1 //===-- IRMemoryMap.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "lldb/Expression/IRMemoryMap.h"
10 #include "lldb/Target/MemoryRegionInfo.h"
11 #include "lldb/Target/Process.h"
12 #include "lldb/Target/Target.h"
13 #include "lldb/Utility/DataBufferHeap.h"
14 #include "lldb/Utility/DataExtractor.h"
15 #include "lldb/Utility/LLDBAssert.h"
16 #include "lldb/Utility/LLDBLog.h"
17 #include "lldb/Utility/Log.h"
18 #include "lldb/Utility/Scalar.h"
19 #include "lldb/Utility/Status.h"
20
21 using namespace lldb_private;
22
IRMemoryMap(lldb::TargetSP target_sp)23 IRMemoryMap::IRMemoryMap(lldb::TargetSP target_sp) : m_target_wp(target_sp) {
24 if (target_sp)
25 m_process_wp = target_sp->GetProcessSP();
26 }
27
~IRMemoryMap()28 IRMemoryMap::~IRMemoryMap() {
29 lldb::ProcessSP process_sp = m_process_wp.lock();
30
31 if (process_sp) {
32 AllocationMap::iterator iter;
33
34 Status err;
35
36 while ((iter = m_allocations.begin()) != m_allocations.end()) {
37 err.Clear();
38 if (iter->second.m_leak)
39 m_allocations.erase(iter);
40 else
41 Free(iter->first, err);
42 }
43 }
44 }
45
FindSpace(size_t size)46 lldb::addr_t IRMemoryMap::FindSpace(size_t size) {
47 // The FindSpace algorithm's job is to find a region of memory that the
48 // underlying process is unlikely to be using.
49 //
50 // The memory returned by this function will never be written to. The only
51 // point is that it should not shadow process memory if possible, so that
52 // expressions processing real values from the process do not use the wrong
53 // data.
54 //
55 // If the process can in fact allocate memory (CanJIT() lets us know this)
56 // then this can be accomplished just be allocating memory in the inferior.
57 // Then no guessing is required.
58
59 lldb::TargetSP target_sp = m_target_wp.lock();
60 lldb::ProcessSP process_sp = m_process_wp.lock();
61
62 const bool process_is_alive = process_sp && process_sp->IsAlive();
63
64 lldb::addr_t ret = LLDB_INVALID_ADDRESS;
65 if (size == 0)
66 return ret;
67
68 if (process_is_alive && process_sp->CanJIT()) {
69 Status alloc_error;
70
71 ret = process_sp->AllocateMemory(size, lldb::ePermissionsReadable |
72 lldb::ePermissionsWritable,
73 alloc_error);
74
75 if (!alloc_error.Success())
76 return LLDB_INVALID_ADDRESS;
77 else
78 return ret;
79 }
80
81 // At this point we know that we need to hunt.
82 //
83 // First, go to the end of the existing allocations we've made if there are
84 // any allocations. Otherwise start at the beginning of memory.
85
86 if (m_allocations.empty()) {
87 ret = 0x0;
88 } else {
89 auto back = m_allocations.rbegin();
90 lldb::addr_t addr = back->first;
91 size_t alloc_size = back->second.m_size;
92 ret = llvm::alignTo(addr + alloc_size, 4096);
93 }
94
95 // Now, if it's possible to use the GetMemoryRegionInfo API to detect mapped
96 // regions, walk forward through memory until a region is found that has
97 // adequate space for our allocation.
98 if (process_is_alive) {
99 const uint64_t end_of_memory = process_sp->GetAddressByteSize() == 8
100 ? 0xffffffffffffffffull
101 : 0xffffffffull;
102
103 lldbassert(process_sp->GetAddressByteSize() == 4 ||
104 end_of_memory != 0xffffffffull);
105
106 MemoryRegionInfo region_info;
107 Status err = process_sp->GetMemoryRegionInfo(ret, region_info);
108 if (err.Success()) {
109 while (true) {
110 if (region_info.GetReadable() != MemoryRegionInfo::OptionalBool::eNo ||
111 region_info.GetWritable() != MemoryRegionInfo::OptionalBool::eNo ||
112 region_info.GetExecutable() !=
113 MemoryRegionInfo::OptionalBool::eNo) {
114 if (region_info.GetRange().GetRangeEnd() - 1 >= end_of_memory) {
115 ret = LLDB_INVALID_ADDRESS;
116 break;
117 } else {
118 ret = region_info.GetRange().GetRangeEnd();
119 }
120 } else if (ret + size < region_info.GetRange().GetRangeEnd()) {
121 return ret;
122 } else {
123 // ret stays the same. We just need to walk a bit further.
124 }
125
126 err = process_sp->GetMemoryRegionInfo(
127 region_info.GetRange().GetRangeEnd(), region_info);
128 if (err.Fail()) {
129 lldbassert(0 && "GetMemoryRegionInfo() succeeded, then failed");
130 ret = LLDB_INVALID_ADDRESS;
131 break;
132 }
133 }
134 }
135 }
136
137 // We've tried our algorithm, and it didn't work. Now we have to reset back
138 // to the end of the allocations we've already reported, or use a 'sensible'
139 // default if this is our first allocation.
140
141 if (m_allocations.empty()) {
142 uint32_t address_byte_size = GetAddressByteSize();
143 if (address_byte_size != UINT32_MAX) {
144 switch (address_byte_size) {
145 case 8:
146 ret = 0xdead0fff00000000ull;
147 break;
148 case 4:
149 ret = 0xee000000ull;
150 break;
151 default:
152 break;
153 }
154 }
155 } else {
156 auto back = m_allocations.rbegin();
157 lldb::addr_t addr = back->first;
158 size_t alloc_size = back->second.m_size;
159 ret = llvm::alignTo(addr + alloc_size, 4096);
160 }
161
162 return ret;
163 }
164
165 IRMemoryMap::AllocationMap::iterator
FindAllocation(lldb::addr_t addr,size_t size)166 IRMemoryMap::FindAllocation(lldb::addr_t addr, size_t size) {
167 if (addr == LLDB_INVALID_ADDRESS)
168 return m_allocations.end();
169
170 AllocationMap::iterator iter = m_allocations.lower_bound(addr);
171
172 if (iter == m_allocations.end() || iter->first > addr) {
173 if (iter == m_allocations.begin())
174 return m_allocations.end();
175 iter--;
176 }
177
178 if (iter->first <= addr && iter->first + iter->second.m_size >= addr + size)
179 return iter;
180
181 return m_allocations.end();
182 }
183
IntersectsAllocation(lldb::addr_t addr,size_t size) const184 bool IRMemoryMap::IntersectsAllocation(lldb::addr_t addr, size_t size) const {
185 if (addr == LLDB_INVALID_ADDRESS)
186 return false;
187
188 AllocationMap::const_iterator iter = m_allocations.lower_bound(addr);
189
190 // Since we only know that the returned interval begins at a location greater
191 // than or equal to where the given interval begins, it's possible that the
192 // given interval intersects either the returned interval or the previous
193 // interval. Thus, we need to check both. Note that we only need to check
194 // these two intervals. Since all intervals are disjoint it is not possible
195 // that an adjacent interval does not intersect, but a non-adjacent interval
196 // does intersect.
197 if (iter != m_allocations.end()) {
198 if (AllocationsIntersect(addr, size, iter->second.m_process_start,
199 iter->second.m_size))
200 return true;
201 }
202
203 if (iter != m_allocations.begin()) {
204 --iter;
205 if (AllocationsIntersect(addr, size, iter->second.m_process_start,
206 iter->second.m_size))
207 return true;
208 }
209
210 return false;
211 }
212
AllocationsIntersect(lldb::addr_t addr1,size_t size1,lldb::addr_t addr2,size_t size2)213 bool IRMemoryMap::AllocationsIntersect(lldb::addr_t addr1, size_t size1,
214 lldb::addr_t addr2, size_t size2) {
215 // Given two half open intervals [A, B) and [X, Y), the only 6 permutations
216 // that satisfy A<B and X<Y are the following:
217 // A B X Y
218 // A X B Y (intersects)
219 // A X Y B (intersects)
220 // X A B Y (intersects)
221 // X A Y B (intersects)
222 // X Y A B
223 // The first is B <= X, and the last is Y <= A. So the condition is !(B <= X
224 // || Y <= A)), or (X < B && A < Y)
225 return (addr2 < (addr1 + size1)) && (addr1 < (addr2 + size2));
226 }
227
GetByteOrder()228 lldb::ByteOrder IRMemoryMap::GetByteOrder() {
229 lldb::ProcessSP process_sp = m_process_wp.lock();
230
231 if (process_sp)
232 return process_sp->GetByteOrder();
233
234 lldb::TargetSP target_sp = m_target_wp.lock();
235
236 if (target_sp)
237 return target_sp->GetArchitecture().GetByteOrder();
238
239 return lldb::eByteOrderInvalid;
240 }
241
GetAddressByteSize()242 uint32_t IRMemoryMap::GetAddressByteSize() {
243 lldb::ProcessSP process_sp = m_process_wp.lock();
244
245 if (process_sp)
246 return process_sp->GetAddressByteSize();
247
248 lldb::TargetSP target_sp = m_target_wp.lock();
249
250 if (target_sp)
251 return target_sp->GetArchitecture().GetAddressByteSize();
252
253 return UINT32_MAX;
254 }
255
GetBestExecutionContextScope() const256 ExecutionContextScope *IRMemoryMap::GetBestExecutionContextScope() const {
257 lldb::ProcessSP process_sp = m_process_wp.lock();
258
259 if (process_sp)
260 return process_sp.get();
261
262 lldb::TargetSP target_sp = m_target_wp.lock();
263
264 if (target_sp)
265 return target_sp.get();
266
267 return nullptr;
268 }
269
Allocation(lldb::addr_t process_alloc,lldb::addr_t process_start,size_t size,uint32_t permissions,uint8_t alignment,AllocationPolicy policy)270 IRMemoryMap::Allocation::Allocation(lldb::addr_t process_alloc,
271 lldb::addr_t process_start, size_t size,
272 uint32_t permissions, uint8_t alignment,
273 AllocationPolicy policy)
274 : m_process_alloc(process_alloc), m_process_start(process_start),
275 m_size(size), m_policy(policy), m_leak(false), m_permissions(permissions),
276 m_alignment(alignment) {
277 switch (policy) {
278 default:
279 llvm_unreachable("Invalid AllocationPolicy");
280 case eAllocationPolicyHostOnly:
281 case eAllocationPolicyMirror:
282 m_data.SetByteSize(size);
283 break;
284 case eAllocationPolicyProcessOnly:
285 break;
286 }
287 }
288
Malloc(size_t size,uint8_t alignment,uint32_t permissions,AllocationPolicy policy,bool zero_memory,Status & error)289 lldb::addr_t IRMemoryMap::Malloc(size_t size, uint8_t alignment,
290 uint32_t permissions, AllocationPolicy policy,
291 bool zero_memory, Status &error) {
292 lldb_private::Log *log(GetLog(LLDBLog::Expressions));
293 error.Clear();
294
295 lldb::ProcessSP process_sp;
296 lldb::addr_t allocation_address = LLDB_INVALID_ADDRESS;
297 lldb::addr_t aligned_address = LLDB_INVALID_ADDRESS;
298
299 size_t allocation_size;
300
301 if (size == 0) {
302 // FIXME: Malloc(0) should either return an invalid address or assert, in
303 // order to cut down on unnecessary allocations.
304 allocation_size = alignment;
305 } else {
306 // Round up the requested size to an aligned value.
307 allocation_size = llvm::alignTo(size, alignment);
308
309 // The process page cache does not see the requested alignment. We can't
310 // assume its result will be any more than 1-byte aligned. To work around
311 // this, request `alignment - 1` additional bytes.
312 allocation_size += alignment - 1;
313 }
314
315 switch (policy) {
316 default:
317 error.SetErrorToGenericError();
318 error.SetErrorString("Couldn't malloc: invalid allocation policy");
319 return LLDB_INVALID_ADDRESS;
320 case eAllocationPolicyHostOnly:
321 allocation_address = FindSpace(allocation_size);
322 if (allocation_address == LLDB_INVALID_ADDRESS) {
323 error.SetErrorToGenericError();
324 error.SetErrorString("Couldn't malloc: address space is full");
325 return LLDB_INVALID_ADDRESS;
326 }
327 break;
328 case eAllocationPolicyMirror:
329 process_sp = m_process_wp.lock();
330 LLDB_LOGF(log,
331 "IRMemoryMap::%s process_sp=0x%" PRIxPTR
332 ", process_sp->CanJIT()=%s, process_sp->IsAlive()=%s",
333 __FUNCTION__, reinterpret_cast<uintptr_t>(process_sp.get()),
334 process_sp && process_sp->CanJIT() ? "true" : "false",
335 process_sp && process_sp->IsAlive() ? "true" : "false");
336 if (process_sp && process_sp->CanJIT() && process_sp->IsAlive()) {
337 if (!zero_memory)
338 allocation_address =
339 process_sp->AllocateMemory(allocation_size, permissions, error);
340 else
341 allocation_address =
342 process_sp->CallocateMemory(allocation_size, permissions, error);
343
344 if (!error.Success())
345 return LLDB_INVALID_ADDRESS;
346 } else {
347 LLDB_LOGF(log,
348 "IRMemoryMap::%s switching to eAllocationPolicyHostOnly "
349 "due to failed condition (see previous expr log message)",
350 __FUNCTION__);
351 policy = eAllocationPolicyHostOnly;
352 allocation_address = FindSpace(allocation_size);
353 if (allocation_address == LLDB_INVALID_ADDRESS) {
354 error.SetErrorToGenericError();
355 error.SetErrorString("Couldn't malloc: address space is full");
356 return LLDB_INVALID_ADDRESS;
357 }
358 }
359 break;
360 case eAllocationPolicyProcessOnly:
361 process_sp = m_process_wp.lock();
362 if (process_sp) {
363 if (process_sp->CanJIT() && process_sp->IsAlive()) {
364 if (!zero_memory)
365 allocation_address =
366 process_sp->AllocateMemory(allocation_size, permissions, error);
367 else
368 allocation_address =
369 process_sp->CallocateMemory(allocation_size, permissions, error);
370
371 if (!error.Success())
372 return LLDB_INVALID_ADDRESS;
373 } else {
374 error.SetErrorToGenericError();
375 error.SetErrorString(
376 "Couldn't malloc: process doesn't support allocating memory");
377 return LLDB_INVALID_ADDRESS;
378 }
379 } else {
380 error.SetErrorToGenericError();
381 error.SetErrorString("Couldn't malloc: process doesn't exist, and this "
382 "memory must be in the process");
383 return LLDB_INVALID_ADDRESS;
384 }
385 break;
386 }
387
388 lldb::addr_t mask = alignment - 1;
389 aligned_address = (allocation_address + mask) & (~mask);
390
391 m_allocations.emplace(
392 std::piecewise_construct, std::forward_as_tuple(aligned_address),
393 std::forward_as_tuple(allocation_address, aligned_address,
394 allocation_size, permissions, alignment, policy));
395
396 if (zero_memory) {
397 Status write_error;
398 std::vector<uint8_t> zero_buf(size, 0);
399 WriteMemory(aligned_address, zero_buf.data(), size, write_error);
400 }
401
402 if (log) {
403 const char *policy_string;
404
405 switch (policy) {
406 default:
407 policy_string = "<invalid policy>";
408 break;
409 case eAllocationPolicyHostOnly:
410 policy_string = "eAllocationPolicyHostOnly";
411 break;
412 case eAllocationPolicyProcessOnly:
413 policy_string = "eAllocationPolicyProcessOnly";
414 break;
415 case eAllocationPolicyMirror:
416 policy_string = "eAllocationPolicyMirror";
417 break;
418 }
419
420 LLDB_LOGF(log,
421 "IRMemoryMap::Malloc (%" PRIu64 ", 0x%" PRIx64 ", 0x%" PRIx64
422 ", %s) -> 0x%" PRIx64,
423 (uint64_t)allocation_size, (uint64_t)alignment,
424 (uint64_t)permissions, policy_string, aligned_address);
425 }
426
427 return aligned_address;
428 }
429
Leak(lldb::addr_t process_address,Status & error)430 void IRMemoryMap::Leak(lldb::addr_t process_address, Status &error) {
431 error.Clear();
432
433 AllocationMap::iterator iter = m_allocations.find(process_address);
434
435 if (iter == m_allocations.end()) {
436 error.SetErrorToGenericError();
437 error.SetErrorString("Couldn't leak: allocation doesn't exist");
438 return;
439 }
440
441 Allocation &allocation = iter->second;
442
443 allocation.m_leak = true;
444 }
445
Free(lldb::addr_t process_address,Status & error)446 void IRMemoryMap::Free(lldb::addr_t process_address, Status &error) {
447 error.Clear();
448
449 AllocationMap::iterator iter = m_allocations.find(process_address);
450
451 if (iter == m_allocations.end()) {
452 error.SetErrorToGenericError();
453 error.SetErrorString("Couldn't free: allocation doesn't exist");
454 return;
455 }
456
457 Allocation &allocation = iter->second;
458
459 switch (allocation.m_policy) {
460 default:
461 case eAllocationPolicyHostOnly: {
462 lldb::ProcessSP process_sp = m_process_wp.lock();
463 if (process_sp) {
464 if (process_sp->CanJIT() && process_sp->IsAlive())
465 process_sp->DeallocateMemory(
466 allocation.m_process_alloc); // FindSpace allocated this for real
467 }
468
469 break;
470 }
471 case eAllocationPolicyMirror:
472 case eAllocationPolicyProcessOnly: {
473 lldb::ProcessSP process_sp = m_process_wp.lock();
474 if (process_sp)
475 process_sp->DeallocateMemory(allocation.m_process_alloc);
476 }
477 }
478
479 if (lldb_private::Log *log = GetLog(LLDBLog::Expressions)) {
480 LLDB_LOGF(log,
481 "IRMemoryMap::Free (0x%" PRIx64 ") freed [0x%" PRIx64
482 "..0x%" PRIx64 ")",
483 (uint64_t)process_address, iter->second.m_process_start,
484 iter->second.m_process_start + iter->second.m_size);
485 }
486
487 m_allocations.erase(iter);
488 }
489
GetAllocSize(lldb::addr_t address,size_t & size)490 bool IRMemoryMap::GetAllocSize(lldb::addr_t address, size_t &size) {
491 AllocationMap::iterator iter = FindAllocation(address, size);
492 if (iter == m_allocations.end())
493 return false;
494
495 Allocation &al = iter->second;
496
497 if (address > (al.m_process_start + al.m_size)) {
498 size = 0;
499 return false;
500 }
501
502 if (address > al.m_process_start) {
503 int dif = address - al.m_process_start;
504 size = al.m_size - dif;
505 return true;
506 }
507
508 size = al.m_size;
509 return true;
510 }
511
WriteMemory(lldb::addr_t process_address,const uint8_t * bytes,size_t size,Status & error)512 void IRMemoryMap::WriteMemory(lldb::addr_t process_address,
513 const uint8_t *bytes, size_t size,
514 Status &error) {
515 error.Clear();
516
517 AllocationMap::iterator iter = FindAllocation(process_address, size);
518
519 if (iter == m_allocations.end()) {
520 lldb::ProcessSP process_sp = m_process_wp.lock();
521
522 if (process_sp) {
523 process_sp->WriteMemory(process_address, bytes, size, error);
524 return;
525 }
526
527 error.SetErrorToGenericError();
528 error.SetErrorString("Couldn't write: no allocation contains the target "
529 "range and the process doesn't exist");
530 return;
531 }
532
533 Allocation &allocation = iter->second;
534
535 uint64_t offset = process_address - allocation.m_process_start;
536
537 lldb::ProcessSP process_sp;
538
539 switch (allocation.m_policy) {
540 default:
541 error.SetErrorToGenericError();
542 error.SetErrorString("Couldn't write: invalid allocation policy");
543 return;
544 case eAllocationPolicyHostOnly:
545 if (!allocation.m_data.GetByteSize()) {
546 error.SetErrorToGenericError();
547 error.SetErrorString("Couldn't write: data buffer is empty");
548 return;
549 }
550 ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size);
551 break;
552 case eAllocationPolicyMirror:
553 if (!allocation.m_data.GetByteSize()) {
554 error.SetErrorToGenericError();
555 error.SetErrorString("Couldn't write: data buffer is empty");
556 return;
557 }
558 ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size);
559 process_sp = m_process_wp.lock();
560 if (process_sp) {
561 process_sp->WriteMemory(process_address, bytes, size, error);
562 if (!error.Success())
563 return;
564 }
565 break;
566 case eAllocationPolicyProcessOnly:
567 process_sp = m_process_wp.lock();
568 if (process_sp) {
569 process_sp->WriteMemory(process_address, bytes, size, error);
570 if (!error.Success())
571 return;
572 }
573 break;
574 }
575
576 if (lldb_private::Log *log = GetLog(LLDBLog::Expressions)) {
577 LLDB_LOGF(log,
578 "IRMemoryMap::WriteMemory (0x%" PRIx64 ", 0x%" PRIxPTR
579 ", 0x%" PRId64 ") went to [0x%" PRIx64 "..0x%" PRIx64 ")",
580 (uint64_t)process_address, reinterpret_cast<uintptr_t>(bytes), (uint64_t)size,
581 (uint64_t)allocation.m_process_start,
582 (uint64_t)allocation.m_process_start +
583 (uint64_t)allocation.m_size);
584 }
585 }
586
WriteScalarToMemory(lldb::addr_t process_address,Scalar & scalar,size_t size,Status & error)587 void IRMemoryMap::WriteScalarToMemory(lldb::addr_t process_address,
588 Scalar &scalar, size_t size,
589 Status &error) {
590 error.Clear();
591
592 if (size == UINT32_MAX)
593 size = scalar.GetByteSize();
594
595 if (size > 0) {
596 uint8_t buf[32];
597 const size_t mem_size =
598 scalar.GetAsMemoryData(buf, size, GetByteOrder(), error);
599 if (mem_size > 0) {
600 return WriteMemory(process_address, buf, mem_size, error);
601 } else {
602 error.SetErrorToGenericError();
603 error.SetErrorString(
604 "Couldn't write scalar: failed to get scalar as memory data");
605 }
606 } else {
607 error.SetErrorToGenericError();
608 error.SetErrorString("Couldn't write scalar: its size was zero");
609 }
610 }
611
WritePointerToMemory(lldb::addr_t process_address,lldb::addr_t address,Status & error)612 void IRMemoryMap::WritePointerToMemory(lldb::addr_t process_address,
613 lldb::addr_t address, Status &error) {
614 error.Clear();
615
616 Scalar scalar(address);
617
618 WriteScalarToMemory(process_address, scalar, GetAddressByteSize(), error);
619 }
620
ReadMemory(uint8_t * bytes,lldb::addr_t process_address,size_t size,Status & error)621 void IRMemoryMap::ReadMemory(uint8_t *bytes, lldb::addr_t process_address,
622 size_t size, Status &error) {
623 error.Clear();
624
625 AllocationMap::iterator iter = FindAllocation(process_address, size);
626
627 if (iter == m_allocations.end()) {
628 lldb::ProcessSP process_sp = m_process_wp.lock();
629
630 if (process_sp) {
631 process_sp->ReadMemory(process_address, bytes, size, error);
632 return;
633 }
634
635 lldb::TargetSP target_sp = m_target_wp.lock();
636
637 if (target_sp) {
638 Address absolute_address(process_address);
639 target_sp->ReadMemory(absolute_address, bytes, size, error, true);
640 return;
641 }
642
643 error.SetErrorToGenericError();
644 error.SetErrorString("Couldn't read: no allocation contains the target "
645 "range, and neither the process nor the target exist");
646 return;
647 }
648
649 Allocation &allocation = iter->second;
650
651 uint64_t offset = process_address - allocation.m_process_start;
652
653 if (offset > allocation.m_size) {
654 error.SetErrorToGenericError();
655 error.SetErrorString("Couldn't read: data is not in the allocation");
656 return;
657 }
658
659 lldb::ProcessSP process_sp;
660
661 switch (allocation.m_policy) {
662 default:
663 error.SetErrorToGenericError();
664 error.SetErrorString("Couldn't read: invalid allocation policy");
665 return;
666 case eAllocationPolicyHostOnly:
667 if (!allocation.m_data.GetByteSize()) {
668 error.SetErrorToGenericError();
669 error.SetErrorString("Couldn't read: data buffer is empty");
670 return;
671 }
672 if (allocation.m_data.GetByteSize() < offset + size) {
673 error.SetErrorToGenericError();
674 error.SetErrorString("Couldn't read: not enough underlying data");
675 return;
676 }
677
678 ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size);
679 break;
680 case eAllocationPolicyMirror:
681 process_sp = m_process_wp.lock();
682 if (process_sp) {
683 process_sp->ReadMemory(process_address, bytes, size, error);
684 if (!error.Success())
685 return;
686 } else {
687 if (!allocation.m_data.GetByteSize()) {
688 error.SetErrorToGenericError();
689 error.SetErrorString("Couldn't read: data buffer is empty");
690 return;
691 }
692 ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size);
693 }
694 break;
695 case eAllocationPolicyProcessOnly:
696 process_sp = m_process_wp.lock();
697 if (process_sp) {
698 process_sp->ReadMemory(process_address, bytes, size, error);
699 if (!error.Success())
700 return;
701 }
702 break;
703 }
704
705 if (lldb_private::Log *log = GetLog(LLDBLog::Expressions)) {
706 LLDB_LOGF(log,
707 "IRMemoryMap::ReadMemory (0x%" PRIx64 ", 0x%" PRIxPTR
708 ", 0x%" PRId64 ") came from [0x%" PRIx64 "..0x%" PRIx64 ")",
709 (uint64_t)process_address, reinterpret_cast<uintptr_t>(bytes), (uint64_t)size,
710 (uint64_t)allocation.m_process_start,
711 (uint64_t)allocation.m_process_start +
712 (uint64_t)allocation.m_size);
713 }
714 }
715
ReadScalarFromMemory(Scalar & scalar,lldb::addr_t process_address,size_t size,Status & error)716 void IRMemoryMap::ReadScalarFromMemory(Scalar &scalar,
717 lldb::addr_t process_address,
718 size_t size, Status &error) {
719 error.Clear();
720
721 if (size > 0) {
722 DataBufferHeap buf(size, 0);
723 ReadMemory(buf.GetBytes(), process_address, size, error);
724
725 if (!error.Success())
726 return;
727
728 DataExtractor extractor(buf.GetBytes(), buf.GetByteSize(), GetByteOrder(),
729 GetAddressByteSize());
730
731 lldb::offset_t offset = 0;
732
733 switch (size) {
734 default:
735 error.SetErrorToGenericError();
736 error.SetErrorStringWithFormat(
737 "Couldn't read scalar: unsupported size %" PRIu64, (uint64_t)size);
738 return;
739 case 1:
740 scalar = extractor.GetU8(&offset);
741 break;
742 case 2:
743 scalar = extractor.GetU16(&offset);
744 break;
745 case 4:
746 scalar = extractor.GetU32(&offset);
747 break;
748 case 8:
749 scalar = extractor.GetU64(&offset);
750 break;
751 }
752 } else {
753 error.SetErrorToGenericError();
754 error.SetErrorString("Couldn't read scalar: its size was zero");
755 }
756 }
757
ReadPointerFromMemory(lldb::addr_t * address,lldb::addr_t process_address,Status & error)758 void IRMemoryMap::ReadPointerFromMemory(lldb::addr_t *address,
759 lldb::addr_t process_address,
760 Status &error) {
761 error.Clear();
762
763 Scalar pointer_scalar;
764 ReadScalarFromMemory(pointer_scalar, process_address, GetAddressByteSize(),
765 error);
766
767 if (!error.Success())
768 return;
769
770 *address = pointer_scalar.ULongLong();
771 }
772
GetMemoryData(DataExtractor & extractor,lldb::addr_t process_address,size_t size,Status & error)773 void IRMemoryMap::GetMemoryData(DataExtractor &extractor,
774 lldb::addr_t process_address, size_t size,
775 Status &error) {
776 error.Clear();
777
778 if (size > 0) {
779 AllocationMap::iterator iter = FindAllocation(process_address, size);
780
781 if (iter == m_allocations.end()) {
782 error.SetErrorToGenericError();
783 error.SetErrorStringWithFormat(
784 "Couldn't find an allocation containing [0x%" PRIx64 "..0x%" PRIx64
785 ")",
786 process_address, process_address + size);
787 return;
788 }
789
790 Allocation &allocation = iter->second;
791
792 switch (allocation.m_policy) {
793 default:
794 error.SetErrorToGenericError();
795 error.SetErrorString(
796 "Couldn't get memory data: invalid allocation policy");
797 return;
798 case eAllocationPolicyProcessOnly:
799 error.SetErrorToGenericError();
800 error.SetErrorString(
801 "Couldn't get memory data: memory is only in the target");
802 return;
803 case eAllocationPolicyMirror: {
804 lldb::ProcessSP process_sp = m_process_wp.lock();
805
806 if (!allocation.m_data.GetByteSize()) {
807 error.SetErrorToGenericError();
808 error.SetErrorString("Couldn't get memory data: data buffer is empty");
809 return;
810 }
811 if (process_sp) {
812 process_sp->ReadMemory(allocation.m_process_start,
813 allocation.m_data.GetBytes(),
814 allocation.m_data.GetByteSize(), error);
815 if (!error.Success())
816 return;
817 uint64_t offset = process_address - allocation.m_process_start;
818 extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size,
819 GetByteOrder(), GetAddressByteSize());
820 return;
821 }
822 } break;
823 case eAllocationPolicyHostOnly:
824 if (!allocation.m_data.GetByteSize()) {
825 error.SetErrorToGenericError();
826 error.SetErrorString("Couldn't get memory data: data buffer is empty");
827 return;
828 }
829 uint64_t offset = process_address - allocation.m_process_start;
830 extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size,
831 GetByteOrder(), GetAddressByteSize());
832 return;
833 }
834 } else {
835 error.SetErrorToGenericError();
836 error.SetErrorString("Couldn't get memory data: its size was zero");
837 return;
838 }
839 }
840