegisterContextSP reg_ctx_sp = frame->GetRegisterContext();
875       if (!reg_ctx_sp)
876         return false;
877       pc = reg_ctx_sp->GetPC();
878     }
879 
880     if (func_load_addr != LLDB_INVALID_ADDRESS) {
881       if (pc == LLDB_INVALID_ADDRESS) {
882         if (error_ptr)
883           error_ptr->SetErrorString("Invalid PC in frame.");
884         return false;
885       }
886 
887       if (llvm::Optional<DataExtractor> expr =
888               GetLocationExpression(func_load_addr, pc)) {
889         return DWARFExpression::Evaluate(
890             exe_ctx, reg_ctx, module_sp, *expr, m_dwarf_cu, m_reg_kind,
891             initial_value_ptr, object_address_ptr, result, error_ptr);
892       }
893     }
894     if (error_ptr)
895       error_ptr->SetErrorString("variable not available");
896     return false;
897   }
898 
899   // Not a location list, just a single expression.
900   return DWARFExpression::Evaluate(exe_ctx, reg_ctx, module_sp, m_data,
901                                    m_dwarf_cu, m_reg_kind, initial_value_ptr,
902                                    object_address_ptr, result, error_ptr);
903 }
904 
905 namespace {
906 /// The location description kinds described by the DWARF v5
907 /// specification.  Composite locations are handled out-of-band and
908 /// thus aren't part of the enum.
909 enum LocationDescriptionKind {
910   Empty,
911   Memory,
912   Register,
913   Implicit
914   /* Composite*/
915 };
916 /// Adjust value's ValueType according to the kind of location description.
917 void UpdateValueTypeFromLocationDescription(Log *log, const DWARFUnit *dwarf_cu,
918                                             LocationDescriptionKind kind,
919                                             Value *value = nullptr) {
920   // Note that this function is conflating DWARF expressions with
921   // DWARF location descriptions. Perhaps it would be better to define
922   // a wrapper for DWARFExpresssion::Eval() that deals with DWARF
923   // location descriptions (which consist of one or more DWARF
924   // expressions). But doing this would mean we'd also need factor the
925   // handling of DW_OP_(bit_)piece out of this function.
926   if (dwarf_cu && dwarf_cu->GetVersion() >= 4) {
927     const char *log_msg = "DWARF location description kind: %s";
928     switch (kind) {
929     case Empty:
930       LLDB_LOGF(log, log_msg, "Empty");
931       break;
932     case Memory:
933       LLDB_LOGF(log, log_msg, "Memory");
934       if (value->GetValueType() == Value::ValueType::Scalar)
935         value->SetValueType(Value::ValueType::LoadAddress);
936       break;
937     case Register:
938       LLDB_LOGF(log, log_msg, "Register");
939       value->SetValueType(Value::ValueType::Scalar);
940       break;
941     case Implicit:
942       LLDB_LOGF(log, log_msg, "Implicit");
943       if (value->GetValueType() == Value::ValueType::LoadAddress)
944         value->SetValueType(Value::ValueType::Scalar);
945       break;
946     }
947   }
948 }
949 } // namespace
950 
951 bool DWARFExpression::Evaluate(
952     ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
953     lldb::ModuleSP module_sp, const DataExtractor &opcodes,
954     const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
955     const Value *initial_value_ptr, const Value *object_address_ptr,
956     Value &result, Status *error_ptr) {
957 
958   if (opcodes.GetByteSize() == 0) {
959     if (error_ptr)
960       error_ptr->SetErrorString(
961           "no location, value may have been optimized out");
962     return false;
963   }
964   std::vector<Value> stack;
965 
966   Process *process = nullptr;
967   StackFrame *frame = nullptr;
968 
969   if (exe_ctx) {
970     process = exe_ctx->GetProcessPtr();
971     frame = exe_ctx->GetFramePtr();
972   }
973   if (reg_ctx == nullptr && frame)
974     reg_ctx = frame->GetRegisterContext().get();
975 
976   if (initial_value_ptr)
977     stack.push_back(*initial_value_ptr);
978 
979   lldb::offset_t offset = 0;
980   Value tmp;
981   uint32_t reg_num;
982 
983   /// Insertion point for evaluating multi-piece expression.
984   uint64_t op_piece_offset = 0;
985   Value pieces; // Used for DW_OP_piece
986 
987   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
988   // A generic type is "an integral type that has the size of an address and an
989   // unspecified signedness". For now, just use the signedness of the operand.
990   // TODO: Implement a real typed stack, and store the genericness of the value
991   // there.
992   auto to_generic = [&](auto v) {
993     bool is_signed = std::is_signed<decltype(v)>::value;
994     return Scalar(llvm::APSInt(
995         llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed),
996         !is_signed));
997   };
998 
999   // The default kind is a memory location. This is updated by any
1000   // operation that changes this, such as DW_OP_stack_value, and reset
1001   // by composition operations like DW_OP_piece.
1002   LocationDescriptionKind dwarf4_location_description_kind = Memory;
1003 
1004   while (opcodes.ValidOffset(offset)) {
1005     const lldb::offset_t op_offset = offset;
1006     const uint8_t op = opcodes.GetU8(&offset);
1007 
1008     if (log && log->GetVerbose()) {
1009       size_t count = stack.size();
1010       LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
1011                 (uint64_t)count);
1012       for (size_t i = 0; i < count; ++i) {
1013         StreamString new_value;
1014         new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
1015         stack[i].Dump(&new_value);
1016         LLDB_LOGF(log, "  %s", new_value.GetData());
1017       }
1018       LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
1019                 DW_OP_value_to_name(op));
1020     }
1021 
1022     switch (op) {
1023     // The DW_OP_addr operation has a single operand that encodes a machine
1024     // address and whose size is the size of an address on the target machine.
1025     case DW_OP_addr:
1026       stack.push_back(Scalar(opcodes.GetAddress(&offset)));
1027       stack.back().SetValueType(Value::ValueType::FileAddress);
1028       // Convert the file address to a load address, so subsequent
1029       // DWARF operators can operate on it.
1030       if (frame)
1031         stack.back().ConvertToLoadAddress(module_sp.get(),
1032                                           frame->CalculateTarget().get());
1033       break;
1034 
1035     // The DW_OP_addr_sect_offset4 is used for any location expressions in
1036     // shared libraries that have a location like:
1037     //  DW_OP_addr(0x1000)
1038     // If this address resides in a shared library, then this virtual address
1039     // won't make sense when it is evaluated in the context of a running
1040     // process where shared libraries have been slid. To account for this, this
1041     // new address type where we can store the section pointer and a 4 byte
1042     // offset.
1043     //      case DW_OP_addr_sect_offset4:
1044     //          {
1045     //              result_type = eResultTypeFileAddress;
1046     //              lldb::Section *sect = (lldb::Section
1047     //              *)opcodes.GetMaxU64(&offset, sizeof(void *));
1048     //              lldb::addr_t sect_offset = opcodes.GetU32(&offset);
1049     //
1050     //              Address so_addr (sect, sect_offset);
1051     //              lldb::addr_t load_addr = so_addr.GetLoadAddress();
1052     //              if (load_addr != LLDB_INVALID_ADDRESS)
1053     //              {
1054     //                  // We successfully resolve a file address to a load
1055     //                  // address.
1056     //                  stack.push_back(load_addr);
1057     //                  break;
1058     //              }
1059     //              else
1060     //              {
1061     //                  // We were able
1062     //                  if (error_ptr)
1063     //                      error_ptr->SetErrorStringWithFormat ("Section %s in
1064     //                      %s is not currently loaded.\n",
1065     //                      sect->GetName().AsCString(),
1066     //                      sect->GetModule()->GetFileSpec().GetFilename().AsCString());
1067     //                  return false;
1068     //              }
1069     //          }
1070     //          break;
1071 
1072     // OPCODE: DW_OP_deref
1073     // OPERANDS: none
1074     // DESCRIPTION: Pops the top stack entry and treats it as an address.
1075     // The value retrieved from that address is pushed. The size of the data
1076     // retrieved from the dereferenced address is the size of an address on the
1077     // target machine.
1078     case DW_OP_deref: {
1079       if (stack.empty()) {
1080         if (error_ptr)
1081           error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
1082         return false;
1083       }
1084       Value::ValueType value_type = stack.back().GetValueType();
1085       switch (value_type) {
1086       case Value::ValueType::HostAddress: {
1087         void *src = (void *)stack.back().GetScalar().ULongLong();
1088         intptr_t ptr;
1089         ::memcpy(&ptr, src, sizeof(void *));
1090         stack.back().GetScalar() = ptr;
1091         stack.back().ClearContext();
1092       } break;
1093       case Value::ValueType::FileAddress: {
1094         auto file_addr = stack.back().GetScalar().ULongLong(
1095             LLDB_INVALID_ADDRESS);
1096         if (!module_sp) {
1097           if (error_ptr)
1098             error_ptr->SetErrorString(
1099                 "need module to resolve file address for DW_OP_deref");
1100           return false;
1101         }
1102         Address so_addr;
1103         if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
1104           if (error_ptr)
1105             error_ptr->SetErrorString(
1106                 "failed to resolve file address in module");
1107           return false;
1108         }
1109         addr_t load_Addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
1110         if (load_Addr == LLDB_INVALID_ADDRESS) {
1111           if (error_ptr)
1112             error_ptr->SetErrorString("failed to resolve load address");
1113           return false;
1114         }
1115         stack.back().GetScalar() = load_Addr;
1116         // Fall through to load address promotion code below.
1117       } LLVM_FALLTHROUGH;
1118       case Value::ValueType::Scalar:
1119         // Promote Scalar to LoadAddress and fall through.
1120         stack.back().SetValueType(Value::ValueType::LoadAddress);
1121         LLVM_FALLTHROUGH;
1122       case Value::ValueType::LoadAddress:
1123         if (exe_ctx) {
1124           if (process) {
1125             lldb::addr_t pointer_addr =
1126                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1127             Status error;
1128             lldb::addr_t pointer_value =
1129                 process->ReadPointerFromMemory(pointer_addr, error);
1130             if (pointer_value != LLDB_INVALID_ADDRESS) {
1131               if (ABISP abi_sp = process->GetABI())
1132                 pointer_value = abi_sp->FixCodeAddress(pointer_value);
1133               stack.back().GetScalar() = pointer_value;
1134               stack.back().ClearContext();
1135             } else {
1136               if (error_ptr)
1137                 error_ptr->SetErrorStringWithFormat(
1138                     "Failed to dereference pointer from 0x%" PRIx64
1139                     " for DW_OP_deref: %s\n",
1140                     pointer_addr, error.AsCString());
1141               return false;
1142             }
1143           } else {
1144             if (error_ptr)
1145               error_ptr->SetErrorString("NULL process for DW_OP_deref.\n");
1146             return false;
1147           }
1148         } else {
1149           if (error_ptr)
1150             error_ptr->SetErrorString(
1151                 "NULL execution context for DW_OP_deref.\n");
1152           return false;
1153         }
1154         break;
1155 
1156       case Value::ValueType::Invalid:
1157         if (error_ptr)
1158           error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n");
1159         return false;
1160       }
1161 
1162     } break;
1163 
1164     // OPCODE: DW_OP_deref_size
1165     // OPERANDS: 1
1166     //  1 - uint8_t that specifies the size of the data to dereference.
1167     // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1168     // stack entry and treats it as an address. The value retrieved from that
1169     // address is pushed. In the DW_OP_deref_size operation, however, the size
1170     // in bytes of the data retrieved from the dereferenced address is
1171     // specified by the single operand. This operand is a 1-byte unsigned
1172     // integral constant whose value may not be larger than the size of an
1173     // address on the target machine. The data retrieved is zero extended to
1174     // the size of an address on the target machine before being pushed on the
1175     // expression stack.
1176     case DW_OP_deref_size: {
1177       if (stack.empty()) {
1178         if (error_ptr)
1179           error_ptr->SetErrorString(
1180               "Expression stack empty for DW_OP_deref_size.");
1181         return false;
1182       }
1183       uint8_t size = opcodes.GetU8(&offset);
1184       Value::ValueType value_type = stack.back().GetValueType();
1185       switch (value_type) {
1186       case Value::ValueType::HostAddress: {
1187         void *src = (void *)stack.back().GetScalar().ULongLong();
1188         intptr_t ptr;
1189         ::memcpy(&ptr, src, sizeof(void *));
1190         // I can't decide whether the size operand should apply to the bytes in
1191         // their
1192         // lldb-host endianness or the target endianness.. I doubt this'll ever
1193         // come up but I'll opt for assuming big endian regardless.
1194         switch (size) {
1195         case 1:
1196           ptr = ptr & 0xff;
1197           break;
1198         case 2:
1199           ptr = ptr & 0xffff;
1200           break;
1201         case 3:
1202           ptr = ptr & 0xffffff;
1203           break;
1204         case 4:
1205           ptr = ptr & 0xffffffff;
1206           break;
1207         // the casts are added to work around the case where intptr_t is a 32
1208         // bit quantity;
1209         // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1210         // program.
1211         case 5:
1212           ptr = (intptr_t)ptr & 0xffffffffffULL;
1213           break;
1214         case 6:
1215           ptr = (intptr_t)ptr & 0xffffffffffffULL;
1216           break;
1217         case 7:
1218           ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1219           break;
1220         default:
1221           break;
1222         }
1223         stack.back().GetScalar() = ptr;
1224         stack.back().ClearContext();
1225       } break;
1226       case Value::ValueType::Scalar:
1227       case Value::ValueType::LoadAddress:
1228         if (exe_ctx) {
1229           if (process) {
1230             lldb::addr_t pointer_addr =
1231                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1232             uint8_t addr_bytes[sizeof(lldb::addr_t)];
1233             Status error;
1234             if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1235                 size) {
1236               DataExtractor addr_data(addr_bytes, sizeof(addr_bytes),
1237                                       process->GetByteOrder(), size);
1238               lldb::offset_t addr_data_offset = 0;
1239               switch (size) {
1240               case 1:
1241                 stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset);
1242                 break;
1243               case 2:
1244                 stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset);
1245                 break;
1246               case 4:
1247                 stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset);
1248                 break;
1249               case 8:
1250                 stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset);
1251                 break;
1252               default:
1253                 stack.back().GetScalar() =
1254                     addr_data.GetAddress(&addr_data_offset);
1255               }
1256               stack.back().ClearContext();
1257             } else {
1258               if (error_ptr)
1259                 error_ptr->SetErrorStringWithFormat(
1260                     "Failed to dereference pointer from 0x%" PRIx64
1261                     " for DW_OP_deref: %s\n",
1262                     pointer_addr, error.AsCString());
1263               return false;
1264             }
1265           } else {
1266             if (error_ptr)
1267               error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n");
1268             return false;
1269           }
1270         } else {
1271           if (error_ptr)
1272             error_ptr->SetErrorString(
1273                 "NULL execution context for DW_OP_deref_size.\n");
1274           return false;
1275         }
1276         break;
1277 
1278       case Value::ValueType::FileAddress:
1279       case Value::ValueType::Invalid:
1280         if (error_ptr)
1281           error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n");
1282         return false;
1283       }
1284 
1285     } break;
1286 
1287     // OPCODE: DW_OP_xderef_size
1288     // OPERANDS: 1
1289     //  1 - uint8_t that specifies the size of the data to dereference.
1290     // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1291     // the top of the stack is treated as an address. The second stack entry is
1292     // treated as an "address space identifier" for those architectures that
1293     // support multiple address spaces. The top two stack elements are popped,
1294     // a data item is retrieved through an implementation-defined address
1295     // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1296     // operation, however, the size in bytes of the data retrieved from the
1297     // dereferenced address is specified by the single operand. This operand is
1298     // a 1-byte unsigned integral constant whose value may not be larger than
1299     // the size of an address on the target machine. The data retrieved is zero
1300     // extended to the size of an address on the target machine before being
1301     // pushed on the expression stack.
1302     case DW_OP_xderef_size:
1303       if (error_ptr)
1304         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1305       return false;
1306     // OPCODE: DW_OP_xderef
1307     // OPERANDS: none
1308     // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1309     // the top of the stack is treated as an address. The second stack entry is
1310     // treated as an "address space identifier" for those architectures that
1311     // support multiple address spaces. The top two stack elements are popped,
1312     // a data item is retrieved through an implementation-defined address
1313     // calculation and pushed as the new stack top. The size of the data
1314     // retrieved from the dereferenced address is the size of an address on the
1315     // target machine.
1316     case DW_OP_xderef:
1317       if (error_ptr)
1318         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1319       return false;
1320 
1321     // All DW_OP_constXXX opcodes have a single operand as noted below:
1322     //
1323     // Opcode           Operand 1
1324     // DW_OP_const1u    1-byte unsigned integer constant
1325     // DW_OP_const1s    1-byte signed integer constant
1326     // DW_OP_const2u    2-byte unsigned integer constant
1327     // DW_OP_const2s    2-byte signed integer constant
1328     // DW_OP_const4u    4-byte unsigned integer constant
1329     // DW_OP_const4s    4-byte signed integer constant
1330     // DW_OP_const8u    8-byte unsigned integer constant
1331     // DW_OP_const8s    8-byte signed integer constant
1332     // DW_OP_constu     unsigned LEB128 integer constant
1333     // DW_OP_consts     signed LEB128 integer constant
1334     case DW_OP_const1u:
1335       stack.push_back(to_generic(opcodes.GetU8(&offset)));
1336       break;
1337     case DW_OP_const1s:
1338       stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset)));
1339       break;
1340     case DW_OP_const2u:
1341       stack.push_back(to_generic(opcodes.GetU16(&offset)));
1342       break;
1343     case DW_OP_const2s:
1344       stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset)));
1345       break;
1346     case DW_OP_const4u:
1347       stack.push_back(to_generic(opcodes.GetU32(&offset)));
1348       break;
1349     case DW_OP_const4s:
1350       stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset)));
1351       break;
1352     case DW_OP_const8u:
1353       stack.push_back(to_generic(opcodes.GetU64(&offset)));
1354       break;
1355     case DW_OP_const8s:
1356       stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset)));
1357       break;
1358     // These should also use to_generic, but we can't do that due to a
1359     // producer-side bug in llvm. See llvm.org/pr48087.
1360     case DW_OP_constu:
1361       stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1362       break;
1363     case DW_OP_consts:
1364       stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1365       break;
1366 
1367     // OPCODE: DW_OP_dup
1368     // OPERANDS: none
1369     // DESCRIPTION: duplicates the value at the top of the stack
1370     case DW_OP_dup:
1371       if (stack.empty()) {
1372         if (error_ptr)
1373           error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1374         return false;
1375       } else
1376         stack.push_back(stack.back());
1377       break;
1378 
1379     // OPCODE: DW_OP_drop
1380     // OPERANDS: none
1381     // DESCRIPTION: pops the value at the top of the stack
1382     case DW_OP_drop:
1383       if (stack.empty()) {
1384         if (error_ptr)
1385           error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1386         return false;
1387       } else
1388         stack.pop_back();
1389       break;
1390 
1391     // OPCODE: DW_OP_over
1392     // OPERANDS: none
1393     // DESCRIPTION: Duplicates the entry currently second in the stack at
1394     // the top of the stack.
1395     case DW_OP_over:
1396       if (stack.size() < 2) {
1397         if (error_ptr)
1398           error_ptr->SetErrorString(
1399               "Expression stack needs at least 2 items for DW_OP_over.");
1400         return false;
1401       } else
1402         stack.push_back(stack[stack.size() - 2]);
1403       break;
1404 
1405     // OPCODE: DW_OP_pick
1406     // OPERANDS: uint8_t index into the current stack
1407     // DESCRIPTION: The stack entry with the specified index (0 through 255,
1408     // inclusive) is pushed on the stack
1409     case DW_OP_pick: {
1410       uint8_t pick_idx = opcodes.GetU8(&offset);
1411       if (pick_idx < stack.size())
1412         stack.push_back(stack[stack.size() - 1 - pick_idx]);
1413       else {
1414         if (error_ptr)
1415           error_ptr->SetErrorStringWithFormat(
1416               "Index %u out of range for DW_OP_pick.\n", pick_idx);
1417         return false;
1418       }
1419     } break;
1420 
1421     // OPCODE: DW_OP_swap
1422     // OPERANDS: none
1423     // DESCRIPTION: swaps the top two stack entries. The entry at the top
1424     // of the stack becomes the second stack entry, and the second entry
1425     // becomes the top of the stack
1426     case DW_OP_swap:
1427       if (stack.size() < 2) {
1428         if (error_ptr)
1429           error_ptr->SetErrorString(
1430               "Expression stack needs at least 2 items for DW_OP_swap.");
1431         return false;
1432       } else {
1433         tmp = stack.back();
1434         stack.back() = stack[stack.size() - 2];
1435         stack[stack.size() - 2] = tmp;
1436       }
1437       break;
1438 
1439     // OPCODE: DW_OP_rot
1440     // OPERANDS: none
1441     // DESCRIPTION: Rotates the first three stack entries. The entry at
1442     // the top of the stack becomes the third stack entry, the second entry
1443     // becomes the top of the stack, and the third entry becomes the second
1444     // entry.
1445     case DW_OP_rot:
1446       if (stack.size() < 3) {
1447         if (error_ptr)
1448           error_ptr->SetErrorString(
1449               "Expression stack needs at least 3 items for DW_OP_rot.");
1450         return false;
1451       } else {
1452         size_t last_idx = stack.size() - 1;
1453         Value old_top = stack[last_idx];
1454         stack[last_idx] = stack[last_idx - 1];
1455         stack[last_idx - 1] = stack[last_idx - 2];
1456         stack[last_idx - 2] = old_top;
1457       }
1458       break;
1459 
1460     // OPCODE: DW_OP_abs
1461     // OPERANDS: none
1462     // DESCRIPTION: pops the top stack entry, interprets it as a signed
1463     // value and pushes its absolute value. If the absolute value can not be
1464     // represented, the result is undefined.
1465     case DW_OP_abs:
1466       if (stack.empty()) {
1467         if (error_ptr)
1468           error_ptr->SetErrorString(
1469               "Expression stack needs at least 1 item for DW_OP_abs.");
1470         return false;
1471       } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1472         if (error_ptr)
1473           error_ptr->SetErrorString(
1474               "Failed to take the absolute value of the first stack item.");
1475         return false;
1476       }
1477       break;
1478 
1479     // OPCODE: DW_OP_and
1480     // OPERANDS: none
1481     // DESCRIPTION: pops the top two stack values, performs a bitwise and
1482     // operation on the two, and pushes the result.
1483     case DW_OP_and:
1484       if (stack.size() < 2) {
1485         if (error_ptr)
1486           error_ptr->SetErrorString(
1487               "Expression stack needs at least 2 items for DW_OP_and.");
1488         return false;
1489       } else {
1490         tmp = stack.back();
1491         stack.pop_back();
1492         stack.back().ResolveValue(exe_ctx) =
1493             stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1494       }
1495       break;
1496 
1497     // OPCODE: DW_OP_div
1498     // OPERANDS: none
1499     // DESCRIPTION: pops the top two stack values, divides the former second
1500     // entry by the former top of the stack using signed division, and pushes
1501     // the result.
1502     case DW_OP_div:
1503       if (stack.size() < 2) {
1504         if (error_ptr)
1505           error_ptr->SetErrorString(
1506               "Expression stack needs at least 2 items for DW_OP_div.");
1507         return false;
1508       } else {
1509         tmp = stack.back();
1510         if (tmp.ResolveValue(exe_ctx).IsZero()) {
1511           if (error_ptr)
1512             error_ptr->SetErrorString("Divide by zero.");
1513           return false;
1514         } else {
1515           stack.pop_back();
1516           stack.back() =
1517               stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
1518           if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1519             if (error_ptr)
1520               error_ptr->SetErrorString("Divide failed.");
1521             return false;
1522           }
1523         }
1524       }
1525       break;
1526 
1527     // OPCODE: DW_OP_minus
1528     // OPERANDS: none
1529     // DESCRIPTION: pops the top two stack values, subtracts the former top
1530     // of the stack from the former second entry, and pushes the result.
1531     case DW_OP_minus:
1532       if (stack.size() < 2) {
1533         if (error_ptr)
1534           error_ptr->SetErrorString(
1535               "Expression stack needs at least 2 items for DW_OP_minus.");
1536         return false;
1537       } else {
1538         tmp = stack.back();
1539         stack.pop_back();
1540         stack.back().ResolveValue(exe_ctx) =
1541             stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1542       }
1543       break;
1544 
1545     // OPCODE: DW_OP_mod
1546     // OPERANDS: none
1547     // DESCRIPTION: pops the top two stack values and pushes the result of
1548     // the calculation: former second stack entry modulo the former top of the
1549     // stack.
1550     case DW_OP_mod:
1551       if (stack.size() < 2) {
1552         if (error_ptr)
1553           error_ptr->SetErrorString(
1554               "Expression stack needs at least 2 items for DW_OP_mod.");
1555         return false;
1556       } else {
1557         tmp = stack.back();
1558         stack.pop_back();
1559         stack.back().ResolveValue(exe_ctx) =
1560             stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1561       }
1562       break;
1563 
1564     // OPCODE: DW_OP_mul
1565     // OPERANDS: none
1566     // DESCRIPTION: pops the top two stack entries, multiplies them
1567     // together, and pushes the result.
1568     case DW_OP_mul:
1569       if (stack.size() < 2) {
1570         if (error_ptr)
1571           error_ptr->SetErrorString(
1572               "Expression stack needs at least 2 items for DW_OP_mul.");
1573         return false;
1574       } else {
1575         tmp = stack.back();
1576         stack.pop_back();
1577         stack.back().ResolveValue(exe_ctx) =
1578             stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1579       }
1580       break;
1581 
1582     // OPCODE: DW_OP_neg
1583     // OPERANDS: none
1584     // DESCRIPTION: pops the top stack entry, and pushes its negation.
1585     case DW_OP_neg:
1586       if (stack.empty()) {
1587         if (error_ptr)
1588           error_ptr->SetErrorString(
1589               "Expression stack needs at least 1 item for DW_OP_neg.");
1590         return false;
1591       } else {
1592         if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
1593           if (error_ptr)
1594             error_ptr->SetErrorString("Unary negate failed.");
1595           return false;
1596         }
1597       }
1598       break;
1599 
1600     // OPCODE: DW_OP_not
1601     // OPERANDS: none
1602     // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1603     // complement
1604     case DW_OP_not:
1605       if (stack.empty()) {
1606         if (error_ptr)
1607           error_ptr->SetErrorString(
1608               "Expression stack needs at least 1 item for DW_OP_not.");
1609         return false;
1610       } else {
1611         if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
1612           if (error_ptr)
1613             error_ptr->SetErrorString("Logical NOT failed.");
1614           return false;
1615         }
1616       }
1617       break;
1618 
1619     // OPCODE: DW_OP_or
1620     // OPERANDS: none
1621     // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1622     // operation on the two, and pushes the result.
1623     case DW_OP_or:
1624       if (stack.size() < 2) {
1625         if (error_ptr)
1626           error_ptr->SetErrorString(
1627               "Expression stack needs at least 2 items for DW_OP_or.");
1628         return false;
1629       } else {
1630         tmp = stack.back();
1631         stack.pop_back();
1632         stack.back().ResolveValue(exe_ctx) =
1633             stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1634       }
1635       break;
1636 
1637     // OPCODE: DW_OP_plus
1638     // OPERANDS: none
1639     // DESCRIPTION: pops the top two stack entries, adds them together, and
1640     // pushes the result.
1641     case DW_OP_plus:
1642       if (stack.size() < 2) {
1643         if (error_ptr)
1644           error_ptr->SetErrorString(
1645               "Expression stack needs at least 2 items for DW_OP_plus.");
1646         return false;
1647       } else {
1648         tmp = stack.back();
1649         stack.pop_back();
1650         stack.back().GetScalar() += tmp.GetScalar();
1651       }
1652       break;
1653 
1654     // OPCODE: DW_OP_plus_uconst
1655     // OPERANDS: none
1656     // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1657     // constant operand and pushes the result.
1658     case DW_OP_plus_uconst:
1659       if (stack.empty()) {
1660         if (error_ptr)
1661           error_ptr->SetErrorString(
1662               "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1663         return false;
1664       } else {
1665         const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1666         // Implicit conversion from a UINT to a Scalar...
1667         stack.back().GetScalar() += uconst_value;
1668         if (!stack.back().GetScalar().IsValid()) {
1669           if (error_ptr)
1670             error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1671           return false;
1672         }
1673       }
1674       break;
1675 
1676     // OPCODE: DW_OP_shl
1677     // OPERANDS: none
1678     // DESCRIPTION:  pops the top two stack entries, shifts the former
1679     // second entry left by the number of bits specified by the former top of
1680     // the stack, and pushes the result.
1681     case DW_OP_shl:
1682       if (stack.size() < 2) {
1683         if (error_ptr)
1684           error_ptr->SetErrorString(
1685               "Expression stack needs at least 2 items for DW_OP_shl.");
1686         return false;
1687       } else {
1688         tmp = stack.back();
1689         stack.pop_back();
1690         stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1691       }
1692       break;
1693 
1694     // OPCODE: DW_OP_shr
1695     // OPERANDS: none
1696     // DESCRIPTION: pops the top two stack entries, shifts the former second
1697     // entry right logically (filling with zero bits) by the number of bits
1698     // specified by the former top of the stack, and pushes the result.
1699     case DW_OP_shr:
1700       if (stack.size() < 2) {
1701         if (error_ptr)
1702           error_ptr->SetErrorString(
1703               "Expression stack needs at least 2 items for DW_OP_shr.");
1704         return false;
1705       } else {
1706         tmp = stack.back();
1707         stack.pop_back();
1708         if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1709                 tmp.ResolveValue(exe_ctx))) {
1710           if (error_ptr)
1711             error_ptr->SetErrorString("DW_OP_shr failed.");
1712           return false;
1713         }
1714       }
1715       break;
1716 
1717     // OPCODE: DW_OP_shra
1718     // OPERANDS: none
1719     // DESCRIPTION: pops the top two stack entries, shifts the former second
1720     // entry right arithmetically (divide the magnitude by 2, keep the same
1721     // sign for the result) by the number of bits specified by the former top
1722     // of the stack, and pushes the result.
1723     case DW_OP_shra:
1724       if (stack.size() < 2) {
1725         if (error_ptr)
1726           error_ptr->SetErrorString(
1727               "Expression stack needs at least 2 items for DW_OP_shra.");
1728         return false;
1729       } else {
1730         tmp = stack.back();
1731         stack.pop_back();
1732         stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1733       }
1734       break;
1735 
1736     // OPCODE: DW_OP_xor
1737     // OPERANDS: none
1738     // DESCRIPTION: pops the top two stack entries, performs the bitwise
1739     // exclusive-or operation on the two, and pushes the result.
1740     case DW_OP_xor:
1741       if (stack.size() < 2) {
1742         if (error_ptr)
1743           error_ptr->SetErrorString(
1744               "Expression stack needs at least 2 items for DW_OP_xor.");
1745         return false;
1746       } else {
1747         tmp = stack.back();
1748         stack.pop_back();
1749         stack.back().ResolveValue(exe_ctx) =
1750             stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1751       }
1752       break;
1753 
1754     // OPCODE: DW_OP_skip
1755     // OPERANDS: int16_t
1756     // DESCRIPTION:  An unconditional branch. Its single operand is a 2-byte
1757     // signed integer constant. The 2-byte constant is the number of bytes of
1758     // the DWARF expression to skip forward or backward from the current
1759     // operation, beginning after the 2-byte constant.
1760     case DW_OP_skip: {
1761       int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1762       lldb::offset_t new_offset = offset + skip_offset;
1763       if (opcodes.ValidOffset(new_offset))
1764         offset = new_offset;
1765       else {
1766         if (error_ptr)
1767           error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
1768         return false;
1769       }
1770     } break;
1771 
1772     // OPCODE: DW_OP_bra
1773     // OPERANDS: int16_t
1774     // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1775     // signed integer constant. This operation pops the top of stack. If the
1776     // value popped is not the constant 0, the 2-byte constant operand is the
1777     // number of bytes of the DWARF expression to skip forward or backward from
1778     // the current operation, beginning after the 2-byte constant.
1779     case DW_OP_bra:
1780       if (stack.empty()) {
1781         if (error_ptr)
1782           error_ptr->SetErrorString(
1783               "Expression stack needs at least 1 item for DW_OP_bra.");
1784         return false;
1785       } else {
1786         tmp = stack.back();
1787         stack.pop_back();
1788         int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1789         Scalar zero(0);
1790         if (tmp.ResolveValue(exe_ctx) != zero) {
1791           lldb::offset_t new_offset = offset + bra_offset;
1792           if (opcodes.ValidOffset(new_offset))
1793             offset = new_offset;
1794           else {
1795             if (error_ptr)
1796               error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
1797             return false;
1798           }
1799         }
1800       }
1801       break;
1802 
1803     // OPCODE: DW_OP_eq
1804     // OPERANDS: none
1805     // DESCRIPTION: pops the top two stack values, compares using the
1806     // equals (==) operator.
1807     // STACK RESULT: push the constant value 1 onto the stack if the result
1808     // of the operation is true or the constant value 0 if the result of the
1809     // operation is false.
1810     case DW_OP_eq:
1811       if (stack.size() < 2) {
1812         if (error_ptr)
1813           error_ptr->SetErrorString(
1814               "Expression stack needs at least 2 items for DW_OP_eq.");
1815         return false;
1816       } else {
1817         tmp = stack.back();
1818         stack.pop_back();
1819         stack.back().ResolveValue(exe_ctx) =
1820             stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1821       }
1822       break;
1823 
1824     // OPCODE: DW_OP_ge
1825     // OPERANDS: none
1826     // DESCRIPTION: pops the top two stack values, compares using the
1827     // greater than or equal to (>=) operator.
1828     // STACK RESULT: push the constant value 1 onto the stack if the result
1829     // of the operation is true or the constant value 0 if the result of the
1830     // operation is false.
1831     case DW_OP_ge:
1832       if (stack.size() < 2) {
1833         if (error_ptr)
1834           error_ptr->SetErrorString(
1835               "Expression stack needs at least 2 items for DW_OP_ge.");
1836         return false;
1837       } else {
1838         tmp = stack.back();
1839         stack.pop_back();
1840         stack.back().ResolveValue(exe_ctx) =
1841             stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1842       }
1843       break;
1844 
1845     // OPCODE: DW_OP_gt
1846     // OPERANDS: none
1847     // DESCRIPTION: pops the top two stack values, compares using the
1848     // greater than (>) operator.
1849     // STACK RESULT: push the constant value 1 onto the stack if the result
1850     // of the operation is true or the constant value 0 if the result of the
1851     // operation is false.
1852     case DW_OP_gt:
1853       if (stack.size() < 2) {
1854         if (error_ptr)
1855           error_ptr->SetErrorString(
1856               "Expression stack needs at least 2 items for DW_OP_gt.");
1857         return false;
1858       } else {
1859         tmp = stack.back();
1860         stack.pop_back();
1861         stack.back().ResolveValue(exe_ctx) =
1862             stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1863       }
1864       break;
1865 
1866     // OPCODE: DW_OP_le
1867     // OPERANDS: none
1868     // DESCRIPTION: pops the top two stack values, compares using the
1869     // less than or equal to (<=) operator.
1870     // STACK RESULT: push the constant value 1 onto the stack if the result
1871     // of the operation is true or the constant value 0 if the result of the
1872     // operation is false.
1873     case DW_OP_le:
1874       if (stack.size() < 2) {
1875         if (error_ptr)
1876           error_ptr->SetErrorString(
1877               "Expression stack needs at least 2 items for DW_OP_le.");
1878         return false;
1879       } else {
1880         tmp = stack.back();
1881         stack.pop_back();
1882         stack.back().ResolveValue(exe_ctx) =
1883             stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1884       }
1885       break;
1886 
1887     // OPCODE: DW_OP_lt
1888     // OPERANDS: none
1889     // DESCRIPTION: pops the top two stack values, compares using the
1890     // less than (<) operator.
1891     // STACK RESULT: push the constant value 1 onto the stack if the result
1892     // of the operation is true or the constant value 0 if the result of the
1893     // operation is false.
1894     case DW_OP_lt:
1895       if (stack.size() < 2) {
1896         if (error_ptr)
1897           error_ptr->SetErrorString(
1898               "Expression stack needs at least 2 items for DW_OP_lt.");
1899         return false;
1900       } else {
1901         tmp = stack.back();
1902         stack.pop_back();
1903         stack.back().ResolveValue(exe_ctx) =
1904             stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1905       }
1906       break;
1907 
1908     // OPCODE: DW_OP_ne
1909     // OPERANDS: none
1910     // DESCRIPTION: pops the top two stack values, compares using the
1911     // not equal (!=) operator.
1912     // STACK RESULT: push the constant value 1 onto the stack if the result
1913     // of the operation is true or the constant value 0 if the result of the
1914     // operation is false.
1915     case DW_OP_ne:
1916       if (stack.size() < 2) {
1917         if (error_ptr)
1918           error_ptr->SetErrorString(
1919               "Expression stack needs at least 2 items for DW_OP_ne.");
1920         return false;
1921       } else {
1922         tmp = stack.back();
1923         stack.pop_back();
1924         stack.back().ResolveValue(exe_ctx) =
1925             stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
1926       }
1927       break;
1928 
1929     // OPCODE: DW_OP_litn
1930     // OPERANDS: none
1931     // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1932     // STACK RESULT: push the unsigned literal constant value onto the top
1933     // of the stack.
1934     case DW_OP_lit0:
1935     case DW_OP_lit1:
1936     case DW_OP_lit2:
1937     case DW_OP_lit3:
1938     case DW_OP_lit4:
1939     case DW_OP_lit5:
1940     case DW_OP_lit6:
1941     case DW_OP_lit7:
1942     case DW_OP_lit8:
1943     case DW_OP_lit9:
1944     case DW_OP_lit10:
1945     case DW_OP_lit11:
1946     case DW_OP_lit12:
1947     case DW_OP_lit13:
1948     case DW_OP_lit14:
1949     case DW_OP_lit15:
1950     case DW_OP_lit16:
1951     case DW_OP_lit17:
1952     case DW_OP_lit18:
1953     case DW_OP_lit19:
1954     case DW_OP_lit20:
1955     case DW_OP_lit21:
1956     case DW_OP_lit22:
1957     case DW_OP_lit23:
1958     case DW_OP_lit24:
1959     case DW_OP_lit25:
1960     case DW_OP_lit26:
1961     case DW_OP_lit27:
1962     case DW_OP_lit28:
1963     case DW_OP_lit29:
1964     case DW_OP_lit30:
1965     case DW_OP_lit31:
1966       stack.push_back(to_generic(op - DW_OP_lit0));
1967       break;
1968 
1969     // OPCODE: DW_OP_regN
1970     // OPERANDS: none
1971     // DESCRIPTION: Push the value in register n on the top of the stack.
1972     case DW_OP_reg0:
1973     case DW_OP_reg1:
1974     case DW_OP_reg2:
1975     case DW_OP_reg3:
1976     case DW_OP_reg4:
1977     case DW_OP_reg5:
1978     case DW_OP_reg6:
1979     case DW_OP_reg7:
1980     case DW_OP_reg8:
1981     case DW_OP_reg9:
1982     case DW_OP_reg10:
1983     case DW_OP_reg11:
1984     case DW_OP_reg12:
1985     case DW_OP_reg13:
1986     case DW_OP_reg14:
1987     case DW_OP_reg15:
1988     case DW_OP_reg16:
1989     case DW_OP_reg17:
1990     case DW_OP_reg18:
1991     case DW_OP_reg19:
1992     case DW_OP_reg20:
1993     case DW_OP_reg21:
1994     case DW_OP_reg22:
1995     case DW_OP_reg23:
1996     case DW_OP_reg24:
1997     case DW_OP_reg25:
1998     case DW_OP_reg26:
1999     case DW_OP_reg27:
2000     case DW_OP_reg28:
2001     case DW_OP_reg29:
2002     case DW_OP_reg30:
2003     case DW_OP_reg31: {
2004       dwarf4_location_description_kind = Register;
2005       reg_num = op - DW_OP_reg0;
2006 
2007       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2008         stack.push_back(tmp);
2009       else
2010         return false;
2011     } break;
2012     // OPCODE: DW_OP_regx
2013     // OPERANDS:
2014     //      ULEB128 literal operand that encodes the register.
2015     // DESCRIPTION: Push the value in register on the top of the stack.
2016     case DW_OP_regx: {
2017       dwarf4_location_description_kind = Register;
2018       reg_num = opcodes.GetULEB128(&offset);
2019       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2020         stack.push_back(tmp);
2021       else
2022         return false;
2023     } break;
2024 
2025     // OPCODE: DW_OP_bregN
2026     // OPERANDS:
2027     //      SLEB128 offset from register N
2028     // DESCRIPTION: Value is in memory at the address specified by register
2029     // N plus an offset.
2030     case DW_OP_breg0:
2031     case DW_OP_breg1:
2032     case DW_OP_breg2:
2033     case DW_OP_breg3:
2034     case DW_OP_breg4:
2035     case DW_OP_breg5:
2036     case DW_OP_breg6:
2037     case DW_OP_breg7:
2038     case DW_OP_breg8:
2039     case DW_OP_breg9:
2040     case DW_OP_breg10:
2041     case DW_OP_breg11:
2042     case DW_OP_breg12:
2043     case DW_OP_breg13:
2044     case DW_OP_breg14:
2045     case DW_OP_breg15:
2046     case DW_OP_breg16:
2047     case DW_OP_breg17:
2048     case DW_OP_breg18:
2049     case DW_OP_breg19:
2050     case DW_OP_breg20:
2051     case DW_OP_breg21:
2052     case DW_OP_breg22:
2053     case DW_OP_breg23:
2054     case DW_OP_breg24:
2055     case DW_OP_breg25:
2056     case DW_OP_breg26:
2057     case DW_OP_breg27:
2058     case DW_OP_breg28:
2059     case DW_OP_breg29:
2060     case DW_OP_breg30:
2061     case DW_OP_breg31: {
2062       reg_num = op - DW_OP_breg0;
2063 
2064       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2065                                     tmp)) {
2066         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2067         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2068         tmp.ClearContext();
2069         stack.push_back(tmp);
2070         stack.back().SetValueType(Value::ValueType::LoadAddress);
2071       } else
2072         return false;
2073     } break;
2074     // OPCODE: DW_OP_bregx
2075     // OPERANDS: 2
2076     //      ULEB128 literal operand that encodes the register.
2077     //      SLEB128 offset from register N
2078     // DESCRIPTION: Value is in memory at the address specified by register
2079     // N plus an offset.
2080     case DW_OP_bregx: {
2081       reg_num = opcodes.GetULEB128(&offset);
2082 
2083       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2084                                     tmp)) {
2085         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2086         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2087         tmp.ClearContext();
2088         stack.push_back(tmp);
2089         stack.back().SetValueType(Value::ValueType::LoadAddress);
2090       } else
2091         return false;
2092     } break;
2093 
2094     case DW_OP_fbreg:
2095       if (exe_ctx) {
2096         if (frame) {
2097           Scalar value;
2098           if (frame->GetFrameBaseValue(value, error_ptr)) {
2099             int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2100             value += fbreg_offset;
2101             stack.push_back(value);
2102             stack.back().SetValueType(Value::ValueType::LoadAddress);
2103           } else
2104             return false;
2105         } else {
2106           if (error_ptr)
2107             error_ptr->SetErrorString(
2108                 "Invalid stack frame in context for DW_OP_fbreg opcode.");
2109           return false;
2110         }
2111       } else {
2112         if (error_ptr)
2113           error_ptr->SetErrorString(
2114               "NULL execution context for DW_OP_fbreg.\n");
2115         return false;
2116       }
2117 
2118       break;
2119 
2120     // OPCODE: DW_OP_nop
2121     // OPERANDS: none
2122     // DESCRIPTION: A place holder. It has no effect on the location stack
2123     // or any of its values.
2124     case DW_OP_nop:
2125       break;
2126 
2127     // OPCODE: DW_OP_piece
2128     // OPERANDS: 1
2129     //      ULEB128: byte size of the piece
2130     // DESCRIPTION: The operand describes the size in bytes of the piece of
2131     // the object referenced by the DWARF expression whose result is at the top
2132     // of the stack. If the piece is located in a register, but does not occupy
2133     // the entire register, the placement of the piece within that register is
2134     // defined by the ABI.
2135     //
2136     // Many compilers store a single variable in sets of registers, or store a
2137     // variable partially in memory and partially in registers. DW_OP_piece
2138     // provides a way of describing how large a part of a variable a particular
2139     // DWARF expression refers to.
2140     case DW_OP_piece: {
2141       LocationDescriptionKind piece_locdesc = dwarf4_location_description_kind;
2142       // Reset for the next piece.
2143       dwarf4_location_description_kind = Memory;
2144 
2145       const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2146 
2147       if (piece_byte_size > 0) {
2148         Value curr_piece;
2149 
2150         if (stack.empty()) {
2151           UpdateValueTypeFromLocationDescription(
2152               log, dwarf_cu, LocationDescriptionKind::Empty);
2153           // In a multi-piece expression, this means that the current piece is
2154           // not available. Fill with zeros for now by resizing the data and
2155           // appending it
2156           curr_piece.ResizeData(piece_byte_size);
2157           // Note that "0" is not a correct value for the unknown bits.
2158           // It would be better to also return a mask of valid bits together
2159           // with the expression result, so the debugger can print missing
2160           // members as "<optimized out>" or something.
2161           ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2162           pieces.AppendDataToHostBuffer(curr_piece);
2163         } else {
2164           Status error;
2165           // Extract the current piece into "curr_piece"
2166           Value curr_piece_source_value(stack.back());
2167           stack.pop_back();
2168           UpdateValueTypeFromLocationDescription(log, dwarf_cu, piece_locdesc,
2169                                                  &curr_piece_source_value);
2170 
2171           const Value::ValueType curr_piece_source_value_type =
2172               curr_piece_source_value.GetValueType();
2173           switch (curr_piece_source_value_type) {
2174           case Value::ValueType::Invalid:
2175             return false;
2176           case Value::ValueType::LoadAddress:
2177             if (process) {
2178               if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2179                 lldb::addr_t load_addr =
2180                     curr_piece_source_value.GetScalar().ULongLong(
2181                         LLDB_INVALID_ADDRESS);
2182                 if (process->ReadMemory(
2183                         load_addr, curr_piece.GetBuffer().GetBytes(),
2184                         piece_byte_size, error) != piece_byte_size) {
2185                   if (error_ptr)
2186                     error_ptr->SetErrorStringWithFormat(
2187                         "failed to read memory DW_OP_piece(%" PRIu64
2188                         ") from 0x%" PRIx64,
2189                         piece_byte_size, load_addr);
2190                   return false;
2191                 }
2192               } else {
2193                 if (error_ptr)
2194                   error_ptr->SetErrorStringWithFormat(
2195                       "failed to resize the piece memory buffer for "
2196                       "DW_OP_piece(%" PRIu64 ")",
2197                       piece_byte_size);
2198                 return false;
2199               }
2200             }
2201             break;
2202 
2203           case Value::ValueType::FileAddress:
2204           case Value::ValueType::HostAddress:
2205             if (error_ptr) {
2206               lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2207                   LLDB_INVALID_ADDRESS);
2208               error_ptr->SetErrorStringWithFormat(
2209                   "failed to read memory DW_OP_piece(%" PRIu64
2210                   ") from %s address 0x%" PRIx64,
2211                   piece_byte_size, curr_piece_source_value.GetValueType() ==
2212                                            Value::ValueType::FileAddress
2213                                        ? "file"
2214                                        : "host",
2215                   addr);
2216             }
2217             return false;
2218 
2219           case Value::ValueType::Scalar: {
2220             uint32_t bit_size = piece_byte_size * 8;
2221             uint32_t bit_offset = 0;
2222             Scalar &scalar = curr_piece_source_value.GetScalar();
2223             if (!scalar.ExtractBitfield(
2224                     bit_size, bit_offset)) {
2225               if (error_ptr)
2226                 error_ptr->SetErrorStringWithFormat(
2227                     "unable to extract %" PRIu64 " bytes from a %" PRIu64
2228                     " byte scalar value.",
2229                     piece_byte_size,
2230                     (uint64_t)curr_piece_source_value.GetScalar()
2231                         .GetByteSize());
2232               return false;
2233             }
2234             // Create curr_piece with bit_size. By default Scalar
2235             // grows to the nearest host integer type.
2236             llvm::APInt fail_value(1, 0, false);
2237             llvm::APInt ap_int = scalar.UInt128(fail_value);
2238             assert(ap_int.getBitWidth() >= bit_size);
2239             llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
2240                                          ap_int.getNumWords()};
2241             curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
2242           } break;
2243           }
2244 
2245           // Check if this is the first piece?
2246           if (op_piece_offset == 0) {
2247             // This is the first piece, we should push it back onto the stack
2248             // so subsequent pieces will be able to access this piece and add
2249             // to it.
2250             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2251               if (error_ptr)
2252                 error_ptr->SetErrorString("failed to append piece data");
2253               return false;
2254             }
2255           } else {
2256             // If this is the second or later piece there should be a value on
2257             // the stack.
2258             if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2259               if (error_ptr)
2260                 error_ptr->SetErrorStringWithFormat(
2261                     "DW_OP_piece for offset %" PRIu64
2262                     " but top of stack is of size %" PRIu64,
2263                     op_piece_offset, pieces.GetBuffer().GetByteSize());
2264               return false;
2265             }
2266 
2267             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2268               if (error_ptr)
2269                 error_ptr->SetErrorString("failed to append piece data");
2270               return false;
2271             }
2272           }
2273         }
2274         op_piece_offset += piece_byte_size;
2275       }
2276     } break;
2277 
2278     case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2279       if (stack.size() < 1) {
2280         UpdateValueTypeFromLocationDescription(log, dwarf_cu,
2281                                                LocationDescriptionKind::Empty);
2282         // Reset for the next piece.
2283         dwarf4_location_description_kind = Memory;
2284         if (error_ptr)
2285           error_ptr->SetErrorString(
2286               "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2287         return false;
2288       } else {
2289         UpdateValueTypeFromLocationDescription(
2290             log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2291         // Reset for the next piece.
2292         dwarf4_location_description_kind = Memory;
2293         const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2294         const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2295         switch (stack.back().GetValueType()) {
2296         case Value::ValueType::Invalid:
2297           return false;
2298         case Value::ValueType::Scalar: {
2299           if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2300                                                         piece_bit_offset)) {
2301             if (error_ptr)
2302               error_ptr->SetErrorStringWithFormat(
2303                   "unable to extract %" PRIu64 " bit value with %" PRIu64
2304                   " bit offset from a %" PRIu64 " bit scalar value.",
2305                   piece_bit_size, piece_bit_offset,
2306                   (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2307             return false;
2308           }
2309         } break;
2310 
2311         case Value::ValueType::FileAddress:
2312         case Value::ValueType::LoadAddress:
2313         case Value::ValueType::HostAddress:
2314           if (error_ptr) {
2315             error_ptr->SetErrorStringWithFormat(
2316                 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2317                 ", bit_offset = %" PRIu64 ") from an address value.",
2318                 piece_bit_size, piece_bit_offset);
2319           }
2320           return false;
2321         }
2322       }
2323       break;
2324 
2325     // OPCODE: DW_OP_implicit_value
2326     // OPERANDS: 2
2327     //      ULEB128  size of the value block in bytes
2328     //      uint8_t* block bytes encoding value in target's memory
2329     //      representation
2330     // DESCRIPTION: Value is immediately stored in block in the debug info with
2331     // the memory representation of the target.
2332     case DW_OP_implicit_value: {
2333       dwarf4_location_description_kind = Implicit;
2334 
2335       const uint32_t len = opcodes.GetULEB128(&offset);
2336       const void *data = opcodes.GetData(&offset, len);
2337 
2338       if (!data) {
2339         LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data");
2340         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2341                     DW_OP_value_to_name(op));
2342         return false;
2343       }
2344 
2345       Value result(data, len);
2346       stack.push_back(result);
2347       break;
2348     }
2349 
2350     case DW_OP_implicit_pointer: {
2351       dwarf4_location_description_kind = Implicit;
2352       LLDB_ERRORF(error_ptr, "Could not evaluate %s.", DW_OP_value_to_name(op));
2353       return false;
2354     }
2355 
2356     // OPCODE: DW_OP_push_object_address
2357     // OPERANDS: none
2358     // DESCRIPTION: Pushes the address of the object currently being
2359     // evaluated as part of evaluation of a user presented expression. This
2360     // object may correspond to an independent variable described by its own
2361     // DIE or it may be a component of an array, structure, or class whose
2362     // address has been dynamically determined by an earlier step during user
2363     // expression evaluation.
2364     case DW_OP_push_object_address:
2365       if (object_address_ptr)
2366         stack.push_back(*object_address_ptr);
2367       else {
2368         if (error_ptr)
2369           error_ptr->SetErrorString("DW_OP_push_object_address used without "
2370                                     "specifying an object address");
2371         return false;
2372       }
2373       break;
2374 
2375     // OPCODE: DW_OP_call2
2376     // OPERANDS:
2377     //      uint16_t compile unit relative offset of a DIE
2378     // DESCRIPTION: Performs subroutine calls during evaluation
2379     // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2380     // debugging information entry in the current compilation unit.
2381     //
2382     // Operand interpretation is exactly like that for DW_FORM_ref2.
2383     //
2384     // This operation transfers control of DWARF expression evaluation to the
2385     // DW_AT_location attribute of the referenced DIE. If there is no such
2386     // attribute, then there is no effect. Execution of the DWARF expression of
2387     // a DW_AT_location attribute may add to and/or remove from values on the
2388     // stack. Execution returns to the point following the call when the end of
2389     // the attribute is reached. Values on the stack at the time of the call
2390     // may be used as parameters by the called expression and values left on
2391     // the stack by the called expression may be used as return values by prior
2392     // agreement between the calling and called expressions.
2393     case DW_OP_call2:
2394       if (error_ptr)
2395         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2396       return false;
2397     // OPCODE: DW_OP_call4
2398     // OPERANDS: 1
2399     //      uint32_t compile unit relative offset of a DIE
2400     // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2401     // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2402     // a debugging information entry in  the current compilation unit.
2403     //
2404     // Operand interpretation DW_OP_call4 is exactly like that for
2405     // DW_FORM_ref4.
2406     //
2407     // This operation transfers control of DWARF expression evaluation to the
2408     // DW_AT_location attribute of the referenced DIE. If there is no such
2409     // attribute, then there is no effect. Execution of the DWARF expression of
2410     // a DW_AT_location attribute may add to and/or remove from values on the
2411     // stack. Execution returns to the point following the call when the end of
2412     // the attribute is reached. Values on the stack at the time of the call
2413     // may be used as parameters by the called expression and values left on
2414     // the stack by the called expression may be used as return values by prior
2415     // agreement between the calling and called expressions.
2416     case DW_OP_call4:
2417       if (error_ptr)
2418         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2419       return false;
2420 
2421     // OPCODE: DW_OP_stack_value
2422     // OPERANDS: None
2423     // DESCRIPTION: Specifies that the object does not exist in memory but
2424     // rather is a constant value.  The value from the top of the stack is the
2425     // value to be used.  This is the actual object value and not the location.
2426     case DW_OP_stack_value:
2427       dwarf4_location_description_kind = Implicit;
2428       if (stack.empty()) {
2429         if (error_ptr)
2430           error_ptr->SetErrorString(
2431               "Expression stack needs at least 1 item for DW_OP_stack_value.");
2432         return false;
2433       }
2434       stack.back().SetValueType(Value::ValueType::Scalar);
2435       break;
2436 
2437     // OPCODE: DW_OP_convert
2438     // OPERANDS: 1
2439     //      A ULEB128 that is either a DIE offset of a
2440     //      DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2441     //
2442     // DESCRIPTION: Pop the top stack element, convert it to a
2443     // different type, and push the result.
2444     case DW_OP_convert: {
2445       if (stack.size() < 1) {
2446         if (error_ptr)
2447           error_ptr->SetErrorString(
2448               "Expression stack needs at least 1 item for DW_OP_convert.");
2449         return false;
2450       }
2451       const uint64_t die_offset = opcodes.GetULEB128(&offset);
2452       uint64_t bit_size;
2453       bool sign;
2454       if (die_offset == 0) {
2455         // The generic type has the size of an address on the target
2456         // machine and an unspecified signedness. Scalar has no
2457         // "unspecified signedness", so we use unsigned types.
2458         if (!module_sp) {
2459           if (error_ptr)
2460             error_ptr->SetErrorString("No module");
2461           return false;
2462         }
2463         sign = false;
2464         bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2465         if (!bit_size) {
2466           if (error_ptr)
2467             error_ptr->SetErrorString("unspecified architecture");
2468           return false;
2469         }
2470       } else {
2471         // Retrieve the type DIE that the value is being converted to.
2472         // FIXME: the constness has annoying ripple effects.
2473         DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(die_offset);
2474         if (!die) {
2475           if (error_ptr)
2476             error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
2477           return false;
2478         }
2479         uint64_t encoding =
2480             die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2481         bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2482         if (!bit_size)
2483           bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2484         if (!bit_size) {
2485           if (error_ptr)
2486             error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
2487           return false;
2488         }
2489         switch (encoding) {
2490         case DW_ATE_signed:
2491         case DW_ATE_signed_char:
2492           sign = true;
2493           break;
2494         case DW_ATE_unsigned:
2495         case DW_ATE_unsigned_char:
2496           sign = false;
2497           break;
2498         default:
2499           if (error_ptr)
2500             error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
2501           return false;
2502         }
2503       }
2504       Scalar &top = stack.back().ResolveValue(exe_ctx);
2505       top.TruncOrExtendTo(bit_size, sign);
2506       break;
2507     }
2508 
2509     // OPCODE: DW_OP_call_frame_cfa
2510     // OPERANDS: None
2511     // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2512     // the canonical frame address consistent with the call frame information
2513     // located in .debug_frame (or in the FDEs of the eh_frame section).
2514     case DW_OP_call_frame_cfa:
2515       if (frame) {
2516         // Note that we don't have to parse FDEs because this DWARF expression
2517         // is commonly evaluated with a valid stack frame.
2518         StackID id = frame->GetStackID();
2519         addr_t cfa = id.GetCallFrameAddress();
2520         if (cfa != LLDB_INVALID_ADDRESS) {
2521           stack.push_back(Scalar(cfa));
2522           stack.back().SetValueType(Value::ValueType::LoadAddress);
2523         } else if (error_ptr)
2524           error_ptr->SetErrorString("Stack frame does not include a canonical "
2525                                     "frame address for DW_OP_call_frame_cfa "
2526                                     "opcode.");
2527       } else {
2528         if (error_ptr)
2529           error_ptr->SetErrorString("Invalid stack frame in context for "
2530                                     "DW_OP_call_frame_cfa opcode.");
2531         return false;
2532       }
2533       break;
2534 
2535     // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2536     // opcode, DW_OP_GNU_push_tls_address)
2537     // OPERANDS: none
2538     // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2539     // an address in the current thread's thread-local storage block, and
2540     // pushes it on the stack.
2541     case DW_OP_form_tls_address:
2542     case DW_OP_GNU_push_tls_address: {
2543       if (stack.size() < 1) {
2544         if (error_ptr) {
2545           if (op == DW_OP_form_tls_address)
2546             error_ptr->SetErrorString(
2547                 "DW_OP_form_tls_address needs an argument.");
2548           else
2549             error_ptr->SetErrorString(
2550                 "DW_OP_GNU_push_tls_address needs an argument.");
2551         }
2552         return false;
2553       }
2554 
2555       if (!exe_ctx || !module_sp) {
2556         if (error_ptr)
2557           error_ptr->SetErrorString("No context to evaluate TLS within.");
2558         return false;
2559       }
2560 
2561       Thread *thread = exe_ctx->GetThreadPtr();
2562       if (!thread) {
2563         if (error_ptr)
2564           error_ptr->SetErrorString("No thread to evaluate TLS within.");
2565         return false;
2566       }
2567 
2568       // Lookup the TLS block address for this thread and module.
2569       const addr_t tls_file_addr =
2570           stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2571       const addr_t tls_load_addr =
2572           thread->GetThreadLocalData(module_sp, tls_file_addr);
2573 
2574       if (tls_load_addr == LLDB_INVALID_ADDRESS) {
2575         if (error_ptr)
2576           error_ptr->SetErrorString(
2577               "No TLS data currently exists for this thread.");
2578         return false;
2579       }
2580 
2581       stack.back().GetScalar() = tls_load_addr;
2582       stack.back().SetValueType(Value::ValueType::LoadAddress);
2583     } break;
2584 
2585     // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2586     // OPERANDS: 1
2587     //      ULEB128: index to the .debug_addr section
2588     // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2589     // section with the base address specified by the DW_AT_addr_base attribute
2590     // and the 0 based index is the ULEB128 encoded index.
2591     case DW_OP_addrx:
2592     case DW_OP_GNU_addr_index: {
2593       if (!dwarf_cu) {
2594         if (error_ptr)
2595           error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2596                                     "compile unit being specified");
2597         return false;
2598       }
2599       uint64_t index = opcodes.GetULEB128(&offset);
2600       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2601       stack.push_back(Scalar(value));
2602       stack.back().SetValueType(Value::ValueType::FileAddress);
2603     } break;
2604 
2605     // OPCODE: DW_OP_GNU_const_index
2606     // OPERANDS: 1
2607     //      ULEB128: index to the .debug_addr section
2608     // DESCRIPTION: Pushes an constant with the size of a machine address to
2609     // the stack from the .debug_addr section with the base address specified
2610     // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2611     // encoded index.
2612     case DW_OP_GNU_const_index: {
2613       if (!dwarf_cu) {
2614         if (error_ptr)
2615           error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2616                                     "compile unit being specified");
2617         return false;
2618       }
2619       uint64_t index = opcodes.GetULEB128(&offset);
2620       lldb::addr_t value = ReadAddressFromDebugAddrSection(dwarf_cu, index);
2621       stack.push_back(Scalar(value));
2622     } break;
2623 
2624     case DW_OP_GNU_entry_value:
2625     case DW_OP_entry_value: {
2626       if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
2627                                       error_ptr, log)) {
2628         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2629                     DW_OP_value_to_name(op));
2630         return false;
2631       }
2632       break;
2633     }
2634 
2635     default:
2636       if (error_ptr)
2637         error_ptr->SetErrorStringWithFormatv(
2638             "Unhandled opcode {0} in DWARFExpression", LocationAtom(op));
2639       return false;
2640     }
2641   }
2642 
2643   if (stack.empty()) {
2644     // Nothing on the stack, check if we created a piece value from DW_OP_piece
2645     // or DW_OP_bit_piece opcodes
2646     if (pieces.GetBuffer().GetByteSize()) {
2647       result = pieces;
2648       return true;
2649     }
2650     if (error_ptr)
2651       error_ptr->SetErrorString("Stack empty after evaluation.");
2652     return false;
2653   }
2654 
2655   UpdateValueTypeFromLocationDescription(
2656       log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2657 
2658   if (log && log->GetVerbose()) {
2659     size_t count = stack.size();
2660     LLDB_LOGF(log,
2661               "Stack after operation has %" PRIu64 " values:", (uint64_t)count);
2662     for (size_t i = 0; i < count; ++i) {
2663       StreamString new_value;
2664       new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2665       stack[i].Dump(&new_value);
2666       LLDB_LOGF(log, "  %s", new_value.GetData());
2667     }
2668   }
2669   result = stack.back();
2670   return true; // Return true on success
2671 }
2672 
2673 static DataExtractor ToDataExtractor(const llvm::DWARFLocationExpression &loc,
2674                                      ByteOrder byte_order, uint32_t addr_size) {
2675   auto buffer_sp =
2676       std::make_shared<DataBufferHeap>(loc.Expr.data(), loc.Expr.size());
2677   return DataExtractor(buffer_sp, byte_order, addr_size);
2678 }
2679 
2680 llvm::Optional<DataExtractor>
2681 DWARFExpression::GetLocationExpression(addr_t load_function_start,
2682                                        addr_t addr) const {
2683   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS);
2684 
2685   std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2686       m_dwarf_cu->GetLocationTable(m_data);
2687   llvm::Optional<DataExtractor> result;
2688   uint64_t offset = 0;
2689   auto lookup_addr =
2690       [&](uint32_t index) -> llvm::Optional<llvm::object::SectionedAddress> {
2691     addr_t address = ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
2692     if (address == LLDB_INVALID_ADDRESS)
2693       return llvm::None;
2694     return llvm::object::SectionedAddress{address};
2695   };
2696   auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2697     if (!loc) {
2698       LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2699       return true;
2700     }
2701     if (loc->Range) {
2702       // This relocates low_pc and high_pc by adding the difference between the
2703       // function file address, and the actual address it is loaded in memory.
2704       addr_t slide = load_function_start - m_loclist_addresses->func_file_addr;
2705       loc->Range->LowPC += slide;
2706       loc->Range->HighPC += slide;
2707 
2708       if (loc->Range->LowPC <= addr && addr < loc->Range->HighPC)
2709         result = ToDataExtractor(*loc, m_data.GetByteOrder(),
2710                                  m_data.GetAddressByteSize());
2711     }
2712     return !result;
2713   };
2714   llvm::Error E = loctable_up->visitAbsoluteLocationList(
2715       offset, llvm::object::SectionedAddress{m_loclist_addresses->cu_file_addr},
2716       lookup_addr, process_list);
2717   if (E)
2718     LLDB_LOG_ERROR(log, std::move(E), "{0}");
2719   return result;
2720 }
2721 
2722 bool DWARFExpression::MatchesOperand(StackFrame &frame,
2723                                      const Instruction::Operand &operand) {
2724   using namespace OperandMatchers;
2725 
2726   RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2727   if (!reg_ctx_sp) {
2728     return false;
2729   }
2730 
2731   DataExtractor opcodes;
2732   if (IsLocationList()) {
2733     SymbolContext sc = frame.GetSymbolContext(eSymbolContextFunction);
2734     if (!sc.function)
2735       return false;
2736 
2737     addr_t load_function_start =
2738         sc.function->GetAddressRange().GetBaseAddress().GetFileAddress();
2739     if (load_function_start == LLDB_INVALID_ADDRESS)
2740       return false;
2741 
2742     addr_t pc = frame.GetFrameCodeAddress().GetLoadAddress(
2743         frame.CalculateTarget().get());
2744 
2745     if (llvm::Optional<DataExtractor> expr = GetLocationExpression(load_function_start, pc))
2746       opcodes = std::move(*expr);
2747     else
2748       return false;
2749   } else
2750     opcodes = m_data;
2751 
2752 
2753   lldb::offset_t op_offset = 0;
2754   uint8_t opcode = opcodes.GetU8(&op_offset);
2755 
2756   if (opcode == DW_OP_fbreg) {
2757     int64_t offset = opcodes.GetSLEB128(&op_offset);
2758 
2759     DWARFExpression *fb_expr = frame.GetFrameBaseExpression(nullptr);
2760     if (!fb_expr) {
2761       return false;
2762     }
2763 
2764     auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2765       return fb_expr->MatchesOperand(frame, child);
2766     };
2767 
2768     if (!offset &&
2769         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2770                      recurse)(operand)) {
2771       return true;
2772     }
2773 
2774     return MatchUnaryOp(
2775         MatchOpType(Instruction::Operand::Type::Dereference),
2776         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2777                       MatchImmOp(offset), recurse))(operand);
2778   }
2779 
2780   bool dereference = false;
2781   const RegisterInfo *reg = nullptr;
2782   int64_t offset = 0;
2783 
2784   if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2785     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2786   } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2787     offset = opcodes.GetSLEB128(&op_offset);
2788     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2789   } else if (opcode == DW_OP_regx) {
2790     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2791     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2792   } else if (opcode == DW_OP_bregx) {
2793     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2794     offset = opcodes.GetSLEB128(&op_offset);
2795     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2796   } else {
2797     return false;
2798   }
2799 
2800   if (!reg) {
2801     return false;
2802   }
2803 
2804   if (dereference) {
2805     if (!offset &&
2806         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2807                      MatchRegOp(*reg))(operand)) {
2808       return true;
2809     }
2810 
2811     return MatchUnaryOp(
2812         MatchOpType(Instruction::Operand::Type::Dereference),
2813         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2814                       MatchRegOp(*reg),
2815                       MatchImmOp(offset)))(operand);
2816   } else {
2817     return MatchRegOp(*reg)(operand);
2818   }
2819 }
2820 
2821